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Abstract

Intelligence describes the general cognitive ability level of a person. It is one of the most fundamental concepts in psychological
science and is crucial for the effective adaption of behavior to varying environmental demands. Changing external task demands
have been shown to induce reconfiguration of functional brain networks. However, whether neural reconfiguration between different
tasks is associated with intelligence has not yet been investigated. We used functional magnetic resonance imaging data from 812
subjects to show that higher scores of general intelligence are related to less brain network reconfiguration between resting state
and seven different task states as well as to network reconfiguration between tasks. This association holds for all functional brain
networks except the motor system and replicates in two independent samples (n = 138 and n = 184). Our findings suggest that the
intrinsic network architecture of individualswith higher intelligence scores is closer to the network architecture as required by various
cognitive demands. Multitask brain network reconfiguration may, therefore, represent a neural reflection of the behavioral positive
manifold – the essence of the concept of general intelligence. Finally, our results support neural efficiency theories of cognitive ability
and reveal insights into human intelligence as an emergent property from a distributed multitask brain network.
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Introduction

Intelligence captures the general cognitive ability level

of a person. It is critically involved in learning from

experiences and a prerequisite for effective adaption

to changing environmental demands (Sternberg 1997).

People who score high on tests of general intelligence

perform better in multiple different cognitive tasks –

an observation that is called the positive manifold of

general intelligence (Spearman 1904). Although scien-

tists started to investigate the biological underpinning

of intelligence many decades ago, correlates have been

identified in brain structure (Gregory et al. 2016), brain

function (Neubauer and Fink 2009), and in intrinsic brain

connectivity (Hilger et al. 2017a, 2017b, 2020; for general

reviews on neural correlates of intelligence, see Jung and

Haier 2007; Basten et al. 2015), it remains an open ques-

tion whether there exists an equivalent of the positive

manifold of general intelligence within the human brain,

that is, a “neuro-g” (Haier 2017).

Intrinsic brain networks can be assessed in the

absence of task demands during the so-called resting

state (Biswal et al. 1995; Van den Heuvel and Hulshoff

Pol 2010). Their topology has been suggested as a

reflection of information transfer between different

brain regions, and various topological network attributes

have been related to differences in cognitive ability

(Dubois et al. 2018; Hilger et al. 2020). Recently, the focus

has broadened to include functional brain network inter-

actions measured during active cognition, that is, during

task states (Braun et al. 2015; Cohen and D’Esposito

2016). Introducing such external task demands leads

to task-general and task-specific updates in functional

connectivity (FC; Cole et al. 2014) and was proposed to

amplify relations between phenotypical variations and

their neural basis, suggesting task-based connectivity as

promising marker of general intelligence (Greene et al.

2018, 2020).

Brain network reconfiguration, defined as changes in

functional magnetic resonance imaging (fMRI)-derived

functional brain connectivity in adaption to different

cognitive states, has previously been studied by com-

paring resting-state FC (i.e., intrinsic connectivity) with

FC during tasks (Schultz and Cole 2016). Task-evoked

changes in FC seem to be crucial for shifting neural

processing (Cole et al. 2021), and the pioneering study of

Schultz and Cole (2016) revealed a significant (negative)

association between a global estimate of brain network

reconfiguration and general intelligence. However, as the

exact nature of changes has been shown to depend on

the kind of task (Braun et al. 2015; Cohen and D’Esposito

2016; Soreq et al. 2021) as well as on the intensity level
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of the cognitive challenge (Shine et al. 2016; Hearne

et al. 2017), considering brain network reconfiguration

as a task-general phenomenon may only provide limited

insights into underlying processes. More specific insights

into general intelligence, that is, into implicated cog-

nitive processes and into a potential neural equivalent

of the positive manifold, would therefore require the

investigation of reconfiguration between different tasks.

Such amultitask brain network reconfiguration has been

demonstrated to capture meaningful variations between

persons (Salehi et al. 2020; Duong-Tran et al. 2021) but its

relation to intelligence has not yet been comprehensively

investigated. Furthermore, it has not yet been tested

whether the association between brain network recon-

figuration and general intelligence is driven by specific

functional systems or it represents a whole-brain phe-

nomenon. This would allow for additional insights about

intelligence-relevant processes and how these processes

are implemented on the neural level.

