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We study how strategic interaction and cooperation are affected by the heterogeneity of cognitive
skills of groups of players, over consecutive plays of repeated games with randomly matched opponents
using Prisoner’s Dilemma as stage game. We observe overall higher cooperation rates and average final
payoffs in integrated treatment groups—where subjects of different IQ levels interact together—than in
separated treatment groups. Lower IQ subjects are better off and higher IQ subjects are worse off in
integrated groups than in separated groups. Higher IQ subjects adopt harsher strategies when they are
pooled with lower IQ subjects than when they play separately. We demonstrate that this outcome should
be expected in learning and evolutionary models where higher intelligence subjects exhibit lower frequency
of errors in the implementation of strategies. Estimations of errors and strategies in our experimental data
are consistent with the model’s assumptions and predictions.
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1. INTRODUCTION

Intelligence is an important characteristic affecting single agent and strategic behaviour
(e.g. Jones, 2008; Alaoui and Penta, 2016; Gill and Prowse, 2016; Alaoui and Penta, 2018;
Alaoui, Janezic and Penta, 2020). In repeated games where cooperation is possible, the level
of intelligence of players is a crucial factor in affecting mutually beneficial behaviour.
Proto, Rustichini and Sofianos (2019) find that when subjects are allocated into two groups on
the basis of their intelligence, only the higher intelligence groups converge to full cooperation in
complex, non-zero-sum games such as the repeated Prisoner’s Dilemma.

The editor in charge of this paper was Andrea Galeotti.
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However, such separation of individuals into distinct classes of intelligence seldom
occurs in everyday life. The experimental literature has shown that when people are
not separated by level of intelligence, they tend to choose efficient strategies leading
to cooperation under repeated interactions, when gains from cooperation are sufficiently
large (e.g. Dal Bó, 2005; Dreber, Rand, Fudenberg and Nowak, 2008; Duffy and Ochs, 2009;
Blonski, Ockenfels and Spagnolo, 2011; Dal Bó and Fréchette, 2011). The questions of how
groups interact and how people of different types within that group influence one another remain
open.

To clarify these issues, we conduct an experiment allowing to directly compare how people
cooperate when they are repeatedly interacting with individuals of the same or different levels
of cognitive skills. In our laboratory experiment, we find strong evidence that low IQ players
learn to cooperate from high IQ players. Cooperation rates in integrated groups—where subjects
with different IQ levels are pooled together—substantially increase among less-intelligent players
(with IQ in the 76–106 range), and slightly decrease among more-intelligent players (those with
IQ in the 102–127 range) when compared to rates in groups separated according to IQ.

We also find evidence of systematic differences in the strategies used in the integrated-
intelligence setting, as compared to those in the separated-intelligence setting. High-IQ players in
the integrated treatment are less likely to revert to cooperation after a defection of the partner than
they do when playing in the separated treatment. To better understand the complex interaction
of learning and teaching that produces this shift, we analyse a model that introduces differences
among players in the ability to consistently and precisely implement strategies.

Before illustrating this model, we need to recall some definitions, relying on an established
classification of repeated game strategies, in particular for the Prisoner’s dilemma (see e.g.
Aoyagi, Bhaskar and Fréchette, 2019). A strategy is called lenient if it does not revert to defection
after a single deviation; forgiving if it returns to cooperation after a punishment of a defection.
A strategy is called cooperative if it plays cooperation at some stage. Always Defect is not
cooperative, Grim Trigger is cooperative, but not forgiving, and Tit-for-Tat is cooperative and
forgiving but not lenient, Always Cooperate is lenient, forgiving and cooperative. The combination
of those three criteria produces an order, which if restricted to the four strategies we mention is
complete. We call this an order of harshness: Always Defect, Grim Trigger, Tit-for-Tat, and
Always Cooperate are in order of decreasing harshness. We find that if the fraction of players
with limited cognitive skills in the population increases, and, thus, the average probability of
errors also increases, players will adopt harsher strategies.

We model a strategy as an automaton; management of a strategy consists in correctly choosing
the next state in the automaton, given the current state and the observed action profile, and then
correctly choosing an action. Thus, possible errors are errors in transition and errors in action
choice. The distinction between the two types of errors is important for data analysis but most
importantly as a conceptual distinction.1 The literature on refinement of Nash equilibria (started
with Selten, 1975) has introduced errors as an essential component of the analysis, and those are
naturally interpreted as errors in action choice. The distinction between the two types of error
makes an interpretation of observed behaviour easier. An error in transition is likely due to a fault
in cognitive skills and, in particular, working memory storage of the strategy adopted, its current
state, and updating the state given the observed actions; an error in action is likely due to lack of
care and attention in choice.

We study the effect on the frequency of strategies in the population at the evolutionary
equilibria of different benchmark models (the proportional imitation model and the best response

1. We develop an algorithm which exploits this difference in Section E of the Supplementary Appendix.
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model; Gilboa and Matsui, 1991; Schlag, 1998) and in a rational learning model. This is a
natural modelling choice because in our experiment each individual adapts strategies to the
environment by observing the behaviour of randomly met opponents. The cognitive skills
distribution determines the probability of errors, which in turn affects the implementation of
the strategy. Higher probability of errors lead subjects to shift towards harsher strategies, in
particular the Always Defect strategy.

In our data analysis, we follow the hypotheses of the model and estimate the probability
of errors and the equilibrium strategy. We find a pattern consistent with the predictions of the
model: in subject pools where subjects commit more errors, players employ harsher strategies.
This is the opposite of what happens when errors in detection are introduced (as in models of
imperfect monitoring).2 In this case experimental evidence suggests that the presence of errors in
detection produces a shift in the direction of more lenient strategies (see e.g. Aoyagi et al., 2019).
A systematic comparison between these two errors is an interesting topic of future research.

Our results allow to establish a clear link between intelligence, errors, and strategic choices
in repeated Prisoner’s Dilemma. This is important for several reasons. First, it provides further
insights in the way cooperation arises and evolves among self-interested individuals. Second, it
provides a framework linking limited cognitive capacities and strategic errors. Third, it can help
to understand strategic interactions in environments typically characterized by high heterogeneity
in cognitive abilities, thus allowing a better evaluation of alternative integration policies.

Our study is part of a broader research program trying to identify the role of personality traits
in producing strategic behaviour. A large literature in behavioural economics has emphasized in
the last decades the role of individual differences in attitudes toward others. These theories suggest
that social preferences, such as trust and altruism (facets of Agreeableness, one of the Big Five
personality traits), as determining behaviour in strategic environments (see e.g. Fehr and Schmidt,
2006 for a survey). Jagelka (2019) uses factor analysis to study the connection between preferences
and cognitive skills on the one hand, and choices on the other. His model highlights the link
between cognitive skills and inconsistencies of choices in a static setup, not in a strategic repeated
environment.

Here, we explore a completely different mechanism based on cognitive abilities. To the
best of our knowledge, our model is the first to analyse the relationship between probability
of errors and strategic choices, where individual cognitive skills determine frequency of errors.
Heterogeneity in strategy choice in this class of games has been well documented, yet we know
very little about why subjects do not coordinate on the same strategy or what determines the
strategies selected, especially in a basic environment of perfect monitoring. Aoyagi and Fréchette
(2009) estimate how the threshold strategies change as a function of the quality in monitoring.
Fudenberg, Rand and Dreber (2012) show that if the action choice of players is implemented
with an error by the experimenter, then strategies become more lenient and forgiving. So
when subjects know that the error is not the responsibility of partners they might change their
attitude in a more lenient direction, possibly because punishing the partner could not change the
probability of error by inducing them to be more careful. Dal Bó and Fréchette (2019) report
that as supergames become longer in expectation, the ratio of Tit-for-Tat to Tit-for-Tat plus Grim
Trigger increases. There is also evidence that players in laboratory settings teach others how to play
efficiently (e.g. Camerer, Ho and Chong, 2002; Hyndman, Ozbay, Schotter and Ehrblatt, 2012;
Cason, Lau and Mui, 2013). However, these papers do not connect the experimental findings
with differences in intelligence and do not provide a unifying theory as we do in the current
work. Furthermore, the explanation given in this article based on evolutionary models relates

2. This observation was suggested by a clever referee.
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to multiple observations from prior research: (1) the importance of dynamics within sessions;
(2) the predictive role of the initial conditions; and (3) the decrease in strategy implementation
errors with experience (see Dal Bó and Fréchette, 2018, for a survey of such findings).

The paper is organized as follows: Section 2 presents the experimental design. Section 3 shows
the experimental evidence. Section 4 describes the main results of a model of evolutionary game
theory; the model is examined in more detail in the Appendix (Section A). Section 5 estimates
the main parameters and variables of the model using our experimental data and provides support
for the model’s main assumptions and predictions. Section 6 concludes. The Supplementary
Appendix contains technical analysis of the model, estimation details, robustness checks, further
experimental design details, and descriptive statistics.

2. EXPERIMENT DESIGN AND IMPLEMENTATION

Our design involves a two-part experiment administered over two different days separated by
one day in between. Participants are allocated into two groups according to cognitive ability,
which is measured during the first part. They are then asked to return to a specific session to
play several repetitions of a repeated game. Each repeated game is played with a new randomly
determined partner. We have two treatments: the first treatment (called IQ-Separated treatment,
or separated for short) separates subjects into two groups, one with high and one with lower
cognitive ability. The second treatment (called IQ-Integrated treatment, or integrated for short)
pools together subjects into groups that do not differ one from the other in the distribution of
cognitive ability. Subjects were not informed how the grouping was made. During the de-briefing
stage (after the completion of the second day session), we ask the subjects if they understood
the basis upon which the grouping was made. Only one subject mentioned intelligence as the
possible determining characteristic.

2.1. Experimental design

2.1.1. Day one. On the first day of the experiment, subjects complete a Raven Advanced
Progressive Matrices (APM) test consisting of a sequence of 36 questions. They have a maximum
of 30 minutes for the entire test. For each item a 3×3 matrix of images is displayed on the subjects’
screen; the image in the bottom right corner is missing. The subjects are then asked to complete the
pattern by selecting one out of eight possible choices presented on the screen. Before beginning
the test, the subjects are shown an example of a matrix together with the correct answer for
30 seconds. The 36 questions are presented in order of progressive difficulty (as sequenced in
Set II of the APM). Participants are allowed to switch back and forth through the 36 questions
during the 30 minutes and they are allowed to change their answers.

The Raven test is a non-verbal test commonly used to measure reasoning ability and general
intelligence. Matrices from Set II of the APM are appropriate for adults and adolescents of
higher-than-average intelligence. The test is able to elicit stable and sizeable differences in
performances among individuals similar to the ones in our subject pool. This test was among
others implemented in Gill and Prowse (2016) and Proto et al. (2019) that find it to be relevant
in determining behaviour in cooperative or coordinating games.

Psychometric and experimental economics research seldom offers subjects rewards for com-
pleting IQ tests such as the Raven. However, some research (e.g. Larson, Saccuzzo and Brown,
1994) has found that offering a monetary reward leads to a slight increase of scores among people
of higher-than-average intelligence. Alaoui and Penta (2018) study the effects of such incentives
on performance from a theoretical point of view. We aimed to measure intelligence in a way that
would keep potential confounding with motivation at a minimum. Thus, we decided to reward
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our subjects with 1 euro for the correct answer to three randomly chosen matrices among the total
36. During the session, we never mention that this is a test of intelligence or cognitive abilities.

Following the administration of the Raven test, subjects complete an incentivized Holt-Laury
task (Holt and Laury, 2002) to measure risk attitudes. Participants also complete a standard
personality traits questionnaire, the Big Five Inventory, which includes 44 questions (with
answers coded on a Likert scale).3 Participants also answer a series of questions on demographic
characteristics, subjective well-being, and previous experience with a Raven’s test. We inform
the subjects that they will not receive any monetary payment for this section. The Supplementary
Appendix includes all instructions given on the first day.

2.1.2. Day two. Subjects return to the lab on a later day for the second part. We allocate
subjects into two experimental sessions depending on the treatment. In the IQ-Separated treat-
ment, we divide subjects into two groups. Those with above-median Raven scores participate in
what we refer to as high-IQ sessions; the remaining subjects participate in what we refer to as low-

IQ sessions.4,5 In the IQ-Integrated treatment, we create groups of similar Raven scores across
pairs of sessions. To allocate subjects in second-day sessions, we rank them by their Raven scores
and separate the groups by the median. We then alternate allocating subjects of either intelligence
level in different sessions.6 Specifically, the two top Raven scorers of day one are allocated
in different sessions; subsequently, the third and fourth are allocated to a different session,
and so on.

Subjects are asked to play several instances of a repeated Prisoner’s Dilemma (PD) game.
Table 1 reports the stage game implemented. We use a random continuation rule: after each
repetition the draw of a random number determines whether the repeated game stops or continues
to the next repetition. The continuation probability is δ=0.75. We use a pre-drawn realization of
the random numbers; this ensures that all sessions across both treatments face the same experience
in terms of length of play at each decision point.7 We define key terms as follows: round refers
to an overall count of number of times the stage game has been played during the session; a
supergame refers to each repeated game played; and, finally, period refers to the round within
a specific supergame. The length of play of the repeated game is either 45 minutes or until
the completion of the 42nd supergame (which entailed 151 rounds, i.e., repetitions of the stage
game), depending on which comes first. This rule was not disclosed to the participants. The game
parameters are identical to the ones used by Dal Bó and Fréchette (2011) and Proto et al. (2019).
When the continuation probability is interpreted as discount factor, the payoffs correspond to
an infinitely repeated Prisoner’s Dilemma game in which the cooperation equilibrium is both
sub-game perfect and risk dominant.8

The matching of partners takes place within each session under an anonymous and random
re-matching protocol. Two participants play as partners as long as the random continuation rule
determines that the particular partnership is to continue. Once a match ends, participants are

3. We use the version that was developed by John, Donahue and Kentle (1991) and was investigated by
John, Naumann and Soto (2008).

4. The attrition rate was small. Table O.1 in the Supplementary Appendix provides the details.
5. In cases in which there were subjects with equal scores at the cutoff, a tie rule based on whether they reported

previous experience of the Raven task was used. Participants who had done the task before (and were tied with others
who had not) were allocated to the low-IQ session.

6. Again, the attrition rate was small. Table O.2 in the Supplementary Appendix provides the details.
7. In Table O.8 in the Supplementary Appendix, we list the length per supergame that was used for all sessions.

This realisation of supergame length was obtained by drawing a random sequence.
8. See Dal Bó and Fréchette (2011), p. 415 for more details
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TABLE 1
Prisoner’s Dilemma

C D

C 48,48 12,50
D 50,12 25,25

Notes: C, Cooperate; D, Defect.

again randomly and anonymously matched, and start playing the game again. Each decision
round for the game is complete when every subject has made their decision. After all subjects
make their decisions, a screen appears that reminds them of their own decision, indicates their
partner’s decision and reports the units they earned for that particular round. The group size of
different sessions varies depending on the numbers recruited in each week.9 The subjects are paid
according to the points they earn through all rounds of the game. The payoffs reported in Table 1
are in terms of experimental units; each experimental unit corresponds to 0.004 Euros.10

After the sequence of repeated games is completed, subjects are asked to complete a short
questionnaire about any knowledge they have of the PD game, to answer some questions related
to their attitudes towards cooperative behaviour and some strategy-eliciting questions. We include
all these questions in the Supplementary Appendix.

