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International Large-Scale Assessments (LSA) allow comparisons of education systems’ effectiveness in pro-

moting student learning in specific domains, such as reading, mathematics, and science. However, it has been

argued that students’ scores in International LSAs mostly reflect general cognitive ability (g). This study

examines the extent to which students’ scores in reading, mathematics, science, and a Raven’s Progressive

Matrices test reflect general ability g and domain-specific abilities with data from 3,472 Polish students who

participated in the OECD’s 2009 Programme for International Student Assessment (PISA) and who were

retested with the same PISA instruments, but with a different item set, in 2010. Variance in students’

responses to test items is explained better by with a bifactor Item Response Theory (IRT) model than by the

multidimensional IRT model routinely used to scale PISA and other LSAs. The bifactor IRT model assumes

that non-g factors (reading, math, science, and Raven’s test) are uncorrelated with g and with each other. The

bifactor model generates specific ability factors with more theoretically credible relationships with criterion

variables than the multidimensional standard model. Further analyses of the bifactor model indicate that the

domain-specific factors are not reliable enough to be interpreted meaningfully. They lie somewhere between

unreliable measures of domain-specific abilities and nuisance factors reflecting measurement error. The find-

ing that PISA achievement scores reflect mostly g, which may arise because PISA aims to test broad abilities

in a variety of contexts or may be a general characteristic of LSAs and national achievement tests.

Educational Impact and Implications Statement

This study analyzes Programme for International Student Assessment data from Poland to establish

how much the achievement of secondary school students in reading, mathematics, science and in a

Raven’s Progressive Matrices test reflects general ability and how much it reflects domain-specific abil-

ities. Findings indicate that a scaling model that accounts for general ability, fit the data better than mod-

els typically employed in large scale assessments that ignore the influence of general ability on student

achievement. The finding that students’ responses to PISA test items reflect general ability rather than

domain-specific abilities, if replicated to other countries, could have important implications for the

design of large-scale assessments and the interpretation of analyses of large-scale assessment data.
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Standardized achievement tests were developed to measure student

performance in specific subject domains allowing comparisons of

different groups of students, schools, and jurisdictions while intelli-

gence tests were designed to measure general aptitude and intellectual

capacity. Whether the two goals overlap, and to what extent they do,

is an empirical question addressed in this article. Gottfredson’s (1997,

p. 13) and Neisser et al. (1996, p. 77) definitions of intelligence iden-

tify intelligence as the capacity to solve problems, understanding com-

plex ideas and thinking abstractly while learning from experience and

adapting to the context in which reasoning takes place, a capacity

that, according to Hunt (2010, p. 20) is “produced by an interaction

between genetic potential and environmental support.”

One of the most replicated findings in cognitive psychology is

Spearman’s identification of a general ability g factor that could

explain between 50% and 60% of the variance in children’s subject

grades (Lubinski, 2004; Spearman, 1904). Although the g model has

been criticized and alternative models offered, hundreds of studies
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using a variety of mental tests in different populations have also iso-

lated g factors (Gustafsson & Undheim, 1996; Warne & Burningham,

2019). General ability factors (g) isolated from different IQ tests are

highly correlated (Floyd et al., 2013; Johnson et al., 2004, 2008).

Researchers have investigated the observed “positive mani-

fold,” test-specific “nuisance” variance, and group factors. A

prominent model of human intelligence is Carroll’s (1993)

three-strata model comprising a lower order stratum of 50 to 60

narrowly defined independent abilities, a second stratum of 8 to

10 broad independent abilities and a higher single factor of gen-

eral intellectual ability “g.” The Cattell-Horn-Carroll (CHC)

factor model integrates the Carroll model with Cattell’s (1963)

distinction between fluid and crystallized intelligence at the

middle stratum level. Fluid intelligence is independent of

acquired knowledge, whereas crystallized intelligence involves

acquired knowledge.

Large-Scale Assessments of Student Achievement

Two organizations are largely responsible for the design and

implementation of international Large-Scale Assessments (LSA)

of student achievement. The International Association for the

Evaluation of Educational Achievement (IEA) administers the

Progress in International Reading Literacy study (PIRLS) of grade

4 students and the Trends in International Mathematics and

Science study (TIMSS) which monitors mathematics and science

performance in grades 4 and 8. The OECD’s Programme for Inter-

national Student Assessment (PISA) measures performance in

reading, mathematical and science literacy of 15-year-old-

students. Unlike PIRLS and TIMSS, PISA is not tied to specific

knowledge and skills taught at school, but aims to assess general

life skills (Egelund, 2008; Schleicher, 2007).

When international and national LSA reports are released, they

are often followed by academic and public debate on what they mea-

sure, their relationships with sociodemographic and educational fac-

tors, the usefulness of what they measure for students, teachers,

parents and policymakers, and their unintended consequences for

teachers and schools (Coburn et al., 2016; Hopfenbeck & Kjærnsli,

2016; Marsh et al., 2007; Sellar & Lingard, 2013; Zhao, 2020).

PISA has been central to policy debates on educational reform, espe-

cially about school tracking and other forms of educational differen-

tiation (Breakspear, 2012; Ertl, 2006; Grek, 2009; Takayama, 2008).

The definition of literacy in PISA is very similar to definitions

of intelligence. Literacy in reading, mathematics, or science is

“concerned with the capacity of students to apply knowledge and

skills in key subject areas and to analyze, reason and communicate

effectively as they pose, solve and interpret problems in a variety

of situations” (OECD, 2007, p. 16).

The usefulness of international LSAs has been questioned by

studies claiming that they largely measure general cognitive

ability rather than specific subject-based competencies. At the

country level, mean achievement and intelligence are highly

correlated (Koenig et al., 2008; Lynn et al., 2009; Lynn & Van-

hanen, 2012; Rindermann, 2007). General cognitive ability and

student achievement are also highly correlated at the student

level. Walberg (1984) computed an average correlation of .71

between various IQ measures and academic achievement. Kauf-

man et al. (2012) using structural equation modeling estimated

correlations of .77 at around age 5 to above .85 at ages 16 and

17, between latent g and a latent academic ability factor that

underlies tests of reading, math, and writing achievement.

According to Zaboski et al. (2018) meta-analysis, the correla-

tions of g with basic reading, reading comprehension and basic

mathematics were all above .7. The correlations with specific

abilities were much lower.

The general model used in LSAs for student abilities in specific

subject domains is quite different from the models of human intel-

ligence. Psychometricians working on LSAs typically specify

latent ability factors—reading, mathematics, and science in PISA;

mathematics and science in TIMSS—as distinct but correlated

constructs. Multidimensional models generate students’ test scores

which are then analyzed and reported. The underlying model is

referred to as the standard model or multidimensional model. The

multidimensional model assumes that each assessment domain

corresponds to a single latent factor which fully represents capabil-

ity in the specific domain. These latent factors are correlated with

each other. The general ability factor g is assumed to be irrelevant

to students’ test scores. However, the constructs isolated in the

standard model contain a considerable amount of variance attribut-

able to g (Brunner, 2008).

The Bifactor Model

An alternative model—the bifactor model (also called the

nested-factor model)—effectively reconciles educational assess-

ment research and intelligence research. It specifies a general

ability g factor and domain-specific ability factors underlying vari-

ation in achievement (Gustafsson & Balke, 1993) or in intelligence

tests (Gignac & Watkins, 2013). In the bifactor model, latent con-

structs for general and specific abilities are specified as uncorre-

lated with, or orthogonal to, each other. Unlike the three stratum

or CHC models, there is no hierarchy in the bifactor model; test

items load directly on both general and specific latent ability fac-

tors. Figure 1 illustrates four models describing relationships

between general ability g, domain-specific abilities, and specific

test items.

Generally, the bifactor model tends to fit the data from intelligence

tests better than hierarchical models (Cucina & Byle, 2017). In the

bifactor model, specific factors typically explain less of the total var-

iance than the specific factors in the CHC and multidimensional mod-

els (Eid et al., 2018; Jensen &Weng, 1994). The specific factors in the

bifactor model are ‘purer’, uncorrelated with general ability. Although

it makes little difference in practice whether multidimensional hier-

archical or bifactor models are used when the focus of the analysis is

on g, the use of multidimensional hierarchical or bifactor models is

crucial when the interest lies in the domain-specific factors as is the

case for LSAs (Beaujean et al., 2014).

Brunner (2008) compared a two-dimensional standard model

and a bifactor model using four mathematics scales and three read-

ing scales from the German PISA 2000 study together with data

from a cognitive ability test. The bifactor model exhibited slightly

better fit indices. He found that g explained 40% of the variance in

mathematical ability and 49% of the variance in verbal ability.

The average amount of variance attributable to domain-specific

abilities was much lower: 8% for mathematical ability and 17%

for verbal ability. Baumert et al. (2009) analyzing the same data

compared the g-factor or Spearman model comprising only one

latent factor (g) and a bifactor model comprising g and specific
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latent mathematical and verbal factors. The bifactor model pro-

vided a much better fit. Baumert et al. (2009, p. 173) concluded

that general ability is a key determinant in the acquisition of

knowledge and skills at school, and domain-specific abilities make

an incremental contribution to performance, above and beyond g

but did not compare the variances accounted for by general and

specific abilities. Baumert et al. (2009, p. 165) emphasized that

“the outcomes of schooling can and must be conceptually distin-

guished from the intelligence construct.” Analyzing TIMSS rather

than PISA data, Saß et al. (2017) compared a two factor correlated

model, comprising correlated latent factors for g and math, and a

bifactor model with uncorrelated latent factors for g and math, for

German students in grades 5, 9, and 13. Their study concluded

that LSAs test mathematical ability beyond g.

