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Individual differences in cognitive control have been suggested to act as a domain-general bottleneck
constraining performance in a variety of cognitive ability measures, including but not limited to fluid
intelligence, working memory capacity, and processing speed. However, owing to psychometric prob-
lems associated with the measurement of individual differences in cognitive control, it has been
challenging to empirically test the assumption that individual differences in cognitive control underlie
individual differences in cognitive abilities. In the present study, we addressed these issues by analyzing
the chronometry of intelligence-related differences in midfrontal global theta connectivity, which has
been shown to reflect cognitive control functions. We demonstrate in a sample of 98 adults, who
completed a cognitive control task while their electroencephalogram was recorded, that individual
differences in midfrontal global theta connectivity during stages of higher-order information-processing
explained 65% of the variance in fluid intelligence. In comparison, task-evoked theta connectivity during
earlier stages of information processing was not related to fluid intelligence. These results suggest that
more intelligent individuals benefit from an adaptive modulation of theta-band synchronization during
the time-course of information processing. Moreover, they emphasize the role of interregional goal-
directed information-processing for cognitive control processes in human intelligence and support
theoretical accounts of intelligence, which propose that individual differences in cognitive control
processes give rise to individual differences in cognitive abilities.
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Individual differences in human intelligence determine the way
individuals approach challenging problems in complex environ-
ments, how they develop strategies to adapt to their environments,
and what they learn from experience (Neisser et al., 1996). Evi-
dence for a considerable hereditary influence on human intelli-
gence has been fueling the search for neural and cognitive endo-
phenotypes, giving rise to individual differences in intelligence
(Deary, Penke, & Johnson, 2010). A central role has been attrib-

uted to cognitive control processes—also referred to as executive
attention, attentional control, executive control, inhibitory control,
or executive functions—that act as an umbrella term for self-
regulatory higher-order cognitive processes contributing to goal-
directed behavior (Diamond, 2013). In a narrower sense, cognitive
control processes are often defined as those processes that enable
the transformation and manipulation of representations in working
memory by activating goal-relevant information and/or inhibiting
irrelevant information (Friedman & Miyake, 2017; Miyake &
Friedman, 2012; Miyake et al., 2000; Smith & Jonides, 1999).
Individual differences in cognitive control have been suggested to
act as a domain-general bottleneck constraining performance in a
variety of cognitive ability measures including but not limited to
measures of fluid intelligence, working memory capacity, and
processing speed (Engle, 2018; Kovacs & Conway, 2016, 2019).

There is a substantial body of research in cognitive psychology
and cognitive neuroscience that supports the notion that individual
differences in cognitive control are moderately to strongly related
to individual differences in fluid intelligence.

The Role of Cognitive Control in Fluid Intelligence:

Evidence From Cognitive Psychology

In cognitive psychology, individual differences in cognitive
control are often measured as individual differences in the exec-
utive functions updating, shifting, and inhibition (Miyake et al.,
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2000), with individual differences in updating (Friedman et al.,
2006), updating and shifting (Friedman et al., 2008), or updating
and inhibition (Wongupparaj, Kumari, & Morris, 2015) being
substantially related to intelligence. Moreover, the common vari-
ance shared between all three executive functions has also been
shown to be associated with intelligence beyond these function-
specific associations (Friedman et al., 2006, 2008). Factor-
analytical investigations based on the Cattell-Horn-Carroll model
of cognitive abilities (CHC; Carroll, 1993) have shown that up-
dating cannot be factor-analytically separated from the general
memory factor gm, whereas inhibition and shifting can be con-
ceived of as a part or a narrow subfactor of the general speed factor
gs (Jewsbury, Bowden, & Strauss, 2016). In addition, Shipstead,
Harrison, and Engle (2016) suggested that the ability to success-
fully disengage from irrelevant information held in working mem-
ory contributes to intelligence differences and may explain the
substantial correlation between measures of working memory ca-
pacity and fluid intelligence (Ackerman, Beier, & Boyle, 2005;
Kane, Hambrick, & Conway, 2005; Kyllonen & Christal, 1990;
Oberauer, Schulze, Wilhelm, & Süss, 2005).

