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Cognitive neuroscience continues to advance our understanding of the neural foundations of human intelligence, with significant
progress elucidating the role of the frontoparietal network in cognitive control mechanisms for flexible, intelligent behavior. Recent
evidence in network neuroscience further suggests that this findingmay represent the tip of the iceberg and that fluid intelligencemay
depend on the collective interaction of multiple brain networks. However, the global brain mechanisms underlying fluid intelligence
and the nature of multi-network interactions remain to be well established. We therefore conducted a large-scale Connectome-based
Predictive Modeling study, administering resting-state fMRI to 159 healthy college students and examining the contributions of seven
intrinsic connectivity networks to the prediction of fluid intelligence, as measured by a state-of-the-art cognitive task (the Bochum
Matrices Test). Specifically, we aimed to: (i) identify whether fluid intelligence relies on a primary brain network or instead engages
multiple brain networks; and (ii) elucidate the nature of brain network interactions by assessing network allegiance (within- versus
between-network connections) and network topology (strong versus weak connections) in the prediction of fluid intelligence. Our
results demonstrate that whole-brain predictive models account for a large and significant proportion of variance in fluid intelligence
(18%) and illustrate that the contribution of individual networks is relatively modest by comparison. In addition, we provide novel
evidence that the global architecture of fluid intelligence prioritizes between-network connections and flexibility through weak ties.
Our findings support a network neuroscience approach to understanding the collective role of brain networks in fluid intelligence and
elucidate the system-wide network mechanisms from which flexible, adaptive behavior is constructed.

Key words: human intelligence; fluid intelligence; connectome-based predictivemodeling; network neuroscience theory; computational
cognitive; neuroscience.

Introduction

Research in the psychological and brain sciences has long sought

to understand the nature andmechanisms of human intelligence

(for a recent review, see Barbey et al. 2021). The foundations of

modern research in this effort were established in the early twen-

tieth century by Charles Spearman, who found that performance

across awide range of academic achievementmeasures were pos-

itively correlated and proposed a general factor, g, to account for

the component of individual differences variance that is common

across all tests of mental ability (Spearman 1904). Within factor

analytic studies of intelligence, the best measures of g involve

fluid intelligence (Gf; Horn and Cattell 1966; Carroll 1993). Fluid

intelligence represents the ability to solve novel problems and to

reason adaptively in the face of limited knowledge and experience.

The capacity to performwell on tests ofGf is known to predict pro-

fessional and educational success (Jaeggi et al. 2008). Additionally,

Gf is closely tied to general intelligence (Gray andThompson 2004),

which is predictive of success across a wide spectrum of cognitive

domains, from educational and career achievements to social

well-being and mental health (Jensen 1998). Although research in

psychometrics has enabled the precise measurement and mod-

eling of Gf, uncovering the information processing architecture

of intelligence requires multidisciplinary studies that incorporate

evidence from cognitive neuroscience.

Early research in the neuroscientific study of intelligence

established the importance of the prefrontal cortex (PFC) in

general intelligence (Duncan et al. 2000), with a focus on the

involvement of the dorsolateral PFC in cognitive control (Barbey

et al. 2013). The later emergence of network-based theories

reflected an effort to examine the neurobiology of intelligence

through a wider lens, accounting for individual differences in

Gf by appealing to distributed brain networks. The influential

Parietal-Frontal Integration Theory (P-FIT) was the first to propose

that “a discrete parieto-frontal network underlies intelligence”

(Jung and Haier 2007) and that Gf reflects the capacity of this

network to evaluate and test hypotheses for problem-solving

(Gläscher et al. 2009; Barbey et al. 2012). A central feature

of the P-FIT model is the integration of knowledge between
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frontal and parietal cortex, afforded by white-matter fiber tracks

that enable efficient communication among cortical regions.

Evidence to support the frontoparietal network’s role in a wide

range of problem-solving tasks later motivated the Multiple-

Demand (MD) Theory, which appeals to an even broader network

of frontoparietal and cinguloopercular regions to account for

cognitive control functions underlying Gf (Duncan 2010). Finally,

the Process Overlap Theory (POT) represents a recent network-

based approach that accounts for individual differences in Gf

by appealing to the spatial overlap among specific cortical

networks, reflecting the shared cognitive processes underlying

task performance (Kovacs and Conway 2016). Given the focus

of this theory on spatial overlap, this view emphasizes the

role of strong connections that integrate and bind neural

representations (in contrast to weak connections that reflect less

spatial overlap; for evidence on the role of weak connections

in general intelligence, see Anderson and Barbey 2023). Thus,

contemporary theories suggest that individual differences in Gf

originate from functionally localized processes within a specific

cortical region, primary brain network, or the spatial overlap

among networks.

