AUTHOR
TITLE
pub Date NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

Solano, Cecilia H.; George, William C. College Courses: One Method of Facilitating the Intellectually Talented. 75
17p.: Paper presented at the Annual Meeting of the American Educational Research Association (Washington, D.C., April 1975)

MF-\$0.76 HC-\$1.58 Plus Postage
Academic Achievement; Acceleration; *Educational Programs; Exceptional Child Research; Followup Studies; *Gifted; *Mathematics; *Program Effectiveness; Secondary Education; Social Adjustment: Student Characteristics; *Oniversities Study of Mathematically Precocious Youth

ABSTRACT

A follówup study involving 2,021 students identified as academically gifted by the Study of Mathematically Precocious Youth (SMPY) was conducted to determine the effectiveness of collegr courses for facilitating the education of intellectually talented junior and senior high school students, Ldvantages of a college course over acceleration, student requirements for participation in the college course progran, and college enrollment procedures were considered when advising a student eligible for college courses. $0 f$ the 1,510 students returning the College Information Questionnaire, 83 students had taken college courses. Among findings were that students' grade-point average (GPA) for the college courses taken was 3.57 (on a four-point scale) and that SMPY students rarely encountered social difficulties in the college classroom. (SB)

[^0]
EDUCATION E FILAR OMAN INSTITU
复DUEATION
THIS DOCUMENT HAS DEN REPRO． OUCEO EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGIN ATING IT．POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRE SENT OFFICIAL NATIONAL INSTITUTe
EDUCATION POSITION OR POLICY．

Colleges Courses：One Method of
Facilitating the Intellectually Talented
score of interest notice The ERIC Facility has avigned this document for processing to：

One of the goals of the Study of Mathematically Precocious Youth （SMPY）has been to help intellectually able students find challenging and worthwhile learning experiences．The importance of identifying and facilitating highly able students has been documented by German（1925）， Stanley，Keating，and Fox（1974），and many others．SMPY feels that each talented individual needs to be stimulated to his or her fullest learning potential．With this objective in mind，SMPY has identified over 2000 mathematically talented youngsters when they were in junior high school．This was accomplished through three talent searches．The last of these，conducted in January of 1974，included the entire State of Maryland．Although the range of abilities is diverse，all students scored at least 420 or better on the Scholastic Aptitude Test－Mathema－ tical（SAT－M）．This is the 56th percentile of a random sample of male eleventh and twelfth graders．Most of the 2021 participants in the search who earned such a score were still under 14 years of age．

Various methods of facilitation have been studied（Fox，1974；
Stanley，1975；George and Denham，1975；Keating and Stanley，1972； Stanley，1973）and were available to SMPY．Some of these which have been used successfully are subject matter acceleration，fast－paced mathematics classes，grade skipping，Advanced Placement Program exami－ nations，entering college early（up to four years），and taking college courses for credit while still in junior or sent or high school．It is
important to remember that the particular combination of special educational procedures chosen for each student must suit his particular abilities, interests, and other academic opportunities.

Taking a College Course

There are several important considerations to be taken into account when advising a highly talented student capable of taking a college course. The first is, why choose a college course rather than some other more traditional form of acceleration? One advantage is that college courses can be taken during the summer and at night, avoiding the scheduling problems that special classes and subject matter acceleration entail. The credits, earned from these college courses can be kept in escrow until the person actends college full-time. Furthermore, these college credits may also serve a double function by being counted toward high school graduation credit. The Maryland State Board of Education recently endorsed this method of earning diploma credits. Taking a college course is particularly advantageous when the highly able individual is in an area where there are fev other such st.udents; this problem can be acute if the student lives in a rural area. By enrolling in a local college or registering for a correspondence course, the person can still obtain the individualized acceleration that he requires. Precocious youth who are in college classes also benefit by being able to interact with their intellectual peers without disturbing their social relationships with their age-mates in school. For students who are plunning to enter college, having sampled the atmosphere of a college campus helps the transition into the new academic format.