Although it is generally agreed that LSAs measure more than

just g, LSAs typically estimate students’ scores in different

domains from multidimensional models without a general ability

factor. In PISA, the reading, math and science factors isolated

from the multidimensional model are highly correlated. Bond and

Fox (2001) reported intercorrelations of .82 between mathematics

and reading, .89 between science and reading and .85 between

mathematics and science. Cromley (2009) presented correlations

around .8 between reading and science in PISA 2003 and 2006 for

individual countries. These correlations are higher than the corre-

lations between simpler measures of domain scores (Marks,

2016). The very high interdomain correlations from the multidi-

mensional model undermine the assumption that the PISA

domains represent largely independent learning domains with

unique influences, for example students’ reading habits for read-

ing, the qualifications of mathematics teachers for mathematics

and a school’s science resources for science. The obvious explana-

tion for the high interdomain correlations is that the domains

incorporate substantial general cognitive ability components. A g

factor is required to remove the contamination of domain-specific

abilities with general ability. A meta-analysis of 50 studies that

used bifactor models published in psychopathology, personality,

and assessment journals concluded that variance is overwhelm-

ingly due to a single general latent variable, rather than the specific

factors often emphasized by researchers (Rodriguez et al., 2016a).

The studies cited above on the latent structure of LSAs clearly

identified general ability factors in addition to domain-specific

abilities. However, these findings did not change practices within

the psychometric community involved in the construction and

scaling of LSAs, nor in the education academic research and pol-

icy communities that analyze and interpret LSA data for research

and to inform policy making (e.g., Borgonovi & Pokropek, 2019;

Deng & Gopinathan, 2016; Jakubowski & Pokropek, 2015; Keller

et al., 2020). Measurement frameworks in education do not con-

sider the relevance of g.

Brunner (2008) notes that analyses of students' characteristics

and domain-specific ability scores reported in LSAs, meta-analy-

ses, and reviews have relied almost entirely on the standard model

of domain-specific abilities. He speculates that this literature

would be rather different if bifactor conceptualizations of student

achievement predominated in educational research. Saß et al.

(2017) advise researchers to carefully choose between the two-

factor correlated and the bifactor models because the math factor

holds a considerable amount of g in the two-factor correlated

model but none in the bifactor model. The choice is also informed

by the plausibility of the relationships between the factors and

covariates.

Relationships of covariates with the specific ability domains dif-

fer between the multidimensional and bifactor models. For instance,

in Brunner’s (2008) standard multidimensional model, socioeco-

nomic status correlated at around .35 with both mathematical and

verbal latent factors. In contrast, the corresponding correlations

were much lower in the bifactor model (r = .05 and r = .09) and

socioeconomic status correlated more strongly with the general g

factor (r = .35). The same pattern was found for books in the home,

satisfaction with school and educational aspirations. Baumert et al.

(2009) also found that socioeconomic background is more strongly

correlated with g than with specific abilities. Saß et al. (2017) found

SES correlated slightly more with g (r = .24 for 9th grade) than

with the specific math factor (r = .15 for 9th grade). In grade 13, its

correlations with both g and the math factor were negligible. Brun-

ner (2008) found that grades in German and mathematics had more

distinct relationships with math and verbal factors in the bifactor

model than in the multidimensional model. In the bifactor model,

girls had much higher scores than boys on the reading factor and

lower scores on the math factor and gender differences on g were

much smaller than on either domain (Baumert et al., 2009). Saß et

al. (2017) found larger gender differences favoring boys on the

mathematics factor than on g in grades 5 and 9, but not in grade 13.

Each round of data collection for International LSAs, such as

PISA and TIMSS, is followed by international and national

reports, and later by academic journal articles based on analyses of

publicly released data. These analyses often examine associations

of demographic, socioeconomic, school, and attitudinal factors

with student performance in a single domain. Given that student

scores generated from multidimensional models (plausible values)

in LSAs are highly intercorrelated, statistical relationships

between students’ domain scores and covariates tailored for a par-

ticular domain—enjoyment of and frequency of reading, atmos-

phere in math classes, time spent in science classes, teachers’

qualifications in math or science—should be evaluated in light of

the fact that the domain measures are not pure measures of read-

ing, mathematics or science; they comprise substantial common

variance, most likely g. So, the generation of student scores from

different statistical models is not an arcane statistical exercise but

has consequences for the nature and strength of relationships

between students’ scores and putative influences and their inter-

pretation by researchers and policymakers.

Purpose of the Present Study

Previous studies comparing the bifactor and standard models

using PISA data did not analyze the actual responses provided by

individual students. Brunner’s (2008) analyzed four mathematical

subscales, three verbal subscales, and two cognitive ability scales.

Similarly, Baumert et al. (2009) analyzed reading and mathematics

PISA subscales. Analyses of subscales assume that individual

items have the same loadings for g and for the subscales, an

assumption that is unlikely to hold for all items. In contrast to

most previous studies, we use item-level information rather than

subdimensions of aggregated items. Analysis of individual-items

responses considerably increases statistical power producing more

precise estimates, which is important for small effects. In addition,
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organizations that generate student scores using multidimensional

models analyze individual items.

Furthermore, the specific ability factors isolated in bifactor stud-

ies developed using data from LSAs and cited above are limited to

math and verbal literacy. No study has included science, and all

have analyzed data from German students. This is the first study

replicating the PISA’s multidimensional model supplemented by

Raven’ ability test scores, measure of fluid intelligence. No com-

promise or simplifications of the PISA measures were applied.

Respondents sat the full PISA test twice.

Finally, no previous study has explicitly compared the multidi-

mensional (non-g) models used in LSAs with the corresponding

bifactor and hierarchical multidimensional models.

Therefore, the objectives of this study are:

1. To compare various models of students’ responses to the

PISA items with a particular focus on the standard multi-

dimensional model and the bifactor model.

2. To assess the strength and reliabilities of the general and

specific ability factors isolated from the bifactor model.

3. To examine whether relationships of criterion variables

with the specific ability factors isolated from the multidi-

mensional and bifactor models are consistent with what

would be predicted by theory.

This study analyses PISA data from Poland together with a

measure of fluid intelligence to estimate the extent to which stu-

dents’ PISA scores reflect general ability (g) and specific abilities

in reading, math, and science. The superiority of the bifactor

model found by Brunner (2008) and Baumert et al. (2009) might

reflect these studies inclusion of measures of cognitive ability. The

dominance of g may be less important when only the three sets of

PISA test items are analyzed. Therefore, this study also compares

the multidimensional and bifactor models for only the PISA items.

Previous studies relied mostly on model fit for comparisons of

different latent models. Reliance on comparisons of model fit has

been criticized for being overly simplistic (e.g., Bentler, 2009;

Berge & So�can, 2004). For this study comparisons of model fit are

supplemented with statistical indices derived mainly from the

bifactor model, to identify the sources of the common variance in

students’ responses to test items (Gignac & Kretzschmar, 2017;

Reise et al., 2018). We choose the Explained Common Variance

(ECV) indices (Reise et al., 2018); the Omega bifactor model-

based reliability indices (Raykov, 1997; Reise et al., 2013) and

Haberman’s (2008) Proportional Reduction in M Squared Error

(PRMSE). These indices provide more detailed information on the

latent structures and assess the extent that domain-specific factors

measure domain-specific abilities or are best understood as nui-

sance factors reflecting imperfect measurement of general ability

(Reise et al., 2010). General fit measures inform only about the

overall fit of the models, whereas the other indices allow assess-

ment of the extent that each group of items is related with the

different latent factors providing indication of possible misspecifi-

cation of the latent structure. Moreover, they estimate the reliabil-

ities of the dimensions generated from different latent structures

and provide additional information that can aid the understanding

of variation in students’ responses to individual test items.

Method

Data

PISA is a triennial large-scale standardized assessment con-

ducted since 2000 and targeting the schooled population of chil-

dren aged between 15 and 3 months and 16 and 2 months. Each

PISA cycle assesses three core domains (reading, mathematics,

and science). Students are administered a two-hour test and are

then asked to complete the student questionnaire. PISA is a low-

stakes test because test results do not have any consequences for

participants. It is a high-stakes test for senior education bureau-

crats because the performance of students from different countries

and jurisdictions are publicly compared.

The core PISA instruments are developed, validated, and

administered following strict technical standards defined interna-

tionally which guarantees comparability (OECD, 2014). PISA’s

national options allow countries to use additional instruments and

to administer the core international instruments to additional

groups of students. In 2009, Polish students aged 16 or older from

grade 10, the first grade in Polish upper-secondary schools, were

included in the Polish national PISA option.

The same protocols and procedures used in the main PISA study

were implemented for the Polish extension. The major exception

was sampling. In the Polish extension of PISA, one class was

selected at random from each school. By contrast, in the standard

PISA sample eligible students are selected at random within each

selected school. Sampling intact classes greatly facilitates data col-

lection but reduces sample efficiency. In contrast to the core PISA

sample, the target population was defined by grade not age. Grade-

based sampling is the approach used in PIRLS and TIMSS. As

long as schools, and classes within schools, are sampled randomly,

a classroom-based sampling strategy does not introduce systematic

biases. The PISA 2009 Polish national extension formed the basis

of the From School to Work panel study (http://www.fs2w.ifispan

.waw.pl/).

The target population of the From School to Work study was

grade 10 students attending any type of upper-secondary school in

Poland. Students with certified disabilities were excluded. In the

first stage of the stratified two stage sampling procedure, schools

were divided into four strata according to school-type: 100 general

high-schools, six professional-oriented high-schools, 54 vocational

secondary schools and 40 basic vocational schools. Within each

stratum, schools were randomly selected with probabilities propor-

tional to the number of grade ten classes in the school. In the sec-

ond stage, one grade ten class was randomly selected in each

school.

The first wave of the study was conducted in March 2009 com-

prising 4,951 students. Participating students completed the stand-

ard PISA 2009 instruments: the three achievement tests and the

background questionnaire. Six months later, in October 2009; a

second wave was conducted comprising 4,041 students; attrition

was due largely to refusal or because students changed schools.

