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M
ental speed is a fundamental property of cognitive agents 
and an important prerequisite for timely and adequate 
responses in complex environments. Older people are 

often assumed to be slower thinkers than younger people—a notion 
that has notable consequences in work life1,2 and that has seem-
ingly found strong empirical support. Over the past few decades, 
a large body of research has consistently reported a negative rela-
tion between mental speed and age; that is, older people tend to 
be slower than younger people across a wide variety of cognitive 
tasks and contexts3,4. This approximately linear trend starts in young 
adulthood, at ages 20 to 30 (refs. 3,5–7), and has been reported in both 
cross-sectional and longitudinal studies3,7–9. The notion that mental 
speed declines as early as young and middle adulthood has impor-
tant implications for the study of human cognition. Moreover, since 
developmental patterns of cognitive abilities are linked to changes 
in the brain10, studying these patterns can also provide insights into 
the neurophysiological basis of cognition.

The vast majority of findings on age and mental speed rely 
on mean response times (RTs) in elementary cognitive tasks (for 
example, comparison of two letters) as a measure of basic speed of 
information processing4,5,11. However, this approach has two major 
shortcomings. First, the solitary use of mean RTs does not utilize 
the full information contained in empirical RT distributions and 
ignores accuracy data that are also obtainable from experimental 
paradigms. Second, mean RTs are far from pure measures of men-
tal speed but instead represent the sum total of disparate cognitive 
processes12. For instance, speed–accuracy trade-offs (that is, dif-
ferent settings of response caution that affect both the speed and 
accuracy of responses) and the time taken for encoding and motor 
processes contribute to mean RTs, although they are unrelated to 
mental speed. Thus, the extent to which mean RTs reflect mental 
speed is, at the very least, debatable13–15.

To avoid reliance on aggregate data, mathematical models of 
cognition strive to decompose observed behaviour into interpre-
table and neurophysiologically plausible parameters. One of the 
most popular process models for analysing RT data is the diffusion 
model (DM16–20; see Methods for a more detailed description of the 
model). By employing the DM, it is possible to obtain a model-based  

estimate of mental speed through the model’s drift rate parameter. It 
is important to note, however, that drift rates do not reflect the whole 
chain of information processing; rather, they specifically reflect the 
speed of evidence accumulation. Mental speed, as measured by drift 
rates, is independent of decision caution (boundary separation) and 
the time required for encoding and motor processes (non-decision 
time). Moreover, the parameters of the DM have been extensively 
validated both experimentally21–23 and neurophysiologically24–26.

In the past two decades, a growing number of diffusion mod-
elling studies on age differences in a great variety of experimental 
environments has been published14,23,27–38. Most of these studies com-
pared groups of young adults (around age 20) with old adults (aged 
60 and older), with respect to the model’s parameters. Interestingly, 
it has often been reported that mental speed exhibits no differences 
between young and old adults. Conversely, decision caution and 
non-decision times were often markedly increased in old age.

Although model-based analyses of cognitive ageing have many 
advantages over the direct analysis of raw data, many model-based 
studies have two serious shortcomings, both related to the samples 
used. First, sample sizes were small in most studies, which is espe-
cially problematic for research on individual differences seeking to 
increase reliability through larger samples. For instance, a recent 
meta-analysis summarizing 25 studies had a total sample size of 
only 1,503 observations, indicating an average sample size of 60 par-
ticipants per study39. Second, most studies compared only two age 
groups, typically college-age students and older adults aged 60 to 75. 
Taken together, these two aspects severely limit the generalizability 
of previous results, especially with regard to the age span between 
25 and 60 years—that is, large parts of young and middle adulthood.

There are two main reasons for the small sample sizes common 
in diffusion modelling studies. First, data collection for such stud-
ies is tedious, given the large number of trials per person that were 
long thought to be required for diffusion modelling17. However, 
such requirements are now considered to be largely overstated40,41. 
Second, and more importantly, fitting the DM to observed 
data is computationally expensive, especially when employing 
sampling-based Bayesian estimation methods. Obtaining individ-
ual parameters even from moderately large samples is thus often 
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infeasible for practical reasons. Yet, to provide a robust analysis of 
individual differences in mental speed in relation to age, a rather 
large dataset including participants across the entire lifespan seems 
imperative.

In recent years, Bayesian methods have become the gold 
standard for model-based inference in cognitive modelling42. 
Bayesian methods allow for principled uncertainty quantifica-
tion in the form of full posterior distributions over quantities of 
interest (for example, the parameters of a cognitive model). Once 
estimated, the posterior distribution can be used to extract cred-
ibility intervals or to perform posterior predictions to assess the 
quality of model fit. Moreover, posterior correlations between 
model parameters can be extracted and used as measures of (lin-
ear) disentanglement between parameters at an individual level. 
However, a major disadvantage of standard Bayesian methods 
for cognitive models (for example, Markov chain Monte Carlo 
methods) is their computational slowness, which makes them 
impractical or even impossible to apply in data-rich contexts. In 
this work, we therefore demonstrate the utility of a deep learning 
framework developed to scale up model-based Bayesian inference 
to millions of datasets43.