The next consideration is, who should be allowed to take a college course before finishing high school? Even within SMPY's highly talented pool of mathematical reasoners, there must be some restrictions. The general rule of thumb which SMPY has used successfully is that the student in question should exceed in already developed ability most of the students in the course he will be taking. By being abler than most of his classmates, the younger pupil can offset his lack of specific academic skills in certain areas of the curriculum. The younger the student, then, the more able he must appear on aptitude tests such as the SAT-M or the Preliminary Scholastic Aptitude Test (PSAT). The criterion used by SMPY has been that seventh and eighth graders should score at least 640 on the $S A T-M$ and ninth and tenth graders earn at least 600. In addition, a verbal score on such tests as SAT-V or PSAT-V is highly desirable. While the test results are crucial, it is important that only those students who are truly interested and willing to work hard for a good grade be encouraged to take a course.

After the student is judged to be capable of taking a college course, how does he go about it? Those persons sponsored by SMPY register with the regular student body for the course work; they receive no special attention or consideration. The SMPY staff believes that the only way a highly able student should take a college course is for graded credit, not for an audit or for pass-fail. In this way the individual receives full benefit from his college experience and still is able to transfer the credits later when he starts college full-time. In this light, it should be remembered that standard academic courses taken at a four-year institution nay be mone wily transferred than onee from a two-year junior college. .

In regard to when to take a college course, the summer seems to be 'the overwhelming favorite time with SMPY's group. There is also a definite bias in favor of taking courses at night, even during the summer. These two preferences not only solve various scheduling problems within the junior and senior high schools, but also allow the stedent to devote his full energies to what can be a demanding but exciting experience.

Finally, some thought shcudd be devoted to considering what course in particular would be best f:or a talented junior high school student entering the college world for the first time. The best procedure appears to be to start the youih off in a course in the area of the student's greatest ability. The course may be either one that accelerates the usual high school curriculum, such as algebra and trigonometry, or cae outside it, such as computer science.

SMPY College SEudents

In the preceding section were discussed several important considerations to be taken into account when a highly talented student wishes to register for a college course. The staff of SMPY has encouraged and advised many individuals to take advantage of this opportunity. In particular, the top scorers from each region in the 1974 Maryland Mathematics Talent Search were each awarded one tuition-free college course. These 49 tuition waivers were donated by twelve colleges and universities located throughout the State of Maryland and the District of co1 umbia which are interested in helping the gifted.

In the fall of 1974, SMPY did a systematic follow-up of all students who might have taken a college course. A College Information

Questionnaire was mailed out to the 2021 students who were considered eligible. Two follow-ups were done on the questionnaire. There was a month's interval between each, yielding a final return rate of 75%. The College Information Questionnaire requested not only information on any course the student might have already taken, but in addition any that they might be considering for the future.

Of the 1510 students returning the College Information Questionnaire, 83 have taken college courses (72 boys and 11 girls). These 83

Insert Table A about here
students have taken a total of 153 courses, or an average of almost two courses each. Actually, 60% of the students took only one course, while the other 40% took either two or three, and in some cases as many as ten courses. As mentioned previously, summer was the favorite time to take a course, with 70% choosing this session. The age range of these students was from 10 years, 2 months to 16 years, 0 months; the average age was 13 years, 9 months. For the 153 courses taken there were 99 A's, 45 B's, 7 C^{*} s, and 2 D's. The overall grade-point average (GPA) for this truly superior group was 3.57. On the standard four-point scale, these young, students have achieved an overall average of A-. To be on the dean's list an individual normally needs a 3.50 GPA. Within sex, the girls averaged 3.21 and the boys 3.61. Course grades were also broken down by six. month age ranges. Except for some fluctuation in GPA among 1.0 and

Insert Table B about here
\qquad
11 year olds, the GPA is surprisingly otable for those individuals 13-16 years of age. From this it can be seen that a highly selected, well
motivated 13 or 14 year old is as capable of succeeding in a college course as his older counterpart.