Here, we use fMRI data from a large sample of

healthy adults (n = 812) assessed during different

cognitive states, that is, during resting state and during

seven different task states, to test the hypothesis that

higher levels of general intelligence relate to less brain

network reconfiguration. Specifically, we expected this

association to manifest in reaction to different cognitive

demands and on various spatial scales. We used a

straight-forward operationalization of brain network

reconfiguration and implemented our analyses on a

whole-brain level as well as on the level of seven and

17 canonical functional brain networks. The results

confirm our hypotheses and suggest that functional

brain networks of more intelligent people may require

less adaptionwhen switching between different cognitive

states, thus pointing toward the existence of an advanta-

geous intrinsic brain network architecture. Furthermore,

we show that although the different cognitive states

were induced by different demanding tasks, their relative

contribution to the observed effect was nearly identical;

a finding that supports the assumption of a task-

general neural correlate – a neural-positive manifold.

Finally, the involvement of multiple brain networks

suggests intelligence as an emergent property of a widely

distributed multitask brain network.

Materials and Methods
Participants

Main analyses were conducted on data from the HCP

Young Adult Sample S1200 including 1200 subjects of age

22–37 years (656 female, 1089 right-handed, and mean

age = 28.8 years). All study procedures were approved

by theWashington University Institutional Review Board,

and an informed consent, in accordance with the dec-

laration of Helsinki, was obtained from all participants

(for details see Van Essen et al. 2013). Subjects with a

mini-mental state examination score ≤ 26 (serious cog-

nitive impairment) or missing cognitive data needed for

calculating a general intelligence factor were excluded.

Cognitive measures of the remaining 1186 subjects were

used as input for factor analysis to estimate a latent

factor of general intelligence (see next section). After

additional exclusion due tomissing fMRI data and exces-

sive headmotion (see below), the final sample consists of

812 subjects (422 female, 739 right-handed, 22–37 years,

and mean age = 28.6 years).

General Intelligence g

To estimate a latent factor of general intelligence

(g-factor), bi-factor analysis based on the Schmid–

Leiman transformation (Schmid and Leiman 1957) was

conducted in accordance to Dubois et al. (2018) for

12 cognitive measures (Supplementary Table 1) of 1186

subjects.

Data Acquisition and Preprocessing

We used fMRI data acquired during resting state (four

runs) and data acquired during seven tasks (two runs

each) capturing information fromeight different external

demands, which are referred to as cognitive states in the

subsequent text. Resting-state runs comprise 14:33 min

data (1200 time points), while task runs vary between

2:16 min (176 time points) and 5:01 min (405 time points)

lengths. See Van Essen et al. (2013) for an overview of

general data acquisition, Smith et al. (2013) for details

of the resting-state acquisition, and Barch et al. (2013)

for additional information about tasks. Briefly, all fMRI

data were acquired with a gradient-echo EPI sequence

(TR = 720 ms, TE = 33.1 ms, flip angle = 52◦, 2-mm

isotropic voxel resolution, andmultiband factor = 8) on a

3 T Siemens Skyra with a 32-channel head coil. We used

the minimally preprocessed HCP fMRI data (Glasser et al.

2013) and implemented further preprocessing compris-

ing a nuisance regression strategy with 24 head motion

parameters, 8 mean signals from white matter and cere-

brospinal fluid, and 4 global signals (Parkes et al. 2018).

For task data, basis-set task regressors (Cole et al. 2019)

were used simultaneously with the nuisance regressors

to remove mean task-evoked neural activation. Finally,

time series of neural activation were extracted from 200

nodes covering the entire cortex (Schaefer et al. 2018). In-

scanner head motion was measured by framewise dis-

placement (FD, Jenkinson et al. 2002). As recommended

in Parkes et al. (2018), subjectswere only included ifmean

FD < 0.2 mm, proportion of spikes (FD > 0.25 mm) < 20%,

and no spikes above 5 mm were observed.

Functional Connectivity

Subject-specific weighted FC matrices were computed

using Fisher z-transformed Pearson correlations between

time series of neural activation from 200 cortical regions.

For each of the eight states (rest, seven tasks), FCwas first

computed for RL and LR phase directions separately and

averaged afterward. Functional connections were then

filtered based on their correlation with intelligence (P <

0.1, Finn et al. 2015; Shen et al. 2017). Connections that
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were inconsistently correlated with intelligence across

states (positive in one, negative in another or vice versa)

were excluded. To prevent circularity, this connection

filtering step was cross-validated: first, the sample was

divided into 10 subsamples (by ensuring absence of

family relations and equal distributions of intelligence

scores via stratified folds). Second, intelligence-relevant

connections (significantly correlated with intelligence, P

< 0.1) were selected in nine subsamples only. And third,

this selection of connections was then applied to the

withheld subsample, thus in no case, the correlation

between FC and intelligence was calculated and applied

in one and the same sample. Note, that such a filtering

step has been applied in previous work to identify rela-

tions between FC and different phenotypical variations

(e.g., Finn et al. 2015; Shen et al. 2017; Greene et al.