Students had just begun grade 11 and were administered the

Raven’s (2003) Progressive Matrices test. The third wave was

conducted six months later (April 2010) comprising 3,989 students

with a second PISA assessment. A total of 3,472 students took

part in all three waves. All students completed the tests and
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questionnaires in classrooms. Students completed the instruments

individually, but were supervised by teachers and interviewers in

accordance with PISA protocols (for more details see OECD,

2009).

Measures

Academic Achievement

The PISA test is administered using a rotation design: students

are assigned test booklets containing only a subset of the full test-

ing material that was developed. This is known as an incomplete

balanced matrix design; each student answers a sample of test

items. The item pool consisted of both multiple-choice and con-

structed response questions. The items varied by domain, format

and difficulty (OECD, 2009). Test items are grouped into clusters

of subject-specific items, each designed to take around 30 minutes

to complete. The clusters are allocated to booklets, each booklet

contains four clusters and each cluster is paired at least once with

every other cluster. Students are randomly assigned test booklets,

and booklets contain four clusters of items rotated across booklets

such that each cluster is administered in different positions of the

test (start, middle and end of the test; OECD, 2012, pp. 29–32).

Since the booklets are randomly distributed parameter estimates

are unbiased (for details see OECD, 2012, pp. 29–32).

Polish translations of the PISA instrument were used to measure

reading achievement (105 test items), mathematics achievement

(37 items), and science achievement (49 items). In 2009, reading

was the major domain, hence there were far more reading than

math or science items. For the Polish national option, item clusters

occupied each of four possible positions in the booklet: start, early

middle, late middle and end of the test. In the first wave (2009)

students were randomly assigned one of the 13 booklets. For wave

three they were randomly assigned one of the 12 booklets remain-

ing after excluding the booklet they took in wave one.

Raven's Standard Progressive Matrices

The Polish adaptation of the Raven's Standard Progressive Mat-

rices was used (Jaworowska et al., 2000). The Raven’s test is a 60-

item paper and pencil multiple choice test of nonverbal reasoning

ability (Raven, 2003). Items consist of figures missing a piece.

Test subjects are asked to select the correct missing piece among

six or eight alternatives to complete the figure. The Raven's test

shares approximately 50% of its variance with g (Gignac, 2015).

Sociodemographic Measures

Students participating in the study were administered the stand-

ard PISA 2009 background questionnaire. Students were asked to

report the educational attainments and occupations of their parents

and respond to items on their homes’ educational cultural and ma-

terial resources . This information was used to create a composite

index of socioeconomic status, the PISA Index of Educational,

Social and Cultural Status (ESCS) which has been widely used in

the policy and academic literatures (see Avvisati, 2020; for an

extensive review; OECD, 2012). The index was standardized to

have a mean of zero and a standard deviation of 1, across OECD

countries (for more details on the index and its construction, see

OECD, 2009). Other data from the PISA student questionnaire

used in the study were students’ reports on their expected

educational attainment and their attitudes toward reading and

school. Additional questions administered specifically for this Pol-

ish extension to PISA were students’ grades in mathematics, Pol-

ish, and biology. Grades were assigned by teachers following

guidelines from the Ministry of Education using a 1-to-6-point

grading system.

Principals or designates of sampled schools were asked to com-

plete a paper and pencil questionnaire on the school. From this in-

formation three measures were constructed on the total class hours

per week that grade 10 students typically took in Polish and other

humanities, science, and mathematics.

Analytical Strategy

The four psychometric models described in Figure 1 are com-

pared. Each model assumes a different latent structure to account

for the variation in students’ responses to the test items.

PISA test scores were measured twice, so each model was esti-

mated twice, first with 2009 PISA data and then with 2010 PISA

data. Because students had experienced a full year of schooling

between the two PISA rounds of testing, the importance of do-

main-specific latent factors may be larger for the 2010 data com-

pared with the 2009 data. Analyses of the two data sets may reveal

effects of an additional year of domain-specific knowledge acqui-

sition on the latent structure.

Model 1: One-Dimensional Item Response Theory Model

The first model is a Spearman type model which specifies that

all PISA and Raven’s items load on one common latent factor, g.

Student responses are directly related to the underlying unidimen-

sional ability factor reflecting general intelligence. This model

assumes that specific abilities do not contribute to explaining the

variation in students’ PISA scores and do not increase the proba-

bilities that students’ respond correctly to the items. This model is

unlikely to fit the data well; it should be considered the departure

model because it is the least constrained.

Model 2: Four-Dimensional Item Response TheoryModel

This model assumes that four different but correlated latent

traits best describe test takers’ patterns of responses to the three

sets of PISA items and the Raven’s items. The model specifies

that general ability is not necessary to describe students’ responses

and the factors are not independent. This model resembles the

standard model used in LSAs (excluding the Raven’s test).

Model 3: Higher Order Item Response Theory Model

This model specifies four orthogonal (uncorrelated) latent traits

in reading, mathematics, science, and the Raven’s that correlate

with, or load on, the higher order general cognitive ability factor.

The higher-order Item Response Theory model described in model

3 implies full mediation: the association between the higher-order

factor g and the observed variables m1 . . . mn; r1 . . . rn; s1 . . . sn;

i1 . . . in are assumed to be fully mediated by the lower-order factors

Math, Read, Sci and Raven (Yung et al., 1999). Model 3 resembles

the Cattell–Horn–Carroll hierarchical model of intelligence in

which Raven’s represents fluid intelligence (Raven, 2003, p. 73).

The three PISA domains of reading, math and science represent

crystallized intelligence.
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Model 4: Bifactor Item Response Theory Model

In the bifactor model, the non-g factors are uncorrelated with g

and with each other, and they comprise only specific factor variance;

they are “pure” representations of the hypothesized specific abilities,

net of the general factor. Each of these factors accounts for some of

the variance in item responses, not accounted for by the general cog-

nitive ability factor (Reise et al., 2013, 2018; Rodriguez et al.,

2016b). Domain-specific factors may explain differential student

responses between domains and why some students do not perform

as well in one domain as they do in another domain. For example,

gender differences in math and reading cannot logically be explained

by general ability. Alternatively, they are nuisance factors, reflecting

the imperfections of different sets of measurement instruments to

adequately capture general ability (Reise et al., 2013).

Analysis

In the first part of the article, the fit of the four models to the

observed data described in Figure 1 are compared using a variety

of appropriate fit measures (Hu & Bentler, 1999). In particular, we

report Log-likelihood, Akaike information criterion (AIC), and

Bayesian information criterion (BIC). The comparative fit index

(CFI), Tucker-Lewis index (TLI), root mean square error of

approximation (RMSEA), or chi-square indices are not presented

because PISA uses an incomplete balanced matrix design for the

cognitive tests (for details see OECD, 2012, pp. 29–32). The large

amount of missing data for the cognitive items, which is part of

the test design, is inappropriate for these summary indices

(Agresti, 2010). This section is followed by reporting the correla-

tions of the latent ability factors from the multidimensional (four-

factor) model at the two time points.

Model Indices

The second part of the analysis examines the sources of com-

mon variance and their reliabilities informed by several indices:

the Explained Common Variance (ECV) index (Reise et al., 2018)

and the Omega bifactor model-based reliability indices (Raykov,

1997; Reise et al., 2013). In addition, Haberman’s (2008) propor-

tional reduction in mean squared error (PRMSE) statistic is

included which is based on subscale scores, not the bifactor model.

PRMSE complements ECV and other model-based reliability indi-

ces. The indices indicate if the domain-specific factors identified

in the bifactor model contain enough reliable information to be

interpreted substantively or as measurement error produced from

scaling. The formulas for the indices are presented in the online

supplemental materials.

ECVGen is the common variance explained by the general fac-

tor divided by the total common variance. ECVGen indicates the

relative “strength” of the general factor. It is “high whenever there

is little common variance beyond the variance captured by a gen-

eral trait, regardless of the size of the item loadings estimated con-

sidering a single general trait” (Reise et al., 2013, p. 11). ECV

values on the general factor above .6 (Reise et al., 2013) or above

.7 (Rodriguez et al., 2016b) are considered high and indicating the

strong dominance of a general factor—that is, unidimensionality.

This index could be also computed for specific factors—ECVSp

indicating the proportion of the common variance each specific

factor accounts for.

Coefficient Omega (McDonald, 1999) is a factor analytic

model-based reliability estimate. There are two Omega indices cal-

culated differently for general and specific factors. Omega indi-

cates of how much of the variance in the observed total score can

be attributed to all modeled common factors, that is all factors

related to a set of items. For the general factor, Omega is calcu-

lated from all items. For the reading, math, science, and Raven’s

factors, Omega is calculated only with the items belonging to the

respective domain.

The OmegaH indices indicate how much reliable variance of

the total scores can be attributed to each factor (Reise et al., 2013).

For the general factor, the higher OmegaH is, the more the general

Figure 1

Potential Relations Between Academic Abilities and Intelligence Measure by Raven’s Test

Note. Model 1 = One-dimensional item response theory (IRT) model; Model 2 = Four-dimensional IRT model; Model 3 = Higher-order IRT model; Model

4 = Bifactor IRT model; m, s, r, i indicate individual math, science, reading, and Raven’s items (responses to items are treated as categorical variables).
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factor is the dominant source of systematic variation. If OmegaH

is high (. .8), the factor structure can be considered unidimen-

sional because the bulk of the reliable variance is attributable to a

single common factor. OmegaH for subscales is the proportion of

subscale score variance attributable to the subscale, after removing

the reliable variance due to the general factor (Rodriguez et al.,

2016b).

The ratio of Omega to OmegaH quantifies how much of the reli-

able variance in total scores is accounted for by the general factor

g compared with the specific factors. Omega and OmegaH and

their ratios are computed for each of the five orthogonal factors.

For the three PISA domains, the Omega ratios indicate the extent

domain-specific scores reflect general and specific abilities. If the

ratio for a subscale is low, most of the reliable variance of the sub-

scale scores can be attributed to the general factor. If the ratio is

high, there is substantial reliable and unique subscale variance.