The Role of Cognitive Control in Fluid Intelligence:

Evidence From Cognitive Neuroscience

Neuroscientific studies have consistently shown that an effec-
tive interaction between association cortices in frontal and parietal
brain regions associated with higher-order cognitive control pro-
cesses underlies individual differences in intelligence (Basten,
Hilger, & Fiebach, 2015; Jung & Haier, 2007). Evidence for the
relevance of parietal-frontal integration stems from numerous
studies using various structural and functional neuroimaging tech-
niques (Basten et al., 2015; Colom & Thompson, 2013) such as
cortical surface area and cortical thickness analyses (Colom et al.,
2013), voxel-based morphometry (Colom et al., 2013; Colom,
Jung, & Haier, 2007), voxel-based lesion mapping (Gläscher et al.,
2010), and functional MRI (fMRI; Burgess, Gray, Conway, &
Braver, 2011). Moreover, electrophysiological studies using the
event-related potential (ERP) technique have demonstrated that
intelligent individuals showed processing advantages during very
specific time windows, in which cognitive control processes take
place (Schubert, Hagemann, & Frischkorn, 2017). In particular,
more intelligent individuals showed substantially shorter P3 laten-
cies, indicating that they benefited from a more efficient transmis-
sion of information from frontal attentional and working memory
processes to temporal-parietal processes of memory storage.

Recent studies have gone beyond localizationist approaches and
have emphasized the role of structural and functional interactions
between brain networks for human intelligence. A network neu-
roscience perspective on human intelligence takes into account
that the human brain is a complex network, which continuously
processes, integrates, and updates information from functionally
segregate interacting regions (Barbey, 2018; Sporns, 2011). Con-
nectivity measures are often derived from fMRI and either de-
scribe white matter projections that link cortical regions (structural
connectivity) or statistical patterns of dynamic interactions within
and between cortical regions (functional connectivity), which have
both been associated with intelligence (Booth et al., 2013; Cole,
Yarkoni, Repovš, Anticevic, & Braver, 2012; Dubois, Galdi, Paul,
& Adolphs, 2018; Ferrer et al., 2013; Hilger, Ekman, Fiebach, &

Basten, 2017a, 2017b; Kievit et al., 2016; Kocevar et al., 2019;
Penke et al., 2012; Pineda-Pardo, Martínez, Román, & Colom,
2016; Tamnes et al., 2010; Wendelken et al., 2017; Wendelken,
Ferrer, Whitaker, & Bunge, 2016).

Specifically, fractional anisotropy measures of white-matter
tract integrity have been shown to be associated with intelligence
and reasoning ability, across the whole brain (Ferrer et al., 2013;
Penke et al., 2012) as well as within and between specific brain
regions associated with higher-order attentional processes includ-
ing the forceps minor, the corticospinal tract, the anterior thalamic
radiation, the right superior longitudinal fasciculus, the uncinate
fasciculus, the rostrolateral prefrontal cortex, and the inferior pa-
rietal lobe (Booth et al., 2013; Kievit et al., 2016; Pineda-Pardo et
al., 2016; Tamnes et al., 2010; Wendelken et al., 2017). Moreover,
individual differences in functional connectivity in and between
certain frontoparietal brain networks that act as control regions or
hubs and facilitate goal-directed information processing contribute
to individual differences in intelligence (Cole et al., 2012; Hilger
et al., 2017b; Wendelken et al., 2017). In one of the rare studies
combining measures of structural and functional connectivity,
Wendelken et al. (2017) demonstrated that frontoparietal white
matter development is a prerequisite for frontoparietal functional
connectivity and reasoning ability in adolescence. Most intrigu-
ingly, the effect of structural connectivity on fluid intelligence
seems to be largely mediated by individual differences in process-
ing speed and working memory (Ferrer et al., 2013; Fuhrmann et
al., 2020; Kievit et al., 2016). This suggests that a greater integrity
of frontoparietal white matter projections facilitates saltatory con-
duction across the axon and increases functional connectivity
within and between brain regions associated with cognitive con-
trol, enhancing the speed and capacity of information-processing,
which may translate into advantages in fluid intelligence.

Problems in the Measurement of Cognitive Control

Despite these promising results, there are some concerns regard-
ing the measurement of individual differences in neurocognitive
indicators of cognitive control that cast doubt on the conclusion
that cognitive control plays a starring role in explaining intelli-
gence differences.