2018; Gao et al. 2019; Avery et al. 2020). Reconfiguration

measures were calculated on a whole-brain level, as

well as within and between pairs of networks based on

the Yeo 7/17 canonical systems (Yeo et al. 2011). Note

that for analyses on the level of 17 functional networks,

the P-threshold was increased to P < 0.2 to ensure a

sufficient number of remaining connections (see Fig. 1

for a schematic illustration of the general workflow,

Supplementary Fig. 1 for the filtering procedure, as well

as Supplementary Figs 2 and 3 for an overview of the

filtered and remaining functional brain connections).

Brain Network Reconfiguration

Reconfiguration of FC was operationalized as cosine dis-

tance between the filtered FCs of two states. The cosine

distance dcos is the complement of the cosine similarity

scos

dcos
(

x, y
)

= 1 − scos
(

x, y
)

= 1 −

∑n
i=1 xiyi

√

∑n
i=1 xi

2
√

∑n
i=1 yi

2
,

where scos is the cosine of the angle between two connec-

tion weight vectors x and y with a total number of con-

nections n, which is expressed as the normalized inner

product of the vectors. Note that the cosine distance

captures changes in orientation between two vectors

and, thus, indexes changes in the architecture (structure)

of FC rather than changes in the strengths of connections

(as captured with, e.g., Manhattan distance, Euclidean

distance).

Association between Reconfiguration
and Intelligence

Relations between reconfigurations and intelligence

were assessed with Spearman rank-order partial cor-

relations by controlling for age, sex, handedness, and

in-scanner head motion (mean FD over all scans

and mean of percentage of spikes > 0.25 mm over

all scans). For multiple comparisons, P-values were

FDR corrected (α = 0.05). For gaining comprehensive

insights not only into the general relation between brain

network reconfiguration and intelligence but also into

the relevance of different states and the contribution

of different brain networks, multiple reconfiguration

values were computed for each participant: 1) an average

score of whole-brain reconfiguration between resting

state and all task states (rest-task reconfiguration); 2) an

average score of whole-brain reconfiguration between

all pairs of task states (task-task reconfiguration); 3) 28

scores capturing whole-brain reconfiguration for each

pair of rest-task and task-task state combinations (state

combination-specific reconfiguration); 4) eight scores

capturing whole-brain reconfiguration associated with

one specific cognitive state (average over all 28 state

combinations a specific state was involved in, i.e., state-

specific reconfiguration), and note that for task states,

only combinations with different tasks (no rest) were

included; 5) brain network-specific reconfigurations

scores for seven (and 17) functional brain networks

(reconfigurations of all within- and between network

combinations for each state combination). For inter-

pretable insights, these network-specific reconfiguration

scores (case 5) were averaged a) over all state combina-

tions (resulting in 28 (153) reconfiguration scores specific

to a certain brain network combination), b) over all state

combinations, and over all network-combinations the

respective network was involved in (resulting in seven

(17) state-independent network-specific reconfiguration

scores), and c) over all state combinations a respective

state was involved in (for task states, only combinations

with different tasks were included), and over all seven

(17) network combinations a respective network was

involved in, in total summing up to seven (17) network-

specific reconfiguration scores for each state.

External Replication

For testing the robustness of our findings against varying

measures of intelligence, varying cognitive demands

induced by different tasks, and sample dependence, all

analyses were repeated in two independent datasets

(PIOP1, PIOP2) from The AmsterdamOpenMRI Collection

(AOMIC, Snoek et al. 2021). All study procedures were

approved by the faculty’s ethical committee before data

collection started (PIOP1 EC number: 2015-EXT-4366,

PIOP2 EC number: 2017-EXT-7568), and an informed

consent, in accordance with the declaration of Helsinki,

was obtained from all participants (for more details

see Snoek et al. 2021). PIOP1 includes fMRI data of

216 subjects collected from six cognitive states (resting

state and five tasks: emotion matching, gender-stroop,

working memory, face perception, and anticipation),

while PIOP2 contains fMRI data of 226 subjects from

four states (resting state and three tasks: emotion

matching, working memory, and stop signal). Details on

imaging parameters are described in Snoek et al. (2021).

In brief, all fMRI data were acquired with a gradient-

echo EPI on a Philips 3 T scanner with a 32-channel

coil (3-mm isotropic voxel resolution). Multiband scans

were acquired for the face perception and resting-state

paradigms of the PIOP2 sample (TR = 750ms, TE = 28ms,
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flip angle = 60◦, and multiband factor = 3). Sequential

scans were acquired for resting state of the PIOP 2

sample, and the working memory, emotion matching,

gender-stroop, anticipation, and stop signal paradigms

of the PIOP1 and PIOP2 samples (TR = 2000 ms, TE = 28

ms, and flip angle = 76.1◦).