PRMSE indicates the relative importance of specific factors

over the general factor in explaining variability in responses to test

items (Haberman, 2008). The PRMSE ratio indicates the extent to

which separate scaling increases or decreases the amount of infor-

mation conveyed in the scale. If the PRMSE ratio for a specific

subscale is greater than 1.0, the corresponding factor is considered

to add information in addition to that provided by the general fac-

tor. If the PRMSE ratio is less than 1.0, the specific factor does not

provide additional information.

At the conceptual level, PRMSE is like the Omega coefficients.

However, PRMSE is computed on observed scores and does not

assume the factors are orthogonal or an underlying bifactor model

(Haberman et al., 2009). PRMSE can therefore be considered as an

additional robustness check.

Predictive Validity With Criterion Variables

In the third and final part of the article, the predictive validity of

the four-dimensional and bifactor models are examined by corre-

lating the domain-specific factors with criterion variables: grades

in language of instruction, mathematics, and biology; enjoyment

of reading; learning time in the three subjects; gender and socioe-

conomic status.

If the bifactor domain-specific factors are substantively impor-

tant and can be considered as “pure” representations of the specific

hypothesized abilities (net of the general factor), they should ex-

hibit theoretically plausible correlations with domain-specific cri-

terion variables. This expectation is guided by the reasonable

assumption that spending time studying a subject, or enjoyment of

that subject are associated with knowledge and abilities in that

subject, net of general cognitive ability. Furthermore, higher

grades in one subject should relate to that subject’s latent factor

rather than other subjects’ latent factors. Therefore, the latent read-

ing factor should correlate with learning time in humanities,

grades in humanities and enjoyment of reading. Similarly, the

latent math factor should correlate with learning time in math and

grades in math, and the latent science factor should correlate with

learning time in science and grades in science.

The PISA ESCS index is understood to reflect parents’ attitudes

to education and their involvement with their children’s education,

and their financial, cultural and social resources that facilitate their

child’s performance at school (Avvisati, 2020; OECD, 2013, p. 2).

Competing theories lead to alternative hypotheses of the relative

strength of the association between socioeconomic status and the

specific factors and the general ability factor estimated in the mul-

tidimensional and bifactor models.

According to theories of cultural reproduction and social stratifi-

cation, socioeconomic status influences achievement through stu-

dents’ access to educational, material and cultural resources, and

through the quality of teaching and learning (e.g., in mathematics

and science) they experience at school, (Buchmann, 2002). To the

extent that economic and cultural resources explain socioeconomic

differences in student achievement, ESCS should correlate more

strongly with the specific PISA ability factors than with general

ability. Furthermore, it should correlate more strongly with the

reading factor than the science or math factors, since ESCS

includes measures of the number of books in the home, and the

presence of classic literature and books of poetry in the family

home.

The alternative theoretical explanation for the relationship

between student achievement and socioeconomic status is parents’

educational and socioeconomic attainments relate to their cogni-

tive abilities which are transmitted genetically and through paren-

tal investments during children’s formative years, and children’s

cognitive abilities influence their performance in achievement

tests. According to this explanation, ESCS will be more strongly

related to general cognitive ability than the specific ability factors.

Prior analyses of correlations between socioeconomic status and

general and specific ability factors estimated with a bifactor model

are consistent with this expectation (Baumert et al., 2009; Saß et

al., 2017).

Gender differences in achievement found in PISA and in ILSAs

more generally (see Stoet & Geary, 2013)—girls perform better

than boys in reading but vice versa for math—should be reflected

in the relationships between gender and the specific ability factors.

In contrast, there should be no gender difference in general cogni-

tive ability (Halpern, 2012).

The validity of the bifactor model would be undermined if cor-

relations with criterion variables were not consistent at the two

time points, or there were many correlations contrary to theoretical

expectations, such as math grades, math learning time correlated

with the reading factor, and being female correlated positively

with math but negatively with reading.

Parameter estimates were obtained with Mplus Version 7.4

(Muthén & Muthén, 1998–2017) using models for binary data

(often referred to as Item Response Models). In all analyses,

partially correct responses (partial credits) were designated as

correct. We employed full maximum likelihood (FIML) estima-

tion and robust standard errors to account for the multistage

sampling in PISA. FIML is the most appropriate method for

data missing completely at random (MCAR). This is the case in

our study: as indicated previously, test booklets were distrib-

uted completely at random to participating students. Robust

standard errors of correlation coefficients were obtained by rep-

lication weights, a method commonly employed in analyses of

LSAs (Efron, 1982; Kolenikov, 2010).

We used a two-stage estimation strategy. In the first stage,

measurement models were estimated. Fit statistics allowed

comparisons of how well the fit the latent structures illustrated

in Figure 1. In the second stage, a saturated structural model

was added allowing estimation of the correlations between

latent constructs and criterion variables. This structural model
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was estimated with measurement model parameters fixed at the

values estimated in the first step. This procedure follows the

general approach of scaling employed in LSAs (Martin et al.,

2017; OECD, 2012) without the additional step of generating

plausible values. The parameters of interest are observed

directly form the structural part of the model (see Von Davier

& Sinharay, 2013). Full information maximum likelihood is

used to estimate the parameters of the measurement model

because it is the most appropriate method for data missing com-

pletely at random (MCAR). This is the case in our study; as

indicated previously, test booklets were distributed completely

at random to participating students.

Missing data in the student questionnaire was low. There were

no missing data for gender; 2% of students’ data was missing for

language and mathematics grades; 16% for biology grades (in

some schools biology was not obligatory and many students left

this question unanswered); less than 1% for ESCS and on enjoy-

ment of reading; and 4% for the learning time variables. Maximum

Likelihood handles missing data for covariates by analyzing only

nonmissing data to estimate the set of parameters with the largest

likelihood. It produces unbiased estimates with data missing at

random (MAR; Graham, 2009).

For the PRMSE the imputation procedure used was “imputa-

tions by chained equations” (Royston, 2004), which also accom-

modates PISA’s rotational design (OECD, 2012). The imputation

model was based on all responses to items. PRMSE indices were

calculated on the imputed dataset.

Results

Comparisons of Alternative Latent Structures

Table 1 presents the correlations between latent constructs

according to the multidimensional model (model 2 in Figure 1),

the model usually employed in LSAs which assumes correlated

constructs. The lower-panel correlations are from the 2010 data

and the upper-panel correlations are from the 2009 data.

The average correlation between the three PISA factors in the

multidimensional model is .86. The latent correlations between

the PISA factors in the 2009 and 2010 data are virtually identical.

The correlations between pairs of corresponding domain-specific

factors in 2009 and 2010 are very high: .90 for math, .88 for read-

ing, and .87 for science. The very strong correlations indicate that

although overall levels of achievement increased over the inter-

vening 12 months, the relative positions of students on the latent

factors were largely unchanged.

The average correlation of the PISA factors in 2009 and 2010

with the Raven’s factor was the same (r = .73). The Raven factor

is more highly correlated with the mathematics factor than with

the reading and science factors.

The high intercorrelations (.82 , r , .90) of the three PISA

factors in the multidimensional model are comparable to the corre-

lations of the PISA domain-specific abilities referred to in the liter-

ature review. A common general ability latent factor is likely to

account for these very high correlations between learning domains

which are purported to be substantively independent.

Table 2 presents common fit statistics for the four models sum-

marized in Figure 1. Item loadings are presented in Figures 2 and 3.

Table 2 reports findings for analyses performed using data from

PISA 2009 and 2010. Results show that the bifactor model (Figure 1

model 4) fits the data best. In both sets of analyses, model 4 exhib-

its the least negative log likelihood ratios, the highest scaling cor-

rection factor, and the lowest Akaike, Bayesian and sample-size

adjusted BIC fit measures. Interestingly, the multidimensional

model (model 2) does not provide a substantially better fit than the

simple Spearman type model (model 1).

Item Loadings on Factors

Figures 2 and 3 present values of standardized loadings which

indicate the strength of the associations between items and factors.

The loadings on the specific factors are at positions:

Table 1

Pearson Correlations Between Latent Traits From

Four-Dimensional Model

Ability Raven PISA Reading PISA Science

2009
Raven 1
PISA Reading 0.70 (0.01) 1
PISA Science 0.69 (0.02) 0.86 (0.01) 1
PISA Mathematics 0.80 (0.01) 0.82 (0.01) 0.89 (0.01)

2010
Raven 1
PISA Reading 0.69 (0.01) 1
PISA Science 0.70 (0.87) 0.87 (0.01) 1
PISA Mathematics 0.81 (0.01) 0.82 (0.01) 0.90 (0.01)

Note. Standard errors are shown in parentheses.

Table 2

Model Fit for Models Based on 2009 and 2010 Measurement

Year Variables Model 1 Model 2 Model 3 Model 4

2009 Number of free parameters 478 484 482 717
Log-likelihood �213981 �209984 �210038 �189529
Akaike information criterion (AIC) 428918 420936 421039 380493
Bayesian information criterion (BIC) 432050 424107 424197 385094
Sample-size adjusted BIC 430531 422569 422665 382815

2010 Number of free parameters 478 484 482 717
Log-likelihood �184727 �180872 �180927 �158678
AIC 370410 362712 362817 318789
BIC 373462 365803 365896 323276
Sample-size adjusted BIC 371944 364265 364364 320998
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• 1 to 48 for the Raven’s items on the Raven’s factor,
• 49 to 154 for the reading items on the reading factor,
• 155 to 204 for the science items on the science factor,
• 205 to 242 for the math items on the math factor.

The loadings on the general factor are at positions:
• 243 to 290 for the Raven’s items,
• 291 to 396 for the reading items,
• 397 to 446 for the science items,
• 447 to 484 for the math items.