The courses were taken at various institutions throughout the State of Maryland and the Washington, D.C. area. The institutions attended ranged from Johns 'Hopkins and Georgetown University to state and community colleges. The actual courses taken were generally in the mathematics and science areas, but also included courses as diverse as string, chamber music, political science, and intensive Russian. The overwhelming favorite was computer science. Fifty-nine students took this course; 42 of them made $A^{\prime} s$. All the rest made B^{\prime} 's, except for two people who made $C^{\prime} s$.

These students are outstanding in several other aspects also. The mean SAT-M score in the talent search for those students who have taken a college course is 660,666 for the boys and 611 for the girls. The SAT-M scores range from 470 to 800 . Of the 83 pupils taking college courses, 38 have skipped at least one grade. Among the 38 who skipped, 66 school-grade levels in all have been skipped, or approximately two per individual. Some of the grades skipped came at the end of senior high school and have enabled 15 of these 83 students to entex college early, anywhere from one to four years. This group of students, then, is a highly select and extremely talented one. It is not surprising, therefore, that such a group should be capable of handling college courses well at a very young age. The horrifying thought is that these students might instead have been sitting in junior high school classrooms being taught material greatly below their capabilities.

In comparison with this highly talented group, quite a few of the contestants who have not yet taken a college course art not far behind.

Over a hundred want to know about opportunities for taking college courses in the inmediate future, and an even greater number are interested in the possibility when they reach senior high school. At least thirty more of these students are planning to take their first college courses by December 1975. Whereas the percentage of young students interested in taking a college course and able to do so well is small, the actual number of such students in a typical school system may well be appreciable.

The Johns Hopkins High School Scholars Program

SMPY was fortunate to find a comparison group for these talented youths fairly close to home. The Johns Hopkins Evening College and Summer Session supports a program which allows certain senior high school students to take college courses. To be eligible these students must have completed the eleventh grade with a letter-grade average of B . These individuals are, of course, older than those from SMPY, the average age per course being 17 years, 0 months versus 13 years, 9 months.

The following figures are based on courses taken through this program for the academic years of 1973 and 1974. In these two years 64 students (38 boys and 26 girls) took advantage of the opportunity. They

Insert Table C about here
took 89 courses in all, or approximately 1.4 per student. There are several points of comparison that can be made. On the minor level, these students also preferred taking sumber courses (52\%) overall. More importantly, the GPA for college courses in this older group was 3.01,
or B on the four-point scale. The boys in this program did better overall than the girls (3.11 versus 2.83), but earned all of the D's and F's given.

The difference in GPA between the Scholars program and SMPY's (3.01 versus 3.57) might be due to other factors than just ability. Obviously, the SMPY group is far younger, they have been more vigorously selected on objective criteria, and are undoubtedly more able. Also, SMPY students take courses in the area of their competence, chiefly mathematics and science. The range of courses taken by students in the Scholars program, while limited, covers many of the lower division offerings of the Hopkins Evening School. While this range of offerings may be more enticing, it also creates a greater possiblity of exceeding one's capabilities. The careful selection and guidance of the young students in SMPY has allowed them to surpass an older accelerated group.

Social and Emotional Development
A major concern in placing young people in college courses, besides academic considerations, is that these stüdents may encounter difficulties of a social nature in a college classroom. The individuals might become lost in a group much older than they are-or even worse, be pointed out as freaks. Fortunately, SMPY's experience has been that: these things rarely happen. The students' comments on the College Infarmation Questionnaire indicate overwhelmingly that the courses were considered pleasant and stimulating. One of the few complaints noted was that there wasn't enough thermodynamics in a basic physics class. A brief essay appeared in the March 15, 1975 issue of the Intellectually Talented Youth Bulletin (ITYB), the newsletcer put out by SMPY, written
by a student who had just completed an introductory course in computer science. The reaction he describes seems to be fairly typical: "My classmates, I think, were a little confused by me; unsure if I was what I looked like or just a somewhat diminutive college student. Finally, one accosted me on the staiṛs, asking me what grade I was in. He seemed amazed that I was in the eighth grade and taking algebra: 'They didn't do that when I was in school.""