Limitations of Behavioral Measures of Cognitive

Control

There have recently been many concerns regarding cognitive
control as a psychometric construct that challenge some of the
previously discussed findings on the relation between behavioral
measures of cognitive control and fluid intelligence (Frischkorn,
Schubert, & Hagemann, 2019; Gärtner & Strobel, 2019; Hedge,
Powell, & Sumner, 2018; Rey-Mermet, Gade, & Oberauer, 2018;
Rey-Mermet, Gade, Souza, von Bastian, & Oberauer, 2019;
Rouder & Haaf, 2019). To discuss the implications of these con-
cerns, it is important to distinguish between studies that employ
mean performance measures of cognitive control (i.e., perfor-
mance in a specific condition or averaged across different condi-
tions in an experimental task) and studies that employ difference
score measures of cognitive control (i.e., difference scores or slope
estimates between at least two experimental conditions). Both
mean performance and difference score measures are typically
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calculated based on the average number of correct responses
and/or averaged response times (RTs) across experimental trials
(Draheim, Mashburn, Martin, & Engle, 2019), but they can in
principle also be calculated on the basis of other performance
measures such as model-based estimates of information-
processing (Frischkorn & Schubert, 2018; Hartmann, Rey-
Mermet, & Gade, 2019).

Mean performance measures of cognitive control typically show
high reliabilities but questionable validities. In particular, mean
performance measures of RTs have been shown to largely reflect
individual differences in general processing speed (Frischkorn et
al., 2019). The large majority of studies reporting substantial
correlations between cognitive control and fluid intelligence have
predominantly employed mean performance measures (e.g., Chud-
erski, 2014; Redick et al., 2016; Unsworth, 2015; Unsworth,
Redick, Lakey, & Young, 2010; Unsworth, Spillers, & Brewer,
2009; Wongupparaj et al., 2015). Because these mean performance
measures are confounded with general processing capacities, these
studies do not provide sufficiently compelling evidence for an
association between cognitive control and fluid intelligence.

Difference score measures, on the other hand, are supposed to
reflect individual differences in cognitive control more validly
because they isolate the cognitive control process of interest by
directly measuring interindividual differences in intraindividual
experimental effects (but see Rey-Mermet et al., 2019; and Schu-
bert, Hagemann, Voss, Schankin, & Bergmann, 2015 for criticisms
of the underlying assumption of additive factors that experimental
manipulations selectively affect a single process of interest). How-
ever, experimentally validated difference score measures of cog-
nitive control are often task-specific, show low reliabilities, and
show little variation between individuals (Gärtner & Strobel, 2019;
Hedge et al., 2018; Rey-Mermet et al., 2018; Rouder & Haaf,
2019). For these reasons, correlations between difference score
measures of cognitive control and fluid intelligence are typically
lower than those of mean performance measures and often fail to
reach statistical significance at all (e.g., Friedman et al., 2006;
Frischkorn et al., 2019; Rey-Mermet et al., 2019).

Moreover, both mean performance and difference score mea-
sures of cognitive control are typically based on either correct
response rates or RTs, which makes them prone to be affected by
individual differences in speed–accuracy trade-offs (Draheim,
Mashburn, et al., 2019; Rey-Mermet et al., 2019). This is partic-
ularly concerning for research on the elementary cognitive pro-
cesses underlying intelligence, because more intelligent individu-
als adjust their decision criteria differently than less intelligent
individuals to adapt to task demands (Draheim, Mashburn, et al.,
2019; Schmiedek, Oberauer, Wilhelm, Süss, & Wittmann, 2007;
Schubert, Hagemann, Löffler, & Frischkorn, 2020). In theory,
more intelligent individuals should benefit from more efficient
cognitive control processes, resulting in faster and more accurate
responses in cognitive control tasks (i.e., higher mean perfor-
mance) and a smaller impairment in performance by experimen-
tally induced increased control demands (i.e., smaller difference
scores). However, because they typically have more liberal deci-
sion criteria than less intelligent individuals, they may show even
faster RTs at the cost of decreases in accuracy rates. Moreover,
experimentally induced increases in cognitive control demands
may further moderate this interaction in unexpected ways, further

complicating the interpretation of associations between measures
of intelligence and cognitive control.

Taken together, these limitations call into question whether
cognitive control can be reliably and validly measured using
accuracy rates and mean RTs in experimental tasks. Various so-
lutions for improving the measurement of cognitive control have
been suggested, including hierarchical modeling (Rouder & Haaf,
2019), the use of mathematical models (Frischkorn & Schubert,
2018), the introduction of individually calibrated response dead-
lines (Rey-Mermet et al., 2019), and the development of new
experimental tasks (Draheim, Tsukahara, Martin, Mashburn, &
Engle, 2019). Undoubtedly, these promising approaches will allow
a better evaluation of cognitive control as a psychometric construct
and refine our understanding of the role of cognitive control
processes in intelligence. As it stands, however, it is difficult to
evaluate the role of cognitive control processes measured on a
behavioral level—either as mean performance or difference
scores—in intelligence due to the measurement problems men-
tioned above.