We present an analysis of cross-sectional age differences in DM 
parameters estimated from a massive dataset of more than 1,000,000 
participants, using RTs and accuracy rates collected in an online 
implicit association test (IAT44). Notably, this sample is multiple 
orders of magnitude larger than the samples used in all previous 
DM studies combined. Our deep learning architecture for param-
eter estimation is based on a two-stage inference framework, which 
is illustrated in Fig. 1 and described in the Methods43. Regarding 
chronological age, our sample covers childhood till late adulthood 
(ages 10 to 80), with a sufficient depth for fine-grained and robust 
year-by-year analysis.

In our study, we derive substantial insights into individual dif-
ferences in cognitive parameters by applying Bayesian diffusion 
modelling to a large sample with the help of modern deep learn-
ing methods. Accordingly, our approach yields robust findings on 
age-related patterns of different aspects of cognition, separating 
mental speed, decision caution and non-decision parts of RTs.

We observe a clear nonlinear association between drift rate as 
an index of mental speed and age, which is strikingly different from 
the association implied by mean RTs and more informative than the 
age differences found in previous DM studies. Our model-based 
analysis thus reveals a picture of age differences in cognitive param-
eters yielding a radically different implication than the one based on 
analyses of raw RT data.

Results
Table 1 shows descriptive statistics of age, mean correct RTs in both 
experimental conditions (incongruent and congruent; see Methods 
for a description of the experimental setup) and the posterior means 
of all estimated DM parameters. Figure 2 depicts our main find-
ings. Mean correct RTs, mental speed, decision caution and correct 
non-decision time are plotted against age in years. The figure shows 
the results for one of the two experimental conditions (incongru-
ent trials). The other condition (congruent trials) yields very simi-
lar patterns, which are presented in the Supplementary Information 
(Supplementary Fig. 12). Each dot represents the mean of the indi-
vidual posterior parameter means for one year of age. The verti-
cal bars represent one standard deviation within each year of age. 
To better describe the age-related patterns we found, we estimated 
linear Bayesian change-point models combined with piecewise 
Bayesian ridge regressions (Methods). The estimated change points 
and piecewise regression lines together with their respective uncer-
tainties are also depicted in Fig. 2.

Mean RTs. As evident from Fig. 2, cross-sectional mean correct RTs 
decrease sharply from age 10 to about 20, with the change point of the 
age trend estimated at age 19 (mean model-implied change per year, 
¯
b = −0.024

; 95% highest density interval (HDI), (−0.025, −0.023); 
change-point posterior mean, 19.0; 95% HDI, (18.2, 19.8)). After 
that, mean correct RTs show a quasi-linear increasing trend until 
the estimated change point at age 62 (¯b = 0.006; 95% HDI, (0.006, 
0.006); change-point posterior mean, 62.1; 95% HDI, (60.5, 63.7)). 
Thereafter, the average increase in RTs per year accelerates (¯b = 0.022

; 95% HDI, (0.021, 0.023)), although the data become more sparse 
when approaching age 80 (for example, N = 169 for age 80).
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Fig. 1 | The BayesFlow framework used for individual parameter estimation on more than a million datasets. During training (left), the computational 

model serves as an ‘instructor’, which, by means of simulations, guides the summary network (ψ) and the inference network (ϕ) to become ‘experts’ in 

inverting the model and recovering plausible estimates of cognitive parameters (θ). During inference (right), the trained networks efficiently process all 

observed data (x1:N) and estimate the full posterior over the parameters of interest. The training effort thus ‘amortizes’ over multiple estimation passes, 

as no further training of the networks is required65. Specialized invariant networks (s1, s2)
64 process the independent and identically distributed (i.i.d.) RTs 

and accuracy data to obtain a fixed-size vector representation x̃. Layers of equivariant networks (s3) increase the expressiveness of the architecture by 

transforming each data point xn into an intermediate representation yn. See Methods for further details.
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Mental speed. Drift rates—that is, our proxy for measuring mental 
speed—increase notably from age 10 to 30 in our cross-sectional 
data (¯b = 0.034 until the first change point; 95% HDI, (0.033, 
0.034)). After this, the mean values of drift rates remain fairly stable 
until age 60, showing little age-related difference during middle 
adulthood (|¯b| < 0.001; 95% HDI, (−0.001, 0.000)). Around age 60, 
an accelerated negative trend in mental speed commences, which 
holds until age 80 (¯

b = −0.020

; 95% HDI, (−0.021, −0.018)). 
Importantly, this inverted U-shaped pattern does not mirror the age 
patterns found for the other DM parameters and mean RTs. Our 
change points are estimated at ages 24 (posterior mean, 24.4; 95% 
HDI, (22.8, 26.2)) and 60 (posterior mean, 59.9; 95% HDI, (56.9, 
62.8)). The change-point model misses the minor increase in drift 
rates that continues until age 30, as well as the slight decrease in drift 
rates starting at age 50.