The Raven’s Advanced Progressive Matrices Test (36

item version set II, Raven and Court 1998) was used in

both samples for measuring intelligence. After excluding

subjects with missing descriptive and behavioral data

and after applying motion exclusion criteria (see above),

138 subjects (PIOP1) and 184 subjects (PIOP2) remained

for analyses. The fMRI data were downloaded in the

minimal preprocessed form, using an alternative prepro-

cessing pipeline (fMRIprep v1.4.1, Esteban et al. 2019).

Further preprocessing to extract nuisance regressed time

series followed the same steps as specified above. As

the PIOP samples are relatively small compared to the

main sample and brain–behavior relationships are sug-

gested to be less reliable in small samples (Assem et al.

2020; Marek et al. 2020), no P-threshold was used for the

selection of functional connections here. Instead, and to

increase the robustness of these analyses, a filter mask

was computed from the larger main sample (containing

connections correlating only either positively or nega-

tively with intelligence P < 0.01 in at least one of the

filtered FCs of intersecting state combinations), and only

connections located in this main sample filter mask and

correlating with intelligence in the same direction in the

replication samples were used in analyses.

Data and Code Availability

All analysis code used in the current study was made

available by the authors on GitHub: Preprocessing:

https://github.com/faskowit/app-fmri-2-mat;Main anal-

yses: https://github.com/jonasAthiele/BrainReconfiguration_

Intelligence, https://doi.org/10.5281/zenodo.5031683. All

data used in the current study can be accessed online

under: https://www.humanconnectome.org/study/hcp-

young-adult (HCP), https://doi.org/10.18112/openneuro.

ds002785.v2.0.0 (AOMIC-PIOP1), and https://doi.org/10.18112/

openneuro.ds002790.v2.0.0 (AOMIC-PIOP2).

Results
Intelligence

General intelligence was operationalized as latent g-

factor from 12 cognitive measures (Supplementary

Table 1) computed with bi-factor analysis (Dubois et al.

2018) using data from 1186 subjects of the Human

Connectome Project (Van Essen et al. 2013).As permodel-

fit criteria of Hu and Bentler (1999), the 4-bi-factor model

fits the data well (Comparative Fit Index: CFI = 0.979,

Root Mean Square Error of Approximation: RMSEA =

0.0395, and Standardized Root Mean Square Residual:

SRMR = 0.0213). The statistical model and the g-factor

distribution in contrast to the PMAT-score distribution

(brief assessment of intelligence provided by the HCP)

are shown in Supplementary Figure 4.

Less Brain Network Reconfiguration Is
Associated with Higher Intelligence

Brain network reconfiguration was operationalized as

cosine distance between filtered FC matrices of two

out of eight different cognitive states (see Materials and

Methods, Fig. 1 for a schematic illustration of the analy-

ses workflow, and Supplementary Fig. 1 for details about

the FC filtering procedure). Averaged across all rest-task

and task-task state combinations, less brain network

reconfiguration was associated with higher intelligence

scores (rest-task: rho = −0.23, P <0.001; task-task: rho

= −0.23, P <0.001; Fig. 2A). This effect also holds when

using stricter thresholds for the cross-validated filtering

approach, for example, P < 0.01 (Supplementary Table 2)

or when using alternative mathematical operationaliza-

tions of reconfiguration (Pearson correlation between

Fisher z-transformed FCs: rest-task: rho =0.23, P <0.001,

task-task: rho =0.23, P < 0.001; Manhattan distance

between bi-partitioned FCs: rest-task: rho = −0.19, P

< 0.001, task-task: rho = −0.24, P <0.001).

Higher Intelligence Is Related to Less
Reconfiguration across Different Cognitive
Demands

Significant associations between higher intelligence and

less brain network reconfiguration were observed for all

rest-task and task-task state combinations (Fig. 2B). The

correlations between reconfiguration and intelligence

ranged from rho = −0.10 (P =0.006) for reconfiguration

between resting state and social recognition task to rho

= −0.23 (P < 0.001) for reconfiguration between working

memory and motor task. Again, similar associations

were observed when using alternative reconfiguration

metrics (Supplementary Fig. 5). For evaluating the total

influence of each individual state on the observed effect,

reconfiguration values were averaged across all rest-

task combinations (for resting state) and separately

over all task-task combinations; a respective task was

involved in (for each task state). The total influence of

the language task was significantly stronger (P <0.05)

than the influence of the social recognition task, the

relational processing, and the emotion-processing task,

while all other states did not differ significantly in

their total influence on the observed effect (Fig. 2B and

Supplementary Fig. 6).