Although theories of fluid intelligence have historically

endorsed a localizationist perspective (for a recent review,

see Barbey et al. 2021), accumulating evidence indicates that

flexible behavior emerges from the dynamic recruitment and

orchestration of multiple brain networks, reflecting a collective

synthesis of functions within the human connectome. Indeed,

a classic measure of fluid intelligence, the Matrix Reasoning

Task, is known to engage cognitive operations for executive

(Barbey et al. 2014), attentional (Petersen and Posner 2012), and

perceptual processing (Shipstead and Yonehiro 2016). The rapidly

developing field of network neuroscience further suggests that

these functions recruit a highly distributed and interactive set of

networks that collectively enable adaptive behavior (for a review,

see Bassett and Sporns 2017).

Motivated by this emergent perspective, the Network Neuro-

science Theory (NNT) proposes that Gf originates from individual

differences in the system-wide topology and dynamics of the

human brain (Barbey 2018). In the context of Matrix Reasoning,

this framework predicts that multiple networks are engaged to

support the executive, attentional, and perceptual processing

underlying task performance (see also Duncan et al. 2020). Thus,

rather than originate from a fixed set of cortical regions, a primary

brain network, or the spatial overlap among networks, this theory

emphasizes the need for dynamic information processing and the

capacity to flexibly engage multiple brain networks in the service

of task demands (Desimone et al. 1990; Desimone and Duncan

1995; Miller and Cohen 2001; Cole et al. 2013). Research in network

neuroscience further suggests that fluid intelligence may rely

on weak connections that enable the system to function within

many difficult-to-reach network states (Barbey 2018), reflecting

the capacity to adapt to novel situations by engagingmechanisms

for flexible, goal-directed behavior (Gu et al. 2015; Anderson and

Barbey 2023). The NNT framework therefore: (i) predicts that

fluid cognition will engage between-network connections that

integrate executive, attentional, and perceptual processes; and

(ii) emphasizes the importance of weak connections in the for-

mation of globally coordinated neural representations.

To investigate the predictions of this framework, the present

study sought to: (i) examine whether the profile of functional

connections that predict individual differences in Gf reside within

a specific brain network or are distributed across multiple net-

works; and (ii) further characterize the network architecture of

fluid intelligence by investigating network allegiance (examin-

ing within- versus between-network connections) and network

topology in the prediction of Gf (investigating the contribution of

strong versus weak connections). We assessed these predictions

by employing Connectome-based Predictive Modeling (CPM; Shen

et al. 2017), a rigorous, cross-validation framework to establish

predictive models of fluid intelligence from functional connectiv-

ity data.

Building upon recent predictive modeling studies of general

intelligence (Anderson and Barbey 2023), the present research

applied CPM methods to the novel context of fluid intelligence.

Our study sought to incorporate methodological advances in the

assessment of Gf and to conduct the highest fidelity CPM study

of fluid intelligence reported to date. Prior CPM studies (Finn

et al. 2015; Noble et al. 2017) have employed the Penn Matrix

Reasoning Task (Gur et al. 2001, 2010, 2012), which exhibits impor-

tant methodological limitations (Sefcek et al. 2016; Pahor et al.

2019). Although this task provides a time-efficient estimate of

fluid intelligence, it is very brief, with an average administra-

tion time of less than 5 minutes (mean=4.6 minutes; standard

deviation=3 minutes; Gur et al. 2012) and presents relatively

simple problems of a small matrix size (i.e. 2 × 2, 3 × 3, or 5

× 1 matrices). These factors are known to: (i) reduce problem

difficulty, (ii) decrease discriminability at high levels of perfor-

mance (due to ceiling effects), and (iii) limit test reliability (Sefcek

et al. 2016; Pahor et al. 2019). Indeed, testing guidelines for the

assessment of fluid intelligence classify this measure as of “fair”

quality (Gignac and Bates 2017; see also Dubois et al. 2018). Taken

together, these methodological factors may limit the precision

and generalizability of conclusions drawn about Gf from this task.

The present study sought to address this concern by adminis-

tering a high-fidelity measure of fluid intelligence, the Bochum

Matrices Test (BOMAT; Hossiep et al. 2001). In contrast to tradi-

tional tests of Gf, the BOMAT: (i) is completed in approximately

60 minutes (rather than 5 minutes); (ii) employs a larger matrix

size (i.e. presenting 5 × 3 matrices); and (iii) introduces a time

limit of 1 hour to emphasize task efficiency. These changes to the

matrix reasoning materials and experimental protocol together

serve to increase task difficulty, reduce ceiling effects, and enable

a high-fidelity assessment of fluid intelligence (Hossiep et al.

2001).

Thus, we aimed to advance prior research by employing the

highest fidelity measure of fluid intelligence in a CPM study to

date. By administering a rigorous test of Gf and applying con-

temporary CPM methods, the present study sought to elucidate

the network architecture of fluid intelligence and to support

theory-driven research on the neural mechanisms that give rise

to flexible, adaptive behavior.