2.1.3. Implementation. The recruitment was conducted through the Alfred-Weber-
Institute (AWI) Experimental Lab subject pool based on the Hroot recruitment software
(Bock, Baetge and Nicklisch, 2014). All sessions took place at the AWI Experimental Lab in
the Economics Department of the University of Heidelberg. A total of 214 subjects participated
in the experimental sessions. They earned on average around 23 Euros, including 4 Euros for
participating. The experiment used Z-Tree (Fischbacher, 2007).

We conducted eight sessions for the separated treatment: four high-IQ and four low-IQ
sessions. There were 108 participants, with 54 in the high-IQ and 54 in the low-IQ sessions.
For the integrated treatment, we conducted 8 sessions with a total of 106 participants. Tables O.1
and O.2 in the Supplementary Appendix report the dates of the sessions and the number of subjects
per session.

3. EXPERIMENTAL EVIDENCE

3.1. Cooperation rates, payoffs, and learning

We start by comparing cooperation rates and payoffs across the two treatments for the two
intelligence groups. Figure 1 shows that subjects increasingly choose cooperation as their first
period choice across all treatments. Subjects in the high-IQ sessions converge faster to almost
total cooperation rates, while in the low-IQ sessions the pattern emerges more slowly; subjects

9. The bottom panels of Tables O.1 and O.2 in the Supplementary Appendix list the sample size of each session
across both treatments.

10. In the invitation email sent to potential participants, we announced a maximum on earnings of 26 Euros for
the entire study (including a 4 Euros participation fee). The invitation letter for the second day announced a maximum
15 Euros to be earned during that second session (up to 7 plus 4 Euros could be earned during the first day). During
the second day session, no display of the accumulated amount earned up to that point was shown on the screen to the
participants. The final earnings for the whole experiment were only communicated at the end of the experiment. The
results that we report are not qualitatively affected by excluding the data in every session when even a single subject has
reached the maximum on earnings, so the presence of the maximum earning did not affect the behaviour of participants.
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Integrated Sessions

Figure 1

Period 1: Cooperation for each supergame in all the Separated and Integrated sessions. Average first period cooperation

in each supergame and session. High- and low-IQ separated sessions are the black and grey lines, respectively in the left

panel. Integrated treatment sessions correspond to the middle grey lines in the right panel.

in this group converge to a cooperation rate smaller than 100 per cent (left panel). Subjects
in the integrated session have higher cooperation rates than in the low-IQ sessions, and lower
cooperation rates than in the high-IQ sessions (right panel).11 Always from Figure 1, we note a
clear upward trend only in the 1st half of each session (i.e. about the first 20 supergames), for this
reason on what follows we will generally show separate estimations for the two halves of every
session.

Table 2 shows that in the first 20 supergames (roughly the first half of a session), subjects earn
about 2.5 units more, and cooperate about 10% more frequently in the high-IQ sessions than in
the integrated sessions. By contrast, they earn about 5.6 units less and cooperate about 22% less
frequently in low-IQ sessions than in the integrated sessions. After the 20th supergame, there
is no longer a significant difference between high-IQ and integrated sessions. Meanwhile in the
low-IQ sessions the difference in both payoffs and cooperation remains constant.12

In accordance with the findings in Proto et al. (2019), Table 3 shows that IQ is not significant
in determining cooperation in the first round in either of the two treatments. This suggests that

11. In Figure O.2 of the Supplementary Appendix, we present the cooperation rates by session.
12. In Table O.16 of the Supplementary Appendix, we present the same estimation as in Table 2 but using only

the data from the marginal subjects in terms of IQ by excluding the top and bottom tertiles. This gives perhaps a cleaner
estimation of the magnitude of overall treatment effect. The table shows that there is an even bigger difference between
low IQ sessions and combined sessions (30% less cooperation in the latter), while the difference between high IQ sessions
and combined seems smaller than in Table 2.
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TABLE 2
Effect of high-IQ and low-IQ session on choice of cooperation and payoffs

Supergame ≤20 Supergame >20

Cooperate Payoff Cooperate Payoff
b/se b/se b/se b/se

High IQ session 0.0990∗∗ 2.5238∗∗ 0.0691 1.7259
(0.0354) (0.9217) (0.0542) (1.4115)

Low IQ session −0.2180∗∗∗ −5.5977∗∗∗ −0.2152∗∗∗ −5.7067∗∗∗

(0.0524) (1.3339) (0.0612) (1.5712)
# Subjects −0.0112 −0.3063 −0.0062 −0.1812

(0.0071) (0.1815) (0.0107) (0.2766)

r2 0.203 0.407 0.152 0.320
N 214 214 214 214

Notes: The dependent variables are average cooperation and average payoff across all interactions (OLS estimator).
Integrated sessions are the baseline. Robust standard errors clustered at the session level in brackets; ∗ p-value < 0.1, ∗∗

p-value < 0.05, ∗∗∗ p-value < 0.01.

the difference in cooperation between individuals of different cognitive skills is only due to a
learning effect during the session.13 Furthermore, in Columns 3, 4, and 5 of Table 3, we include a
dummy for the integrated treatment. As it is expected it is non-significant, confirming that subject
behaviour is statistically indistinguishable across treatments at the beginning of the session.

Figure 2 shows that the average payoff per supergame is consistently higher in the integrated
sessions than in the separated sessions, indicating that in the integrated treatment subjects play on
average more efficiently than in the separated treatments.14 Figure 2 suggests that subjects learn
to cooperate in the first half of each session, then cooperation rates become stable in the second
half.

Table 4 shows that—in the first half of the session—subjects in the high-IQ sessions open with
cooperation at a rate increasingly faster than in the integrated treatment. By contrast, cooperation
increases more slowly in the low-IQ sessions than in the integrated sessions (Columns 1 and 2).
Subjects in the low-IQ sessions tend to catch-up with the others in the second part of each session
(Columns 3 and 4). This provides evidence that the less intelligent players learn to play more
cooperative strategies more quickly when they mix with the more intelligent players than when
they play with players of similar intelligence level.15

Why do higher levels of cooperation emerge earlier in the session with a larger number of
high-IQ players? One driver appears to be subjects’ beliefs, which change on the basis of the
experience with previous partners’ opening plays. As Columns 2 and 4 of Table 4 show, partners’
past cooperation in the first periods significantly increases the probability of cooperation; in
agreement with established results in the repeated games literature. In other words, subjects
whose partners opened with cooperation in previous supergames are more likely to open with
cooperation in subsequent games.

13. Interestingly, risk aversion is the only significant negative determinant of cooperation at the beginning of each
session; in Proto et al. (2019) the effect was negative as well, but not statistically significant.

14. Table O.3 in the Supplementary Appendix also underscores this trend, with total earnings and average payoff
per round significantly higher in the integrated sessions than in the separated sessions.

15. In Table O.17 of the Supplementary Appendix, we present the same estimation as in Table 4 but using only the
data from the marginal subjects in terms of IQ by excluding the top and bottom tertiles. The table shows that there is an
even bigger difference between the cooperation trend of low IQ and combined sessions.
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TABLE 3
Effects of IQ and other characteristics on the cooperative choice in first round of each session

Round 1 Round 1 Round 1 Round 1 Round 1
Cooperate Cooperate Cooperate Cooperate Cooperate

b/p b/p b/p b/p b/p

IQ 1.00889 1.00942
(0.6444) (0.6396)

High IQ group 1.76893 0.59242
(0.1401) (0.1358)

Integrated treatment 1.20968 1.17291 0.15483
(0.6170) (0.6737) (0.6560)

Extraversion 0.87817 −0.09111
(0.5544) (0.6628)

Agreeableness 0.66879∗ −0.39716∗

(0.0681) (0.0851)
Conscientiousness 1.21574 0.20213

(0.4599) (0.4356)
Neuroticism 0.75337 −0.26813

(0.3709) (0.4035)
Openness 1.32202 0.27873

(0.4504) (0.4562)
Risk aversion 0.79190∗∗∗ −0.23160∗∗∗

(0.0063) (0.0095)
Age 0.99517 −0.00198

(0.9051) (0.9605)
Female 1.04458 −0.00533

(0.8941) (0.9872)
Size session 1.03245 0.02822

(0.6398) (0.6375)

N 214 214 214 214 214

Notes: The dependent variable is the choice of cooperation in round 1. Logit estimator. Note that coefficients are expressed
in odds ratios. Robust standard errors clustered at the session level; p-values in brackets; ∗ p-value < 0.1, ∗∗ p-value <

0.05, ∗∗∗ p-value < 0.01.

It is reassuring to observe that the results so far confirm the results in Proto et al. (2019) with
the same payoff matrix, but using a different subject pool in a different country.16 We summarize
these findings as follows: Average cooperation rates and aggregate payoffs are higher when high-

and low-IQ subjects play in integrated, rather than separated groups. Low IQ individuals learn

to cooperate faster when they play in integrated, rather than separated groups.
In what follows, we will ask and study the fundamental question of how the interaction between

IQ distributions, strategy choice, and implementation errors materializes.

3.2. Individual choice determinants

There is widespread and robust evidence (e.g. Dal Bó and Fréchette, 2018; Proto et al., 2019)
that subjects in the repeated Prisoner’s Dilemma game with perfect monitoring play memory one

strategies, where the choices in every period of a supergame depend only on the action profile of
the previous period.17 Let chi,t represent the subject’s choice (1 for cooperate and 0 for defect),

16. And are generally consistent with the findings in the experimental economics literature (see e.g.
Dal Bó and Fréchette, 2018).

17. Common examples of memory one strategies are Tit for Tat or Grim trigger. Defecting after two periods of
defection of the partner (as in Tit for Two Tats) illustrates a memory two strategy.
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Figure 2

Average payoffs per interaction in the Separated and Integrated sessions. The average is computed over observations in

successive blocks of five supergames, of all Separated and Integrated sessions, aggregated separately. Bands represent

95% confidence intervals.

.

TABLE 4
Effects of separated treatment on the evolution of cooperative choice in the first periods of supergames

Superg. ≤20 Superg. >20

Cooperate Cooperate Cooperate Cooperate
b/se b/se b/se b/se

High IQ Session*Supergame 1.16022∗∗∗ 1.17081∗∗∗ 0.96562 1.02712
(0.0582) (0.0611) (0.0643) (0.0695)

Low IQ Session*Supergame 0.93705∗∗ 0.95825 1.09379∗∗ 1.11408∗∗

(0.0260) (0.0273) (0.0468) (0.0500)
Supergame 1.13538∗∗∗ 1.09608∗∗∗ 0.99093 0.93260∗

(0.0283) (0.0281) (0.0296) (0.0341)
1st Per. Part. Coop. Rates until s−1 33.09363∗∗∗ 168284.00972∗∗

(15.4975) (1.01e+06)
Partner Coop Rates until t−1 0.77164 19513.03094∗∗

(0.2548) (9.50e+04)
Average supergame length 2.00252∗∗∗ 2.23329∗∗∗ 5.70321∗∗ 8.25299∗∗

(0.2402) (0.2921) (4.5775) (6.9723)

N 2,280 2,280 654 654

Notes: The dependent variable is the choice of cooperation in the first periods of all supergames. Integrated sessions
are the baseline. Logit with individual fixed effects estimator. Coefficients are expressed in odds ratios. Note that in the
second part of each session many subjects made the same choice throughout, and for this reason their observations needed
to be excluded from the estimations of the model in Columns 3 and 4 (this is also the reason why the estimated odds are
very large). Similar regressions with random effects (which does not need variability of choices at the individual level
avoiding this loss of observations) would deliver similar results. Standard errors in brackets; ∗ p-value < 0.1, ∗∗ p-value
< 0.05, ∗∗∗ p-value < 0.01.
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Partn.Chi,t represent partner’s choice and pi,t represent the probability of chi,t =1 (conditioned
on the set of independent variables), we then have the following model:

pi,t =�(αi +β[Chi,t−1;Partn.Chi,t−1]+ǫi,t); (1)

where [Chi,t−1;Partn.Chi,t−1] is a three-dimensional vector of dummy variables representing
the different outcomes, where (1,0,0) represents Chi,t−1 =0;Partn.Chi,t−1 =1, (0,1,0) represents
Chi,t−1 =1;Partn.Chi,t−1 =0 and (0,0,1) represents Chi,t−1 =0;Partn.Chi,t−1 =0; with mutual
cooperation, Chi,t−1 =1;Partn.Chi,t−1 =1, being the baseline category. αi are time-invariant
individual fixed-effects (taking into account time-invariant characteristics of both individuals and
sessions) and ǫi,t is the error term. We estimate Model 1 separately for the first block of 20 and
the second block of 20 supergames by using a logit estimator.

In Table 5, we present the estimates of Model 1 for the first and the second half of the session.
Results are reported in odds ratios and taking the outcome (C,C)t−1 as baseline. In Table 5
Panel A, we note that, conditional on deviation from mutual cooperation (i.e. after (D,D)t−1;
(D,C)t−1; (C,D)t−1), the odds of cooperating at time t by high-IQ are higher when subjects
play with other high-IQ players than when they play in the integrated treatment. This difference
is, if anything, even larger in the second part of the session (as seen in Panel B of Table 5). In
particular, a lower coefficient of (C,D)t−1 suggests that subjects are less lenient (see the definition
in the introduction), and a lower coefficient of (D,C)t−1 suggests that subjects play less forgiving
strategies.18 Overall, we can interpret this evidence by saying that in the integrated sessions
high-IQ adopt harsher strategies.

Table 6 shows results of a direct test on whether high-IQ players are less harsh when they
interact amongst each other than when they are in the integrated treatment.19 We note that the high-
IQ players are significantly less likely to cooperate whenever the other subject unilaterally defects.
By contrast, the low-IQ subjects do not seem to play significantly differently—regardless of the
setting, whether playing only with other low-IQ or in the integrated treatment after an unilateral
defection. We summarize this section as follows: High-IQ players are significantly less likely to

cooperate after an unilateral deviation of the partner when playing in the integrated treatment

than when playing in the separated treatment.

The evidence we report shows that subjects learn to cooperate, and their choice of strategies
depends on their own cognitive skills as well as the distribution of cognitive skills within the
group. The high-IQ players seem to be more lenient when they play only with other high-IQ
players than when they also play with low-IQ players. Therefore, a complex mechanism is in
place and the following model allows us to analyse this in detail.

4. ERRORS AND EVOLUTION OF STRATEGIES

Proto et al. (2019) found that cognitive skills are inversely correlated to the probability of
defaulting after mutual cooperation in a strategic dynamics setting, suggesting the existence

18. However, such a coefficient could also be an indication of reverting back after an error at period t−1. In a similar
vein, the interpretation of a lower coefficient of (D,D)t−1 is more ambiguous: it might suggest that a player is less keen
to re-establish cooperation, that is, they are playing an non-cooperative strategy like Always Defect or a Grim-trigger. At
the same time this might also suggest, to the contrary, that players adopt Always Cooperate more often and are reverting
to that after an error at period t−1.