Decision caution. Boundary separation—that is, estimates of deci-
sion caution—decreases from age 10 to about age 20 (¯

b = −0.025

; 95% HDI, (−0.026, −0.023)), after which it shows a quasi-linear 
increase until age 65 (¯b = 0.011; 95% HDI, (0.011, 0.011)). 
Thereafter, the average increase in boundary separation per year 
accelerates (¯b = 0.021; 95% HDI, (0.018, 0.023)). Change points are 
estimated at ages 18 (posterior mean, 17.8; 95% HDI, (17.3, 18.4)) 
and 65 (posterior mean, 64.9; 95% HDI, (62.9, 66.8)). It should be 
noted that in the congruent experimental condition (Supplementary 
Fig. 12), the second change point for boundary separation is esti-
mated at age 40 (posterior mean, 40.2; 95% HDI, (37.4, 43.0)), and 
the subsequent increasing trend is less pronounced there (¯b = 0.005

; 95% HDI, (0.004, 0.005)).

Non-decision times. Non-decision time estimates—that is, the 
time taken for encoding and motor response—decrease from age 
10 to the estimated change point of age 15 (¯

b = −0.006

; 95% HDI, 
(−0.008, −0.005); change-point posterior mean, 15.0; 95% HDI, 
(13.4, 16.7)), after which they show a quasi-linear increase until age 
80 (¯b = 0.002; 95% HDI, (0.002, 0.002)). The age differences for 
decision caution and non-decision times closely mirror the pattern 
found for RTs, suggesting that these components could have a large 
impact on the mean levels of response latencies over the life course.

Additional analyses and robustness checks. As can further be 
observed, variability in the mean correct RTs increases across the 
lifespan (correlation of age and standard deviation in mean cor-
rect RT in the incongruent condition, r = 0.78; 95% HDI, (0.70, 
0.85); in the congruent condition, r = 0.76; 95% HDI, (0.68, 0.83)). 
This trend is paralleled by the increase in variance found for cor-
rect non-decision times (r = 0.75; 95% HDI, (0.67, 0.83)), error 
non-decision times (r = 0.92; 95% HDI, (0.90, 0.95)) and bound-
ary separations (incongruent boundary separations, r = 0.48; 95% 
HDI, (0.33, 0.63); congruent boundary separations, r = 0.90; 95% 
HDI, (0.87, 0.94)). Conversely, the between-person variability in 
drift rates shows no clear pattern of age-related increase (incongru-
ent drift rates, r = 0.17; 95% HDI, (0.00, 0.34); congruent drift rates, 
r = −0.56; 95% HDI, (−0.67, 0.42)).

To ensure that our findings hold across a wide range of condi-
tions, we conducted several robustness checks. Figure 3 shows that 
the mean-level pattern for drift rates is robust across genders, levels 
of education and experimental conditions (congruent versus incon-
gruent). However, the accelerated decline in drift rates after age 60 
is more pronounced for the incongruent condition, and women 
show higher mean levels of drift rates also in the incongruent con-
dition. The vertical bars in Fig. 3 indicate standard errors of the 
means. Due to the very large sample size, the standard errors are 
very small for all age groups except for the very old participants. 
This guarantees that the differences in mental speed across the 
lifespan were assessed very accurately. We performed additional 
robustness checks by comparing the trends in age effects across 
different subsamples. For this purpose, we first divided the sample 
into four almost evenly sized subsamples. Across these subsamples, 
the mean-level patterns were virtually identical. The same was true 
when comparing participants born in the United States with those 
originating from other countries, as well as when comparing par-
ticipants working on tasks with different classes of stimuli (that is, 
‘Black/White’ or ‘African American/European American’). All these 
additional analyses can be found in the Supplementary Information 
(Supplementary Figs. 13–16), where we also report correlations 
between the different DM parameters, both across participants and 
within each person—the latter by utilizing the individual posterior 
distributions (Supplementary Tables 1 and 2).