Limitations of Neural Correlates of Cognitive Control

In comparison, neural correlates of cognitive control have re-
cently seen a huge rise in popularity in individual differences
research. In particular, network neuroscience measures of cogni-
tive control hubs have become increasingly popular in intelligence
research (e.g., Barbey, 2018; Cole et al., 2012; Hilger et al., 2017a,
2017b; Wendelken et al., 2017) and correlations between measures
of frontoparietal functional connectivity and intelligence have
been interpreted as evidence for the role of cognitive control in
intelligence. However, if individual differences in frontoparietal
functional connectivity underlie individual differences in cognitive
control, and if cognitive control plays a central role in intelligence
differences, it may seem surprising that measures of functional
connectivity rarely explained more than 20% of variance in cog-
nitive abilities in any of these studies (e.g., Song et al., 2008).
There are three shortcomings of previous studies that may have led
to an underestimation of the association between functional cog-
nitive control network characteristics and intelligence.

Up to now, the majority of studies on the functional network
dynamics underlying intelligence have used resting-state fMRI
data, which has two limitations. First, resting-state data do not
inform us about dynamic network interactions during cognitive
control processes such as the task-evoked elicitation of network
dynamics and the suppression of ongoing activity in task-irrelevant
areas (He, 2013). Functional connectivity measures reflecting such
task-related network reconfigurations and activations during cog-
nitive control processes may therefore show greater correlations
with intelligence than functional connectivity measures derived
from resting-state data. Second, measures with a slow sampling
rate such as the fMRI are not well-suited to account for the
temporal dynamics of functional connectivity (Sporns, 2013).

These two shortcomings may pose a problem, because previous
research on the neural correlates of intelligence using the electro-
encephalogram (EEG) revealed that more intelligent individuals
showed processing advantages only during specific time windows
associated with higher-order control processes (Schubert et al.,
2017). In particular, only the latencies of ERP components asso-
ciated with higher-order cognitive processes occurring later in the
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stream of processing and specifically the latencies of the P3
component were negatively associated with intelligence. These
results indicate that associations between neural processing corre-
lates and cognitive abilities fluctuate over time and may be largest
when information is processed in working memory and subse-
quently transmitted from frontal control and working memory
processes to temporal-parietal processes of memory storage
(Polich, 2007). If dynamic interactions within and between cortical
regions underlying these cognitive processes give rise to the asso-
ciation between functional connectivity measures and intelligence,
it should be greatest specifically while individuals engage in
higher-order cognitive processes. Therefore, previous studies may
have underestimated this association, because the comparatively
low temporal resolution of fMRI does not allow to capture fluc-
tuations in functional connectivity during such short periods of
time and because the data were collected during resting-state.

Moreover, a higher temporal resolution of functional connectiv-
ity measures would allow investigating whether individual differ-
ences in functional connectivity during higher-order information
processing explain the association between the P3 latencies and
intelligence. This would be particularly illuminating regarding
causal mechanisms underlying the association between neural pro-
cessing speed and intelligence, as attempts to pharmacologically
enhance neural processing speed did not translate into better per-
formance in intelligence tests (Schubert, Hagemann, Frischkorn, &
Herpertz, 2018). This lack of transfer suggests that structural or
functional brain properties may act as confounding variables in the
way that advantages in those brain properties may enhance both
the speed of information processing and intelligence.

The Present Study

The aim of the present study was to address these issues by
analyzing the chronometry of intelligence-related differences in
task-evoked functional connectivity. For this purpose, we calcu-
lated the connectivity degree at a midfrontal electrode evoked in a
cognitive control task and used structural equation models to
decompose the time-course of functional connectivity correlations
with intelligence. Phase-synchronized oscillatory activity is a
prime candidate for the facilitation of interregional goal-directed
information processing associated with cognitive control processes
(Cole et al., 2012; Hilger et al., 2017b; Pineda-Pardo et al., 2016;
Wendelken et al., 2017), because it coordinates interregional com-
munication and information-transfer in specific time windows
(Fries, 2005). In particular, synchronized oscillatory activity in the
theta-band has been suggested to underlie the functional networks
associated with the P3 (Harper, Malone, & Iacono, 2017), with the
medial frontal cortex acting as a central hub for long-range infor-
mation transmission (Cohen, 2011; Helfrich & Knight, 2016). The
connectivity degree as a measure of relative functional connectiv-
ity reflects the extent to which an area acts as a global hub in
information-processing, with greater connectivity degrees indicat-
ing greater centrality (greater “hubbiness”) of a node in goal-
directed information-processing.