For both the 2009 and 2010 items, the loadings on the specific

PISA factors are smaller than for the general factor. For the Rav-

en’s items, the loadings on the specific Raven’s factor are compa-

rable with their loadings on the general factor indicating that the

Raven’s test generates a latent factor independent of the general

factor. The average item loading on the general factor and Raven’s

factors is around .5 with standard deviations around .1. In contrast,

average item loadings on the specific PISA factors are much

lower: around .2 (SD = .1). For the reading, math, and science fac-

tors the loadings range from below zero to .7 (see Table 3). Almost

all negative loadings are not statistically significant.

Exploring Dimensionality: Domain Specificity and

General Factor

Table 3 reports ECV, Omegas, and PRMSE results from the

bifactor model. Having established that the bifactor model is the

best fitting model, the consequent issue is: are the four domain-

specific factors substantively meaningful or are they best described

as nuisance factors reflecting little more than test format and other

systematic, but minor, sources of variation?

ECV results for both 2009 and 2010 data indicate that the gen-

eral factor g explains around 70% of the common variance

whereas the remaining part of the common variance is explained

by the specific domains. The ECV for g was .73 for both 2009 and

2010. The ECV indices for the four orthogonal factors range from

3% for math and science to 12% for reading and Raven’s. These

percentages are remarkedly consistent across the two time points.

Math which has a distinctive cumulative curriculum accounts for

only 3%–4% in both years. It appears that variation in math is sub-

sumed in general ability and to a lesser extent Raven’s. Reading,

which in secondary school is not formally taught, appears to be

more distinctive than math or science.

Figure 2

Item Loadings From Bifactor Item Response Theory (IRT) 2009 Model

Figure 3

Item Loadings From Bifactor Item Response Theory (IRT) 2010 Model
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The Omega coefficients reported in Table 4 indicate that most

of the reliable variance across items can be attributed to the gen-

eral factor g while the other factors account only for a small por-

tion of the reliability. The Omega coefficients indicate that the

latent factors are reliable but much of the reliability of the non-g

factors is attributable to the general ability factor. The OmegaH

statistics suggest that the reliabilities of the non-g factors are not

acceptable as independent factors, with the possible exception of

the Raven’s factor.

The Omega ratios are between .05 and .17 for the three PISA

domains confirming that only a small amount of reliable informa-

tion captured by the PISA items is domain specific. These results

indicate that the PISA test items do not form distinct independent

reliable factors corresponding to their specific domain but are

mainly subsumed by the general g factor. The only factor that may

be considered independent of g and somewhat reliable is Raven’s.

For both years, around 50% of the reliable variance in Raven’s test

scores can be attributed to the Raven’s factor. The Raven’s factor

is more distinctive that the three hypothesized PISA domain

factors.

The PRMSE estimates are consistent with the ECV and Omega

indices. The 2009 results in Table 3 show that the independent

math factor reduces measurement error for the mathematics items

by only 3% (final column) compared with just the general factor.

The reading and science factors increase the informational content

(or reduce measurement error) of the test items by about 10%. The

Raven’s factor increases the informational content by around 50%.

To ensure that findings on the primacy of the general factor g

do not depend on the inclusion of the 60 Raven’s items, the bifac-

tor model was reestimated without the Raven’s items. With only

the PISA items, the g-factor accounts for even more of common

variance. The ECV for the general factor was .76 in 2009 and .81

in 2010. So, the dominance of general factor and the much weaker

specific factors is not because of the presence of the Raven’s

items. Consistent with the analyses that included the Raven’s

items, the reading items are most distinctive accounting for 14%

of the common variance in 2009 and 9% in 2010. The ECVs for

math and science are very small at around .04. Omega statistics

indicate that all three specific ability factors have very low reliabil-

ities. At the same time, the PRMSE indices suggest that the three

subscales add some information. The finding that in the absence of

the Raven’s items the general factor is even stronger, reiterates the

conclusion that students’ responses to the test items largely reflect

general ability.

Correlations Between Latent Factors and Criterion

Variables

Table 4 presents correlations between the latent factors isolated in

2009 and 2010 from the multidimensional (four-dimensional) and

bifactor models with criterion variables. In the four-dimensional

model, the correlations with criterion variables were often statistically

significant and mostly consistent across the two years. However, sev-

eral correlations were contrary to theoretical expectations: the high

correlation of grades in mathematics with the reading factor; the posi-

tive correlations of enjoyment of reading with the math and Raven’s

factors (although lower than for reading and science); and the posi-

tive correlation of language grades with the science factor. These

anomalous correlations most likely reflect specific factors having

large g components.

For the specific ability factors in the bifactor model, several of

the correlations between them and the criterion variables conform

Table 3

Descriptive Statistics for Item Loadings

2009 2010

Factor M SD Min Max M SD Min Max

General 0.51 0.13 0.08 0.81 0.51 0.13 0.02 0.80
Math 0.22 0.13 �0.001 0.56 0.24 0.11 0.03 0.49
Raven 0.45 0.12 0.24 0.75 0.46 0.13 0.25 0.79
Reading 0.15 0.25 �0.39 0.66 0.23 0.19 �0.22 0.69
Science 0.19 0.16 �0.05 0.64 0.12 0.18 �0.59 0.54

Table 4

General Factor Strength Indices

Year Dimension EVC Omega Omega (H/HS) Omega ratio PRMSE subscale PRMSE total PRMSE ratio

2009 General 0.73 0.99 0.94 0.94 — — —

Math 0.04 0.95 0.14 0.15 0.83 0.81 1.03
Raven 0.12 0.97 0.49 0.50 0.90 0.61 1.48
Reading 0.10 0.98 0.07 0.07 0.90 0.83 1.09
Science 0.03 0.95 0.14 0.15 0.84 0.76 1.11

2010 General 0.73 0.99 0.92 0.93 — — —

Math 0.03 0.96 0.05 0.05 0.85 0.86 0.98
Raven 0.12 0.97 0.52 0.54 0.90 0.58 1.55
Reading 0.10 0.98 0.16 0.16 0.91 0.83 1.10
Science 0.03 0.95 0.16 0.17 0.85 0.76 1.11

Note. ECV = explained common variance; PRMSE = proportional reduction in mean squared error. See Online Appendix for formulae.
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to theoretical expectations assuming they are pure measures of spe-

cific abilities. There are positive correlations of the math factor with

math grades. Being female is positively correlated with the reading

factor and negatively correlated with the math and science factors

in both years. Gender differences on the specific factors tend to be

larger in the bifactor model than in the four-dimensional model.

There are, however, several inconsistencies across years in the

correlations of the specific ability factors from the bifactor model

with criterion variables. Grades in humanities, learning time in

humanities, and being female are positively correlated with the

reading factor in 2009 but not in 2010. Language grades are nega-

tively associated with the math factor in 2010 but not in 2009. One

explanation for these inconsistent results is that the reading, math,

and science factors are rather unreliable measures of the corre-

sponding specific abilities. So, they are somewhere between unre-

liable specific ability factors and nuisance factors.

Expectations that ESCS would be more strongly correlated with

the specific ability factors, especially reading, were not realized.

According to the multidimensional model the association between

each PISA latent domain-specific factor and the PISA measure of

socioeconomic status (ESCS index) is around .25 for reading and

science and .29 for mathematics. In contrast, in the bifactor model

ESCS is not significantly correlated with the reading and science

factors and its correlations with the math factors are small (not sig-

nificant at# .001) in both 2009 and 2010. The correlation between

ESCS and the g factor are substantially larger: .37 and .36 in 2009

and 2010, respectively, indicating that ESCS is associated with

general ability and not substantially with the specific learning

domains.

Table 5 shows that the associations between the Raven’s factor and

the criterion variables are substantially smaller in the bifactor model

rather than in the four-dimensional model. In the multidimensional

model, the Raven’s factor is positively correlated with enjoyment of

reading in both years which is difficult to reconcile with the Raven’s

test as a nonverbal ability measure. Similarly, its negative relationship

with being female is difficult to explain if Raven’s is largely a measure

of fluid intelligence. These anomalous are not found in the bifactor

model. Furthermore in the bifactor model, the positive correlation

between Raven’s and mathematics grades and its negative correlation

with learning time in the humanities is consistent with its conceptuali-

zation as a nonverbal latent dimension.

Discussion

The aim of this study was to assess the degree to which students’

PISA test scores reflect general cognitive ability rather than

domain-specific abilities. The analyses presented show that stu-

dents’ responses to the PISA items reflect mostly g. This study

extends prior analyses based on German data suggesting that the

multidimensional model typically employed to scale achievement

data in ILSAs is outperformed by the bifactor model. Further analy-

sis show that the four orthogonal factors (PISA reading, science,

math, and Raven’s) are collectively responsible for around a quarter

of the overall explained variance of the items but, each orthogonal

factor only explains between 3% and 12% of the explained var-

iance. The Raven’s factor is far more reliable than the other specific

ability factors. When the Raven’s items are excluded, the general

ability factor accounts for even more of the common variance

in achievement (around 80% among the older students). The Omega

and PRMSE indices confirm that a large part of the variation of sub-

ject specific achievement scores is driven by the general cognitive

ability factor g. For the reading items, about 10% of the variation

can be attributed to a specific, but unreliable, reading factor.