Discussion
In this work, we presented a cross-sectional study of age differences 
in mean RTs and cognitive processes as measured by the DM. We 
applied the DM to a massive dataset containing RT and accuracy 
data from the IAT. Our sample covers large parts of the human lifes-
pan (ages 10 to 80) in sufficient depth for a fine-grained analysis of 
age differences at a year-specific level. Given the sample size, our 
analyses would have been infeasible using standard parameter esti-
mation procedures. Thus, our deep learning method for parameter 
estimation was both necessary and efficient for the task at hand. 
Moreover, our findings stand in pronounced contrast to previous 
findings on age differences in mental speed. We will now discuss the 
implications of our findings.

Our results replicate the age-related decline in mean RTs previ-
ously reported3–7. In our sample, mean RTs followed a negative trend 
during the teenage years, were fastest around age 20 and showed a 
nearly linear increase thereafter, which further accelerated after age 
60. It is important to note that these findings are in line with earlier 
RT studies. This indicates that the diverging patterns found for the 
DM parameters are not based on data that are qualitatively different 
from those typically obtained in the field.

In the DM, decision caution (that is, the amount of information 
sampled before making a decision) is represented by the bound-
ary separation parameter18. Our results suggest that, on average, 
boundary separation declines from age 10 to approximately age 18, 
indicating that people at college age were the least cautious in our 

Table 1 | Descriptive statistics

Mean s.d. Minimum Maximum

age 27.42 12.33 10.00 80.00

Mean correct RT 
(incongruent)

1.00 0.31 0.36 5.75

Mean correct RT 
(congruent)

0.86 0.24 0.36 5.16

Mental speed 
(incongruent)

1.58 0.64 0.10 6.99

Mental speed 
(congruent)

2.10 0.86 0.10 6.99

Decision caution 
(incongruent)

1.91 0.51 0.24 4.00

Decision caution 
(congruent)

1.83 0.53 0.46 4.00

Non-decision time 
(correct)

0.38 0.07 0.10 2.89

Non-decision time 
(incorrect)

1.29 0.84 0.10 7.00

Mental speed is indicated by drift rate; decision caution is indicated by boundary separation. age 

was computed as the year of data collection minus the year of birth.

NATuRe HuMAN BeHAViouR | VOL 6 | May 2022 | 700–708 | www.nature.com/nathumbehav702

http://www.nature.com/nathumbehav


ARTICLESNATURE HUMAN BEHAVIOUR

sample—they were the most willing to trade off accuracy for speed. 
After age 18, decision caution increases linearly until about age 65 
in the incongruent condition, with a greater increase per year there-
after until age 80. In the congruent condition, the increasing trend 
in decision caution during old age was less pronounced, and the 
change in age-related trends was estimated to occur at age 40. Both 
findings might be attributable to the lower task difficulty in the 
congruent condition. Moreover, the trend towards higher decision 
caution becomes noticeable very early in adult life. The increase in 
the amount of information sampled before making a decision thus 
provides a first explanation for the age-related increase in RTs start-
ing in young adulthood.

Non-decision time is the DM parameter that represents all pro-
cesses beyond information sampling and evidence accumulation 
in a decision task. These processes are typically thought to encom-
pass the time taken for the encoding of stimuli and motor response 
execution22,45. Interestingly, in our sample, non-decision times were, 
on average, fastest around age 14 to 16, with people outside this 
range needing more time for non-decision processes. It seems that 
these processes, should they represent a trait-like ability, reach their 
peak earliest among all cognitive abilities typically studied in the 
literature7. After age 16, non-decision times exhibit a linear increase 
that continues until age 80. The increase in the time needed for 

non-decision processes thus provides a second explanation for the 
slower RTs found with increasing age, as early as young and middle 
adulthood.

Our most remarkable finding concerns the drift rate—that is, the 
parameter representing mental speed in the DM framework. The 
drift rate denotes the average rate of information sampling per time 
unit and theoretically represents a more precise measure of men-
tal speed than mean RTs, because speed–accuracy trade-offs and 
non-decision aspects are controlled for by other model parameters. 
During early adulthood, drift rates showed, on average, a continu-
ous positive age trend—that is, mental speed became faster from 
age 10 to age 30. Mental speed thus peaks notably later than the 
lowest points of decision caution (around age 20) and non-decision 
times (around age 15). This result partly mirrors previous findings 
reporting that mental speed is still high around age 30 (ref. 6). Yet, 
in our sample, mental speed showed a slight increase from age 20 
to 30, which is in contrast to previous findings based on the analy-
sis of mean RTs. It should be noted that our change-point analysis 
indicated that the positive age trend in drift rates is weaker from age 
25 to age 30 than in the years before that, with the corresponding 
change point estimated at age 25.