Methods
Participants
One hundred and fifty-nine healthy young adults were enrolled in

the study (41% female, ages 18–44 years, mean 25±6.08 years) as

part of a larger intervention trial (INSIGHT Phase 1a; for further

detail, see Ward et al. 2017). This cohort is separate from the

INSIGHT Phase 1b investigation of general intelligence reported by

Anderson and Barbey 2023. The data in the present study are from

the pre-intervention assessment and are therefore unaffected by

the larger project. All subjects gave written informed consent

in accordance with the Declaration of Helsinki. Study inclusion

criteria recruited adults: (i) aged 18–44 years; (ii) f luent in English;

(iii) possessing at least a high-school diploma; (iv) with normal or
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corrected to normal vision and hearing; (v) free of any psychoac-

tive medication; (vi) without history of neurological, psycholog-

ical, or endocrine disease; (vii) without history of concussion for

the past 2 years; (viii) not having learning disorders; (ix) not smok-

ing >10 cigarettes a day; (x) with a body mass index< 35; and

(xi) with at least one positive response on the revised Physical

Activity Readiness Questionnaire (Thomas et al. 1992). Addition-

ally, to reduce the presence of motion artifacts in the fMRI anal-

ysis, we removed participants with a mean framewise displace-

ment of more than 0.20 mm. All subjects reported in the present

analysis were randomly assigned to brain imaging data collection

and were right-handed.

Cognitive assessment of fluid intelligence
The BOMAT Advanced Short Version is a well-validated Matrix

Reasoning Task that assesses the adaptive problem-solving skills

underlying fluid intelligence (Hossiep et al. 2001). Each trial con-

sists of a 5 × 3 matrix of abstract visuospatial figures whose

shapes are governed by an unknown rule. The participant’s task

is to discover this rule and to select the figure that completes the

pattern in the final empty cell of the matrix, choosing among 6

response options. The test consists of 10 practice items followed

by 29 test questions arranged in ascending order of difficulty.

In the present study, participants were randomly selected to

receive either Version A or Version B and given 60 minutes to

complete as many questions as possible. The large matrix size,

progressive task difficulty, and time limit of the BOMAT serve to

reduce ceiling effects and enable a high-fidelity assessment of

task performance. In the context of the present brain imaging

study, these properties help to ensure that individual differences

in brain networks underlying fluid intelligence can be identified.

Following standard procedures, performance on the BOMAT was

analyzed according to normative (standard ten) scores based on a

German population of 668 graduate and undergraduate students

18–35 years of age. All tests were completed through an online

portal administered by Hogrefe Publishing Group (https://www.

hogrefe.com/uk/).

MRI data acquisition and preprocessing
All data were collected on a Siemens Magnetom 3 Tesla Trio

scanner using a 32-channel head coil in the Beckman Institute

Biomedical Imaging Center at the University of Illinois. A high-

resolution multi-echo T1-weighted magnetization prepared

gradient-echo structural image was acquired for each participant

(0.9 mm isotropic; TR: 1,900 ms; TI: 900 ms; TE 2.32 ms,

with GRAPPA and an acceleration factor of 2). The functional

neuroimaging data were acquired using an accelerated gradient-

echo echoplanar imaging (EPI) sequence (Auerbach et al. 2013),

sensitive to blood oxygenation level dependent (BOLD) contrast

(1.9 × 1.9 × 2.0 mm3 voxel size; 56 slices with 10% slice gap;

TR: 2,000 ms; TE: 30 ms; FOV: 240 mm; 90◦ flip angle; 10-minute

acquisition or 300 volumes). During the resting-state fMRI scan,

participants were shown a white crosshair on a black background

viewed on an LCD monitor through a head coil-mounted mirror.

Participants were instructed to lie still, focus on the visually

presented crosshair, and keep their eyes open (VanDijk et al. 2010).

All MRI data processing was conducted using FSL (Version 5.0;

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), Freesurfer (Version 7.1.1;

https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki/), and

AFNI (Version 20.2.05; https://afni.nimh.nih.gov/). The high-

resolution T1 MPRAGE was brain-extracted using Freesurfer

(Fischl 2012). Freesurfer segmentationwas performed to delineate

gray matter, white matter, and CSF voxels. Resting-state fMRI

data were preprocessed using FSL and AFNI analysis tools

(Cox 1996). We applied conventional methods for resting-state

fMRI data preprocessing, which entailed: (i) motion correction; (ii)

distortion correction and registration to T1 space (2-mm isotropic

voxel resolution); (iii) intensity normalization; (iv) non-aggressive

ICA-AROMA denoising; (v) nuisance signal regression, tempo-

ral band-pass filtering (0.01–0.08 Hz), and linear detrending;

and (vi) nonlinear registration of images to the FsAverage brain

template (2-mm isotropic voxel resolution).

Given the importance of accounting for motion-related noise

components, signal and noise variables were first modeled using

ICA-AROMA. This method is known to outperform other more

traditional motion denoising procedures (Parkes et al. 2018). The

intensity normalized functional images were smoothed using a 6-

mm full width at half-max kernel implemented with FSL’s SUSAN

(Pruim et al. 2015). Noise components were then non-aggressively

removed from the non-smoothed functional images using FSL’s

RegFilt function. After removal of motion-related noise compo-

nents, white matter and cerebrospinal fluid signals were aver-

aged across all voxels identified from the Freesurfer segmen-

tation of the high-resolution MPRAGE. The physical regressors

were removed from the functional images using AFNI’s 3dtProject

while simultaneously performing bandpass filtering and linear

detrending (Lindquist et al. 2019).