The orthogonal domain-specific factors for reading, math and

science estimated from the bifactor model are too unreliable to be

considered substantially important. This may because the over-

arching goal of PISA is to assess general competencies across a

range of real-life situations, although the PISA items are like items

that assess schooling. It is possible that specific abilities would be

more apparent from analyses of TIMSS data because TIMSS

Table 5

Correlations Between Latent Variables and Validation Variables in 2009 and 2010 Measurement Models

Reading Science Math Raven
General

Year Variables Multi-d Bifactor Multi-d Bifactor Multi-d Bifactor Multi-d Bifactor Bifactor

2009 Language grades 0.36*** 0.05* 0.30*** 0.00 0.26*** �0.06 0.23*** �0.01 0.38***
Mathematics grades 0.36*** 0.01 0.33*** �0.07* 0.46*** 0.14*** 0.39*** 0.12*** 0.42***
Biology grades 0.32*** 0.07* 0.32*** 0.02 0.31*** 0.08* 0.24*** 0.01 0.35***
Enjoyment of reading 0.33*** 0.13** 0.24*** �0.02 0.17*** �0.06* 0.16*** �0.03 0.34***
ESCS 0.25*** 0.03 0.26*** 0.02 0.29*** 0.07* 0.22*** 0.01 0.37***
Learning time humanities 0.25*** 0.13*** 0.19*** �0.03 0.18*** 0.00 0.07 �0.02 0.49***
Learning time math 0.24*** 0.08*** 0.20*** 0.00 0.25*** 0.03 0.27*** 0.11*** 0.45***
Learning time science 0.33*** 0.08*** 0.30*** 0.01 0.33*** 0.03 0.26*** 0.03 0.53***
Female 0.14*** 0.13*** �0.09* �0.19*** �0.14*** �0.19*** 0.00 �0.02 0.09**

2010 Language grades 0.39*** 0.15*** 0.29*** �0.04 0.32*** �0.01 0.23*** �0.02 0.38***
Mathematics grades 0.36*** 0.08** 0.34*** 0.01 0.49*** 0.27*** 0.39*** 0.14*** 0.40***
Biology grades 0.30*** 0.09** 0.27*** �0.03 0.32*** 0.07 0.24*** 0.02 0.34***
Enjoyment of reading 0.34*** 0.16*** 0.26*** 0.02 0.17*** �0.20*** 0.15*** �0.03* 0.36***
ESCS 0.22*** 0.01 0.25*** 0.01 0.29*** 0.09** 0.24*** 0.02** 0.36***
Learning time humanities 0.32*** 0.20*** 0.25*** �0.10** 0.17** �0.09* 0.05 �0.04 0.55***
Learning time math 0.16*** 0.06** 0.17*** �0.05 0.26*** 0.09 0.25*** 0.08 0.40***
Learning time science 0.35*** 0.16*** 0.30*** �0.04 0.33*** 0.00 0.29*** 0.01 0.53***
Female 0.14*** 0.27*** �0.09* �0.22*** �0.14*** �0.35*** 0.00 �0.01 0.10**

Note. Multi-d refers to the multidimensional model.
* p # .05. ** p , .01. *** p # .001.
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assesses curriculum-based skills and knowledge in mathematics

and science. Saß et al. (2017) found that the multidimensional and

bifactor models fitted TIMSS data equally well. An alternative

model is that students’ performance in all domains can be

accounted for by a latent reading ability plus specific orthogonal

factors for nonreading factors (so called bifactor-S-1 approach;

see, for instance, Heinrich et al., 2020). This model is suggested

by the large correlations between reading and math and between

reading and science in the PISA multidimensional models. Alter-

natively, students’ performance in specific learning areas may be

largely accounted for by general ability, whether the assessments

are curriculum-based or not, and irrespective of the reading con-

tent of the specific test questions. The strong correlations between

ability and achievement in metastudies is consistent with this

model and with the main finding of this study, that variation stu-

dent achievement can be attributed to a large extent to general

ability, with specific abilities playing little role.

Criterion variables—grades, learning time, enjoyment of read-

ing, and gender—exhibit more theoretically consistent correlations

with domain-specific factors isolated from the bifactor model in

contrast to the domain-specific factors isolated from the standard

multidimensional model. This is because the bifactor model gener-

ates purer specific ability factors which are more substantively

meaningful than the specific factors generated from the standard

multidimensional model. Maximizing their domain-specific con-

tent and thus their reliability would require changes in item selec-

tion and item design.

Some conclusions drawn from analyses of PISA data may be

unwarranted because students’ scores from multidimensional

models incorporate general ability. Policymakers have advocated

changes to school curricula in mathematics to reduce socioeco-

nomic inequalities in math found in analyses of PISA data (Schmidt

et al., 2014, 2015). The finding that ESCS correlates more strongly

with general ability than with reading or other specific abilities

raises questions about its conceptualization and interpretations of its

associations with student achievement. ESCS may incorporate pa-

rental cognitive abilities and early parental investments which, at

least in part, accounts for the relationships between ESCS and the

domain-specific abilities generated from the standard multidimen-

sional model.

This study suffers from limitations that can be addressed in

future research. First, the PISA and Raven’s tests were not admin-

istered at the same time. Even though the correlations of PISA

achievement domains across time is very high, an additional study

with contemporaneous data may remove doubts that collecting

data at multiple time points affected the results.

Second, the finding that LSAs are mainly about g are derived

from analyses of only German and Polish data. Comparable analy-

ses of LSA data from several countries would address whether the

greater importance of g compared with domain-specific factors is

a general phenomenon. Parallel analyses that did not include the

Raven’s items also found that most of the common variance was

attributable to g. Therefore, comparisons of the importance of gen-

eral and specific in PISA data from other countries does not

require an accompanying cognitive ability test.

In this study there was a preponderance of reading items: 37

math items, 49 science items, but 105 reading items. Although the

latent variable framework theoretically adjusts for varying num-

bers of items, further work using different proportions of items

would confirm or refute the robustness of the latent structures

identified here including the very weak math and science factors.

Another limitation, which also applies to other ILSAs, is that in

this study the multilevel structure of the data is not considered,

that is, that students are nested in classrooms and classrooms

within schools. Ignoring the nested structure of our data should

not affect analyses of dimensionality but might be relevant to the

validation study of criterion variables. Although there are multile-

vel bifactor models (Fujimoto, 2020; Scherer & Gustafsson, 2015)

and general Item Response Theory models (Fox, 2004), a multile-

vel approach for PISA items is beyond the scope of this study

work and may be too demanding computationally.

This study could be expanded further to explore the dimension-

ality of the specific factors. For instance, the reading factor is the

most variable, displaying nontrivial numbers of negative loadings.

It is also the factor with the largest number of items because read-

ing was the major domain in PISA 2009. Specifying reading as a

single factor may not be sufficient, especially when the g-factor is

controlled for, because of the greater variability in reading items

than in mathematics or science items. This phenomenon may

occur for whichever domain is the major domain in PISA; the

greater number of test items produces greater heterogeneity. How-

ever, if the subdomains relate to items with common test stimuli,

then they are likely to represent nuisance factors rather than reli-

able subdomains. Exploring subdomains is a potential avenue for

further research and refinement, bridging the work we developed

at the item level with prior studies that developed bifactor models

using PISA subscales (Baumert et al., 2009; Brunner, 2008).

This study found that students’ responses to PISA test items

reflect general ability rather than domain-specific abilities. If this

finding is replicated in other PISA data and with data from a range

of achievement tests, it should prompt changes in test design and a

shift in the interpretation of analyses of large-scale assessment

studies. Specific ability factors isolated from bifactor models are

very different from the corresponding factors derived from stand-

ard multidimensional models, substantially altering the relation-

ships between predictor variables and specific abilities (e.g., the

relation between socioeconomic status and specific factors is close

to zero). Our analyses suggest that a measurement model that con-

siders the general ability factor fit PISA data substantially better

than the multidimensional model that is routinely employed. Such

model is congruent with theoretical work in both intelligence and

achievement and is consistent with the strong correlations between

ability and student achievement that have been documented in the

literature. Therefore, the bifactor model should be incorporated

into both item selection and analysis of LSAs. Such an approach

would allow researchers to disentangle general cognitive abilities

from subject specific abilities and enable the testing hypotheses of

influences on specific abilities. General and specific subject abil-

ities are both important for educational research and evidence-

based educational policy.

Currently the measurement model in LSAs drives the design of

assessment frameworks and data collection procedures. Field trial

data are scaled and items selected, based on how well they fit

a specific ex-ante multidimensional scaling model that ignores

the importance of the general factor identified in bifactor models.

To maximize the informative value of the bifactor model for poli-

cymakers and educational researchers—that is, to increase the reli-

ability of domain-specific factors—a different item pool would
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need to be developed and different criteria for item selection. This

would drive innovations in item design. Assessments of student

performance in particular domains, item choice would be driven

by the extent to which they load on specific ability factors rather

than g. By contrast, assessments of general problem-solving abil-

ities, item development and choice would be driven by the extent

to which they load on g. Both these goals require moving from a

multidimensional to bifactor modeling framework.

This study’s findings, if replicated, would have major implica-

tions for the interpretation of analyses of achievement data. It

would indicate that analysts need to be mindful of the contamina-

tion of the specific domains with general cognitive ability when

considering relationships between test scores and socioeconomic,

demographic, school, and teacher variables. Results indicate that

differences in g are important in explaining differences in test

scores generated from standard models. Domain-specific scores

from bifactor models, if reliable, could be more meaningfully

linked to domain-specific covariates, for example, interest in sci-

ence, enjoyment of reading, books in the home, and teacher quali-

fications in math and science.

References

Agresti, A. (2010). Analysis of ordinal categorical data (Vol. 656). Wiley.

https://doi.org/10.1002/9780470594001

Avvisati, F. (2020). The measure of socio-economic status in PISA: A

review and some suggested improvements. Large-Scale Assessments in

Education, 8, 8. https://doi.org/10.1186/s40536-020-00086-x

Baumert, J., Lüdtke, O., Trautwein, U., & Brunner, M. (2009). Large-scale

student assessment studies measure the results of processes of knowl-

edge acquisition: Evidence in support of the distinction between intelli-

gence and student achievement. Educational Research Review, 4(3),

165–176. https://doi.org/10.1016/j.edurev.2009.04.002

Beaujean, A. A., Parkin, J., & Parker, S. (2014). Comparing Cattell-Horn-

Carroll factor models: Differences between bifactor and higher order

factor models in predicting language achievement Psychological Assess-

ment, 26(3), 789–805. https://doi.org/10.1037/a0036745

Bentler, P. M. (2009). Alpha, dimension-free, and model-based internal

consistency reliability Psychometrika, 74(1), 137–143. https://doi.org/10

.1007/s11336-008-9100-1

Berge, J. M. F. t., & So�can, G. (2004). The greatest lower bound to the reli-

ability of a test and the hypothesis of unidimensionality. Psychometrika,

69(4), 613–25. https://doi.org/10.1007/BF02289858

Bond, T. G., & Fox, C. M. (2001). Applying the Rasch model: Fundamen-

tal Measurement in the Social Sciences. Erlbaum. https://doi.org/10

.4324/9781410600127

Borgonovi, F., & Pokropek, A. (2019). Seeing is believing: Task-exposure

specificity and the development of mathematics self-efficacy evalua-

tions. Journal of Educational Psychology, 111(2), 268–283. https://doi

.org/10.1037/edu0000280

Breakspear, S. (2012). The policy impact of PISA: An exploration of

the normative effects of international benchmarking in school system

performance (OECD Education Working Papers, No. 71). OECD

Publishing.