If more intelligent individuals benefited from a more efficient
neural organization of long-range information transmission during
higher-order processing, they should show an overall stronger
theta connectivity at frontal midline electrodes during stages of
information-processing associated with cognitive control pro-

cesses. Hence, we predict that individual differences in midfrontal
global theta connectivity will be associated with individual differ-
ences in intelligence. This should be the case particularly during
later stages of higher-order information processing linked to the P3
time window, but not (or less strongly) during earlier stages of
sensory information processing. Moreover, we expect individual
differences in connectivity degrees during the P3 time window to
explain the association between P3 latencies and intelligence by
accounting for the functional network dynamics giving rise to the
association between neural processing speed and intelligence.

Method

Participants

We recruited a sample of N � 100 participants between 18 and
60 years old from different educational and occupational back-
grounds via local newspaper advertisement, announcements on
social media platforms, and distribution of flyers in Heidelberg.
Because two participants did not complete the experiment, the
final sample consisted of N � 98 participants (64 females, 34
males) with a mean age of M � 31.9 (SD � 13.3). Following
recommendations by Browne and Cudeck (1992), sample size was
determined based on the hypothesis of close fit (H0: ε � .05, H1:
ε � .10) for the structural equation model with the fewest degrees
of freedom (df � 63), an alpha error of � � .05, and a power of
1 – � � .80. The resulting minimum sample size was N � 83. We
recruited more participants to increase power and the stability of
parameter estimates.

All participants had normal or corrected to normal vision and no
mental illness. Participants signed an informed consent form prior
to their participation. They received 30€ and feedback about their
intelligence test results as reward for their participation. The study
was approved by the ethics committee of the faculty of behavioral
and cultural studies, Heidelberg University. All procedures were
conducted in accordance with the declaration of Helsinki.

Materials

Cognitive control task. We used a shifting task (Sudevan &
Taylor, 1987) to measure participants’ performance in an attention
control task because previous research demonstrated that switch in
comparison to repeat trials in this task evoked significantly stron-
ger long-range theta coupling between prefrontal and posterior
brain regions, reflecting top-down activation and transfer of infor-
mation between memory systems (Sauseng et al., 2006). More-
over, its relatively low perceptual demands and perceptual con-
stancy across experimental conditions make it highly suitable for
task-related EEG recording as demonstrated in previous studies
(Frischkorn et al., 2019; Sauseng et al., 2006).

Participants were presented with single-digit numbers between 1
and 9 (the number 5 was excluded) and had to decide for each
number whether it was less or more than 5 (less/more condition) or
whether it was odd or even (odd/even condition) by pressing one
of two keys with their index fingers. Which of these two decision
rules participants had to follow changed across trials and was
indicated by the coloring of the number. Participants completed 40
practice trials with feedback and 640 experimental trials in 10
blocks without feedback. Of these 640 trials, 50% belonged to the
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less/more condition and 50% belonged to the odd/even condition,
respectively. In addition, in 50% of the trials participants had to
shift their task set with regard to the previous trial (shifting
condition), whereas in the other 50% of the trials they followed the
same decision rule as in the previous trial (repeat condition).

Each trial began with a gray fixation cross shown on a black
screen for 512–768 ms, followed by a blank screen presented for
1,024–1,278 ms. Next, a colored digit appeared on a black screen
at a visual angle of 0.60° and remained there for 1,024–1,278 ms
after participants had responded, followed by an intertrial interval
that consisted of a black screen and lasted 1,000–1,500 ms. On a
small number of randomly determined trials, participants saw
thought probes following their response, which asked them to
indicate where they had just been with their thoughts (data not
reported here).