Other studie, done by researchez working with SMPY have pointed out that of ten the teacher and regular college students cannot even identify these young students (Keating, Wiegand, and Fox, 1974). When told who the students were, they all agreed that these 10-14 year old junior high school students had been well assimilated into the class. The success of these young students may be due to the fact that they are highly self-selected for interest and willingness to work. It has been demonstrated elsewhere (Haier and Denham, 1975) that they are well adjusted and capable of handling adaptations that most of their age-mates would find difficult.

Conclusion

Facilitating the academic programs of these highly talented students is crucial. Through college courses these pupils gain a means of developing their intellectual processes by working with their academic peers. Certain gifted individuals t..is age can perform well academically in a college class without social trauma. But more basically, these students are having the chance to widen their intellectual horizons and expand to their fullest capabilities. The credits they earn will benefit them later when they enter college and accelerate ifuir
pace through higher learning. By finishing their education sooner they will reach the professional and business worlds earlier and have longer use of their talents as independent and creative individuals, instead of remaining passively in an atmosphere of unproductive boredom.

Table Λ
College Courses Taken by SMPY Students*

	A		B		c		D		F		
	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	Courses	GPA
Boys	$\begin{gathered} 92 \\ (60 \%) \end{gathered}$	$\begin{gathered} 1 \\ (1 \%) \end{gathered}$	$\begin{gathered} 40 \\ (26 \%) \end{gathered}$		$\begin{gathered} 4 \\ (3 \%) \end{gathered}$		$\begin{gathered} 2 \\ (1 \%) \end{gathered}$	--	---	$\begin{gathered} 139 \\ (91 \%) \end{gathered}$	3.61
Girls	6 (4\%)	-	$\begin{gathered} 5 \\ (3 \%) \end{gathered}$	---	$\begin{gathered} 3 \\ (2 \%) \end{gathered}$	---	--	---	---	$\begin{gathered} 14 \\ (9 \%) \end{gathered}$	3.21
Total	$\begin{gathered} 98 \\ (64 \%) \end{gathered}$	$\begin{gathered} 1 \\ (1 \%) \end{gathered}$	$\begin{gathered} 45 \\ (29 \%) \end{gathered}$	---	$\begin{gathered} 7 \\ (5 \%) \end{gathered}$		$\begin{gathered} 2 \\ (1 \%) \end{gathered}$	$--1$	---	$\begin{gathered} 153 \\ (100 \%) \end{gathered}$	3.57

Table B

GPA of SMPY Students by Age

GPA No. of Courses \quad| \% of Total |
| :--- |
| Courses |

10 Years
$0-6$ months 2.67
7-12 months 4.00 1
2

1

2
7-12 months -- -
12 Years

| $0-6$ months | 3.80 | 5 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| $7-12$ months | 3.63 | 8 | 5 |

13 Years
$\begin{array}{lll}0-6 \text { months } & 31.62 & 21\end{array}$
7-12 months . 3.74
27
14 Years
$\begin{array}{lll}0-6 \text { months } 3.64 & 50 & 33\end{array}$
7-12 months $3.27 \quad 17$
15 Years
$0-6$ months $3.55 \quad 11$

7-12 monthe $\quad 3.50 \quad 6$
$6: 4$
16 Years
$0-6$ months $2.0 \quad 1 \quad \frac{1}{100 \%}$