Potential confounds
To examine whether brain size and head motion constitute

confounding variables in the present study, we performed two

follow up analyses. Here, brain volumetrics were extracted from

Freesurfer’s total gray matter volume output, and head motion

metrics were generated as mean framewise displacement. The

results of this analysis show that the relationship between

brain size (beta= 1.08e-6; P=0.24) and head motion (beta=−7.53;

P=0.08) with intelligence are both null and therefore do not

constitute confounding variables in need of removal.

Connectome-based predictive modeling of fluid
intelligence
To generate functional connectomes, cortical regions were

defined using the Human Connectome Project’s Multi-modal

Parcellation (Glasser et al. 2016). This parcellation was chosen

to remain consistent with prior literature examining the

neural bases of intelligence (Dubois et al. 2018). A template in

Freesurfer’s FsAverage space for the Glasser parcellation was

applied (created by Dr Kathryn Mills from data supplied by the

HCP group and available here: https://figshare.com/articles/dat

aset/HCP-MMP1_0_projected_on_fsaverage/3498446). The gener-

ation of functional connectomes was performed using NiLearn

(Version 0.6.2; https://nilearn.github.io/stable/index.html). Cor-

tical regions were then assigned to one of seven intrinsic

connectivity networks (ICNs) to be used in network specific

predictive models (described below). To define the seven ICNs, we

adopted the community assignment protocol originally generated

by Ito and colleagues (Ito et al. 2017) using the Generalized

Louvain method with resting-state fMRI data from the HCP data

set and the Glasser parcellation (for further validation, see Dubois

et al. 2018).

The present study employed an established CPM framework to

examine the relationship between resting-state functional con-

nectivity and fluid intelligence as measured by the BOMAT (Finn

et al. 2015; Shen et al. 2017; Dubois et al. 2018). CPM is a data-

driven method to establish and validate functional connectivity

profiles that predict fluid intelligence through cross-validation.
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In this approach, a univariate feature selection method is first

applied to reduce the number of features in each predictionmodel

by retaining only the connections that are reliably associated with

Gf in the training dataset (size =n − 1). This feature selection

process correlates all edges with fluid intelligence scores and

discards edges whose P-value is above 0.01. Although the feature

selection process reduces the number of edges, thousands of

edges still remain, motivating the need to further reduce the

number of features through the use of a regularization procedure.

We therefore employed an elastic net model with regularization,

implemented via the Caret package in R. Following Dubois et al.

(2018), we fit the functional connectivity features to the observed

Gf scores using a three-fold cross-validation procedure on the

inner loop and selected the best alpha parameter from 50 dif-

ferent values. Each fold is created using an equal distribution

based on partitioning the behavioral scores into quartiles. The

best-performing model in the inner loop is then used to make a

prediction on the held-out test subject.

Our application of CPM incorporates methodological refine-

ments that enable a novel investigation of network allegiance

and network topology in the prediction of fluid intelligence. With

respect to network allegiance, we investigated the predictive suc-

cess of models derived from including only connections: (i) within

each network versus (ii) between pairwise networks.

With respect to the network topology, we investigated the

strength of between-network connections that survived feature

selection to determine whether Gf relies primarily on strong ver-

sus weak functional connections. Thus, the present study pro-

vides a novel lens for investigating the contributions of network

allegiance and network topology to the prediction of fluid intelli-

gence.

Statistical analysis
We report multiple metrics to quantify the predictive success

of functional connectivity profiles derived from CPM, including

a Pearson correlation coefficient (R), a coefficient of determina-

tion (R2), and a normalized root mean square deviation (nRMSD)

between the observed and predicted scores. To assess the sta-

tistical significance of CPM results we conducted a permutation

test with 1000 random permutations, following established con-

ventions (Finn et al. 2015; Shen et al. 2017; Dubois et al. 2018).

This method creates a null distribution by randomly shuffling

scores between subjects and running the predictive model in

exactly the same manner. Permutation testing is necessary to

establish statistical significance in cross-validation because folds

are not independent from one another (and therefore standard

parametric statistical tests are not warranted).

Results
Investigating the role of whole-brain functional
connectivity in the prediction of fluid intelligence
We conducted nested leave-one-out cross-validation to train an

elastic net model to predict out-of-sample Gf scores from whole-

brain functional connectomes. Consistent with the predicted role

of large-scale networkmechanisms in fluid intelligence,we found

that whole-brain resting-state functional connectivity accounted

for a large proportion of variance in Gf (18%), yielding a significant

correlation between observed and predicted Gf scores (R=0.42;

P1000 =0.004; Fig. 1). In addition, we observed a significant coeffi-

cient of determination (R2 =0.18; P1000 =0.004) and an nRMSD that

was significantly lower than the nRMSD from the null distribution

(nRMSD=0.90; P1000 =0.004; Fig. 2).