Brunner, M. (2008). No g in education? Learning and Individual Differen-

ces, 18(2), 152–165. https://doi.org/10.1016/j.lindif.2007.08.005

Buchmann, C. (2002). Measuring family background in international

studies of education: Conceptual issues and methodological challenges.

In A. C. Porter & Adam Gamoran (Eds.), Methodological advances in

cross-national surveys of educational achievement (pp. 150–197).

National Academy Press.

Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic stud-

ies. Cambridge University Press. https://doi.org/10.1017/CBO9780511571312

Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A criti-

cal experiment. Journal of Educational Psychology, 54(1), 1–22. https://

doi.org/10.1037/h0046743

Coburn, C. E., Hill, H. C., & Spillane, J. P. (2016). Alignment and

accountability in policy design and implementation: The Common Core

State Standards and implementation research. Educational Researcher,

45(4), 243–251. https://doi.org/10.3102/0013189X16651080

Cromley, J. G. (2009). Reading achievement and science proficiency:

International comparisons from the programme on international student

assessment. Reading Psychology, 30(2), 89–118. https://doi.org/10

.1080/02702710802274903

Cucina, J., & Byle, K. (2017). The bifactor model fits better than the

higher-order model in more than 90% of comparisons for mental abil-

ities test batteries. Journal of Intelligence, 5(3), 27–27. https://doi.org/

10.3390/jintelligence5030027

Deng, Z., & Gopinathan, S. (2016). PISA and high-performing education

systems: Explaining Singapore’s education success. Comparative Edu-

cation, 52(4), 449–472. https://doi.org/10.1080/03050068.2016.1219535

Efron, B. (1982). The jackknife, the bootstrap and other resampling plans.

Society for Industrial and Applied Mathematics. https://doi.org/10.1137/

1.9781611970319

Egelund, N. (2008). The value of international comparative studies

of achievement–a Danish perspective. Assessment in Education:

Principles, Policy & Practice, 15(3), 245–251. https://doi.org/10.1080/

09695940802417400

Eid, M., Krumm, S., Koch, T., & Schulze, J. (2018). Bifactor models for

predicting criteria by general and specific factors: Problems of noniden-

tifiability and alternative solutions. Journal of Intelligence, 6(3), 42.

https://doi.org/10.3390/jintelligence6030042

Ertl, H. (2006). Educational standards and the changing discourse on edu-

cation: The reception and consequences of the PISA study in Germany.

Oxford Review of Education, 32(5), 619–634. https://doi.org/10.1080/

03054980600976320

Floyd, R. G., Reynolds, M. R., Farmer, R. L., & Kranzler, J. H. (2013).

Are the general factors from different child and adolescent intelligence

tests the same? Results from a five-sample, six-test analysis. School

Psychology Review, 42(4), 383–401. https://doi.org/10.1080/02796015

.2013.12087461

Fox, J. P. (2004). Applications of multilevel IRT modeling. School Effec-

tiveness and School Improvement, 15(3-4), 261–280. https://doi.org/10

.1080/09243450512331383212

Fujimoto, K. A. (2020). A more flexible Bayesian multilevel bifactor item

response theory model. Journal of Educational Measurement, 57(2),

255–285. https://doi.org/10.1111/jedm.12249

Gignac, G. E. (2015). Raven’s is not a pure measure of general intelli-

gence: Implications for g factor theory and the brief measurement of g.

Intelligence, 52, 71–79. https://doi.org/10.1016/j.intell.2015.07.006

Gignac, G. E., & Kretzschmar, A. (2017). Evaluating dimensional

distinctness with correlated-factor models: Limitations and suggestions.

Intelligence, 62, 138–147. https://doi.org/10.1016/j.intell.2017.04.001

Gignac, G. E., & Watkins, M. W. (2013). Bifactor modeling and the estimation

of model-based reliability in the WAIS-IV. Multivariate Behavioral

Research, 48(5), 639–662. https://doi.org/10.1080/00273171.2013.804398

Gottfredson, L. S. (1997). Mainstream science on intelligence: An editorial

with 52 signatories, history, and bibliography. Intelligence, 24(1),

13–23. https://doi.org/10.1016/S0160-2896(97)90011-8

Graham, J. W. (2009). Missing data analysis: Making it work in the real

world Annual Review of Psychology, 60(1), 549–576. https://doi.org/10

.1146/annurev.psych.58.110405.085530

Grek, S. (2009). Governing by numbers: The PISA ‘effect’ in Europe.

Journal of Education Policy, 24(1), 23–37. https://doi.org/10.1080/

02680930802412669

ACHIEVEMENTS AND G-FACTOR 13

T
h
is
d
o
cu
m
en
t
is
co
p
y
ri
g
h
te
d
b
y
th
e
A
m
er
ic
an

P
sy
ch
o
lo
g
ic
al
A
ss
o
ci
at
io
n
o
r
o
n
e
o
f
it
s
al
li
ed

p
u
b
li
sh
er
s.

T
h
is
ar
ti
cl
e
is
in
te
n
d
ed

so
le
ly

fo
r
th
e
p
er
so
n
al
u
se

o
f
th
e
in
d
iv
id
u
al
u
se
r
an
d
is
n
o
t
to

b
e
d
is
se
m
in
at
ed

b
ro
ad
ly
.



Gustafsson, J. E., & Balke, G. (1993). General and specific abilities as pre-

dictors of school achievement. Multivariate Behavioral Research, 28(4),

407–434. https://doi.org/10.1207/s15327906mbr2804_2

Gustafsson, J. E., & Undheim, J. O. (1996). Individual differences in cog-

nitive functions. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of

educational psychology (pp. 186–242). Macmillan.

Haberman, S. J. (2008). When can subscores have value? Journal of Edu-

cational and Behavioral Statistics, 33(2), 204–229. https://doi.org/10

.3102/1076998607302636

Haberman, S., Sinharay, S., & Puhan, G. (2009). Reporting subscores for

institutions British Journal of Mathematical & Statistical Psychology,

62, 79–95. https://doi.org/10.1348/000711007X248875

Halpern, D. F. (2012). Sex differences in cognitive abilities (4th ed.).

Psychology Press.

Heinrich, M., Zagorscak, P., Eid, M., & Knaevelsrud, C. (2020). Giving G a

meaning: An application of the bifactor-(S-1) approach to realize a more

symptom-oriented modeling of the Beck depression inventory–II. Assess-

ment, 27(7), 1429–1447. https://doi.org/10.1177/1073191118803738

Hopfenbeck, T. N., & Kjærnsli, M. (2016). Students’ test motivation in

PISA: The case of Norway. Curriculum Journal, 27(3), 406–422.

https://doi.org/10.1080/09585176.2016.1156004

Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance

structure analysis: Conventional criteria versus new alternatives. Structural

Equation Modeling, 6(1), 1–55. https://doi.org/10.1080/10705519909540118

Hunt, E. (2010). Human intelligence. Cambridge University Press. https://

doi.org/10.1017/CBO9780511781308

Jakubowski, M., & Pokropek, A. (2015). Reading achievement progress

across countries. International Journal of Educational Development, 45,

77–88. https://doi.org/10.1016/j.ijedudev.2015.09.011

Jaworowska, A., Szustrowa, T., & Raven, J. C. (2000). Test Matryc

Ravena w wersji Standard TMS: formy: Klasyczna, Równoległa, Plus:

polskie standaryzacje [Raven’s matrices test in the standard TMS ver-

sion, forms: Regular, paralel, and plus]. Pracownia Testów Psycholo-

gicznych Polskiego Towarzystwa Psychologicznego.

Jensen, A. R., & Weng, L.-J. (1994). What is a good g? Intelligence,

18(3), 231–258. https://doi.org/10.1016/0160-2896(94)90029-9

Johnson, W., Bouchard, T. J., Jr., Krueger, R. F., McGue, M., & Gottesman,

I. I. (2004). Just one g: Consistent results from three test batteries. Intelli-

gence, 32(1), 95–107. https://doi.org/10.1016/S0160-2896(03)00062-X

Johnson, W., Nijenhuis, J. T., & Bouchard, T. J., Jr.(2008). Still just 1 g:

Consistent results from five test batteries. Intelligence, 36(1), 81–95.

https://doi.org/10.1016/j.intell.2007.06.001

Kaufman, S. B., Reynolds, M. R., Liu, X., Kaufman, A. S., & McGrew,

K. S. (2012). Are cognitive g and academic achievement g one and the

same g? An exploration on the Woodcock–Johnson and Kaufman tests.

Intelligence, 40(2), 123–138. https://doi.org/10.1016/j.intell.2012.01.009

Keller, L., Preckel, F., & Brunner, M. (2020). Nonlinear relations between

achievement and academic self-concepts in elementary and secondary

school: An integrative data analysis across 13 countries. Journal of

Educational Psychology. Advance online publication. https://doi.org/10

.1037/edu0000533

Koenig, K. A., Frey, M. C., & Detterman, D. K. (2008). ACT and general

cognitive ability. Intelligence, 36(2), 153–160. https://doi.org/10.1016/j

.intell.2007.03.005

Kolenikov, S. (2010). Resampling variance estimation for complex survey

data. The Stata Journal, 10(2), 165–199.