19. Given our between-subjects treatments, we could not estimate this model by using individual fixed effects to
control for individual heterogeneity. As a result, we needed to introduce correlated random effects in the model; a probit
estimator is a more correct choice in this case (Wooldridge, 2010, Sections 15.8.2 and 15.8.3). However, note that the
logit estimator would still be a good approximation, and using it instead would give qualitatively similar estimations.
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TABLE 5
Outcomes at period t−1 as determinants of cooperative choice at period t

Low IQ High IQ Low IQ High IQ
Separated Separated Integrated Integrated

b/p b/p b/p b/p

Panel A: #Supergame≤20
(C,D)t−1 0.00860∗∗∗ 0.01038∗∗∗ 0.00885∗∗∗ 0.00533∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000)
(D,C)t−1 0.01069∗∗∗ 0.01485∗∗∗ 0.00731∗∗∗ 0.01039∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000)
(D,D)t−1 0.00353∗∗∗ 0.00339∗∗∗ 0.00397∗∗∗ 0.00172∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000)

N 2,499 2,448 2,499 2,448

Panel B: #Supergame>20

(C,D)t−1 0.00301∗∗∗ 0.00527∗∗∗ 0.00426∗∗∗ 0.00153∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000)
(D,C)t−1 0.00402∗∗∗ 0.03468∗∗∗ 0.00270∗∗∗ 0.01450∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000)
(D,D)t−1 0.00121∗∗∗ 0.00318∗∗∗ 0.00157∗∗∗ 0.00044∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000)

N 1,718 1,201 1,771 1,379

Notes: The dependent variable is the cooperative choice at time t; the baseline outcome is mutual cooperation at t−1,
(C,C)t−1. Panel A relates to the first block of 20 supergames, panel B to the last 22 supergames. Logit with individual
fixed effect estimator. Coefficients are expressed in odds ratios. p-values in brackets; ∗ p-value < 0.1, ∗∗ p-value < 0.05,
∗∗∗ p-value < 0.01.

TABLE 6
Outcomes at period t−1 as determinants of cooperative choice at period t

High IQ Low IQ
All All
b/se b/se

Integrated*(C,C)t−1 0.15679 −0.03105
(0.1888) (0.1134)

Integrated*(D,D)t−1 −0.32689∗ 0.01411
(0.1807) (0.2423)

Integrated*(D,C)t−1 −0.15450 −0.18132
(0.1554) (0.1626)

Integrated*(C,D)t−1 −0.28643∗∗ 0.06988
(0.1283) (0.1873)

(D,D)t−1 −3.43989∗∗∗ −3.40710∗∗∗

(0.1919) (0.1714)
(D,C)t−1 −2.37170∗∗∗ −2.74250∗∗∗

(0.2053) (0.0851)
(C,D)t−1 −2.67842∗∗∗ −2.79165∗∗∗

(0.0886) (0.1517)

N 10,343 10,003

Notes: The dependent variable is the cooperative choice at time t; the baseline outcome is mutual cooperation at t−1,
that is, (C,C)t−1. Integrated is a dummy for the integrated treatment. Probit with correlated random effect estimator:
the variables average cooperation in 1st periods and cooperation in the 1st round are included in the regression but not
reported. Robust standard errors clustered at the session level in brackets ∗ p-value < 0.1, ∗∗ p-value < 0.05, ∗∗∗ p-value
< 0.01.

of a link between cognitive skills and strategic mistakes. Our results rely on a precise model and
show support for this suggestion. In this section, we precisely define two types of errors that take
place in our environment and describe a formal model of the role that the probability of these

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/re
s
tu

d
/a

rtic
le

/8
9
/5

/2
7
2
3
/6

4
8
4
6
5
9
 b

y
 U

N
IV

E
R

S
IT

Y
 O

F
 N

O
R

T
H

 C
A

R
O

L
IN

A
 A

T
 C

H
A

P
E

L
 H

IL
L
 H

E
A

L
T

H
 S

C
I L

IB
 u

s
e
r o

n
 0

1
 J

u
n
e
 2

0
2
3



PROTO ET AL. INTELLIGENCE, ERRORS, AND COOPERATION 2735

errors have on the evolution of strategies. We assume that error rates are related to the intelligence
of players, particularly errors that are due to ineffective information processing: thus, the model
provides a link between intelligence and strategic behaviour in groups. In Section 5, we provide
empirical evidence of this assumption in our data.

4.1. Two types of error

In our model of strategy evolution, subjects can make two types of errors when implementing
their strategies. As a first possibility, errors may occur in the complex process of observing the
action of the others, recalling the rules of the game and their plan of action, and deciding what to
do in the future as a consequence of the observed action. We model subjects’ plans as automata,
and the complex process we have just described as the transition to the next period state in their
automaton. An error produces a transition to a state which is different from the one prescribed
by the automaton and the observed sequence of actions. We call this an error in transition and
denote its probability of occurring in each instance by ǫT . We also consider the second possibility
that they make an error in their choice of action, error in action for short, which is the selection of
an action different from the one prescribed by the strategy at the current state. This error occurs
with probability ǫA.

Note that the error in action is the only type of error which is possible when a player uses
simple strategies such as Always Defect or Always Cooperate, in which the automaton has a
single state. Thus, when we estimate error rates in our data analysis, if the strategy considered
is, say, AD, and only errors in transition are allowed, an observed path of actions of a player has
either probability one (when only defection is observed) or probability zero (if ever a cooperation
is observed). Thus, allowing this second type of error is necessary to allow the possibility of errors
with simple strategies such as Always Defect. We believe that the distinction between these two
types of error is important, because it corresponds to different processes and different individual
characteristics. From the cognitive point of view, an error in transition is typically an error in
working memory implementation of the strategy; an error in action choice is an oversight, and
more likely to be induced by distraction or lack of focus. This distinction is likely to be even more
important in future research investigating the link between individual characteristics of players
and strategic behaviour.

4.2. Errors and strategy evolution

We now examine in broad lines the link between the frequency of errors and the evolution over time
of strategic behaviour. For clarity of exposition, we focus in the main text on the simple case of
transition errors only, and extend the analysis in Section A.3 of the Appendix, where we consider
the general case in which both errors in action choice and in transition are possible. Focusing on
transition error considerably simplifies the exposition, and the results in Section A.3 show that
this case contains all the essential features. Our data analysis tests the complete model with both
types of errors.20 In Section A.4 of the Appendix, we present a model of population learning that
allows us to establish a link with social learning models of the type used in Dal Bó and Fréchette
(2011).

We use the model to study the effect of error probabilities on the frequency of strategies
adopted by players. It is useful to have in mind the order of magnitude of error probabilities that

20. The estimation method is presented in Section E of the Supplementary Appendix.
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TABLE 7
Stage payoff u

C2 D2

C1 c,c s,t

D1 t,s d,d

is actually observed in our data.21 The range of error probabilities in our data is for almost all
participants within the range of 0 to 0.3. The mean is between 0.02 and 0.1, but Figure O.5 (in
the Supplementary Appendix) shows that in earlier supergames the mean can be much higher,
up to 0.25 or even larger. Overall, it seems reasonable to focus our attention conservatively (to
consider all possible relevant cases) to the range 0 to 0.25.

4.3. Sequences of repeated games

In our experiment and in our model, subjects play consecutively several instances of a repeated
game, with a different partner randomly chosen in each repeated game. The two-players stage
game with action set Ai for each player, A≡A1 ×A2, of each repeated game is a Prisoner’s
Dilemma with payoff in every period given by:

where we assume:
t >c,d >s,t+s<2c. (2)

These conditions are satisfied by the payoffs in our experimental design (c=48, s=12, t =50,
d =25). We denote by u the payoff in Table 7, dropping the index using the symmetry of the
payoff matrix.

In the following, an automaton is a representation of repeated game strategies of a player.
An automaton m is a tuple (X,x0,f ,P) where X is the set of states of the automaton, x0 ∈X

the initial state, f is a function X →Ai, where Ai is the set of actions of player i. When we
refer to an automaton, we may omit the index of the row or column player who is using that
automaton, relying on the symmetry of the game. Finally, P defines the transition probability
P :X ×A→�(X), and write:

P(·;x,(a1,a2))∈�(X). (3)

We adopt the notation in terms of transition probability rather than functions (in spite of the fact
that transitions are deterministic) to allow a smooth transition to the case, considered later, in
which we introduce errors.

We assume that in the repeated game subjects only play one of the following three strategies:
Always Defect, Tit-for-Tat, and Grim Trigger strategies. This assumption relies on by now
established findings in the experimental study of the repeated Prisoner’s Dilemma, which are
replicated in our own data.22 In the data analysis of Section 5, we also consider the possibility
that some players use the strategy Always Cooperate (AC). Since this strategy is weakly dominated
and with errors would be eventually eliminated from the population, a model including AC would
give conclusions similar to those we reach here. To lighten notation, in the current section, we

21. In Figures O.3 and O.4 in the Supplementary Appendix, we report the histograms of errors in transition
and action, respectively, by treatment. The dispersion of transition error probabilities across individuals is reported
in Figures O.5 (for early supergames) and O.6 (for all supergames).

22. For example, Dal Bó and Fréchette (2019) show that subjects mostly adopt these strategies.
Dal Bó and Fréchette (2011) and Proto et al. (2019) find evidence that the frequency of use of these strategies by
their participants ranges between 66% and 90%.
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TABLE 8
Payoff matrix in the strategy choice game with no errors

A G T

A d,d (1−δ)t+δd,(1−δ)s+δd (1−δ)t+δd,(1−δ)s+δd

G (1−δ)s+δd,(1−δ)t+δd c,c c,c

T (1−δ)s+δd,(1−δ)t+δd c,c c,c

denote these strategies as {A,G,T}, where A stands for Always Defect strategy, G for Grim Trigger,

and T for Tit-for-Tat. Note that in our description of strategies as automata, there is a single state
for A, and two states for G and T .

We can use conceptual tools from evolutionary and learning game theory in our setup, in
which a game is a repeated game, by considering the normal form game where the strategy set
for each player is the set of strategies or equivalently automata:

M ≡{A,G,T} (4)

The normal form game is defined as follows: before the beginning of each repeated game, players
choose simultaneously an element in M, and the payoff is the one induced in the repeated game
by the chosen pair of strategies. At the end of each repeated game, they play another one, by
again choosing a possibly different repeated game strategy, and so on: so players play a sequence
of repeated games. We call the normal form game induced by the choice of strategies in a
repeated game the strategy choice game. We describe now the payoffs when the set of strategies
is as in (4).

When strategies are implemented by both players with no error (so ǫT =ǫA =0), the precise
values of the payoff matrix are reported for convenience in Table 8.

We denote by U the payoff in Table 8. When one of the two error probabilities, or both, are
strictly positive then the matrix assigning payoffs to each pair of strategy choice by the players
changes. For example, if ǫT >0 and ǫA =0, then the payoff from the choice of grim trigger by
both players is no longer (c,c): with probability ǫT in every round a player will transit to the
wrong state, choose defect, thus inducing retaliation of the other. The computation of the payoff
matrix corresponding to the simple Table 8 when errors are possible is slightly more complex, but
it produces a payoff matrix similar to Table 8, where entries are a function of the pair (ǫT ,ǫA). In
the Appendix Section A.2, we describe precisely how this new payoff matrix is computed when
ǫT >0,ǫA =0. The general case is analysed in Section A.3.

4.4. Evolutionary models

We study the effect on the frequency of strategies in the population for different values of the
error rates at the evolutionary equilibria of two models: the proportional imitation model (Schlag,
1998), which produces the replicators dynamics equation described in equation (5) below, and
the best response model (Gilboa and Matsui, 1991), which produces the best response dynamics
described in equation (6) below. Finally, we consider a rational learning model (see Section A.4
for details), which is very close to the best response model and is also a realistic description of
learning in our setup of consecutive repeated instances of a repeated game with randomly matched
opponents.

There are several reasons to consider each of these models, each one has its merits. First,
the replicator dynamics is the most widely used in evolutionary game theory, and it is therefore
a natural benchmark. Its behavioural foundation, proportional imitation, does not require the
knowledge of the strategies’ distribution by the player, who observes after the fact the partners’
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strategy and payoff, and chooses whether to imitate it or not.23 But the behaviour assumed
(imitation of a more profitable strategy) is crude; the assumption that the player gets to know
the strategy the other played is not natural in our setup, where the game is the normal form
of a repeated game. The best response dynamics is based on a more realistic behaviour in our
environment, but it requires players to know at any time the distribution of the strategies in the
same experimental session. A model which is useful and a reasonable description of behaviour in
our experimental environment is the model of rational learning that we present in Section A.4 of
the Appendix. This model assumes that players have a belief over the strategy distribution of the
subjects in the session, update it on the basis of the observation of the partner’s behaviour, and
choose an optimal response at each time. This model allows us to predict behaviour during the
learning process, and not only at the steady state. The price of this model is its complexity: so the
other two, proportional imitation and best response, are very useful to provide an introductory
tractable setup. They also provide a useful approximation because (as we show) the qualitative
results are robust to different specifications of the evolutionary model (see Proposition A.2), in
particular the main conclusion, that harsher strategies are more likely when the average error
probability is higher is common in all three models.

We now present the details. We let µ∈�(M) denote a mixed strategy and also a frequency of
choice of strategy in the population (as usual: see Sandholm, 2010; Weibull, 1997). To describe
the evolution over time of the frequency, we let µ(t,m) denote the frequency of strategy m in
the population at time t. We denote the payoff to a player adopting m when the frequency in the
population is µ as U(m,µ), and for any τ ∈�(M), the average payoff in the population as:

U(τ,µ)≡
∑

m∈M

τ (m)U(m,µ).

The time evolution of the frequency under proportional imitation is the replicator dynamics
equation:

∀m∈M,
dµ(t,m)

dt
=µ(t,m)(U(m,µ(t,·))−U(µ(t,·),µ(t,·))). (5)

A model of matching and imitation justifying the proportional imitation in (5) is standard
(Sandholm, 2010). Equation (5) states that the change in a short time interval of a frequency
of a strategy is proportional to the difference between average payoff from that strategy and the
overall average payoff in the environment, times the current frequency of the strategy.

To define the best response model, we first need to define the best response correspondence,
taking values in mixed strategies:

BR(µ)≡{τ ∈�(M) :∀m∈M,U(τ,µ)≥U(m,µ)}. (6)

Let λ>0 be a fixed parameter, controlling the speed of adjustment. The time evolution of
the frequency under best response dynamics 24 is described by any solution of the differential
inclusion:

∀m∈M :
dµ(t,m)

dt
=λ(τ (m)−µ(t,m)), for some τ ∈BR(µ(t,·)). (7)

To clarify this equation we note that µ(t,·) is a probability measure on M; the best response
correspondence BR is then applied to µ(t,·). If for a time t and an element τ ∈BR(µ(t,·)) equation

23. See Schlag (1998) and Sandholm (2010) for more details.
24. We follow Sandholm (2010)’s formulation.
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(7) holds, then the function of time described by µ(t,m) is a solution at that time. In summary, a
solution of the best response model is an absolutely continuous function for which equation (7)
holds at every time t.25 This model is simpler than it may look. Figure 3 describes the dynamics
in the best response model and illustrates that the analysis is simplified in our case because when
the error probability is strictly positive the best response correspondence is single valued in the
interior of each the three basins of attraction. Thus, the differential inclusion is, for “most values,”
a simple differential equation. Equation (7) states that at every point in time the frequency of the
strategy which is the best response to the current frequency increases, that of the other decreases,
at an overall speed regulated by the parameter λ. Since the best response dynamics is closer than
the proportional imitation dynamics to our environment, we provide for it a justification in the
next section.

4.5. A model of adjustment of the best response

A population of players (like the subjects in our sessions) know the distribution µ and can compute
the best response, but do not adapt immediately the best response. For example, they may need
time to think through the best response, or can pay attention to the current situation only at some
prescribed time. In a small time interval dt a fraction λdt of the population revises their strategy;
the complement 1−λdt does not. Those who do, adapt the best response to the current µ(t,·);
each player does so taking the current µ as given, and ignoring (correctly, since he is negligible)
his effect on the frequency of strategies. So for every m, we have:

µ(t+dt,m)= (1−λdt)µ(t,m)+λτ (m)dt, for τ ∈BR(µ(t,·)), (8)

which in the limit gives the differential inclusion (7). In this version of the model, players in a
large population know exactly, at every point in time, the frequency of strategies in the population;
they just cannot or do not adjust immediately. The best response dynamics is one step closer to a
model of rational learning, so it is a useful intermediate step to build our intuition. It differs from a
full rational learning model because it requires that all players have the same belief and the belief
is correct. The exposition of results for the rational learning model is harder because a simple two-
dimensional dynamic is impossible. The rational learning model is defined in Appendix Section
A.4 and estimated in Section A.5.