Most importantly, our analyses suggest that the average levels of 
mental speed remain roughly stable across all of middle adulthood 
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(age 30 to 60), with only slight decreases from age 50 on. This sur-
prising finding remains hidden if only mean RTs are analysed, as 
these do not reflect a pure measure of mental speed but are heavily 
influenced by decision caution and time required for motor pro-
cesses. The pattern was robust across different stimuli, experimen-
tal conditions and several demographic factors. Accordingly, we 
conclude that the age-related increase of RTs in early and middle 
adulthood can be attributed exclusively to differences in decision 
caution and non-decision time, not to differences in mental speed. 
Only after about age 60 do drift rates start to show an accelerating 
negative age-related decline, with the lowest mean values found for 
the oldest participants. These age-related declines in mental speed 
in old age are in line with what has been reported in previous studies 
on cognitive ageing. However, our analysis suggests that the decline 
starts much later in life than has typically been assumed.

The higher boundary separations, higher non-decision times 
and lower drift rates found for people aged 60 and older jointly 
explain the accelerated age-related increase in mean RTs among the 
oldest participants. From about age 60 on, these three components 
contributing jointly to mean RTs all show age trends that lead to 
slower RTs. In other words, older people display higher decision 
caution, slower non-decision time and slower mental speed.

Our key findings also explain the age-related findings reported 
in previous diffusion modelling studies. Typically, these studies 
have compared two groups of participants: college-aged students 
and people aged 60 and older14,23,27–35,38. A consistent result of these 
studies is that older participants show higher boundary separations 
and non-decision times, but comparable drift rates.

When looking at our data, it is plausible that the linear age 
trends from age 20 onwards we found for boundary separation and 
non-decision times are consistent with the effects found in previ-
ous two-group studies. However, previous studies reporting no dif-
ferences in drift rates between young and late adulthood might have 
overlooked the nonlinear age trend and the peak in drift rates from age 
30 to age 50, because this group was not represented in the samples.

Our results are also in line with recently reported results on age 
differences in DM parameters using a continuous assessment of 
age36. In that study, a peak in mental speed around age 30 was also 
observed in a wide variety of different tasks. However, the sample 
size across later young adulthood and middle adulthood was too 
small to reveal clear age trends.

Another finding emerging from our study is the fact that 
DM parameters showed different cross-sectional patterns of 
across-person variability over the lifespan. While the variances of 
drift rates remained roughly the same or even decreased into old age, 
non-decision times and decision caution showed an increase in vari-
ability. The latter pattern is also present for mean RTs. It thus seems 
plausible that the greater spread in mean RTs observed for older 
people is attributable to greater interindividual differences in encod-
ing and motor processes or decision caution, not in mental speed.

Finally, we report age differences in DM parameters in late child-
hood and adolescence (see also ref. 46), thus allowing the study of 
differentiable temporal patterns in these age periods. Most notably, 
the fastest non-decision times were observed at ages 14 to 16, with 
mean RTs, mental speed and decision caution all showing much 
later turning points.
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The differing age-related patterns of the DM parameters become 
more plausible when viewed in the context of the literature link-
ing changes in cognitive abilities with changes in their neurophysi-
ological basis10. According to the scaffolding theory of aging and 
cognition47, people differ in their use of different compensatory tech-
niques (for example, the activation of additional neural networks), 
all of which aim to counter the detrimental effects of age-related 
changes in brain structure. While such compensatory strategies 
might be well suited to keeping the level of mental speed in simple 
decision-making tasks high across large parts of the lifespan, more 
basal processes (such as the ones captured by non-decision time) 
might be less adaptable36.

It should be noted that our study not only contributes to the lit-
erature on cognitive ageing and diffusion modelling but also repre-
sents an example of using mathematical modelling to analyse IAT 
data. Most previous model-based analyses of IAT data have relied on 
multinomial processing trees fitted on empirical accuracy rates48–52. 
For example, the so-called quad model49 provides estimates of the 
likelihood that implicit biases are activated or overcome, as well as 
of the likelihood that a correct answer can even be determined or 
that guessing occurs. Recently, a new family of multinomial pro-
cessing tree models incorporating RTs has been introduced53–55. 
Such models offer an alternative to analyse IAT data and present 
interesting avenues for future research in the context of cognitive 
ageing. However, the main focus of our study was on the IAT task 
as an instance of a cognitive two-choice decision task, not on the 
processes that might be specific to the context of implicit social cog-
nition. Still, the notable mean differences in drift rates between the 
congruent and incongruent IAT conditions provide additional evi-
dence for the interpretation of drift rates as further reflecting asso-
ciation strength in the case of the IAT.

Our study has a number of advantages over previous studies of 
cognitive ageing, the most prominent being (1) the massive sample 
size, allowing for detailed age-related analyses, and (2) the use of 
Bayesian diffusion modelling to disentangle different components 
of the decision process in a robust and theoretically grounded way. 
However, we must also note some limitations of this study.