The Relation between Reconfiguration and
Intelligence Depends on Different Functional
Brain Systems Rather than on Specific Cognitive
Demands

By parcellating the brain into seven functional networks

(Yeo et al. 2011) and by considering all possible network

and state combinations,we observed that the variance of

the effect between different state combinations was sig-

nificantly smaller than the variance of the effect between

different network combinations (Wilcoxon rank sum test,
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Figure 1. Schematic overview of global analysis workflow. (A) Brain activity was assessed with fMRI during eight different cognitive states (resting state
and seven tasks). (B) For each state, functional brain connectivity matrices (FCs, D) were computed by correlating the time series of 200 nodes with
each other. For noise reduction, FCs were filtered based on their correlation with intelligence (see Supplementary Fig. 1 and Materials and Methods for
details). Brain network reconfiguration was calculated for all state combinations as cosine distances (�) between the filtered FCs (E). To assess the
relationship between brain network reconfiguration and intelligence, reconfiguration values were correlated (Spearman correlations, controlled for age,
sex, handedness, and in-scanner head motion) with a latent g-factor derived from 12 cognitive scores using a bi-factor analysis model (C). t, time; c,
cognitive score.

W = 441,P< 0.001, Fig. 2C and Supplementary Fig. 7). This

suggests prior importance of the differentiation between

different brain systems rather than between different

external demands.

Higher Intelligence Is Related to Less
Reconfiguration across Different Spatial Scales

Next, we analyzed the relative contribution of seven

and 17 functional brain networks to the observed effect.

Overall, higher intelligence scores were associated with

less reconfiguration of within and between network

connectivity in multiple brain networks. Dorsal and ven-

tral attention systems, the control network, the default

mode network, and limbic areas showed consistent

significant negative associations, while in the visual

and somatomotor networks, the effect was weaker and

the pattern more heterogeneous (Fig. 2D). To derive a

more global measure of total network-specific recon-

figuration, we then aggregated reconfiguration scores

across all network-combinations a respective network

was involved in. Higher intelligence was significantly

associated with less connectivity reconfiguration in

respect to all networks, except the somatomotor system

(Fig. 2E). Similar relations were observed within and

between 17 functional brain networks (Fig. 2F,G).

Network-Specific Reconfigurations in Response
to Varying External Demands

Finally, we investigated network-specific contributions

on the association between intelligence and brain net-

work reconfiguration for each cognitive state. To this end,
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Figure 2. Less brain network reconfiguration is associated with higher intelligence.All associations were operationalized as partial Spearman correlation
(rho) between intelligence (g-factor derived from 12 cognitive tasks) and brain network reconfiguration (cosine distance between FCmatrices of different
states) controlled for influences of age, sex, handedness, and in-scanner head motion. Correlation strengths are depicted in different colors. Brain
networks were derived from the Yeo atlas (Yeo et al. 2011) and network-specific correlations were projected onto the surface of the brain. (A) Scatterplots
illustrate the association between intelligence (x-axis) and the standardized residuals resulting from linear regression of age, sex, handedness, and in-
scanner head motion on brain network reconfiguration averaged over all possible rest-task combinations (y-axis, left panel), and all possible task-task
combinations (y-axis, right panel), respectively. Note that only in this subfigure data of one subject was excluded due to visualization purposes. (B)
Upper panel: Association between intelligence and brain network reconfiguration for all possible state combinations (all correlations are significant).
Lower panel: Associations between intelligence and a total measure of state-specific reconfiguration, that is, reconfiguration values were averaged
over all state combinations that the respective state was involved in. Note that for task states, only combinations with different tasks (no rest) were
included. (C) Associations between intelligence and brain network- and state combination-specific reconfiguration values. Network combinations
refer to all within and between network connectivity combinations (columns). Note that NaN (not a number) values exist if in a specific network-
state combination, no single brain connection passes the filtering procedure (see Supplementary Fig. 1 and Materials and Methods). For details about
the assignment of the correlation values to the specific state and network combinations, see Supplementary Figure 7. (D–G) Brain network-specific
associations between general intelligence and brain network reconfiguration (significant correlations (FDR-corrected P-values, α =0.05) are marked
with asterisks). Associations between intelligence and brain network-specific reconfiguration values for seven (D) and 17 (F) separate brain networks.
Reconfiguration scores averaged across all within- and between network combinations a respective network is involved in resulted in total association
values for seven (E) and 17 (G) brain networks. (H) Associations between intelligence and brain network reconfiguration for each cognitive state.
Reconfiguration values were averaged over all state combinations a respective state was involved in, and averaged over all network combinations
(within- and between network connectivity of seven brain networks) the respective network was involved in. Std. res., standardized residuals; FDR, false
discovery rate; RES, resting state;WM,workingmemory task; GAM, gambling task; MOT,motor task; LAN, language processing task; SOC, social cognition
task; REL, relational processing task; EMO, emotion processing task. VIS, visual network; SMN, somatomotor network; DAN, dorsal attention network;
VAN, salience/ventral attention network; LIM, limbic network; CON, control network; DMN, default mode network; TEMP, temporal parietal network.