Fig. 1.Whole-brain resting-state functional connectivity reliably predicts
fluid intelligence (R=0.42; R2 =0.18; nRMSD=0.90). The regression line
is illustrated in black with the dashed black line providing a reference
regression line with a slope of 1.

Fig. 2. Permutation test of performance metrics (with 1,000 shuffled
datasets) to establish statistical significance with respect to an empir-
ically derived null distribution. Black lines represent statistical values
from the whole-brain model. (a) The correlation between predicted
and observed values. (b) The coefficient of determination describing
the proportion of variance explained. (c) The normalized root mean
squared deviation conveying the average differences between predicted
and observed scores.

Investigating the contribution of specific brain
networks to the prediction of fluid intelligence
A central question raised by the observed role of whole-brain

functional connectivity in the prediction of Gf is whether this

finding is driven by a specific set of brain networks. We therefore

examined connections residing within each of the seven ICNs,

systematically investigating the inclusion versus exclusion of

each ICN in the prediction of Gf. This approach implements the

same analysis pipeline described previously for the whole-brain

model but either: (i) only includes connections within a specific

ICN (i.e. the inclusionmodel); or (ii) excludes connections within a

specific ICN from thewhole-brainmodel (i.e. the exclusionmodel;

cf., Dubois et al. 2018).

As Fig. 3(a) illustrates, the capacity to predict fluid intelligence

from each of the seven networks was significantly lower than the

whole-brain model (i.e. each bar of the histogram lies below the

black-dashed line). Among the examined networks, the default

mode (DMN) and frontoparietal (FPN) networks performedmoder-

ately well, suggesting that connections within each network carry

information that is important for the prediction of Gf (relative

to connections within other brain networks; Fig. 3a). Critically,

however, the contribution of these networks in isolation is modest

compared with the whole-brain model and therefore represents

a narrow window for: (i) defining the network architecture of

fluid intelligence,which appears to dependmore heavily on global
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Fig. 3. Prediction models derived from either (a) including ver-
sus (b) excluding connections within a specific ICN in the predic-
tion of fluid intelligence. VIS=visual network, SMN=somatomotor
network, CON=cinguloopercular network, DMN=default mode net-
work, FPN= frontoparietal network, DAN=dorsal attention network,
AUD=auditory network. The black-dashed line represents the perfor-
mance of the whole-brain model. Black strikes indicate networks whose
connections did not survive feature selection.

information processing (Figs. 1 and Fig. 3a); and (ii) explaining the

functional role of these networks, which may reflect interactions

with other ICNs. Indeed, a growing literature suggests that high-

level cognition depends on the FPN’s capacity to flexibly encode

task-relevant information and orchestrate the recruitment and

coordination of multiple brain networks in the service of goal-

directed behavior (Desimone et al. 1990; Desimone and Duncan

1995; Miller and Cohen 2001; Cole et al. 2013).

In addition, we observed networks that resulted in modest

negative prediction accuracy, including the cinguloopercular

network (CON) and the dorsal attention network (DAN; Fig. 3a).

These findings suggest that each network may: (i) compete with

or inhibit the functions underlying fluid intelligence; and/or

(ii) interact with other ICNs to produce a net positive contribution

to Gf (rather than operating in isolation). We examine the latter

possibility in the between-network models investigated below.

Finally, we observed that connections within the somatomotor

network (SMN) and the auditory network (AUD) did not survive the

feature selection process, suggesting that these networks do not

advance the prediction of fluid intelligence in isolation (Fig. 3a).

When removing within-network edges, we observed a reduc-

tion in performance for the visual network (VIS), whereas per-

formance changed only minimally when removing connections

within the other networks (Fig. 3b). Thus, our findings implicate

the VIS network in the representation of visuospatial figures of

the BOMAT (Fig. 3a). Finally, it should be noted that although the

DMN inclusion model performed moderately well, the removal

of these connections in the exclusion model increased predictive

accuracy by a correlation of 0.03. These subtle differences in

the performance of inclusion versus exclusion models have been

observed in prior studies (Dubois et al. 2018) and are likely due

to differences in the tuning of hyperparameters between models

and/or sources of error in the prediction. Overall, our findings

support the predictions of the NNT framework, demonstrating

that fluid intelligence emerges from global, system-wide network

mechanisms, with whole-brain models significantly outperform-

ing those derived from specific networks (Fig. 3a) and relatively

modest changes when an individual ICN is removed (Fig. 3b).

Investigating the contribution of pairwise
network interactions to the prediction of fluid
intelligence
To further investigate how the observed global representations

are constructed from network interactions, we conducted an

analysis of between-network connections for each pair of ICNs

in the prediction of Gf. This was accomplished by applying

the previously described inclusion versus exclusion modeling

approach but in the context of between- (rather than within-)

network connections.