Berlin intelligence structure test (BIS). We administered the
short version of the Berlin intelligence structure test (Jäger, Süß, &
Beauducel, 1997) to measure fluid intelligence. The BIS is based
on the bimodal Berlin intelligence structure model, which distin-
guishes between four operation-related (processing speed, mem-
ory, creativity, processing capacity) and three content-related (ver-
bal, numerical, figural) components of intelligence. The test
consists of 15 tasks, with each task being a combination of one
operation-related component with one content-related component
of intelligence. Following the test manual, participants’ scores for
the four process-related components were computed by aggregat-
ing the normalized scores of all tasks related to the respective
operation and content components. These process-related compo-
nent scores were then transformed into z-scores for further analy-
ses. One participant’s processing speed score was removed from
further analyses because it exceeded �3 SDs of the sample mean.
Participants had a mean IQ score of M � 95.32 (SD � 12.08). This
is likely an underestimation of their true intelligence, as the BIS
only contains norm data for senior high school students between
16 and 19 years. The mean score of the processing speed compo-
nent in this sample was M � 100.26 (SD � 8.48), the mean score
of the memory component was M � 97.70 (SD � 7.84), the mean
score of the creativity component was M � 97.62 (SD � 7.06), and
the mean score of the processing capacity component was M �

100.04 (SD � 8.28).

Procedure

We first administered the BIS, followed by the cognitive control
task, two working memory tasks, a metronome response task, a
mind-wandering questionnaire, and a questionnaire about demo-
graphic data. Data from the working memory tasks, metronome
response task, and mind-wandering questionnaire are not reported
in the present paper. During the cognitive control task, participants
sat in a dimly lit, sound-attenuated cabin while their EEG was
recorded. Each session took about 3.5 hr.

EEG Recording

The EEG was recorded with 32 equidistant Ag/AgCl electrodes
(32Ch-EasyCap, EASYCAP, Herrsching, Germany) and amplified
by a BrainAmp DC amplifier (Brain Products, Gilching, Ger-
many). We used the aFz electrode as the ground electrode. Elec-
trodes were initially referenced to Cz and offline rereferenced to an

average reference. All electrode impedances were kept below 5
k�. The EEG signal was recorded continuously with a sampling
rate of 1024 Hz (high-pass 0.1 Hz). EEG data from one participant
were lost because of technical failure.

Data Analysis

Behavioral data. We only analyzed RTs in trials with correct
responses. RTs faster than 100 ms or slower than 3,000 ms, or with
logarithmized RTs exceeding �3 SDs of the mean of each condi-
tion, were discarded. Mean RTs were calculated separately for
each experimental condition. Across all experimental conditions,
less than one percent of mean RTs exceeded �3 SDs of their
respective condition mean and were excluded as outliers.

Electrophysiological data. EEG data were preprocessed with
the open source toolbox EEGLAB (Delorme & Makeig, 2004)
with MATLAB (The MathWorks Inc., Natick, Massachusetts).
Bad channels were identified and subsequently removed based on
probability, kurtosis, and spectrum of the channel data. Epochs
were 5,000 ms long and began 2,500 ms before stimulus onset. We
conducted independent component analyses (ICA) with data
down-sampled to 200 Hz to identify and remove ocular artifacts
and generic discontinuities based on visual inspection and the
ADJUST algorithm (Mognon, Jovicich, Bruzzone, & Buiatti,
2011). Subsequently, artifact-containing segments were automati-
cally detected and rejected with 1,000 �V as the threshold for
detecting large fluctuations, 5 SDs as the probability threshold for
the detection of improbable data, and 5% as the maximum number
of epochs to be rejected per iteration.

Neural processing speed. Consistent with previous studies
from our lab (Schubert et al., 2015, 2017; Schubert, Hagemann,
Löffler, & Frischkorn, 2020; Schubert, Nunez, Hagemann, &
Vandekerckhove, 2018), the data were filtered offline with a
low-pass filter of 16 Hz to allow the identification of individual P3
peak latencies. The peak latency reflects the time-to-peak for an
ERP component and indicates the time at which the amplitude of
a component reaches its maximum. P3 latencies were determined
at the parietal electrode over midline separately for each experi-
mental condition and subsequently z-standardized for further anal-
yses. We chose this electrode for peak detection because the P3 is
typically recorded at parietal electrode sites (Verleger, 2020) and
because this facilitated consistency and comparability to previous
studies (Schubert et al., 2017, 2015; Schubert, Hagemann, et al.,
2018). Across all experimental conditions, less than one percent of
P3 latency values exceeded �3 SDs of their respective condition
mean and were excluded as outliers. Two participants did not show
a visually identifiable P3 component; hence, no P3 peak latencies
were determined for those two participants.