network-specific reconfiguration scores were aggregated

across all rest-task combinations (for resting state) or

task-task combinations a respective task was involved in

(for each task state). As illustrated in Figure 2H, network-

specific associations between reconfiguration and intel-

ligence were relatively stable across all cognitive states.

Again, similar relations were observed at the level of 17

functional brain networks (Supplementary Fig. 8).

External Replication: Generalization to Different
Measures of Intelligence and Different Cognitive
Demands

To evaluate the robustness of our findings against

different measures of intelligence and against varying

cognitive demands induced by different tasks, all

analyses were repeated in two independent sam-

ples (The Amsterdam Open MRI Collection AOMIC,
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Snoek et al. 2021, PIOP1: n = 138, PIOP2: n = 184, see

Materials and Methods). In line with our main analyses,

less brain network reconfiguration was associated with

higher intelligence. This effect holds for both rest-task

and task-task reconfiguration (PIOP1 rest-task: rho =

−0.32, P < 0.001, task-task: rho = −0.26, P =0.003; PIOP2

rest-task: rho = −0.23, P =0.002, task-task: rho = −0.26,

P < 0.001, Supplementary Table 2) and became visible

across most state combinations (Supplementary Fig. 6).

In PIOP1, 9 out of 15 rest-task and task-task state

combinations showed a significant negative association

(range: −0.12 ≤ rho ≤ −0.35, 0.001 < P ≤ 0.18), while

in PIOP2, five out of six rest-task and task-task state

combinations showed the respective effect (range: −0.13

≤ rho ≤ −0.30, 0.001 < P ≤ 0.09). Aggregating across

all state combinations in which a respective state

was involved in demonstrated that only in the PIOP2

sample, the total influence of the stop signal task was

significantly stronger (P <0.05) than the total influence

of the emotional matching task. All other states did

not differ significantly in their total influence on the

observed effect (Supplementary Fig. 6). Finally, results

from network-specific analysis were also similar to the

results from the main sample (Supplementary Figs 9

and 10). In sum, the results of the replication analyses

support the robustness of our findings and suggest

that the association between higher intelligence scores

and less brain network reconfiguration generalizes

to different cohorts, imaging acquisition parameters,

operationalizations of intelligence, and to different

cognitive demands.

Robustness Control Analyses

Although the adopted procedure for filtering out noise-

contaminated functional brain connections was thor-

oughly cross-validated (see Materials and Methods)

rendering potential circularity of analyses unlikely,

to evaluate any remaining conceivable possibilities

that results are biased by this step, all whole-brain

analyses were repeated by: 1) considering all possible

functional brain connections (i.e., no filter for selecting

intelligence-related connections) and 2) implementing a

filter based on the pure overlap of intelligence-related

connections and ignoring the sign of the association

between connectivity and intelligence (different filter).

Similar associations between higher intelligence and less

brain network reconfiguration were observed in both

cases (no filter: rest-task: rho = −0.12, P < 0.001; task-

task: rho = −0.12, P < 0.001; different filter: rest-task:

rho = −0.21, P <0.001; task-task: rho = −0.21, P < 0.001).

Without filtering, state-specific effects were overall

smaller with not all state combinations reaching the

significance threshold, while state-specific results based

on the different filtering procedure were nearly identical

(see Supplementary Table 2, Supplementary Fig. 11).

Altogether, these analyses suggest that our filter-

ing procedure successfully reduced noise and, most

importantly, demonstrate that the observed association

between higher intelligence and less brain network

reconfiguration does not represent a spurious result of

the filter.