4.6. Summary of main results

We now outline our main results. As we mentioned already, the reader may focus on the case in
which ǫA =0, that is there are no errors in action, and the only error possible is error in transition.

First, the limit behaviour of the fraction of strategies is determinate (i.e. the steady states are
locally unique) only if the probability of error is positive.26 When there are no errors, typically the
equilibria of the strategy choice game, as well as the steady states of the evolutionary model and of
the learning process, are not locally unique. The unique exception is the (A,A) equilibrium, which
is locally unique for all values of the parameters. Instead, when errors occur, even of arbitrarily
small size, then there are three locally unique, and locally stable steady states corresponding to

25. See Aubin and Cellina (1984) for technical details on differential inclusions; in particular Chapter 2, Section 1
on differential inclusions where the correspondence is convex valued and upper-hemicontinuous, which by the properties
of the best reply correspondences for normal form games is the relevant case for our analysis.

26. The role of mistakes in evolutionary stability has been explored, extending the research on Nash refinements,
by Boyd (1989).
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Figure 3

Basin of attraction of A, G, and T , with positive probability of transition error, and Best Response dynamics. The

probability of error in transition is as displayed at the top of each panel, and is ranging from 0 (top left panel) to 0.25

(bottom right panel). Payoff and discount factor are as in our experimental design.

the pure strategy equilibria of the game in which players choose strategies in the repeated game.
With small errors, there are overall seven steady states, three stable, one unstable, and three saddle
points.

Second, thanks to the previous result, when errors are positive, however small, we can define
basins of attraction for each of the strategies. The basin of attraction of a strategy is a useful
quantitative indicator of how profitable on average a strategy is, given a specific environment
(which includes payoffs and error probabilities). It may also provide a theoretical basis to predict
relative frequency of strategies as a function of the error probability. The link between frequency
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of the strategy and basin of attraction is provided by the following thought experiment. The initial
condition of the system is the initial distribution of strategies in the population. We may think
that this is chosen randomly with a fixed probability, that is, independent of the environment, in
particular of the error probability and continuation probability. For example, to fix ideas, we can
take this probability as the uniform probability over the strategies’ frequencies. This probability
may represent the random factors affecting the initial behaviour of subjects in an experimental
session. Given an initial condition, the evolution of distribution of strategies and its limit frequency
is then provided by the evolutionary model. If we keep this initial probability fixed and we change
the model’s parameters, in particular the error probability, a larger basin of attraction of a strategy
will be associated with a larger frequency of that strategy. Thus, the size of basin of attraction
gives us a measure of the probability that the final distribution of strategies is A or G. The size of
these basins changes with the probability of errors. As players become more error prone, the basin
of attraction of harsher strategies become larger: that is, the size of the basin of the A strategy
becomes larger than that of G and T together, and that of G becomes larger than that of T .

Third, which strategies survive in the long run depends on the discount factor δ; in all cases, for
low probabilities of errors all strategies may survive depending on the initial condition. For high
probabilities of error, only A survives. For intermediate probabilities, the two surviving strategies
are A and G for low δ, and A and T for high δ. As δ tends to 1, keeping error probabilities fixed,
the opposite happens: the basin of attraction of the G and T strategies becomes larger; and when
strategies are limited to {G,T}, the basin of T increases to cover the entire interval. This is in
line also with the experimental finding in Dal Bó and Fréchette (2019) that as the probability of
continuation increases subjects tend to choose shorter punishments (i.e. T over G).

The results described so far are independent of the specific model of evolution we adopt,
(Proportional Imitation or Best Response). In Section A.4 of the Appendix, we develop a model
of learning in a population of players with heterogeneous beliefs, who hold and update beliefs
as in the model underlying our data analysis. We show that the resulting dynamics are close to
those described by the best response dynamics.

4.7. An illustration

Figure 3 provides a first intuitive understanding of the way in which the error probability affects
the basins of attraction of the three strategies.27 The figure reports the phase portrait of the vector
field for the Best Response dynamics described in equation (7). We set in all panels the probability
of error in action ǫA =0, and we considered different error probabilities, ranging from ǫT =0 (no
error, top left panel) to ǫT =0.25 (bottom right panel). Payoffs in the stage game are set as in our
experimental design in Table 1. The discount factor (or equivalently, the continuation probability)
is the same (0.75) as in our experimental design.

The triangle in each panel of Figure 3 is the two-dimensional projection of the simplex.
Each point in the triangle represents points (µ(G),µ(T )), where µ(G) is the probability of G,
such that µ(G)+µ(T )≤1, and so the frequency of the strategies, in the order (A,G,T ), is equal
to (1−µ(G)−µ(T ),µ(G),µ(T )). The lines in the triangular regions represent the isoclines: an
isocline is the set of points at which the time derivatives of a variable contains zero.28 The red
line indicates the set of points at which dµ(T )

dt
=0, the blue ones the set dµ(G)

dt
=0. These lines

27. The Matlab code producing the analysis reported in this figure and those considered later is available upon
request.

28. More precisely, since we define the Best Response dynamics as a differential inclusion, the set of points at
which zero is in the set of derivatives. In the discretization used to produce Figure 3, the distinction between differential
inclusion and differential equation is irrelevant.
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separate the triangular region into three subsets, each containing the point corresponding to a
pure strategy.

The top right panel shows the case with a very small error probability (ǫT =0.0001). The
two top panels illustrate the sudden change of the dynamic as soon as the error becomes positive
although still very small. The interior of each of these three subsets consists entirely of points that
are attracted to the pure strategy that is contained in the boundary of the subset. For example, the
basin of attraction of A is the triangular subset at the bottom left of the triangle. The fact that the
boundaries of the regions are straight-lines follows from the special nature of the Best Response
dynamics. This figure can be compared with Figure O.9 in the Supplementary Appendix, reporting
results for the Proportional Imitation model.

Several points that appear clearly in Figure 3 are worth pointing out. First, for all error
probabilities, each of the three strategies has a basin of attraction in the interior of the triangular
region. In other words, all strategies survive in the range of the error probability we are considering
in this example. Second, the size of the region attracted to A increases monotonically with the
error probability. Finally, if we consider the complementary region of points that are not attracted
to A, but to G or T , we note that the relative fraction that converges to G (the strategy which is
second in order of strictness) is increasing as the error probability is increasing. Note that as a
result, whereas at the lowest error probability (top left) the T region is the largest, at the highest
(bottom right) it is the smallest.

We can summarize this section by saying that as the error probability increases, harsher

strategies become more frequent. The next section tries to explain the reason for the result.

4.8. Why harsher strategies thrive with larger errors

When no error is possible, the strategies G and T produce the same outcome when matched with
A, and the same outcome when matched with each other. So with no error both equilibria and
dynamic behaviour are indeterminate, because G and T are interchangeable.

When errors are possible, the first crucial fact is that the A strategy is for every error probability
the unique best response to itself (see Lemma A.4). Hence, no matter what the error is, the profile
(A,A) remains a Nash equilibrium and a locally stable steady state. Thus, if some strategy is
eliminated, it is not A. The second crucial fact is that at ǫT =1/2 under some condition on
payoffs, which is satisfied by the payoffs in our experimental design, the pair (A,A) is the unique
Nash equilibrium (see Lemma A.6). These two facts together with the continuity of the value
function in ǫT (see Lemma A.3) imply that the set of strategies that survive change from the entire
set to the strict strategy A. What is left to study is what happens during the transition.

With a small probability of error the value for (say) player 1 of using G when matched with G

in the repeated game (call it V (G,G)) and the similarly defined values V (T ,G), V (G,T ), V (T ,T )
are no longer equal. Small changes of the values are sufficient to break the indeterminacy, and in
fact we will see that locally unique, locally stable equilibria emerge.

Two forces are now in place. To clarify them, we consider as example how the relative size of
the basin of attraction between G and T changes. As previously mentioned, in the model with no
errors the basin of attraction of G and T are not clearly defined. For infinitesimally small errors,
the value of the steady state that separates the unit interval into the two regions of attraction
is determined by the ratio of the derivatives of the gains in values for the strategy profiles (see
Appendix A). However the gains (coming from small changes in error) for T are larger than those
for G, hence the basin of attraction of T is larger for small errors. This is the first force, that pins
down the relative fraction of the two strategies, and establishes (in the limit of error tending to
zero) the benchmark for the “almost no error” model. However, there is a second force: as the
error becomes larger, the difference in gains becomes smaller, and thus the fraction of T declines.
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If we consider the limit case of a 50–50 probability of error, one can see that the only surviving
strategy is the harshest strategy, A.

4.9. The role of the discount factor

The effect of the discount factor on the basin of attraction follows naturally from the effects of δ

on payoffs. Let us consider first the case of δ close to 1. Consider players starting from mutual
cooperation. A small transition error can lead a player to defect. In this case, the long run loss
induced by a small error in the transition of the G strategy is large: with Grim Trigger, the state
can go back to a cooperative state only by another mistake of the player. Instead, the effects of
such an error with Tit-for-Tat are not as durable. Hence, the relative fitness of T increases, and
its basin of attraction is larger.

The increase in the error probability ǫT reduces the comparative advantage of the forgiving
strategy. In the limit case of an equal probability of error and correct choice, the difference between
the two strategies disappears. Thus, as the error probability increases, the basin of attraction of
Tit-for-Tat decreases as compared to that of Grim Trigger (the harsher strategy). For a graphical
illustration of the role of the discount factor, compare Figure 3 (where δ=0.75) with Figure O.8
in the Supplementary Appendix (where δ=0.6); in both cases payoffs are the same as in our
experimental design.

The intuitive arguments we have provided so far to explain the reason for our main result—
that a higher probability of error leads to a wider use of strict strategies—are independent of
the specific evolutionary model adopted. What dictates the relative fitness of strategies is their
relative profitability. In all the models, the effect of the frequency of errors is mediated by its
effect on the payoff structure. This link is examined in detail in Appendix A.

In the next section, we test our model in our experimental data.

5. ERRORS AND STRATEGIC CHOICES IN OUR DATA

In the previous section, we have shown that in evolutionary game theoretic models, as the
frequency of errors increases, players play harsher strategies more often. If we assume that
the error probability is negatively correlated with cognitive ability, we should observe harsher
strategies more frequently in the low-IQ separated sessions compared to the integrated, and
also in the integrated sessions compared to the high-IQ separated. In this section, we show
that our experimental data provide support for the assumption on the relationship between error
probabilities and intelligence, as well as for the predictions of the model. As we mention in Section
4.3, the model considers the three strategies Always Defect, Grim Trigger, and Tit-for-Tat, but the
conclusions are easily extended to the case in which players may also choose Always Cooperate.
In the data analysis below, we allow subjects to use Always Cooperate.

Our analysis rests on an algorithm identifying the set of error histories consistent with
the observed sequence of actions. The algorithm is described precisely in Section E of the
Supplementary Appendix.29 We assume that subjects choose a strategy at the beginning of a
finite sequence of one or more consecutive supergames (that we will call block of supergames)
and implement this strategy, possibly with errors (in action or in transition).

For each block of supergames, we identify the strategy or strategies most likely to have been
utilized given the decision sequence and implied possible error histories. We define the variable
ties as the number of strategies having maximum likelihood. The number of strategies at the

29. The Matlab code computing the sequence of errors in action choice and transition consistent with the observed
sequence of action choices, and that computing the maximum likelihood, is available upon request.
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maximum ranges from 1 (and in this case the data allow us to precisely identify a single strategy)
up to 4 where four strategies have the same likelihood. Thus, observed data do not always allow
to precisely identify a strategy.30

In determining the block size to be used in the estimation we are faced with a trade-off. By
increasing the block size, we are able to use additional information than can help disentangle
across the strategies considered. Table O.20 in the Supplementary Appendix shows that indeed
the number of times the most likely strategy is unique (i.e. the variable ties is 1) decreases with
block size. However, increasing block size is also costly for the estimation. By including more
supergames within a block, we are more likely to pool supergames across which participants may
have switched strategies. This causes a reduction on the likelihood obtained for all strategies. This
is clear from Figure O.10 in the Supplementary Appendix, where we show the average likelihood
of the most likely strategy across the session for varying block sizes. The average likelihood
decreases with block size.

In the discussion of our analysis below, we focus on the estimation results with blocks of five
supergames. The analysis yields qualitatively similar results if we use alternative block sizes,
three for example. Note how in Figure O.10 of the Supplementary Appendix, after the first third
of blocks, the average likelihood is around 80% in all three panels. This suggests that subjects are
overwhelmingly playing the four strategies that we consider in our model, as has already been
noted previously (e.g. Aoyagi et al., 2019).

The assumption that higher errors are associated with lower intelligence is empirically tested
in Table 9.31 In Columns 1 and 4, we can observe that both error probabilities are negatively
correlated with IQ. The correlation is significant at a higher significance level for the errors
in transitions than for the errors in actions as it is perhaps natural to expect given our errors’
definitions. In Columns 2 and 5, where we control for length of play, the significantly negative
coefficients for block of supergame indicate that experience reduces error probabilities; we will
return to this effect in the next subsection. Finally, in Columns 3 and 6, we introduce a dummy for
integrated sessions, showing that this relationship is not significantly different in the separated
and integrated treatments.

In Table 10, we present a summary of the results of these estimations, where all most likely
strategies and the frequency of errors in transition and errors in action for each treatment group
are reported. The lower the proportion of high-IQ subjects in the treatment is, the higher the
probabilities of errors are (ǫT and ǫA in the model). The high-IQ sessions have a lower error
frequency than the low-IQ sessions and integrated sessions and the integrated sessions have a
lower error frequency than the low-IQ sessions. The error probabilities are significantly different
between low-IQ separated sessions and integrated sessions. The comparison of the error rates
between low-IQ in the separated and integrated sessions show that low-IQ individuals learn to
commit fewer errors in action (last Column of Table 10), potentially because in this treatment they
are more focused since the high-IQ players use more harsh strategies. We will elaborate more on
this point below. The convergence of error probabilities between intelligence groups when mixed
together is also evident from the comparison of high-IQ and low-IQ groups within the integrated
sessions where no statistically significant differences appear (bottom two rows of Column “Diff.
4 - 5” in Table 10). Interestingly, there is little difference in the transition and action errors of the
high-IQ subjects.

We now turn to the frequency of strategies depending on their harshness. There are significant
differences in frequency among the various types of sessions. Sessions with more high-IQ subjects
tend to feature less harsh strategies, high-IQ choose AC, TfT , and GT more often than low-IQ,

30. For example, take a sequence of mutual cooperation (C1,C2) over the entire supergame. This sequence is
consistent with three strategies, i.e., AC,TfT ,GT , with no errors. In this case, the likelihood for each strategy would be
equal to one.