Among the network interactions examined, we found the best

performance for the between-network inclusion model of the

FPN and DAN (R=0.37; Fig. 4a). This finding accords with recent

evidence to suggest that interactions between these networks

enable the regulation and control of perceptual attention (Dixon

et al. 2018), processes that are important for visuospatial rea-

soning in the BOMAT. In addition, we identified several other

between-network inclusion models that performed moderately

well, including the FPN-SMN (R=0.23), FPN-CON (R=0.22), CON-

DAN (R=0.22), and DAN-AUD (R=0.20; Fig. 4a). As we discuss in

greater detail below, the observed pattern of between-network

connections reflects the interaction between cognitive control

(FPN, CON), attentional (DAN), and/or perceptual networks (SMN,

AUD), consistent with prior research implicating these operations

in fluid intelligence (e.g. Petersen and Posner 2012; Barbey et al.

2014; Shipstead and Yonehiro 2016).

Finally, when removing specific between-network connections,

predictive performance did not significantly decline, remaining

similar to the whole-brain model (Fig. 4b). Thus, this finding

suggests that the prediction of fluid intelligence does not heavily

rely on or originate from connections between a specific pair of

networks but rather from connections between several different

networks. Taken together, our results highlight the importance of

large-scale network interactions for Gf and identify a specific col-

lection of cognitive control, attentional, and perceptual networks

whose interactions support fluid intelligence.

Investigating within- versus between-network
connections in the prediction of fluid intelligence
Although prior research on fluid intelligence has emphasized the

importance of connections within specific brain networks (for a

review, see Barbey et al. 2021), our findings suggest that between-

network connections play an important role (i.e. enabling the inte-

gration of cognitive control, attentional, and perceptual processes

underlying Gf). To investigate this issue directly, we conducted

an analysis to examine the proportion of variance in fluid intel-

ligence explained by a whole-brain model comprised of within-

versus between-network connections.

As Fig. 5(a) illustrates, the within-network model performed

poorly, leading to a low correlation between observed and

predicted values (R=0.13), a negative proportion of variance

explained (R2 =−0.09), and a high level of error (nRMSD=1.04).

In contrast, the between-network model demonstrated superior

performance (Fig. 5b), with a moderate correlation between

observed and predicted values (R=0.33), explaining 9% of the

variance (R2 =0.09), and a low level of error (nRMSD=0.95). This

pattern of findings highlights the importance of between-network

connections in the prediction of Gf and further suggests that

fluid intelligence depends on the recruitment and coordination

of multiple ICNs enabled by between-network connectivity.

Investigating the strength of between-network
connections in the prediction of fluid intelligence
To further investigate the nature of between-network connections

underlying fluid intelligence, we examined the distribution of all

between-network connectivity values in the prediction of Gf. As

Fig. 6 illustrates, the majority of between-network connections

predictive of fluid intelligence represent weak ties—connections

of relatively low strength but that provide important communica-

tion pathways that link multiple networks and serve to facilitate
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Fig. 4. Prediction models derived from either (a) including versus (b) excluding connections between a specific pair of ICNs in the prediction of fluid
intelligence. VIS =visual network, SMN=somatomotor network, CON=cinguloopercular network, DMN=default mode network, FPN= frontoparietal
network, DAN=dorsal attention network, AUD=auditory network.

Fig. 5. Whole-brain prediction models including only (a) within- versus
(b) between-network connections in the prediction of fluid intelligence.
The between-network model performed better across all performance
statistics (R=0.33; R2 =0.09; nRMSD=0.95) compared with the within-
network model (R=0.13; R2 =−0.09; nRMSD=1.04).

Fig. 6. Distributions of functional connectivity strength. The light-gray
shaded area represents functional connectivity values across the whole
brain concatenated across subjects. The dark-gray shaded area repre-
sents between-network connections that significantly correlated with Gf

scores and averaged across all subjects. The distribution of significant
between-network values is centered on weak connections, suggesting
that weak ties are critical to the prediction of fluid intelligence.

efficient global information processing (Granovetter 1973; Bassett

and Bullmore 2006, 2017).These findings highlight the importance

of weak connections in the prediction of Gf and further sug-

gest that between-network connections enable adaptive behavior

through mechanisms for coordinated, system-wide information

processing, as predicted by the NNT framework (Barbey 2018).

Assessing feature set size bias
To investigate possible bias in model performance due to the size

of the input feature space, we carried out two additional analyses.

First, we performed a grid search across increasing feature set

Fig. 7. Models examining the accuracy bias of different feature set sizes
based on (a) randomly selected edges and (b) behaviorally relevant edges.
The random feature size model resulted in decreased performance with
increasing set size. The correlation threshold model also resulted in
decreased performance with increasing set size with maximum perfor-
mance when the P-value threshold is set to 0.009.

sizes of randomly selected edges (nedges =3—nedges =64,620, 50

values) to assess whethermodel accuracy is affected by the size of

the input feature set, regardless of whether edges are correlated

with behavior. Models with feature sets exceeding nedges = 47,477

did not converge, resulting in 37 separate set sizes. Second, we

performed a grid search across increasing P-value thresholds

(P<0.001—P< 0.1, 50 values) to assess whether large input fea-

ture sets of behaviorally correlated edges are more predictive

compared with models with smaller behaviorally relevant input

feature sets. Both analyses demonstrate that an increase in the

size of the input feature space did not improve model perfor-

mance, and thus did not serve to bias the reported findings (Fig. 7).