To rule out that our results were influenced by region-

specific or subject-specific differences in data quality

(e.g., signal drop out), we repeated our main analysis

while additionally controlling for subject- and brain

network-specific differences in temporal signal-to-noise

ratio (tSNR) of the minimal preprocessed blood oxygen

level-dependent (BOLD) signals (i.e.,mean of BOLD signal

divided by its standard deviation). With the additional

control of whole-brain subject-specific tSNR values, the

relation between intelligence and whole-brain network

reconfiguration was nearly identical to the relation

resulting from the main analysis (with additional tSNR

control: rest-task: rho = −0.24, P < 0.001; task-task: rho

= −0.24, P <0.001; without SNR control: rest-task: rho =

−0.23, P < 0.001; task-task: rho = −0.23, P < 0.001). Also,

the results of network-specific associations were highly

similar to the main analysis when subject- and network-

specific tSNR values were added as additional control

variables (see Supplementary Fig. 12). This demonstrates

that our results were not substantially influenced by

individual- or brain network-specific differences in tSNR.

Finally, to preclude the possibility that our findings

were influenced by differences in scan duration (vary-

ing between 176 data points for the emotion task and

1200 data points for rest), all whole-brain analyses were

repeated while reducing all scans to the shortest scan

duration (176 data points). Specifically, we selected 176

consecutive time points of each scan, starting from a

randomly chosen time point. Reconfiguration of all rest-

task and task-task state combinations as well as all

aggregated state-specific reconfigurations were similarly

related to intelligence as in the main analysis (for a

detailed comparison see Supplementary Fig. 13).

Discussion

We showed that general intelligence is associated with

less brain network reconfiguration expressed by higher

similarity between functional brain connectivity linked

to various cognitive states. In line with our initial hypoth-

esis, this effect was not only observed for reconfigu-

ration between rest and task but also for reconfigu-

ration between different tasks each associated with a

specific cognitive demand.Multiple control analyses and

replication in two independent samples demonstrate the

robustness of our findings and suggest generalizability

of this effect to different measures of intelligence and to

various cognitive demands. Finally, multiple functional

brain systems were identified as driving this effect sug-

gesting that intelligence is an emergent whole-brain phe-

nomenon.

Our finding that less reconfiguration of functional

brain connectivity is related to higher intelligence sup-

ports the assumption that people with higher intelli-

gence scores may have an intrinsic brain network archi-
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tecture that is better suited to fulfill multiple cogni-

tive demands. In this regard, intrinsic brain connectivity,

as assessed during rest, can be understood as base-

line or inherent network architecture that undergoes

task-specific adaptations to optimally support upcoming

external demands (Cole et al. 2021). The observation

that higher intelligence is not only associated with less

reconfiguration between rest and task but also with less

reconfiguration between different tasks suggests that

the intelligence-associated advantage in network adap-

tion primarily refers to task-general (in contrast to task-

specific) adaptions, which have been shown to build the

major proportion of FC changes when external demands

are induced (Cole et al. 2014). On this basis, we speculate

that an intrinsic network architecture, which is closer to

such a general task-supporting functional brain network

structure, may allow more intelligent people to switch

faster and more efficiently (in terms of energy consump-

tion) between rest and task as well as between different

tasks associated with varying cognitive demands. Lower

reaction times (Jensen 2006) as well as smaller latencies

of event-related brain potentials in reactions to upcom-

ing task stimuli (Schubert and Frischkorn 2020) have

both been associated with higher intelligence. Future

studies that relate these behavioral and electrophysi-

ological measures to varying amounts of fMRI-derived

network reconfiguration in one and the same sample

may provide further insights into associations between

those measures.

Our findings can also be interpreted against the

background of fMRI task-activation studies, in which

less brain activation was associated with more efficient

stimulus processing (Lustig and Buckner 2004; Liu and

Pleskac 2011) and with higher intelligence (Neubauer

and Fink 2009). Both were suggested as supporting the

Neural Efficiency Hypothesis of intelligence that globally

suggests that people who have higher intelligence scores

show less neural effort to adapt to a specific task (Haier

et al. 1988; Dunst et al. 2014).

The observation that all tasks seem to contribute to

the observed effect with almost equal strength may sup-

port the assumption that task-general adaptations have

greater importance for intelligence-associated process-

ing advantages than task-specific adaptations. The over-

lap of network architectures as required by different cog-

nitive demands (i.e., intrinsic connectivity + task-general

adaptions) may thus be interpreted as reflection of the

positive manifold of general intelligence on the neural

level (Spearman 1904; Kovacs and Conway 2016). In that,

our study lends support to one of the oldest theories of

human intelligence (g-factor, Spearman 1904) and pro-

vides at least a preliminary answer to the question about

the existence of a “neuro-g” (Haier 2017).