31. The error estimation algorithm is described in Section E of the Supplementary Appendix.
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TABLE 9
Determinants of error probabilities across individuals

Err. in action Err. in transition

Prob. Prob. Prob. Prob. Prob. Prob.
b/se b/se b/se b/se b/se b/se

IQ −0.0011∗ −0.0010 −0.0015∗∗ −0.0005∗∗ −0.0005∗∗ −0.0007∗∗∗

(0.0007) (0.0007) (0.0007) (0.0002) (0.0002) (0.0002)
Integrated −0.1025 −0.0439

(0.1355) (0.0344)
IQ * Integrated 0.0009 0.0004

(0.0013) (0.0003)
Block of Superg. −0.0128∗∗∗ −0.0127∗∗∗ −0.0031∗∗∗ −0.0031∗∗∗

(0.0012) (0.0012) (0.0008) (0.0008)

N 1,540 1,540 1,540 1,540 1,540 1,540

Notes: Dependent variables are the error probabilities. The variable Integrated is a dummy for the integrated treatment.
GLS estimator with random-effects. Errors are clustered at the session level; ∗ p-value < 0.1, ∗∗ p-value < 0.05, ∗∗∗

p-value < 0.01.

and AD less often. Similar tendencies are evident when comparing integrated sessions with low-
IQ sessions: subjects in integrated sessions choose cooperative strategies (AC, TfT , GT ) more
often than in low-IQ sessions. The opposite is true, when we compare high-IQ sessions with
integrated sessions: in this case subjects in high-IQ sessions choose cooperative strategies more
often. In summary, we observe that a higher share of high-IQ subjects is associated with lower
error frequency and less harsh strategies.

Comparing subjects with similar IQ across the different treatments, we note that High-IQ
subjects are more lenient in the separate sessions by playing AC more often (Column “Diff 1 -
4” of Table 10) than in the integrated sessions. On the other hand, low-IQ are significantly more
lenient (more AC) and more forgiving (more TfT and less AD) in the integrated sessions.

When we have strategies GT and TfT tied (in terms of estimated likelihood), we cannot
determine which of the two the subject is following. Table O.21 in the Supplementary Appendix,
shows that for blocks in which strategy GT is the most likely strategy, strategy TfT is also in
85% of the cases (943/1,107), and for blocks in which strategy TfT is the most likely strategy,
GT is also in 88% of the cases (943/1,070). This is not of course a sign of weakness either of
our estimation method or of our design: with no errors, and all players using GT or TfT , the two
strategies would be the most likely strategies in all cases.

5.1. Dynamics of errors over the session

The model described in Section 4 and Appendix A, and its extension in Section A.3 to two types of
errors, assumes that the probabilities ǫT and ǫA, are fixed. In our data instead, these probabilities
decrease as subjects gain experience, as suggested by the regression results reported in Columns
2 and 4 of Table 9. In Table 11, we analyse and compare the first and the second part of the session
for each treatment (consisting of 20 supergames each). The error probability ǫA is significantly
smaller in the second part of all treatments compared to the first part. For ǫT , the decline between
the two parts seems less steep, as perhaps one should expect for a more complex operation.

Looking at Table 11 we note that, if we consider separately the first and the second half of
each treatment, the changes in strategies follow the model’s predictions. In general, less harsh
strategies become more frequent in the second part when errors become less frequent: AC, TfT ,

and GT frequencies increase and AD frequency decreases. Table 11 shows that our data follow the
predictions of the model but also reveals additional complexity in the evolution and the structure
of the errors. We argue that a view of their decline as exogenous processes of learning by doing
will not qualitatively change the model’s conclusions.
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Figure 4

Frequency of strategies and error probabilities over time.

As we have shown earlier, in our data the error frequency decreases as subjects gain experience.
The bottom panels of Figure 4 show this pattern in more detail. Both transition and action error
probabilities decline over the session. Both types of error start from similar values in the two
treatments and the patterns are not different across the two treatments. In the integrated treatment
low IQ subjects converge closer to behaviour of high IQ, suggesting that low IQ subjects learn
from the high IQ subjects. If we consider the entire range of error probabilities that, we observe
in our data (see in particular Figures O.3 and O.4 in the Supplementary Appendix), we find an
average change is in the range of 0 to 0.03.

Thus, we need to adjust the analysis for this situation, which is more complex than the simple
case of constant error probabilities in our model. Looking at Figure 3, consider first the region in
the simplex obtained as intersection of the basins of attraction for a strategy (e.g. that of Always
Defect, AD), over the error probability in that range. Then do the same for the two other strategies.
When we take the collection of these subsets of the simplex, we obtain all together a (likely strict)
subset of the simplex. On this subset, we can make precise predictions: when the initial condition
is in one of these sub-regions (say the one for AD), then the time path of frequencies will converge
to AD even if the error probabilities change. When an initial condition is not in any of the sub-
regions obtained in this way, then the analysis depends on the two speeds of adjustment, one of
the strategy frequency and the other of the error probabilities. In summary, the long run behaviour
is ultimately determined by the limit values of the error probabilities, which in our data are very
low. However, starting with a higher error probability, the set of initial conditions on the fraction
of strategies that eventually converge to AD will become larger, because of the initial movement
in direction of AD.
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We focus now on the evolution of strategies in our data. The top panels of Figure 4 report the
frequency of strategies over time in the different treatments: high-IQ separated, low-IQ separated
and integrated. As we said in several instances, the data do not always allow to univocally identify
the strategies. Therefore, to avoid counting strategies multiple times we make two additional
assumptions:

1. Given our payoff structure and continuation probability, the Always Cooperate (AC)
strategy is weakly dominated (see Section 4.3), hence we assume that subjects are unlikely
to choose this strategy and so rule it out every time this strategy is tied to others.
Accordingly, Figure 4 presents the evolution of the share of subjects choosing AC, only
when this strategy is uniquely identified.

2. To estimate the frequencies in each period of the remaining three strategies (i.e.
AD,GT ,TfT ), we assume that they are played with the same probability when most likely
and equally likely. Therefore, in periods where each of them is equally likely with at least
another strategy, we estimate their respective frequency by dividing the total by the number
of ties with other strategies. For example, if TfT and GT are most likely and equally likely,
we take the total frequency and divide by 2.

Comparing the two top panels of Figure 4, we note that the low-IQ tend to choose AD, more
often when separated than when they are integrated with high-IQ subjects. The fraction of AD

in the low-IQ separated sessions tends to stabilize just above a level of 0.20 in the long run, but
initiates at a higher level (just above 0.40) in the first block of 5 supergames. As we argued in the
preceding paragraph, the initial and transitory levels of error frequency can affect the long-run
trajectory. In fact, an initially high frequency of errors can bring the fraction of strategies during
the early part of the session closer to high values of AD (see Figure 3), and, thus, in the basin
of attraction of AD. The ensuing decline of error probabilities may not be able to reverse this
initial drift towards the direction of Always Defect. The total frequency of Grim Trigger, GT ,
and Tit-for-Tat, TfT , converges to almost 100% in the high-IQ separated and integrated sessions.
The fraction of uniquely identified AC players is always small.

6. CONCLUSIONS

In spite of the many forces in society that tend to segregate individuals according to similar
characteristics, a large part of social interaction occurs among individuals who are very different
from one another in many respects. An important difference is that of their intelligence levels.
This suggests that research on cooperation rates among individuals with different characteristics,
in particular intelligence, may be illuminating and provide helpful guidance for policy.

It seems clear from several earlier experimental results, which have been replicated in the
present article, that higher cognitive skills tend to result in higher rates of cooperation. So we
addressed here a natural question: what are the outcomes of strategic interactions among people
of heterogeneous levels of intelligence? Our research offers three main results.

The first is that, in our experimental setting, cooperation rates in heterogeneous groups are
closer to the higher cooperation rates that occur within groups composed exclusively by those of
high intelligence, although the payoff for high-IQ players is lower than would be the case when
playing only with their high-IQ peers. The aggregate payoff is higher when heterogeneous groups
play together than when they play separately, but the interaction in heterogeneous pools is more
advantageous to players of lower intelligence.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/re
s
tu

d
/a

rtic
le

/8
9
/5

/2
7
2
3
/6

4
8
4
6
5
9
 b

y
 U

N
IV

E
R

S
IT

Y
 O

F
 N

O
R

T
H

 C
A

R
O

L
IN

A
 A

T
 C

H
A

P
E

L
 H

IL
L
 H

E
A

L
T

H
 S

C
I L

IB
 u

s
e
r o

n
 0

1
 J

u
n
e
 2

0
2
3



2750 REVIEW OF ECONOMIC STUDIES

The second is that the higher cooperation rates of players of lower intelligence in integrated
groups are generally due to the influence of the choices of the more intelligent players, who are
more consistent in their implementation of strategies.

The third and final result concerns the observed shift towards harsher strategies of high
intelligence players, when interacting with subjects of lower intelligence and higher error
probabilities. We have argued that this is an instance of a more general phenomenon which
can be explained by models of social learning.

The second and third main results are likely to be more general because they derive from the
analysis of our model as well as by observing the experimental data.

To analyse the relation between error probabilities and distribution of strategies, we propose an
evolutionary game theory model where a population of players play a sequence of repeated games,
and the frequency of strategies in the population is adjusted after every supergame. Studying
the long-run distribution of strategies and the size of their basins of attraction, we show that
players choose more cooperative and forgiving strategies in environments where subjects commit
few mistakes, and instead shift to harsher strategies when the error probabilities increase. The
analysis of the data testing the model finds support for the main assumption, namely that error
probabilities are negatively correlated with intelligence. It also provides evidence in favour of the
main predictions of the model that the distribution of strategies depends on the error probability,
with harsher strategies more frequent in populations with higher error probability.

These results may provide useful guidance for policies affecting social interactions among
groups that are heterogeneous in income or education levels, such as, for example, the interactions
fostered by Moving to Opportunity (MTO) policies. In particular, we show that social interactions
are likely to be mediated by differences in cognitive skills, which are likely to occur as
consequences of these policies. Hence, our design can be considered a controlled MTO policy
experiment, in which we can compare rates of cooperation and differences in strategies in groups
separated according to cognitive skills with those rates that emerge in groups with different levels
of cognitive skills.

Interesting extensions of these results should examine (in experiments and in theory) whether
and how these results also emerge in more general games than Prisoner’s Dilemma, and for
more comprehensive sets of repeated game strategies. In repeated Prisoner’s Dilemma games,
the association between smaller error probabilities and less harsh strategies follows from the way
in which the value function associating payoffs to strategies changes with the error probability.
For example, Tit-for-Tat and Grim Trigger give the same payoff (and so are equivalent) in an
evolutionary model with no errors. For a similar reason, these two strategies are equivalent in a
rational learning model with no active experimentation. This conclusion changes dramatically
even for very small errors, because the loss of payoff for Grim Trigger is higher than the loss
for Tit-for-Tat; hence, the result is that the basin of attraction of Tit-for-Tat is larger. With stage
games in the repeated game different from the Prisoner’s Dilemma the value function associating
payoffs to errors is easy to determine. But how this affects the relative fitness properties, and,
thus, the predicted frequency of different strategies in evolutionary models, is an open problem.
The same is true for models of rational learning with experimentation and errors. This seems to
be an important question if we want to understand how game theoretic predictions extend to a
world in which players make mistakes, perhaps with a frequency associated with cognitive skill
levels.

Further important insights could be gained by conducting a direct test of the best response
evolutionary and rational learning models. This could be accomplished with an experimental
design gathering appropriate measurement of the belief process. Such a study would require belief
elicitation from participants during the session, either by direct observation (e.g. by using eye-
tracking measurements) or by surveys. Also, initial conditions on beliefs could be manipulated.
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This could be accomplished, for instance, by providing subjects at the beginning of the session
with some information on the behaviour of participants in a previous session, and checking with
belief elicitation as to whether and how much this manipulation has been effective. This is a topic
for current and future research.
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APPENDIX

A. EVOLUTION OF STRATEGIES WITH ERRORS

In this section, we study in detail the evolution of strategies with errors, in the general model both with errors in action
and in transition. Our ultimate aim is to present, in the final Section A.4, a model of learning in games that is close to the
experimental environment we adopt. The section will first consider the simple case in which there are no errors (Section
A.1) to establish a benchmark. This will be used later to demonstrate that the model with errors, even of arbitrarily small
size, is qualitatively different from the no-error case. In Section A.2, we give a complete analysis of the model described
verbally in the main text, where errors in transition only are considered. In the following Section A.3, we extend the
analysis to both types of error. Finally in Section A.4, we consider a rational learning model. We estimate the learning
model in the data, providing a link between the evolutionary models and the data analysis. As in Section 4.3, to lighten
notation we shorten the names of the strategies as A,G,T , where A stands for Always Defect strategy, G for Grim Trigger,
and T for Tit-for-Tat.

A.1. No errors

We begin our analysis with the benchmark case of no errors; in our notation, we require ǫT =ǫA =0. In this case, the payoff
matrix for the strategy choice game is the one reported earlier in Table 8 of the main text. This game is special, because
the two “actions” G and T are interchangeable. Thus, the analysis of the game with three actions can be reduced to the
analysis of the reduced game obtained by collapsing G and T into a single action, denoted SC (sophisticated cooperation),
and producing a game with two actions {A,SC}, and payoff matrix:

TABLE A.1

A SC

A d,d (1−δ)t+δd,(1−δ)s+δd

SC (1−δ)s+δd,(1−δ)t+δd c,c
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We denote by µR the strategies in the reduced game and introduce an important threshold value for δ:

δ≡
t−c

t−d
. (A-1)

Proposition A.1. When δ>δ the reduced game has two equilibria in pure strategies (namely (A,A) and (SC,SC)) and a

mixed strategy equilibrium denoted µR(·,δ)∗. For any such equilibrium, there is a corresponding continuum of equilibria

in the strategy choice game, where each equilibrium is obtained by assigning the probability µR(GT,δ)∗ arbitrarily to

the strategies G and T.

Proof. By the assumption stated in equation (2), d >s and so d > (1−δ)s+δd. When c< (1−δ)t+δd, A is a dominant
strategy in the reduced game, so there is a unique equilibrium of the reduced game (and thus of the original strategy choice
game) at (A,A). Multiple equilibria are possible when instead c> (1−δ)t+δd, that is when δ>δ. In this case there are
three equilibria, with the mixed strategy equilibrium assigning a probability to A for the given δ given by:

µR(A,δ)∗ ≡µ∗ =
c−(1−δ)t−δd

c−(1−δ)t−δd+(1−δ)d
. (A-2)

�

Corresponding to these equilibria, there is a set of steady states in the evolutionary dynamic. The dynamic under
proportional imitation has a natural long run behaviour: when the initial proportion of players choosing A is large
enough only A survives in the long run; conversely when the initial fraction of A is sufficiently low, only cooperative
strategies (G and T ) survive. In this second case, however, the long run relative weight of G and T is entirely determined
by the initial conditions, and a small change in initial conditions alters the long run behaviour. More precisely:

Proposition A.2. Under both proportional imitation and best response dynamics the following hold:

1. the set of steady states consists of the union of singleton (1,0,0), the interval

{(µ∗,(1−µ∗)p,(1−µ∗)(1−p)) : p∈[0,1]} (A-3)

and the edge

{(0,p,(1−p)) : p∈[0,1]}; (A-4)

2. the paths with initial condition µ(0,A)>µ∗ converge to the steady state (1,0,0); the paths with initial conditions

where µ(0,A)<µ∗ converge to a steady state in the set (A-4) above;

3. the steady states in the set (A-3) are all unstable.

In the proportional imitation dynamic, paths with initial condition (µ(0,A),µ(0,G),µ(0,T )) are straight-lines where for

every time t:
µ(t,G)

µ(t,T )
=

µ(0,G)

µ(0,T )
.

Thus a path with initial condition µ(0,A)<µ∗ converges to the steady state given by:

(

0,
µ(0,G)

µ(0,G)+µ(0,T )
,

µ(0,T )

µ(0,G)+µ(0,T )

)

.