First, our data stem from only one particular type of 
decision-making task—namely, the race IAT. One might thus ques-
tion whether our results generalize to other experimental paradigms 
or real-life scenarios. Regarding this limitation, it should be noted 
that our results (1) replicated across different experimental con-
ditions and types of stimuli and (2) were in line with the findings 
reported in a number of studies on age differences in DM parameters. 
These previous studies spanned a vast variety of experimental tasks 
and paradigms, although with much smaller sample sizes. It thus 
seems plausible that our results, albeit based on a single type of task, 
should generalize to many other typical decision-making contexts.

A second limitation concerns the cross-sectional nature of our 
findings. It remains an open question whether the age differences 
and trends found in our data represent within-person developmen-
tal processes. We did not study longitudinal change, and neither did 
we account for cohort effects. However, given the clear age trends 
(with the majority of means almost perfectly aligned across age 
groups) found for the cognitive parameters of interest, we argue that 
our data provide as clear a picture of developmental patterns as is 
reasonably achievable using cross-sectional data. We also note that 
the IAT data made publicly available by Project Implicit44 include 
datasets from the years 2002 to 2020, making it possible to study 
cohort effects, and also participant IDs, making it possible to study 
longitudinal change in participants taking the task several times. 
Such analyses were beyond the scope of this paper but might be well 
worthwhile in future endeavours.

Finally, the trial numbers for each person were quite low for 
diffusion modelling standards. While 60 trials (per condition) 
are sufficient for obtaining adequate estimates of the main model 

parameters according to previous studies and simulations41, we 
could not compute internal measures of (split-half) reliability due 
to the low number of trials.

In addition, it is important to note that drift rates, while consti-
tuting a more direct measure of mental speed than mean RTs, still 
represent both general speed and task-specific aspects—the latter 
being, in our example, the association strength between IAT cat-
egories and corresponding attitudes. While this does not change the 
interpretation of our results on age differences in the model param-
eters, it might help explain some of our more specific findings—for 
instance, the gender differences in drift rates found specifically for 
the incongruent condition.

To conclude, according to our model-based analysis of a very 
large dataset of human RTs, mental speed increases until age 
30, remains stable until around age 60 and declines thereafter. 
Furthermore, the slowdown in mean RTs in young and middle 
adulthood seems attributable to age-related changes in decision 
caution and non-decision times. Only in old age do the cumulative 
effects of all three cognitive parameters—mental speed, decision 
caution and non-decision time—contribute to an accelerated slow-
down that is also evident from the raw RT data. Thus, for large parts 
of the human lifespan and typical work careers, our results challenge 
the widespread notion of an age-related slowdown in mental speed.

Methods
Our analyses are based on publicly available race IAT data provided by Project 
Implicit44. All participants provided informed consent; for details on the ethics 
procedure, see ref. 44. The procedure was approved by the Institutional Review 
Board at the University of Virginia (institutional board review protocol number 
2186). We extracted raw RT and accuracy data, as well as demographics, all of 
which were collected from September 2016 to December 2018. All data are openly 
available on the Project Implicit Open Science Framework (OSF) page: https://osf.
io/y9hiq/. In addition, all analysis scripts for reproducing the results are available at 
https://github.com/stefanradev93/DataSizeMatters.

Participants. A total of 1,804,325 people started the study and provided 
information on their age; 1,519,257 people provided RT data, and 1,313,275 
people provided both their age and RT data (this sample constitutes 100% in the 
following comparisons). Because of potential data-saving issues, we excluded 
cases reporting any latencies of zero, leaving us with 1,303,715 participants 
(99.27%), and excluded people with a different number of trials recorded than 
the planned 120 (1,281,462 people or 97.57% remaining). We then excluded 
participants with below-chance (<50%) accuracy in the RT task (1,280,075 people 
or 97.47% remaining). To be able to estimate error non-decision times for all 
participants, we also excluded cases without any errors in the two experimental 
blocks, with 1,201,355 participants (91.47%) remaining. Furthermore, we 
excluded cases with more than 12 RTs (10% of a person’s trials) faster than 
300 ms, because such an answering pattern indicates careless responding 
(1,189,105 people or 90.54% remaining). For our further analyses, we excluded 
cases with any parameter estimates beyond the bounds of our respective (very 
broad) uniform priors (‘The DM’; 1,186,460 people or 90.34% remaining) or 
with a reported age of more than 80 years (1,185,882 participants or 90.29% 
remaining), due to the low sample size in very high age. These 1,185,882 people 
constitute our final sample used in all analyses. Of these, 38.69% were female, and 
61.30% were male (the question asked concerned the sex assigned at birth). The 
mean age was 27.42 years (s.d. = 12.33), with a robust sample size across the entire 
age span of 10 to 80 years. About half of the participants (46.89%) had completed 
at least college-level education. The majority (84.06%) of the participants 
indicated that they were born in the United States, with the rest reporting 
different countries of origin.