Moreover, we analyzed the impact of variations

between different functional brain systems on the

observed effect and showed that the relation between

reconfiguration and intelligence depends more on the

variation between different brain networks than on

the variation between different task states. Specifically,

reconfiguration in all brain systems except in the

somatomotor network was significantly related to

intelligence. The here proposed neural positive manifold,

that is, the overlap of network architectures as required

by different cognitive demands, may thus include

most but not all functional brain systems. However,

although our replication supports the generalizability

to an additional set of cognitive states, the selection

of tasks was still limited in the current study and it

therefore requires further investigation to test whether

this effect is universal for a broader range of cognitive

demands.

Overall, the involvement of multiple functional brain

systems supports major neurocognitive models of intel-

ligence such as the Parieto–Frontal Integration Theory

(P-FIT, Jung and Haier 2007), the Multiple Demand Sys-

tem Theory (MD, Duncan 2010), as well as meta-analytic

findings (Basten et al. 2015; Santarnecchi et al. 2017,

2021) that reveal individual differences in intelligence to

be not only associated with variations in structural or

functional characteristics of a single brain region, but

rather more to properties of a distributed network with

major implications of neural systems associated with

attentional control (Hilger et al. 2017a, 2020), executive

functioning (Unsworth et al. 2009), and the default-mode

of brain function (Basten et al. 2013). Although limbic

brain systems have long been neglected by most of intel-

ligence research, recent evidence supports these brain

regions implication also in cognition (Catani et al. 2013)

and our study can further contribute to this accumulat-

ing evidence.

Several limitations need to be mentioned. First,

although we applied in-sample cross-validation strate-

gies to increase the generalizability of the FC filter, we

cannot completely rule out any remaining influences

of sample-specific characteristics on the connection

selection procedure. This could impact FC results

especially as we observed that filters became instable

in smaller samples (replication samples). To address

this issue, we conducted a conservative approach and

applied the filter mask of the main sample (HCP) to both

replication samples. Future studies may take sample size

into strong consideration and draw specific attention

to construct robust and across-sample generalized

functional connection selection strategies. Second, the

sample of our studywas restricted to subjects between 22

and 37 years of age; thus, future studies should address

the question whether results generalize to a broader age

range. Third, although our replication analysis shows

generalizability of our finding to a different intelligence

test and different cognitive demands, future studies

may contribute to further broaden the picture to more

diverse tasks as well as tasks that are more directly

associated with the intelligence test assessment (Soreq

et al. 2021) including multiple levels of difficulty (Dunst

et al. 2014; Hearne et al. 2017; Sripada et al. 2020).

Such investigations would be valuable for gaining more
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comprehensive insights into the role different cognitive

processes may play within the relationship between

brain network reconfiguration and general intelligence.

Fourth, in contrast to task activation studies that

attempt to identify the neural correlate of more specific

circumscribed cognitive subprocesses during cognitive

tasks conducted in the scanner by calculating specific

task contrasts (e.g., 2-back minus 0-back, Ragland et al.

2002; Blokland et al. 2008), we here compare complete

tasks with each other and, thus, treated them as unified

concepts. However, each task varies in its composition of

subprocesses and further each single cognitive subpro-

cess may vary in its contribution to the observed static

FC (i.e., connectivity averaged over the whole duration of

the resting- or task-related scan). How specific cognitive

subprocesses may contribute to the observed relation

between less brain network reconfiguration and higher

intelligence cannot be investigated by relating these

general task concepts to a general factor of intelligence

(Salthouse et al. 2015) but constitutes an interesting

subject for further research. We therefore recommend

future studies 1) to include more task diversity, 2) to

include different difficulty levels of tasks, and 3) to

identify separate cognitive subprocesses within tasks

to explore the impact these subprocesses may have on

the association of brain network reconfiguration and

intelligence (or other cognitive measures). Lastly, the

analyses reported here might also be adapted to time-

resolved connectivity and the analyses of momentary

switches between cognitive states (Shine et al. 2019;

Greene et al. 2020).

In sum, our study suggests that greater efficiency

in the reconfiguration of functional brain networks in

response to various external demands is associated with

an increased capacity for cognition and intellectual

performance. In general, superior performance may

profit from fast and efficient neural processing. The

here observed association between general intelligence

and less task-induced brain network reconfiguration

that holds across a broad variety of different cognitive

demands can be interpreted as support for the assump-

tion that the intrinsic brain network architecture of

more intelligent people is per se closer to a network

configuration as required by various external demands.

We conclude that such a network architecture may

constitute an optimal foundation for fast and efficient

cognitive processing that ultimately contributes to

intelligent behavior. Finally, the involvement of multiple

brain systems suggests intelligence as an emergent

whole-brain phenomenon. Taken together, our study

proposes multitask brain network reconfiguration as

promising marker to further understand the mecha-

nisms underlying human cognition.

Supplementary Material

Supplementary material can be found at Cerebral Cortex

online.
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