In conclusion, evolutionary dynamics in the case we are considering (automata with no error) cannot select among
possible relative frequencies of G and T , and thus cannot address the issue of whether a strategy such as T is more or less
frequent in the long run than the harsher strategy G. The long-run relative frequency is whatever frequency happened to
be there in the initial condition. We will show in the analysis below that the frequency is precisely determined in the long
run when an error of arbitrarily small size is possible. Figure A.1 illustrates the dynamic behaviour of the proportional
imitation model when no errors occur. The dynamics are drawn on the projection of the simplex representing the frequency
of the three strategies A, G, and T on the triangular region with points (µ(G),µ(T )), so that the vertex denoted by the
letters correspond to the pure strategy denoted by that letter. The vertex A indicates the only locally unique, locally stable
equilibrium, with basin of attraction the entire triangular region below the shorter segment (labelled U) in the interior of
the triangular region. Any point on the line joining G and T is an equilibrium of the strategy choice game and a steady
state. Similarly all the points on U are unstable states.

The dynamic behaviour with Best Response dynamics is very similar (see the first panel of Figure 3), but in such a
degenerate case (in which the payoffs for the strategies G and T are the same) there is a large multiplicity of solutions of
the differential inclusion, and the dynamic is very sensitive to the tie-breaking rule.
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G

TA
sAT

sAG

U

Figure A.1

Proportional imitation dynamics with no error. All points on the segment joining sAG and sAT (denoted by U in the

figure) are unstable steady states. All points in the segment joining G and T are stable steady states. All lines joining A

with points on the latter segment are invariant. Only few of these lines are illustrated here.

A.2. Errors in transition

We now introduce in our benchmark model the possibility of errors in transition, allowing ǫT >0.
We first have to define how errors affect the payoff matrix introduced in Table 8 for the case of no errors. To compute

the payoff from the choice of the strategy when transition errors are possible, we need to extend the state space to explicitly
include the automata that are produced by errors, distinguishing two automata on the basis of the initial internal state.
So we introduce automata Gc and Gd , defined as having the same transition and same action choice function as G, but
having c and d, respectively as initial state, where c is the state in which cooperation is chosen. So Gd is different from
A because the state of the automaton Gd may transit back to c (although this can only happen by mistake), whereas the
state of A can never transit to a state in which the action C is chosen. With no errors, Gd and A are the same because for
any action profile the transition in Gd from the defect state is back to the defect state. With errors in transition, there may
by mistake a transition from the initial defect state into the cooperate state. Tc and Td are defined similarly.

We then introduce an extended strategy set S (to distinguish it from the set M defined in equation (4)) which includes
these two new automata:

S ≡{A,Gc,Gd ,Tc,Td}, (A-5)

where Gc is the G (Grim Trigger) automaton with c as initial state, (d initial state for Gd ). There is a unique action
determined by an automaton s∈S, denoted by a(s). The payoff from a pair of choices of initial automata made by the two
players is determined by a simple recursive equation on functions defined on the product space 
:


≡S×S (A-6)
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with generic element ω= (s1,s2). With this notation, we can write the transition of the automaton G in state c to the same
automaton in state d as the transition from Gc to Gd . So, we can define the transition on the set S (still denoted by P) with
P(s′;s,a1,a2) describing the probability of transiting to s′ if the current state is s and the action profile is (a1,a2).32

We now turn to the definition of the transition function with errors. We let Q be the set of stochastic matrices on 
,
that is Q∈Q if Q :
→�(
). First, we let the transition with no errors to be denoted by Q0, where

∀ω= (s1,s2),ω′ = (r1,r2), if a(ω)≡ (a1(s1),a2(s2)),

Q0(ω′;ω)≡P(r1;s1,a(ω))P(r2;s2,a(ω)) (A-7)

We denote by qi(ω) the state in S for player i to which player i transits given the current pair ω, taking into account
the corresponding action choice. Finally, we let QǫT

∈Q at error rate ǫT to be:

QǫT
((r1,r2),(s1,s2)) = (1−ǫT )2 if for all i :ri =qi(s1,s2)

= ǫT (1−ǫT ) if for exactly one i :ri =qi(s1,s2)

= ǫ2
T if for all i :ri 
=qi(s1,s2)

The stage game payoff function u was introduced in Section 4.3, immediately following Table 7. We can now define
a payoff function 
→R, still denoted by u, defined at ω= (s1,s2) by:

u(ω)=u(a1(s1),a2(s2)); (A-8)

A.2.1. Value function. Players in the strategy choice game choose an element in the set {A,G,T}, but due to
the presence of errors the value function must be defined for all elements in the set of pairs of extended states, 
. The
payoff to a player for each such ω∈
 is given by a value function V : 
→R. We write V (ω;ǫT ,δ) when we want to
emphasize that the value depends on the parameters.

Lemma A.3. For fixed u, the function (ǫT ,δ)−→V (·;ǫT ,δ) is analytic, and hence continuous and differentiable.

Proof. The function V is the unique solution of the functional equation with the two parameters (u,QǫT
):

V = (1−δ)u+δQǫT
V (A-9)

Since δ<1, the inverse matrix (I −δQǫT
)−1 exists and therefore:

V (·;δ,ǫT ) = (I −δQǫT
)−1(1−δ)u

=

+∞
∑

k=0

(δQǫT
)k(1−δ)u

32. More precisely, we can write this transition for player 1’s automaton:

1. ∀a∈A1 ×A2 :P(A;A,a)=1;

2. P(Gc;Gc,(C1,C2))=1, and ∀(a1,a2)
=(C1,C2)P(Gd;Gc,(a1,a2))=1;

3. ∀a1 ∈A1 and t ∈{Tc,Td}: P(Tc;t,(a1,C2))=1;P(Td;t,(a1,D2))=1.
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TABLE A.2

Gc,A Gd ,A

Gc,A ǫT 1−ǫT

Gd ,A ǫT 1−ǫT

The derivative of V with respect to the error parameter is

dV

dǫT

= −(I −δQǫT
)−1δ

dQǫT

dǫT

(I −δQǫT
)−1(1−δ)u

= −(I −δQǫT
)−1δ

dQǫT

dǫT

V .
�

The analysis of the function V is considerably simplified if we observe that 
 is partitioned into invariant sets under the
transition QǫT

. We say that a subset 
i of 
 is invariant under QǫT
if and only if:

∀ω∈
i,QǫT
(
i;ω)=1.

For example, the set 
AG ≡{(A,Gc),(A,Gd )} is invariant, because the automaton of the first player can only be A, and the
automaton of the second player can only transit to Gc or Gd . The other eight sets are denoted in a similar, natural, way.
Overall, we have the following partition of 
:

P(
)≡{
AG,
AA,
AT ,
GA,
GG,
GT ,
TA,
TG,
TT } (A-10)

each of which is invariant. The cardinality of every element in this partition is either 2 or 4. Correspondingly, the vector V

is partitioned into component Vi : i∈P(
), and each satisfies equation (A-9) with (u,QǫT
) replaced by (ui,QǫT ,i). These

equations can be solved and analysed independently.
The next lemma tells us that no matter what the probability of error, the choice of the profile (A,A) in the strategy

choice game is an equilibrium:

Lemma A.4. For all ǫT >0, (A,A) is a strict Nash equilibrium of the strategy choice game, hence a locally stable

equilibrium of the PI and BR dynamics.

Proof. The transition matrix restricted to the set 
AG is in Table A.2.
Using equation (A-9), we can solve for V (Gc,A); after some algebraic manipulations, we find:

V (Gc,A) = (1−δ(1−ǫT ))u(Gc,A)+δ(1−ǫT )u(Gd ,A)

= (1−δ(1−ǫT ))s+δ(1−ǫT )d.

Therefore for all ǫT >0,
V (Gc,A)<d =V (A,A). (A-11)

The transition matrix restricted to 
AT is the same as the one we reported in Table A.2 for 
AG, and so we similarly
conclude:

V (Tc,A)<V (A,A). (A-12)

�

Lemma A.5. The value function equation can be decomposed into nine independent equations, one for each of the

invariant sets of the set 
. Also the following equations hold:

1. V (A,A)=d

2. V (A,G)=V (A,T )= t(1−δ(1−ǫT ))+dδ(1−ǫT )

3. V (G,A)=V (T ,A)=s(1−δ(1−ǫT ))+dδ(1−ǫT ).

Proof. The equation for the value of V (A,A) follows from the fact that the singleton {(A,A)} is invariant. The equations
for the values of V (A,G) and V (A,T ) follow from the computations in the Proof of Lemma (A.4). �
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Uniform errors. Using the invariant sets allows us to compute the payoff on the case of uniform error, that is when
ǫT =1/2. This case gives us a boundary condition for the study of the dynamic behaviour. In particular, the analysis will
tell us when it is impossible that (G,G) is an equilibrium profile in the strategy choice game.33

Lemma A.6. When ǫT =1/2 the payoff in the strategy choice game with M ×M action set is:

A G T

A d,d mt,ms mt,ms

G ms,mt mc,mc mc,mc,
T ms,mt mc,mc mc,mc

where we have denoted:

ms ≡ (1−δ)s+δ
s+d

2
,mt ≡ (1−δ)t+δ

t+d

2
,

mc ≡ (1−δ)c+δ

(

c+s+t+d

4

)

. (A-13)

Thus at ǫT =1/2, the game has a unique Nash equilibrium, (A,A).

Proof. For any element i∈P(
) (the latter set is defined in (A-10), so i is a subset of 
), we have that the transition
restricted to i is:

Q(1/2),i =
1

#i
Ui ≡Mi, (A-14)

where Ui is a square matrix of 1’s of dimension #i (the cardinality of the set i). Note:

M2
i =Mi. (A-15)

The value function equation restricted to states in i is:

Vi = (1−δ)ui +δMiVi. (A-16)

Given equation (A-15), equation (A-16) implies

MiVi = (1−δ)Miui +δMiVi

which in turn implies, since 1−δ>0:
MiVi =Miui. (A-17)

Now (A-16) and (A-17) give the formula for the value in terms of the payoffs:

Vi = (1−δ)ui +δMiui. (A-18)

The rest follows from simple algebra.
For the last statement, since t >c and d >s (from our assumption in equation (2) on the stage game payoffs) we

conclude that mt >mc. From d >s, we get that d >ms holds for any δ. Thus, A is a dominant action in the strategy choice
game. �

Small errors. We now know that for “large” errors (i.e. when ǫT =1/2) the strategy choice game has a unique
equilibrium, namely (A,A). The dynamic behaviour for small ǫT on the sides µ(T )=0 and µ(G)=0 is similar to that of
the no error model, with a unique steady state that changes continuously in ǫT around ǫT =0. Instead, in the portion of the
interior of the simplex where A is not the attractor, and on the line µ(A)=0 the behaviour is radically different, because
the only stable states are either T or G. Consequently, in this case we have well defined basins of attraction for the two
strategies G and T and we can compare the two basins for the forgiving strategy T and the harsher strategy G.

In our analysis, “small ǫT ” means smaller than a critical value that we introduce now. Note that this critical value
might not be numerically small. We let:

ǫT ≡sup{ǫT :min{V (G,G),V (T ,G)}>V (A,G) (A-19)

and min{V (T ,T ),V (G,T )}>V (A,T )}

33. We consider here the case in which no transition error is possible when no transition has occurred yet, that is
at the first round of the game. In the alternative formulation where an automaton is chosen, and an error in the choice of
the initial state is possible, the conclusion of lemma (A.6) is even easier to prove.
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Lemma A.7. For any payoff of the stage game defined in Section 4.3 that satisfies the condition in equation (2), ǫT >0.

If it is finite, then the value is achieved. There are payoffs satisfying the standing assumption on stage game payoffs stated

in equation (2) for which ǫT is finite.

Proof. Note that at ǫT =0,

V (G,G)=V (T ,G)

=c

> t(1−δ)+dδ

=V (A,G),

where the strict inequality follows from our assumption in equation (2). Similarly at ǫT =0, V (T ,T )=V (G,T )>V (A,T ).
Thus, we conclude that ǫT >0 from lemma (A.3). The second claim also follows from lemma (A.3). The last claim follows
from lemma (A.6), which gives as simple sufficient condition for ǫT to be finite. �

In particular, ǫT is finite for the stage game with payoffs as in our experimental design. The next lemma describes the
dynamic for small ǫT in PID. Equation (5) makes clear that the edges of the simplex are invariant under PID; if an initial
condition has the probability of G equal to 0, the entire path from that initial condition has the probability of G equal to 0.

Lemma A.8. For the proportional imitation model, and for 0<ǫT <ǫT :

1. on the side µ(G)=0 (and, respectively, µ(T )=0) there is a unique steady state corresponding to the mixed strategy

equilibrium of the game when strategies are restricted to {A,T} for both players (and respectively to {A,G});

2. there is a unique steady state on the side µ(A)=0, and this is determined in the limit ǫT →0 by the ratio:

µ(G)∗ =
VǫT

(T ,T )−VǫT
(G,T )

VǫT
(T ,T )−VǫT

(G,T )+VǫT
(G,G)−VǫT

(T ,G)
, (A-20)

where VǫT
is the derivative with respect to ǫT .

Proof. Point (1) follows from the equation describing the dynamics. For Point (2), note first that for ǫT >0 then the steady
state is determined by a frequency of the strategy G, µ(G)∗ such that

µ(G)∗ =
V (T ,T )−V (G,T )

V (T ,T )−V (G,T )+V (G,G)−V (T ,G)
. (A-21)

As ǫT →0 both numerator and denominator in the right-hand side of (A-21) tend to zero. Now the conclusion follows
from l’Hôpital rule. �

With small errors, there are seven steady states. The three corresponding to the pure strategy profiles are locally stable.
The other four steady states are unstable.
We now turn to the main question we posed, namely the relationship between the probability of error (modelled by

the ǫT parameter) and the frequency of strict and harsh strategies, with the strict harshness order:

A≻G≻T (A-22)

For any evolutionary dynamics, we denote the steady states (when they exist) which are located on the edges of the
simplex as sA,T , sA,G, and sG,T , respectively, where the subscript indicates the extreme points of the edge. For example,
in the case of the PID, sA,T is the point in the simplex of the form (p,0,1−p) with p∈ (0,1) at which the time derivative
in equation (5) is equal to 0. As we indicate in Section A.2.3 in our discussion and figures, we consider the projection of
the simplex of the coordinates indicating the probability of G and T : we do not distinguish in the notation between the
steady state as element of the simplex and its projection on the plane. For illustration of sA,T , sA,G, and sG,T we refer to
Figures A.1 and O.7.

A.2.2. Proportional imitation dynamics. In the following analysis, we will examine the size of the basin of
attraction of a strategy under PID, using the location of the three points sA,T , sA,G, and sG,T to provide orientation.

As we noted earlier, the edges of the simplex are invariant under PID. Let us now consider the dynamic of the process
restricted to the edges. It is clear that this evolution is determined only by the value function restricted to the product of
the two strategies at the vertices of the edge; so we can focus on the corresponding two actions game.
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Consider now a symmetric game with action set {a,b} where each action is a best response to itself, that is, the gains

g(a)≡u(a,a)−u(b,a) and g(b)≡u(b,b)−u(a,b) satisfy g(a)>0 and g(b)>0. This game has two pure strategy Nash
equilibria and a mixed strategy one; the mixed strategy equilibrium has the probability of action a given by p∗ =

g(b)
g(a)+g(b) .

If we consider the PID in this simple two-action game, the basin of attraction of the action a is the set {(p,1−p) :1≥p>p∗},
a sub-interval of the unit interval of length

1−p∗ =
g(a)

g(a)+g(b)
(A-23)

which we call the size of the basin of attraction of A. As intuition may suggest, the size of the basin of attraction of strategy
a is increasing in the ratio of the gain of action a over that of action b.