Task. The race IAT is a quasi-standard cognitive task originally designed to 
measure implicit racial bias56. In a series of binary decisions, people have to classify 
words and images as belonging to one of two categories—for example, ‘good/
bad’ or ‘Black person/White person’. Across the two different main blocks of the 
experiment, the mappings of the categories to the same response button change. 
‘Good’ might share a common response key (for example, left) with ‘Black person’ 
in the first condition (typically called ‘incongruent’) and then be paired with 
‘White person’ in the second condition (typically called ‘congruent’). Sixty trials 
are completed in each of the two conditions. The difference in mean RTs is then 
used to obtain a measure of implicit bias57. The exact procedure and materials can 
be found on the Project Implicit OSF page (https://osf.io/y9hiq/ and ref. 44). We did 
not use the IAT as an instrument to study implicit cognition; instead, we used it as 
an example of a simple binary decision task.
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The DM. In the present work, we employ the DM, a prominent mechanistic 
model of neurocognitive dynamics designed to explain human performance in 
simple decision-making tasks18. The DM is embedded in the larger model class of 
evidence accumulator models, which conceptualize information processing as a 
gradual, temporally ordered, and noisy process58. The mechanistic model we use in 
this work has the basic form

dx = vdt + ξdt

1/2

with ξ ∼ N (0, 1), (1)

where dx denotes accumulated evidence, v denotes the average speed of 
information accumulation (drift rate) and ξ represents a stochastic component. 
A core assumption of the DM is that task-relevant information is integrated 
at multiple neurocognitive levels in which perceptual evidence for one of the 
alternatives is dynamically accumulated at a constant rate (v). A categorical 
decision for one of the alternatives is determined as soon as a predefined 
threshold (a) is reached. The basic DM also assumes an additive constant factor 
(τ) accounting for non-decision processes, such as encoding or motor responses. 
Importantly, the key parameters of the DM and its mechanistic formulation 
are well validated in experimental settings21–23 and well grounded in biological 
neural-network theory58.

To decompose performance in the race IAT into meaningful 
cognitive parameters, we formulate and fit a DM with six free parameters: 
θ = (v1, v2, a1, a2, τc, τn). Here, v1 and v2 denote the speed of information processing 
(drift rates) in the two experimental conditions, a1 and a2 denote the decision 
thresholds (boundary separation), and τc and τn denote the additive non-decision 
time constants for correct and incorrect responses. We estimate separate drift rates 
and boundary separations for the congruent and incongruent conditions, because 
these parameters have been shown to differ across the IAT conditions in previous 
studies59. In the congruent condition (where, for example, the response categories 
‘European American’ and ‘Good’ are mapped to the same response button), 
participants have been found to show higher drift rates and lower boundary 
separations than in the incongruent condition (mapping ‘African American’ and 
‘Good’ to the same response button).

We estimate separate non-decision time parameters for correct and incorrect 
trials due to the way error RTs were recorded in the race IAT. Trials do not 
terminate immediately following a wrong response but require the participants 
to correct their response; in our model, we incorporate the time taken for this 
additional response into the error non-decision time parameter, as it is unrelated to 
the actual decision process.

Note that some versions of the basic DM allow for parameters to vary randomly 
across trials, which introduces additional so-called intertrial variability parameters. 
Since these parameters are notoriously hard to estimate41 and the number of trials 
in the IAT is rather low, we fix all intertrial variability parameters to zero in the 
current application. Moreover, this decision harmonizes with our aim to keep the 
model as simple and as interpretable as possible.

Our choice of Bayesian priors for the DM parameters reflects the goal to cover 
meaningful parameter ranges, as known from previous studies60. However, we 
also place uniform priors over the plausible numerical ranges to render the data 
maximally informative for posterior inference. We place broad uniform priors over 
both drift rates—that is, v ∼ U(0.1, 7)—which we deem sufficient to cover the 
entire range of realistically observable drift rates (that is, mental speed indicators). 
On the basis of similar considerations, we place a broad uniform prior over the 
boundary separation parameters, a ∼ U(0.1, 4). For the non-decision constants, 
we use τ

c

∼ U(0.1, 3) and τ
n

∼ U(0.1, 7), incorporating our expectation of longer 
non-decision times for incorrect responses in the particular task.