Functional connectivity. Prior to the time-frequency analy-
ses, the data were filtered offline with a low-pass filter of 25 Hz.
Time-frequency decomposition was performed by convolving
stimulus-locked data from all electrodes with complex Morlet
wavelets with frequencies ranging from 1 to 20 Hz in 20 logarith-
mically spaced steps. The number of cycles n used to specify the
width of the Gaussian distribution was set to 4 to provide a good
trade-off between temporal and frequency resolution. Frequency-
specific phases at each time point t were defined as arctan(re-
al[Zt]

2/imag[Zt]
2) of the complex convolution signal Z. As a mea-

sure of functional connectivity in the theta range, the phase lag
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index (PLI; Stam, Nolte, & Daffertshofer, 2007) was calculated for
the frequency of 6 Hz. The PLI quantifies the extent to which a
distribution of phase angle differences is tilted toward positive or
negative sides of the imaginary axis. The distribution is expected
to be symmetric if there is no coupling, resulting in a PLI of zero,
whereas the PLI is one if all imaginary parts of the phase angle
difference estimates at a given time-frequency point are either
positive or negative. Calculating connectivity measures based on
the PLI ensures that individual differences in phase synchroniza-
tion do not simply reflect individual differences in volume con-
duction, as the PLI is insensitive to volume conduction: A common
source (such as volume conduction) being reflected in multiple
time series would result in phase angle differences of zero, which
is a value that is ignored by the PLI. Other data-analytic proce-
dures such as combining imaginary coherence approaches with
source modeling can further ameliorate this issue (Haufe, Nikulin,
Müller, & Nolte, 2013), but were not applicable in the present
study due to the low spatial sampling density of our electrode
montage.

We subsequently calculated the connectivity degree (CD) as a
graph theoretic connectivity measure of global functional connec-
tivity, which indicates the degree to which an electrode area acts as
a hub in the brain’s network (Cohen, 2014). Connectivity degrees
were calculated based on the binarized interchannel connectivity
matrices by summing the number of suprathreshold connections at
each sampling point separately for each electrode and each of the
four experimental conditions. We binarized the connectivity ma-
trices using a threshold of the median PLI plus 1 standard devia-
tion at each individual time point. A high CD value indicates that
an electrode has many suprathreshold interchannel connections at
a certain sampling point, whereas a low CD value conversely
indicates that an electrode has only a limited number of suprath-
reshold interchannel connections at a certain sampling point. All
statistical analyses are based on CD values at a frontal electrode
slightly anterior of Fz. For exploratory analyses, these frontal CD
values at each sampling point were entered into structural equation
models to illustrate the time-course of correlations between func-
tional connectivity and intelligence. For confirmatory analyses,
frontal CD values were averaged separately for two time windows
reflecting earlier and later stages of information processing, re-
spectively. The time window reflecting later stages of higher-order
information processing was determined as a symmetric time win-
dow of �1.5 SD around the average P3 latency across all exper-
imental conditions and ranged from 335 to 575 ms after stimulus
onset. The complementary earlier time window ranged from 0 to
335 ms after stimulus onset. Connectivity measures were averaged
separately for each of the two time windows and the four exper-
imental conditions. Subsequently, all values were z-standardized
for further analyses. Across both time windows and all experimen-
tal conditions, one percent of connectivity degree values exceeded
�3 SDs of their respective condition mean and were excluded as
outliers.

Statistical Analyses

Structural equation modeling. We used structural equation
models to assess the associations between functional connectivity
measures, general intelligence, and processing speed. We entered
condition-specific measures of functional connectivity and pro-

cessing speed and operation-specific intelligence test scores as
indicators into these analyses (see Figure 1 for details regarding
the data entered into structural equation models). All models were
fitted with the R package lavaan (Rosseel, 2012) with the maxi-
mum likelihood algorithm with robust Huber-White standard er-
rors and a scaled test statistic equal to the Yuan-Bentler test
statistic to account for the nonnormality of some connectivity
measures and possible deviations from multivariate normality.

We evaluated goodness-of-fit based on the comparative fit index
(CFI; Bentler, 1990) and the root mean square error of approxi-
mation (RMSEA; Browne & Cudeck, 1992) and compared model
fit of any two models with the likelihood ratio test. Following the
recommendations by Browne and Cudeck (1992) and Hu and
Bentler (1999), we considered CFI values � .90 and RMSEA
values 	 .08 to indicate acceptable model fit, and CFI values �

.95 and RMSEA values 	 .06 to indicate good model fit. The
statistical significance of model parameters was assessed with the
two-sided critical ratio test.