We apply this analysis to our three actions game.34 To illustrate consider the edge of the simplex between the vertices
A and T , with steady state within the edge (if it exists) sA,T . The size of the basin of attraction of A (the harshest of the two
strategies) within the edge will be denoted sbaA,T , and is equal to 1−sA,T (A). Similarly, we denote sbaA,G ≡1−sA,G(A)
and sbaG,T ≡1−sG,T (G), taking in each case the harshest of each pair of strategies (A and G, respectively) as reference.
When we want to emphasize the dependence of the steady state on parameters, we write sbaA,T (ǫT ,δ,u) and so on.

An increase in the values of sbaA,T , sbaA,G corresponds to an increase in the basin of attraction of A at the expense
of those of G and T ; an increase in the value of sbaG,T increases that of G at the expense of T . The following proposition
summarizes what we know for the two extreme values of ǫT =0 and ǫT =1/2:

Proposition A.9. Under proportional imitation,

sbaA,G(0,δ,u)=sbaA,T (0,δ,u)=
(1−δ)(d−s)

c−(1−δ)t−(1−δ)s−δd+(1−δ)d
(A-24)

sbaA,G(1/2,δ,u)=sbaA,T (1/2,δ,u)=sbaG,T (1/2,δ,u)=1 (A-25)

Proof. Use the values in Table A.1 and apply (A-23). �

At ǫT =0 the basin of A is the triangular region below the straight-line segment joining sA,G and sA,T . As ǫT reaches the
value 1/2 any point in the simplex (except the side between G and T ) converges to A over time. The strategy A may
become the only strategy surviving for values of the error probability smaller than 1/2, as we next demonstrate.

We analyse the basin of attraction for the specific numerical values of the payoffs used in the experiment. In Section C
of the Supplementary Appendix, we report numerical values of the payoff matrix with errors and figures portraying the
basin of attraction. To see how the size of the basin of attraction changes when the stage game payoffs are those we used
in the experiment, we can use the lemmas (A.3) and (A.5), to compute the value function and analyse equilibria and
dynamic behaviour.

Figure A.2 uses the simple formula for the size of the basin of attraction. The figure reports the three values sbaA,G,
sbaA,T , sbaG,T as indicated in the legend: these are the three lines within each panel. The comparison is made for different
values of ǫT (moving along the x-axis in each panel) and δ (along the three panels). The value of ǫT at which the line
reaches the value 1 is the value at which the steady state giving positive probability to the less harsh strategy disappears,
and the entire interval converges to the harsher strategy. For instance, the value of ǫT at which the line reporting the size
of the basin for A within the pair {A,T} is the value at which sA,T disappears, sbaA,T becomes equal to 1, and the entire
interval converges to A.

It is clear from the figure that the steady state sA,T disappears last for all the values of δ considered. Instead the order
of disappearance of sA,G and sG,T switches: sG,T before sA,G for low δ, sG,T after sA,G for higher δ. We denote as δ̂ the
value of δ at which sG,T and sA,T disappear at the same value of ǫT ; with the payoffs used in the experimental design, the
value of δ̂ is 0.82.

More in detail, the initial conclusions we draw from Figure A.2 is:

Conclusion A.10.

1. The values sbaA,G and sbaA,T are monotonically increasing in ǫT .

2. For any value of the continuation probability, as the error probability becomes larger, the basin of attraction of

less harsh strategies (G and T) vanishes. The relative size of the basin of attraction of T declines compared to

that of G as the error probability increases.

3. With sufficiently high continuation probability and small error, the basin of attraction of A is arbitrarily small.

34. Figures A.1 or O.7 may provide a useful illustration.
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Figure A.2

Size of basin of attraction of strategies A and G on the sides of the simplex. Top to bottom panel: values of δ equal to

0.75, 0.82, 0.9, respectively.

The intermediate value δ̂ marks the boundary of an interesting division of the set of δ’s into two sub-regions. We
define precisely δ̂ and its significance, focusing on the interior of the projection of the simplex:

Conclusion A.11.

1. As ǫT increases from 0 to 1/2, the interior of the simplex is initially partitioned into three regions (with attractors

A, G and T); then into two regions with two attractors, and finally only into a single region (with attractor A);

2. If δ>δ̂—in the intermediate region of ǫT —the two attractors are A and T; if δ<δ̂ instead the two attractors are

A and G.

For lower values (δ<δ̂), the basin of attraction of T disappears entirely as sGT collapses into the vertex T , and the entire
edge between the vertices G and T of the simplex converges to G. With lower continuation probability (δ<δ̂), but high
probability of errors the strategy T does not survive. For higher values both G and T survive, but both lose frequency at
the expense of A. In conclusion:

Conclusion A.12. Strategy T can survive only with low ǫT or with high δ.

With small errors, an appropriately modified Poincare–Hopf index can be calculated. The index of the three stable pure
strategies is 1 in all cases; the others (the two mixed strategies on the edge between A and T and the edge between A and
G), with an overall index 1. Note that the pure strategy profile (T ,T ) is a steady state of the proportional imitation, and a
Nash equilibrium of the game restricted to {A,T} but it is not a Nash equilibrium of the complete game. Also with higher
errors all the steady states are isolated, and thus an appropriately modified Poincare–Hopf index can be calculated. The
index of the two stable pure strategies (A and T ) are 1; the mixed strategy in the interior of the simplex has index 1. The
index of the two steady states on the sides (sAT and sGT ) is −1. The index of G is 0.
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A.2.3. Best response dynamics. The best response dynamic allows us to identify clearly the basin of attraction
of the three strategies by simple inspection of the phase portrait. To understand the difference between this case and the
proportional imitation dynamics, it is useful to keep in mind that there may be steady states for the PID on the boundary
of the simplex that are not Nash equilibria of the entire game; in this case a steady state for PID may fail to be a steady
state of the BRD.

To be precise, let NE({A,G,T}) be the set of Nash equilibria of the strategy choice game where the player can choose
any strategy in {A,G,T}. We will refer to this as the unrestricted game. For any two-strategy subset {r,s} of the set
{A,G,T}, let N({r,s}) be the Nash equilibria of the reduced game, where players can only choose from {r,s}. It may occur
that a steady state of the PID at the boundary is not a Nash equilibrium of the unrestricted game, although it may be a
Nash equilibrium of the game restricted to the strategies that have positive probability at that steady state. For example, in
the game induced by ǫT =0.35 and δ=0.9 35 the strategy T is weakly dominated by G and V (G,T )>V (T ,T ). Thus, sAT

(which is a mixed strategy of the unrestricted game, assigning 0 to G) is not part of a Nash equilibrium of the unrestricted
game, so it is not a steady state of BRD but it is a steady state of the PID. The same may be true for pure strategies: for
example, the strategy G is a steady state in the game induced by ǫT =0.3 and δ=0.9 in Table O.19 of the Supplementary
Appendix, the pure strategy G is a steady state of the PID, but is not a Nash equilibrium of the complete game, because
V (A,G)>V (G,G).

In the interior of the projection of the simplex the situation is considerably simpler:

Proposition A.13. With best response dynamics,

1. for ǫT <ǫT , all three strategies survive in the long run (i.e. they have a basin of attraction with non-empty interior);

the intersection of the boundaries of the regions with the sides of the simplex are the same as in the proportional

imitation dynamics;

2. The conclusions (A.10), (A.11), and (A.12) hold in the case of BRD as well; in particular, for ǫT >ǫT only two

strategies survive in the long run: they are {A,G} for δ<δ̂, and {A,T} for δ>δ̂.

The lines marking the boundary of the basins of attraction in the BRD and PID may be different (e.g. those in BRD are
straight lines, while those in PID are not) but the end points are common, hence qualitatively the basins are similar. In
particular, the analysis in the previous section identifying different transitions for values of δ above and below δ̂, as ǫT

changes, holds.

A.3. Errors in transition and in action

In this section, we analyse the more complete (and more complex) model in which errors of both types (in action choice
and in transition) are possible. The main innovation with respect to the analysis in the previous sections is the introduction
of the error in action transition matrix. Recall that ǫA is the probability of an error in the choice of the action at a state
in the automaton, and A≡A1 ×A2. Let Pr(a;ω,ǫA) denote the probability of choice of the action profile a by the two
players when the current state is ω and the probability of an error in action choice is ǫA. The action choice with errors at
a state is a stochastic matrix AǫA

:
→�(
×A) defined by

AǫA
(ω)(ω′,a)≡δω(ω′)Pr(a;ω,ǫA). (A-26)

Note that the ω coordinate in the image space of A is only required as a placeholder. This role turns out to be essential in
the next step, the definition of QǫT ,ǫA

in equation (A-27). To illustrate the definition of AǫA
consider for example:

AǫA
(Gc,Gd )(Gc,Gd ,C1,D1)= (1−ǫA)2.

The transition with errors TǫT
:
×A→�(
) is defined by taking TǫT

(ω,a)(ω′) as the probability that the next period
state is ω′ given that the current state is ω and current action profile is a. Overall the stochastic matrix QǫT ,ǫA

∈S(
,
),
the set of stochastic matrices, is the composition of the two transitions:

QǫT ,ǫA
(ω′;ω)≡

∑

a∈A

AǫA
(ω)(ω,a)TǫT

(ω,a)(ω′). (A-27)

We denote by uǫA
(a) the one period payoff when the intended action profile is a but errors in action choice are possible

and occur independently for the two players with probability ǫA. To illustrate, if the intended action profile is (C1,D2)
then uǫA

(C1,D2)= (1−ǫA)2s+ǫA(1−ǫA)(d+c)+ǫ2
At. We also let VǫT ,ǫA

(ω) the value function at the state ω

VǫT ,ǫA
= (1−δ)uǫA

+δQǫT ,ǫA
VǫT ,ǫA

. (A-28)

35. The precise values are reported in the third panel of Table O.19 of the Supplementary Appendix.
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The analysis of the properties of the value function presented in the main text holds with little adjustments in the
current case where errors in actions and transition are possible. The following lemma holds as in the case of errors in
transition only:

Lemma A.14. The function (ǫT ,ǫA,δ)−→V (·;ǫT ,ǫA,δ) is analytic, hence continuous and differentiable.

The decomposition of the state space described in the main text into invariant sets holds in the current case as well.
Similarly, with easy computations, one gets:

Lemma A.15. The value function equation can be decomposed into nine independent equations, one for each of the

invariant sets of the set 
.

1. VǫT ,ǫA
(A,A)=uǫA

(D,D)

2. VǫT ,ǫA
(G,A)= (1−δ(1−ǫT ))uǫA

u(C,D)+δ(1−ǫ)uǫA
(D,D)

3. VǫT ,ǫA
(A,G)= (1−δ(1−ǫ))uǫA

u(D,C)+δ(1−ǫ)uǫA
(D,D).

Note that:

uǫA
(D,D) = (1−ǫA)2d+ǫA(1−ǫA)(s+t)+ǫ2

Ac

uǫA
(C,D) = (1−ǫA)2s+ǫA(1−ǫA)(d+c)+ǫ2

At

uǫA
(D,C) = (1−ǫA)2t+ǫA(1−ǫA)(d+c)+ǫ2

As.

In the case of the two errors, the best response to A is A for the interesting values of the parameter ǫA:

Lemma A.16. For all ǫT >0 and ǫA <1/2, (A,A) is a strict Nash equilibrium of the strategy choice game, hence a

locally stable equilibrium of the PI and BR dynamics.

Proof. An easy computation gives:

VǫT ,ǫA
(A,A)−VǫT ,ǫA

(G,A)= (1−2ǫA)(1−ǫA)(d+ t−s−c).

�

Hence, also in the case of the two errors A survives for all values of the parameters.

A.3.1. Basin of attraction and error rates. From our analysis, it is clear that the behaviour of the basin of
attraction as function of the two error rates will broadly follow a behaviour similar to that already observed in the case of
the simple error in transition, examined in the main text. Figure A.3 reports the sizes of the basin as function of the two
error rates. These are the three dimensional versions of the Figure A.2.

One can consider also the exact analogue of Figure A.2, but for the error in action choice, by setting the transition
probability to zero. This makes clear that the basin of attraction of the strict strategies in the sides of the simplex (analysing
the size of the basin when players are playing only {G,T}, {A,T}, and {A,T}) is strictly increasing in the probability of
the error in action choice.

In the case of the subset {A,T}, at zero transition error the effect of the error in action is still strictly increasing, but
of limited size: at δ=0.75 the largest size of the basin of attraction of A is approximately 25%; at δ=0.9 the maximum
is smaller than 10%.

A.4. Rational learning model

In this final section, we show how the best response model can be interpreted as a model of Bayesian learning. This model
will be used in Section A.5 to analyse our data.

Each player has a belief on the distribution of strategies in the population. The belief has the same functional form for
all players, a Dirichlet distribution of the three dimensional simplex, �({A,G,T}). A player with concentration parameter
α∈N

3 has a density on beliefs given by:

D(αi)=
1

B(αi)
µ(A)α

i
A
−1µ(G)α

i
G−1µ(T )α

i
T −1, (A-29)
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Figure A.3

Size of basin of attraction of strict strategies with two types of error. Probability of error in transition and action choice

as displayed. δ=0.75. Top to bottom panel: values of the basin of attraction in the indicated subsets of strategies (basin

of G in (G,T ); A in (A,G); A in (A,T ); respectively).

where B is the multivariate beta function. The assignment of the belief described by an α to each player induces a
population distribution over belief of players on the strategy of others, described by a probability distribution on the
countable set N

3 with generic term π .
At time t, a fraction λdt of the population is randomly selected to adjust the strategy. This sub-population is

representative of the total population, so the distribution on N
3 in the sub-population is the same as in the total population.

For convenience, we will consider in the following the extension of the measure π to a measure on Z
3, set equal to 0 on

all three dimensional vectors of integers that have a negative value in some coordinate; we keep the same symbol:

π ∈�(Z3). (A-30)

We now consider players in the selected sub-population who are revising the strategy. Given the distribution on the
strategy of the other selected players, each player computes and chooses a mixed strategy in the set of his best responses,
given his belief D(α):

BR(α)=argmaxσ∈�(M)ED(α)U(σ,·). (A-31)

By the property of the Dirichelet distribution, the mean frequency of m∈M:

ED(α)µ(m)=
αm

∑

r∈M αm

≡E(m;α). (A-32)

The best response set of a player with belief indexed by α is:

BR(α)=argmaxσ∈�(M)

∑

r∈M

,E(m;α)U(σ,m). (A-33)

When we add over N
3 with weights given by π , the best response of each player we get an element φ(·;π )∈�(S)

which is the true distribution in the population of the strategies. Note that the function φ depends on the value function of
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the repeated game at the corresponding error rate. We will make this dependence explicit later on when we need to study
its effects, but we ignore it for the moment for clarity of notation.36

We consider first the evolution in discrete time. In each period, all players are randomly matched with probability
corresponding to the frequency.

Proposition A.17. The fraction of each α belief in the model described in Section (A.4) follows the difference equation:

π (k+1,α)=Sπ (k,·),k =0,1,.... (A-34)

where S defined in (A-36).