Discussion

An extensive neuroscience literature has established the impor-

tance of the frontoparietal network in flexible behavior and

adaptive problem solving (for a review, see Barbey et al. 2021).

Recent evidence in network neuroscience, however, suggests

that this finding may represent the tip of the iceberg and that

fluid intelligence may depend on the collective interaction of

multiple brain networks (Anderson and Barbey 2023). The present

study therefore sought to elucidate the network architecture of

fluid intelligence and to characterize the nature of within- and

between-network interactions. We employed a CPM framework,

administering resting-state fMRI to 159 healthy college students

and examining the contributions of seven ICNs to the prediction

of fluid intelligence, asmeasured by a state-of-the-art assessment

tool (i.e. the BOMAT; Hossiep et al. 2001). Specifically, we sought

to: (i) identify whether fluid intelligence relies on a primary

brain network or instead engages multiple brain networks; and
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(ii) elucidate the nature of brain network interactions by assessing

network allegiance (within- versus between-network connec-

tions) and network topology (strong versus weak connections)

in the prediction of fluid intelligence.We now review the primary

findings and conclusions drawn from this research program.

Whole-brain functional connectivity reliably
predicts fluid intelligence
The present study demonstrates that individual differences in

whole-brain functional connectivity reliably predict fluid intelli-

gence, applying state-of-the-art CPM methods in the context of

the highest fidelity assessment of fluid intelligence conducted to

date (cf., Finn et al. 2015; Noble et al. 2017). Building on traditional

tests of fluid cognition, the BOMAT employs a larger matrix size,

progressive task difficulty, and a time limit that serve to reduce

ceiling effects and enable a high-fidelity assessment of fluid

intelligence (Hossiep et al. 2001). Our results demonstrate that

whole-brain predictive models account for a large and significant

proportion of variance in fluid intelligence (18%) and further

illustrate that the contribution of individual networks is rela-

tively modest by comparison. These findings are consistent with

prior research illustrating the importance of whole brain models

when predicting individual differences in high-level cognition

(Finn et al. 2015; Noble et al. 2017; Dubois et al. 2018; He et al.

2020; Dhamala et al. 2021; Chen et al. 2022; Dhamala et al. 2022).

Notably, the predictive performance of our whole brain model

largely outperformed prior studies (Noble et al. 2017; He et al.

2020; Dhamala et al. 2021; Chen et al. 2022), illustrating the impor-

tance of employing a high-fidelity measure of fluid intelligence

(i.e. the BOMAT).

The observed role of whole-brain functional connectivity in the

prediction of fluid intelligence supports a network neuroscience

perspective (Barbey 2018), which emphasizes the importance of

global network mechanisms in Gf rather than engaging a spe-

cific brain region or cortical network. Accumulating evidence in

network neuroscience supports this framework, emphasizing the

need for dynamic information processing and the capacity to

flexibly recruit multiple brain networks in the service of task

demands (Cole et al. 2013; Miller and Cohen 2001; Desimone

and Duncan 1995; Desimone et al. 1990). To further elucidate

the network architecture of fluid intelligence, we examined the

specific within- and between-network connections that figure

most prominently in the prediction of Gf.

Connections between cognitive control,
attentional, and perceptual networks enable
fluid intelligence
We conducted a comprehensive series of modeling analyses to

uncover the functional connections that contribute significantly

to the prediction of fluid intelligence by either sub-setting or

lesioning specific within- versus between-network connections.

Our results provide novel evidence that fluid intelligence depends

on multiple networks that collectively support cognitive control,

attentional, and perceptual processes.

Among the network interactions examined, we found the

best performance for prediction models that included between-

network connections of the FPN and DAN (R=0.37; Fig. 4a).

Accumulating evidence indicates that connections between these

networks are critical for the regulation and control of perceptual

attention, given the well-established control functions of the FPN

(Desimone et al. 1990; Desimone and Duncan 1995; Miller and

Cohen 2001; Cole et al. 2013) and the extensive connectivity of the

DANwith perceptual, visuospatial, and sensorimotor circuits (Cor-

betta and Shulman 2002; Ptak 2012; Buschman and Kastner 2015;

Dixon et al. 2018). Thus, our findings provide novel evidence for

the predictive role of FPN-DAN connections in Gf and suggest that

cognitive control functions for the representation and processing

of perceptual representations are central to fluid cognition.