Table C

College Courses Taken by JHU High School Scholars*

	A		B		c		D		F		
	4.0	-3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	Courses	GPA
Boys	$\begin{gathered} 24 \\ (27 \%) \end{gathered}$	$\begin{gathered} 1 \\ \mid(1 \%) \end{gathered}$	$\begin{gathered} 18 \\ (20 \%) \end{gathered}$	$\begin{gathered} 1 \\ (1 \%) \end{gathered}$	$\begin{gathered} 8 \\ (9 \%) \end{gathered}$	---	$\begin{gathered} 2 \\ (2 \%) \end{gathered}$	---	$\begin{gathered} 2 \\ (2 \%) \end{gathered}$	$\begin{gathered} 56 \\ (63 \%) \end{gathered}$	3.11
Girls	6 (7\%)	-	$\begin{gathered} 15 \\ (17 \%) \end{gathered}$	$\begin{gathered} 1 \\ (1 \%) \end{gathered}$	$\begin{gathered} 11 \\ (12 \%) \end{gathered}$	---	---	---	--	$\begin{gathered} 33 \\ (37 \%) \end{gathered}$	2.83
Total	$\begin{gathered} 30 \\ (34 \%) \end{gathered}$	$\begin{gathered} 1 \\ (1 \%) \end{gathered}$	$\begin{gathered} 33 \\ (37 \%) \end{gathered}$	$\begin{gathered} 2 \\ (2 \%) \end{gathered}$	$\begin{gathered} 19 \\ (21 \%) \end{gathered}$	---	2 (2\%)	--	2 (2\%)	$\begin{gathered} 89 \\ (100 \%) \end{gathered}$	

*Percentages are based on total courses taken; $n=89$.
f

References

Fox, L. H. 1974. Facilitating educational development of mathematically precocious youth. In J. C. Stanley, D. P. Keating, and L. H. Fox (eds.), Mathematical talent: Discovery, description, and develop-ment. Baltimore: Johns Hopkins University Press. Pp. 47-69.

George, W. C. and Denham, S. A. In press. Curriculum experimentation for the mathematically talented. In D. P. Keating (ed.), Intellectual talent: Research and development. Baltimore: Johns Hopkins University Press. Ch. 6. This book is Vol. 2 of our Studies in intellectual precocity.

Haier, R. H. and Denham, S. A. In press. A summary profile of the nonintellectual correlates of mathematical precocity in boys and girls. In D. P. Keating (ed.), Inteliectual Talent: Research and Development. Baltimore: Johns Hopkins University Press. Ch. 11.

Keating, D. P. and Stanley, J. C. 1972. Extreme measures for the exceptionally gifted in mathematics and science. Educational Researcher. 1(9): 3-7.

Keating, D. P., Wiegand, S. J., and Fox, L. H. 1974. Behavior of mathematically precocious boys in a college classroom. In J. C. Stanley, D. P. Keating, and L. H. Fox (eds.), Mathematical talent: Discovery, description, and development. Baltimore: Johns Hopkins University Press. Ch. 10.

Stanley, J. C. 1973. Accelerating the educational progress of intellectually gifted youths. Educational Psychologist. $10(3)$: 133146.

Stanley, J. C. In press. Special fast mathematics classes during school: Algebra taught quickly by college professors to fourth through seventh graders. In D. P. Keating (ed.), Intellectual talent: Research and development. Baltimore: Johns Hopkins University Press. Ch. 7.

Stanley, J. C., Keating, D. P., and Fox, L. H. (eds.). 1974. Mathematical talent: Discovery, description, and development. Baltimore: Johns Hopkins University Press.

Terman, L. M. 1925. Mental and physical traits of a thousand gifted children. Genetic studies of genius, Vol. 1. Stanford, Calif.: Stanford University Press.

Footnotes

$1_{\text {The }}$ authors would like to thank $D r$. Julian Stanley for his helpful comments on earlier drafts of this paper.

[^0]: ***

 * Documents acquired by ERIC include many informal unpublished * * materials not available from other sources. ERIC makes every effort * * to obtain the best copy available. Nevertheless, items of marginal * * reproducibility are often encountered and this affects the quality *
 * of the microfiche and hardcopy reproductions ERIC makes available *
 * via the ERIC Document Reproduction Service (EDRS). EDRS is not *
 * responsible for the quality of the original document. Reproductions *
 * supplied by EDRS are the best that can be made from the original.
 **