Lubinski, D. (2004). Introduction to the special section on cognitive abil-

ities: 100 years after Spearman’s (1904) “‘General intelligence,’ objec-

tively determined and measured.” Journal of Personality and Social

Psychology, 86(1), 96–111. https://doi.org/10.1037/0022-3514.86.1.96

Lynn, R., & Vanhanen, T. (2012). Intelligence: A unifying construct for

the social sciences. Ulster Institute for Social Research.

Lynn, R., Harvey, J., & Nyborg, H. (2009). Average intelligence predicts

atheism rates across 137 nations. Intelligence, 37(1), 11–15. https://doi

.org/10.1016/j.intell.2008.03.004

Marks, G. N. (2016). Explaining the substantial inter-domain and over-

time correlations in student achievement: The importance of stable stu-

dent attributes. Educational Research and Evaluation, 22(1-2), 45–64.

https://doi.org/10.1080/13803611.2016.1191359

Marsh, E. J., Roediger, H. L., III, Bjork, R. A., & Bjork, E. L. (2007). The

memorial consequences of multiple-choice testing. Psychonomic Bulle-

tin & Review, 14(2), 194–199. https://doi.org/10.3758/BF03194051

Martin, M. O., Mullis, I. V., & Hooper, M. (2017). Methods and proce-

dures in PIRLS 2016. TIMSS & PIRLS International Study Center,

Lynch School of Education, Boston College International Association

for the Evaluation of Educational Achievement.

McDonald, R. P. (1999). Test theory: A unified approach. Erlbaum.

Muthén, L. K., & Muthén, B. O. (1998–2017). Mplus user’s guide (8th

ed.).

Neisser, U., Boodoo, G., Bouchard, T. J., Boykin, A. W., Brody, N., Ceci,

S. J., Halpern, D. F., Loehlin, J. C., Perloff, R., Sternberg, R. J., &

Urbina, S. (1996). Intelligence: Knowns and Unknowns. American Psy-

chologist, 51(2), 77–101. https://doi.org/10.1037/0003-066X.51.2.77

OECD. (2007). Science competencies for tomorrow’s world (Vol. 1).

OECD. (2009). PISA 2009 assessment framework: Key competencies in

reading, mathematics and science.

OECD. (2012). PISA 2009 technical report. OECD Publishing.

OECD. (2013). PISA 2012 results: Excellence through equity giving every

student the chance to succeed (Vol. II). OECD Publishing.

OECD. (2014). PISA 2012 technical report. OECD Publishing.

Raven, J. (2003). Raven progressive matrices. In R. S. McCallum (Ed.),

Handbook of nonverbal assessment (pp. 223–237). Springer U.S.

Raykov, T. (1997). Estimation of composite reliability for congeneric

measures. Applied Psychological Measurement, 21(2), 173–184. https://

doi.org/10.1177/01466216970212006

Reise, S. P., Bonifay, W. E., & Haviland, M. G. (2013). Scoring and mod-

eling psychological measures in the presence of multidimensionality

Journal of Personality Assessment, 95(2), 129–140. https://doi.org/10

.1080/00223891.2012.725437

Reise, S. P., Bonifay, W., & Haviland, M. G. (2018). Bifactor modelling

and the evaluation of scale scores. In P. Irwing, T. Booth, & D. J.

Hughes (Eds.), The Wiley handbook of psychometric testing: A multidis-

ciplinary reference on survey, scale and test development (pp.

675–707). Wiley Blackwell.

Reise, S. P., Moore, T. M., & Haviland, M. G. (2010). Bifactor models and

rotations: Exploring the extent to which multidimensional data yield

univocal scale scores. Journal of Personality Assessment, 92(6),

544–559. https://doi.org/10.1080/00223891.2010.496477

Reise, S. P., Scheines, R., Widaman, K. F., & Haviland, M. G. (2013).

Multidimensionality and structural coefficient bias in structural equation

modeling: A bifactor perspective. Educational and Psychological Mea-

surement, 73(1), 5–26. https://doi.org/10.1177/0013164412449831

Rindermann, H. (2007). The g-factor of international cognitive ability

comparisons: The homogeneity of results in PISA, TIMSS, PIRLS and

IQ-tests across nations. European Journal of Personality: Published for

the European Association of Personality Psychology, 21(5), 667–706.

https://doi.org/10.1002/per.634

Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016a). Applying bifactor

statistical indices in the evaluation of psychological measures. Journal

of Personality Assessment, 98(3), 223–237. https://doi.org/10.1080/

00223891.2015.1089249

Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016b). Evaluating bifac-

tor models: Calculating and interpreting statistical indices. Psychologi-

cal Methods, 21(2), 137–150. https://doi.org/10.1037/met0000045

Royston, P. (2004). Multiple imputation of missing values. The Stata Jour-

nal, 4(3), 227–241. https://doi.org/10.1177/1536867X0400400301

14 POKROPEK, MARKS, AND BORGONOVI

T
h
is
d
o
cu
m
en
t
is
co
p
y
ri
g
h
te
d
b
y
th
e
A
m
er
ic
an

P
sy
ch
o
lo
g
ic
al
A
ss
o
ci
at
io
n
o
r
o
n
e
o
f
it
s
al
li
ed

p
u
b
li
sh
er
s.

T
h
is
ar
ti
cl
e
is
in
te
n
d
ed

so
le
ly

fo
r
th
e
p
er
so
n
al
u
se

o
f
th
e
in
d
iv
id
u
al
u
se
r
an
d
is
n
o
t
to

b
e
d
is
se
m
in
at
ed

b
ro
ad
ly
.



Saß, S., Kampa, N., & Köller, O. (2017). The interplay of g and mathemat-

ical abilities in large-scale assessments across grades. Intelligence, 63,

33–44. https://doi.org/10.1016/j.intell.2017.05.001

Scherer, R., & Gustafsson, J. E. (2015). Student assessment of teaching as

a source of information about aspects of teaching quality in multiple

subject domains: An application of multilevel bifactor structural equa-

tion modeling Frontiers in Psychology, 6, 1550. https://doi.org/10.3389/

fpsyg.2015.01550

Schleicher, A. (2007). Can competencies assessed by PISA be considered

the fundamental school knowledge 15-year-olds should possess? Jour-

nal of Educational Change, 8(4), 349–357. https://doi.org/10.1007/

s10833-007-9042-x

Schmidt, W. H., Burroughs, N. A., Zoido, P., & Houang, R. T. (2015). The

role of schooling in perpetuating educational inequality: An interna-

tional perspective. Educational Researcher, 44(7), 371–386. https://doi

.org/10.3102/0013189X15603982

Schmidt, W. H., Zoido, P., & Cogan, L. (2014). Schooling matters: Oppor-

tunity to learn in PISA 2012 (OECD Education Working Papers, No.

95). OECD Publishing.

Sellar, S., & Lingard, B. (2013). The OECD and the expansion of PISA:

New global modes of governance in education. British Educational

Research Journal, 40(6), 917–936. https://doi.org/10.1002/berj.3120

Spearman, C. (1904). “General intelligence,” objectively determined and

measured. The American Journal of Psychology, 15(2), 201–292.

https://doi.org/10.2307/1412107

Stoet, G., & Geary, D. C. (2013). Sex differences in mathematics and read-

ing achievement are inversely related: Within- and across-nation assess-

ment of 10 years of PISA data. PLoS ONE, 8(3), e57988. https://doi.org/

10.1371/journal.pone.0057988

Takayama, K. (2008). The politics of international league tables: PISA in

Japan’s achievement crisis debate. Comparative Education, 44(4),

387–407. https://doi.org/10.1080/03050060802481413

Von Davier, M., & Sinharay, S. (2013). Analytics in International Large-

Scale Assessments: Item response theory and population models. In L.

Rutkowski, M. Von Davier, and D. Rutkowski (Eds.), Handbook of

International Large-Scale Assessment (pp. 155–174). CRC Press.

Walberg, H. J. (1984). Improving the productivity of America’s schools.

Educational Leadership, 41(8), 19–27.

Warne, R. T., & Burningham, C. (2019). Spearman’s g found in 31 non-

Western nations: Strong evidence that g is a universal phenomenon

Psychological Bulletin, 145(3), 237–272. https://doi.org/10.1037/bul0

000184

Yung, Y. F., Thissen, D., & McLeod, L. D. (1999). On the relationship

between the higher-order factor model and the hierarchical factor

model. Psychometrika, 64(2), 113–128. https://doi.org/10.1007/BF022

94531

Zaboski, B. A., II, Kranzler, J. H., & Gage, N. A. (2018). Meta-analysis of

the relationship between academic achievement and broad abilities of

the Cattell-horn-Carroll theory. Journal of School Psychology, 71,

42–56. https://doi.org/10.1016/j.jsp.2018.10.001

Zhao, Y. (2020). Two decades of havoc: A synthesis of criticism against

PISA. Journal of Educational Change, 21(2), 245–266. https://doi.org/

10.1007/s10833-019-09367-x

Received October 5, 2020

Revision received March 31, 2021

Accepted April 1, 2021 n

ACHIEVEMENTS AND G-FACTOR 15

T
h
is
d
o
cu
m
en
t
is
co
p
y
ri
g
h
te
d
b
y
th
e
A
m
er
ic
an

P
sy
ch
o
lo
g
ic
al
A
ss
o
ci
at
io
n
o
r
o
n
e
o
f
it
s
al
li
ed

p
u
b
li
sh
er
s.

T
h
is
ar
ti
cl
e
is
in
te
n
d
ed

so
le
ly

fo
r
th
e
p
er
so
n
al
u
se

o
f
th
e
in
d
iv
id
u
al
u
se
r
an
d
is
n
o
t
to

b
e
d
is
se
m
in
at
ed

b
ro
ad
ly
.