More broadly, we observed a wide range of between-network

connections whose CPM models performed moderately well,

including the FPN-SMN (R=0.23), FPN-CON (R=0.22), CON-DAN

(R=0.22), and DAN-AUD (R=0.20; Fig. 4a). Notably, in all cases,

network interactions between cognitive control (FPN, CON),

attentional (DAN), and/or perceptual (SMN, AUD) networks were

implicated, providing further evidence to suggest that although

fluid intelligence relies on global network mechanisms, processes

for the regulation and control of perceptual representations are

critical. Our findings align with prior research demonstrating

that global network topology and connections between multiple

brain networks are important for predicting high-level cognition

(Dhamala et al. 2021; Chen et al. 2022; Dhamala et al. 2022).

Indeed, recent advances in network neuroscience have begun

to uncover the nature of network interactions underlying

cognitive flexibility, suggesting that adaptive behavior may

depend on multiple control networks that serve to flexibly

coordinate task performance (i.e. the FPN) and to enable goal-

directed attentional shifting (i.e. functions of the CON and DAN;

Cocuzza et al. 2020; see also Dosenbach et al. 2007; Power and

Petersen 2013; Sadaghiani and D’Esposito 2015). Thus, our results

support a multi-network perspective and emphasize the need for

future research to further characterize the large-scale network

interactions underlying fluid intelligence.

The importance of weak connections for the
prediction of fluid intelligence
Accumulating evidence in network neuroscience suggests that

fluid intelligence may rely on weak connections that enable

the system to function within many difficult-to-reach network

states, reflecting the capacity to adapt to novel situations by

engaging mechanisms for flexible, goal-directed behavior (Barbey

2018). Network flexibility is particularly important for fluid intel-

ligence given Gf requires adaptive solutions that cannot be solved

purely from prior knowledge and experience. Thus, the NNT

framework predicts that fluid intelligence will engage between-

network connections that integrate cognitive control, attentional,

and perceptual processes, and emphasizes the importance of

weak connections in the formation of globally coordinated neural

representations.

These predictions distinguish the NNT framework from stan-

dard theories of fluid intelligence, which emphasize the impor-

tance of a specific brain region (Duncan et al. 2000), primary brain

network (Jung and Haier 2007), or the spatial overlap among net-

works (Kovacs and Conway 2016). Our findings provide novel sup-

port for the NNT theory, demonstrating that: (i) f luid intelligence

is reliably predicted by whole-brain network connectivity (Fig. 1);

(ii) relies primarily on between-network connections (rather than

connections within a specific network; Fig. 5b); and (iii) engages

weak connections that are known to facilitate system-wide net-

work interactions and globally efficient information processing

(Fig. 6; see also Granovetter 1973; Bassett and Bullmore 2006, 2017;

Santarnecchi et al. 2014).

Limitations
Although our findings suggest thatwhole-brain predictionmodels

account for a large and significant proportion of variance in
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fluid intelligence,we recognize several limitations and challenges

that remain for future research in network neuroscience. First,

although CPM has been widely used and validated in network

neuroscience, it is not the only available predictive modeling

approach (e.g., Feilong et al. 2021), nor would we expect this

method to capture all forms of statistical regularities (e.g., it

would not account for nonlinear relationships). Second, resting-

state fMRI data is not the only neuroimaging modality that can

be examined in such an analysis. For example, the present study

neglects structural network topology and task-based functional

dynamics. Third, although the present study employed a state-

of-the-art areal map to define brain networks based on a multi-

modal parcellation of the human cerebral cortex (Glasser et al.

2016), other network parcellations exist (e.g., Uddin et al. 2019),

permitting differences in the regional and network definitions

applied and therefore possible differences in the observed results.

Fourth, due to feature-selection without control for Type II error,

CPM may be prone to overfitting (O’Connor et al. 2021), motivat-

ing the replication of these results in additional datasets. Fifth,

further research is needed to increase the sample size of CPM

studies and replicate the current findings using a high-fidelity

measure of fluid intelligence (e.g. the BOMAT). Sixth, timed tests

of cognition, such as the BOMAT, are known to increase task diffi-

culty and cognitive load compared with untimed tests. Although

an untimed version of the BOMAT is currently unavailable, it is

important for future research to assess how timed tests of fluid

intelligence compare to untimed tests with respect to reliability

and predictive accuracy within the CPM framework.

Conclusions

Rather than originate from a fixed set of cortical regions or a pri-

mary brain network, recent discoveries in network neuroscience

suggest that fluid intelligence emerges from a rich constellation

of networks whose functions are orchestrated in a flexible, goal-

directed manner. Consistent with this perspective, the results of

the present study demonstrate that whole-brain prediction mod-

els account for a large and significant proportion of variance in

fluid intelligence (18%) and illustrate that the contribution of indi-

vidual networks is relatively modest by comparison. In addition,

we show that the global architecture of fluid intelligence largely

reflects between-network connections and the formation of weak

ties. Our findings support a network neuroscience approach to

understanding the collective role of brain networks in fluid intel-

ligence and elucidate the system-wide networkmechanisms from

which flexible, adaptive behavior is constructed.
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