Proof. Let 1m denote the three dimensional vector equal to 1 at the mth coordinate, and 0 otherwise. Given a π ∈�(N3),
a players hold a belief D(α) next period if and only if in the current period he holds a belief α−1m and meets an opponent
playing m, which happens with probability φ(m,π ). Each player then updates his belief; since priors are Dirichlet, he
changes the α to the new value:

α′
m =αm +δm(bi) (A-35)

where δs is the indicator function.37 Define:

(Sπ )(t,α)≡
∑

r∈M

π (t,α−1m)φ(m,π (t,·)) (A-36)

Recall our discussion before (A-30), so the definition (A-36) is meaningful even when αm =0. Equation (A-34)
follows. �

We now show that the time evolution of the fraction of beliefs in the population follows a dynamic very similar to the
one described by the best response presented in Section 4.5, with the distribution on beliefs π replacing the distribution
on strategies µ:

Proposition A.18. The time derivative of the fraction of each α belief in the model described in section A.4 follows the

equation:

dπ (t,α)

dt
=λ

(

∑

r∈M

π (t,α−1m)φ(s,π (t,·))−π (t,α)

)

. (A-37)

Proof. The players who are matched to play observe a strategy bi of the opponent with probability φ(bi;π ). Each
player in the sub-population updates his belief according to (A-35). The new population after the time interval dt is a
combination of the population of players that did not play, that is a fraction 1−λdt, with frequency π (t,·) unchanged;
and the sub-population of selected players, a fraction λdt, with frequency Sπ (t,·). Thus, the frequency next period is

π (t+dt,α)= (1−λdt)π (t+dt,α)+λdtSπ (t,α),

and therefore (A-37) follows. �

The analysis of the evolution over time is more difficult to visualize than it is in the simple two dimensional
case of the best response dynamic, but the logic is the same. In particular consider the best response function φ as
depending on the value function V for a given vector of parameters, (ǫT ,ǫA,δ,U). As the error in action becomes large,
the best response assigns for the same π (·,t) a larger weight to the strategy A, until the frequency converges to the
consensus on A.

A.5. Estimation of beliefs’ updating under best response

We now estimate the evolutions of the beliefs under best response dynamics described above for each strategy, s, at the
beginning of each supergame t, αi

s,t .

36. We assume that when the best response of a player with belief α is not a pure strategy, then players choose
according to the uniform distribution over the best response set, so when we aggregate over the sub-population of such
players we get the expected value of the strategy choice.

37. That is, δs(bi)=1 if s=bi and =0 otherwise.
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TABLE A.3
IQ and simulated parameters

Variable Mean Std. Dev. Min. Max. N

IQ 103.516 10.203 69.338 127.231 182
θi 0.58 0.357 0 1 129
λ0 5.67 11.683 0 93.275 129
λ20 7.28 12.941 0.154 93.275 128
λ40 6.846 12.913 0.141 93.275 128

A.5.1. Method. For simplicity, we limit ourselves to the case of no errors in the implementation of strategies
(transition or action), where G and T have the same expected utility and for this reason we refer to this strategy as
sophisticated cooperation or SC. Therefore, we assume that subjects in the first repeated game hold beliefs that other
players either use A or a cooperative strategy that we already defined SC. Let the probability of player i in supergame s

to play A be αi
A,t/(αi

A,t +αi
SC,t). In the first supergame, t =1, subjects have beliefs characterized by αi

A,1 and αi
SC,1, from

the second supergame onward, t >1. We follow Dal Bó and Fréchette (2011), reporting here their setup for convenience,
and assume that they update their beliefs as follows:

αi
k,t+1 =θ iαi

k,t +1(aj

k), (A-38)

where k is the action (A or SC) and 1(ak
j ) takes the value 1 if the action of the partner j is k. The discounting factor of

past belief, θ i, equals 0 in the so-called Cournot Dynamics and is 1 in the fictitious play. Therefore the closer is θ to 1 the
slower will player update their beliefs. Since we assume that subjects chose a strategy at the beginning of the supergame,
they will play cooperation, C, in period 1 of supergame if they expect that the partner plays SC, defect, D, otherwise. The
expected utility each player obtains for each action, a, is

U i
a,t =

αi
A,t

αi
A,t +αi

SC,t

ua(aj

A)+
αi

SC,t

αi
A,t +αi

SC,t

ua(aj

SC )+λiǫs
a,t (A-39)

where ua(aj

k) is the payoff from taking action a when j takes the action k.

A.5.2. Estimation results. The estimation of the model above generates choices of the first period of each
supergame that in average fit well our data as shown in Figure A.4. We now analyse the two parameters of interest: θ i,
measuring the inverse of the speed by which subjects update their beliefs, and λi, measuring the inverse of the capacity
of best responding given the beliefs.38

In Table A.5, we show the correlation between IQ and the parameters of interest. IQ significantly negatively correlated
with θ i, implying that higher IQ subjects update their beliefs faster. Higher intelligence does not significantly affect the
capacity of best responding, modelled by the parameter λi. In the top panels of Figure A.5, we can compare the cumulative
distribution of the θ i in the different treatments. θ i is smaller for high-IQ than for low-IQ, confirming that low-IQ update
they beliefs slower than high-IQ (top left panel). The differences in the integrated treatment are drastically reduced (top
right panel). Considering panel A of Table A.4, we note that the differences between high-IQ and low-IQ in the separated
treatment is statistically significant, while the same difference in the integrated treatment is only weakly significant at the
best. The bottom left panel of Figure A.5 shows that low-IQ improve their speed (i.e. θ i is lower) when integrated with
the high-IQ, while there is no much difference among high-IQ subjects in the different treatments. Panel B of A.4 confirm
that the differences among the low-IQ in the integrated and in the separated treatments are statistically significant. We
can summarize this discussion as follows:

1. higher intelligence subjects update their beliefs at a faster rate. Higher intelligence does not significantly affect

the capacity of best responding;

2. less intelligent subjects learn to update their beliefs faster when they are mixed with more intelligent;

3. the way the subjects best respond to their beliefs does not depend on their intelligence.

A possible explanation of why lower IQ subjects update their first period beliefs faster when mixed with the higher
IQ is that, in the latter environment, they receive a clearer signal from the other players playing more consistent strategies.

38. Details on estimation procedures are in the online appendix of Dal Bó and Fréchette (2011) at page 6–8. We
follow that procedure closely.
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Figure A.4

Simulated evolution of cooperation implied by the learning estimates Solid lines represent experimental data, dashed

lines the average simulated data, and dotted lines the 90% interval of simulated data.

TABLE A.4
Differences in the beliefs’ updating speed within the different groups and treatments

Panel A: Tests between IQ groups

Separated Integrated
Treatment θLowIQ −θHighIQ θLowIQ −θHighIQ

t-test t −2.9623∗∗∗ −1.3777∗

Mann–Whitney z −2.488∗∗ −1.411

Panel B: Tests between treatments

Separated vs. integrated Separated vs. integrated
Treatment θLowIQ θHighIQ

t-test t 1.9647∗∗ −0.3909
Mann–Whitney z 1.849∗ −0.350

Notes: Tests of the differences of the estimated parameter θ i as defined in equation A-38, where 1 correspond to slowest
speed (fictitious play) and 0 to the fastest speed (Cournot dynamics)
∗ p-value < 0.1, ∗∗ p-value < 0.05, ∗∗∗ p-value < 0.01.
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Figure A.5

Distribution of the beliefs’ updating speed within the different groups and treatments. Distribution of the parameter θ i

as defined in equation A-38, where 1 correspond to slowest speed (fictitious play) and 0 to the fasted speed (Cournot

dynamics).

TABLE A.5
Correlation between IQ, beliefs updating, and capacity of best responding to own beliefs

Variables IQ θi λ0 λ20 λ40

IQ 1.000
θi −0.345 1.000

(0.000)
λ0 −0.032 −0.242 1.000

(0.746) (0.006)
λ20 −0.047 −0.196 0.887 1.000

(0.635) (0.026) (0.000)
λ40 0.001 −0.205 0.899 0.988 1.000

(0.992) (0.020) (0.000) (0.000)

Notes: Correlations between IQ, updating speed, θi, capacity of best responding to beliefs in supergame s, λs. p-values
in brackets.

REFERENCES

ALAOUI, L., JANEZIC, K. A. and PENTA, A. (2020), “Reasoning about Others’ Reasoning”, Journal of Economic

Theory, 189, 105091.
ALAOUI, L. and PENTA, A. (2016), “Endogenous Depth of Reasoning”, The Review of Economic Studies, 83,

1297–1333.
ALAOUI, L. and PENTA, A. (2018), “Cost-benefit Analysis in Reasoning” (Technical Report, Barcelona GSE, number

1062).

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/re
s
tu

d
/a

rtic
le

/8
9
/5

/2
7
2
3
/6

4
8
4
6
5
9
 b

y
 U

N
IV

E
R

S
IT

Y
 O

F
 N

O
R

T
H

 C
A

R
O

L
IN

A
 A

T
 C

H
A

P
E

L
 H

IL
L
 H

E
A

L
T

H
 S

C
I L

IB
 u

s
e
r o

n
 0

1
 J

u
n
e
 2

0
2
3



PROTO ET AL. INTELLIGENCE, ERRORS, AND COOPERATION 2767

AOYAGI, M., BHASKAR, V. and FRÉCHETTE, G. R. (2019), “The Impact of Monitoring in Infinitely Repeated Games:
Perfect, Public, and Private”, American Economic Journal: Microeconomics, 11, 1–43.

AOYAGI, M. and FRÉCHETTE, G. (2009), “Collusion as Public Monitoring Becomes Noisy: Experimental Evidence”,
Journal of Economic Theory, 144, 1135–1165.

AUBIN, J.-P. and CELLINA, A. (1984), Differential Inclusions. Set-Valued Maps and Viability Theory (Springer,
Grundlehren der mathematischen Wissenschaften).

BLONSKI, M., OCKENFELS, P. and SPAGNOLO, G. (2011), “Equilibrium Selection in the Repeated Prisoner’s
Dilemma: Axiomatic Approach and Experimental Evidence”, American Economic Journal: Microeconomics,
3, 164–192.

BOCK, O., BAETGE, I. and NICKLISCH, A. (2014), “hroot: Hamburg Registration and Organization Online Tool”,
European Economic Review, 71, 117–120.

BOYD, R. (1989), “Mistakes Allow Evolutionary Stability in the Repeated Prisoner’s Dilemma Game”, Journal of

Theoretical Biology, 136, 47–56.
CAMERER, C. F., HO, T.-H. and CHONG, J.-K. (2002), “Sophisticated Experience-weighted Attraction Learning and

Strategic Teaching in Repeated Games”, Journal of Economic Theory, 104, 137–188.
CASON, T. N., LAU, S.-H. P. and MUI, V.-L. (2013), “Learning, Teaching, and Turn Taking in the Repeated Assignment

Game”, Economic Theory, 54, 335–357.
DAL BÓ, P. (2005), “Cooperation under the Shadow of the Future: Experimental Evidence from Infinitely Repeated

Games”, American Economic Review, 95, 1591–1604.
DAL BÓ, P. and FRÉCHETTE, G. R. (2011), “The Evolution of Cooperation in Infinitely Repeated Games: Experimental

Evidence”, American Economic Review, 101, 411–429.
DAL BÓ, P. and FRÉCHETTE, G. R. (2018), “On the Determinants of Cooperation in Infinitely Repeated Games: A

Survey”, Journal of Economic Literature, 56, 60–114.
DAL BÓ, P. and FRÉCHETTE, G. R. (2019), “Strategy Choice in the Infinitely Repeated Prisoner’s Dilemma”, American

Economic Review, 109, 3929–3952.
DREBER, A., RAND, D. G., FUDENBERG, D. and NOWAK, M. A. (2008), “Winners do not Punish”, Nature, 452, 348–

351.
DUFFY, J. and OCHS, J. (2009), “Cooperative Behavior and the Frequency of Social Interaction”, Games and Economic

Behavior, 66, 785–812.
FEHR, E. and SCHMIDT, K. M. (2006), “The Economics of Fairness, Reciprocity and Altruism–Experimental Evidence

and New Theories”, Handbook of the Economics of Giving, Altruism and Reciprocity, 1, 615–691.
FISCHBACHER, U. (2007), “Z-tree: Zurich Toolbox for Ready-made Economic Experiments”, Experimental Economics,

10, 171–178.
FUDENBERG, D., RAND, D. G. and DREBER, A. (2012), “Slow to Anger and Fast to Forgive: Cooperation in an

Uncertain World”, American Economic Review, 102, 720–749.
GILBOA, I. and MATSUI, A. (1991), “Social Stability and Equilibrium”, Econometrica, 59, 859–867.
GILL, D. and PROWSE, V. (2016), “Cognitive Ability, Character Skills, and Learning to Play Equilibrium: A Level-k

Analysis”, Journal of Political Economy, 124, 1619–1676.
HOLT, C. A. and LAURY, S. K. (2002), “Risk Aversion and Incentive Effects”, American Economic Review, 92, 1644–

1655.
HYNDMAN, K., OZBAY, E. Y., SCHOTTER, A. and EHRBLATT, W. Z. (2012), “Convergence: An Experimental

Study of Teaching and Learning in Repeated Games”, Journal of the European Economic Association, 10,
573–604.

JAGELKA, T. (2019), “Are Economists’ Preferences Psychologists’ Personality Traits?” (Technical Report, University
of Bonn).

JOHN, O. P., DONAHUE, E. M. and KENTLE, R. L. (1991), The Big Five Inventory: Versions 4a and 54 (Berkeley, CA:
University of California, Berkeley, Institute of Personality and Social Research).

JOHN, O. P., NAUMANN, L. P. and SOTO, C. J. (2008), “Paradigm Shift to the Integrative Big Five Trait Taxonomy”,
in John, O. P., Robins, R. W. and Pervin, L. A. (eds), Handbook of Personality: Theory and Research (New York,
NY: Guilford Press) 114–158.

JONES, G. (2008), “Are Smarter Groups More Cooperative? Evidence from Prisoner’s Dilemma Experiments, 1959–
2003”, Journal of Economic Behavior & Organization 68, 489–497.

LARSON, G. E., SACCUZZO, D. P. and BROWN, J. (1994), “Motivation: Cause or Confound in Information
Processing/Intelligence Correlations?”, Acta Psychologica, 85, 25–37.

PROTO, E., RUSTICHINI, A. and SOFIANOS, A. (2019), “Intelligence, Personality, and Gains from Cooperation in
Repeated Interactions”, Journal of Political Economy, 127, 1351–1390.

SANDHOLM, W. H. (2010), Population Games and Evolutionary Dynamics (Cambridge, MA: MIT Press).
SCHLAG, K. (1998), “Why Imitate, and If So, How? A Boundedly Rational Approach to Multi-armed Bandits”, Journal

of Economic Theory, 78, 130–156.
SELTEN, R. (1975), “Reexamination of the Perfectness Concept for Equilibrium Points in Extensive Games”,

International Journal of Game Theory, 4, 25–55.
WEIBULL, J. W. (1997), Evolutionary Game Theory (Cambridge, MA: MIT Press Books, The MIT Press).
WOOLDRIDGE, J. M. (2010), Econometric Analysis of Cross Section and Panel Data (Cambridge, MA: MIT Press).

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/re
s
tu

d
/a

rtic
le

/8
9
/5

/2
7
2
3
/6

4
8
4
6
5
9
 b

y
 U

N
IV

E
R

S
IT

Y
 O

F
 N

O
R

T
H

 C
A

R
O

L
IN

A
 A

T
 C

H
A

P
E

L
 H

IL
L
 H

E
A

L
T

H
 S

C
I L

IB
 u

s
e
r o

n
 0

1
 J

u
n
e
 2

0
2
3


	Intelligence, Errors, and Cooperation in Repeated Interactions
	1 Introduction
	2 Experiment Design and Implementation
	3 Experimental Evidence
	4 Errors and Evolution of Strategies
	5 Errors and Strategic Choices in Our Data
	6 Conclusions
	A Evolution of Strategies with Errors