Parameter estimation. Performing Bayesian estimation on hundreds of thousands 
of participants is not feasible with current gold-standard Markov chain Monte 
Carlo methods. We therefore resort to amortized Bayesian inference via specialized 
neural networks, which nevertheless guarantee correct posterior inference under 
perfect convergence43. The term ‘amortized inference’ refers to an approach that 
reduces the computational cost of Bayesian estimation by splitting the analysis 
into a costly upfront training phase, followed by an extremely efficient inference 
phase43.

Basically, the BayesFlow method comprises a summary network h and an 
inference network f, which are trained jointly via simulations from the full 
Bayesian model:

p(θ, x

1

, …, x

N

) = p(θ)

N∏

n=1

p(x
n

| θ) (2)

Simulations are realized via a Monte Carlo simulation program, which 
efficiently samples from the prior and runs the DM with the sampled parameter 
configurations to generate synthetic datasets. The outputs of the simulation 
program are then fed to the neural networks, and the networks’ parameters are 
optimized via standard backpropagation. The role of the summary network is to 
reduce datasets of arbitrary size to fixed-size vector representations in a completely 
end-to-end manner. The role of the inference network is to generate samples 
from an approximate posterior, pϕ, via a conditional invertible neural network, fϕ. 

Thus, once trained, the two networks are able to efficiently approximate the true 
posterior, p(θ ∣ x1:N), given any possible dataset arising from the model.

Denoting the inference network parameters as ϕ and those of the summary 
networks as ψ, the two networks are trained to minimize the following Kullback–
Leibler divergence criterion:

min

ϕ,ψ

E
p(θ,x)

{

−log p

ϕ

[θ | h
ψ

(x
1:N)]

}

(3)

which corresponds to minimizing the discrepancy between the true and the 
approximate amortized posterior induced by the networks. To train the networks, 
we performed approximately 50,000 simulations from the DM model with the priors 
for the parameters as described in the previous paragraph. Training the networks 
took approximately eight hours on a GPU-accelerated laptop. Inference on the entire 
dataset took approximately 24 hours on a machine without GPU acceleration.

Bayesian workflow. To further enhance the transparency and trustworthiness 
of our Bayesian pipeline, we follow the steps pertaining to a principled Bayesian 
workflow, as advocated by Schad et al.61. Accordingly, we partition our pipeline 
into the following steps: (1) prior predictive checks, (2) checks of computational 
faithfulness, (3) checks of model adequacy/sensitivity and (4) posterior predictive 
checks. These validation results, along with other robustness analyses, are described 
and visualized in the Supplementary Information (Supplementary Figs. 1–11).

Curve fitting. Once we had obtained parameter estimates for each participant, 
we aimed to represent the nonlinear relationships between age and the cognitive 
parameters statistically. Due to the presence of nonlinear relationships, we 
computed separate piecewise Bayesian ridge regressions of each quantity of interest 
(mean correct RT and DM parameters) on age as the simplest and yet reasonable 
approximation of the observed age trends. With this analysis, we pursued the 
following two goals: (1) a more principled account of the observed age-related 
trend changes (for example, stability versus decline) and (2) accurate uncertainty 
quantification to account for the high variability of cognitive parameters within 
each age group.

Accordingly, our statistical analyses followed a two-step approach. First, we 
performed a linear Bayesian change-point regression on the age-group-averaged 
data using the R package for multiple change points mcp62. Note that this step 
ignores all variability within an age group and thus focuses on fast change-point 
detection, which otherwise turned out to be infeasible when executed on the full 
dataset. In the second step, we extracted the posterior distribution of each change 
point and used the corresponding posterior means for a piecewise Bayesian ridge 
regression on the full dataset. In this way, the piecewise model’s predictive means 
and uncertainty account for the full variability in the estimated parameters.

We placed the following priors over change points to broadly reflect the trends 
visible in the data: for mean correct RTs, t

1

∼ U(15, 25) and t
2

∼ U(35, 70)
; for drift rates, t

1

∼ U(20, 40) and t
2

∼ U(35, 70); for boundary separations 
t

1

∼ U(15, 25) and t
2

∼ U(35, 70); and for non-decision times, t
1

∼ U(12, 18), 
where the scales of measurement correspond to chronological age. For the Bayesian 
ridge regression, we used the default priors available through the scikit-learn 
implementation in the Python programming language63,64.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The raw data are available on the Project Implicit OSF page (https://osf.io/y9hiq/). 
The processed data, including the DM parameter estimates, can be found on our 
GitHub page (https://github.com/stefanradev93/DataSizeMatters).

Code availability
We provide open-source code for replicating all analyses and pretrained 
neural networks for preprocessing and obtaining the Bayesian diffusion model 
parameter estimates on our GitHub page (https://github.com/stefanradev93/
DataSizeMatters).
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Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design
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Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.
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Preprocessing
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