Cluster-based permutation tests. To test for significant cor-
relations between fluid intelligence and connectivity degrees in
Time 
 Sensor space, we performed a cluster-based permutation
test (Maris & Oostenveld, 2007) using FieldTrip (Oostenveld,
Fries, Maris, & Schoffelen, 2011). This approach controls for Type
I error rates, which is crucial when performing multiple compar-
isons. We entered measures of functional connectivity averaged
across the four experimental conditions and intelligence test scores
averaged across the four subscales into these analyses to increase
their reliability (see Figure 1 for details regarding the data entered
into structural equation models). Because the connectivity degree
measure was calculated based on the PLI (Stam et al., 2007) and
the PLI is based on binarizing phase angles, both measures exhibit
high frequency fluctuations in the time domain. To identify coher-
ent clusters of significant correlations over time, we applied tem-
poral smoothing to the connectivity degree time series, using a
moving average window with a width of 50 data points. A clus-
tering algorithm identified clusters of neighboring data points in
Time 
 Sensor space which represented correlations associated
with p 	 .05. The test statistic for each cluster consisted of the
summed t values of the data points of the respective cluster. The
way the cluster-based permutation approach controls for Type I
errors, is by comparing the cluster test statistics against a (H0-)
distribution of maximum test statistics obtained by computing the
test-statistics on permuted data in a certain number of iterations, in
this case 1,000 iterations. Finally, the observed test statistics were
compared to the H0-distribution in a one-sided test. Clusters with
p 	 .05 were regarded as significant.

Data and code availability. The data supporting the findings
of the study and the statistical analysis code used in the article are
available in the Open Science Framework repository at https://osf
.io/vtzaq/ (Schubert, Hagemann, Löffler, Rummel, & Arnau,
2020).

Results

We used structural equation models to assess the associations
between connectivity degree as a measure of global functional
connectivity in the theta-band, general intelligence, and processing
speed. Mean connectivity degrees, RTs, and P3 latencies are
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= Berlin Intelligence Structure Test
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(processing speed, memory,
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= 3 content-related components
(verbal, numerical, figural)

= 15 tasks

= 32 Ag/AgCl electrodes
= Ground: aFz
m Reference: Cz
a Sampling rate: 1024 Hz
= 0.1 Hz high-passfilter
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condition mean
= Calculation and z-standardization

of mean RTs per condition

= removalof outlier values (< 1 %)

= Identification of bad channels
= Epoching (2500 msbefore to

2500 msafter stimulus onset)

= Artifact removal with ICA and
ADJUST (Mognonet al., 2011)

= Subsequent automatic artifact
rejection

a P3 latencies
= 16 Hz low-passfilter

= latencies were determined
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= removalof outlier values (< 1%)
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= conditions
©
~~

5
&
—

®
oO
 

yo model.

 
Figure 1. Design schematic of the data collection procedure and data analyses. EEG � electroencephalogram; RT �

response time; logRT � logarithmized RT; ICA � independent component analysis; SEM � structural equation model.
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shown in Table 1 for each of the four conditions in the cognitive
control task. The full correlation matrix is shown in Figure 2.

Figure 3 displays a graphical representation of our main results
that we will first describe and subsequently test. Consistent with
our hypotheses, more intelligent individuals showed greater con-
nectivity degrees during later stages, but not during earlier stages
of information processing (see Figure 3). In particular, both a
comparison between more and less intelligent individuals (Figure
3A) and an inspection of the estimated latent correlations (Figure
3B) across all sampling points indicated that more intelligent
participants showed higher connectivity degrees during later stages
of information-processing, in particular in a time window between
400 – 700 ms after stimulus onset. This positive association
between connectivity degrees and intelligence test scores during
later stages of processing was greatest at frontal electrodes and
reversed at parieto-occipital electrodes (see Figure 3C, which
shows the correlations between connectivity degree and fluid
intelligence at each electrode).

These findings were corroborated by results from four structural
equations models that explored the associations between func-
tional connectivity and fluid intelligence (gf) during earlier and
later stages of information processing. The models shown in Fig-
ure 4A–4C tested whether functional connectivity during all or
during particular stages of information processing correlated with
fluid intelligence. Although the models shown in Figure 4A–4C
are mathematically equivalent, they were nevertheless all specified
to provide different perspectives on and to evaluate the robustness
of the relationship between fluid intelligence and functional con-
nectivity. Due to their mathematical equivalence, they accounted
for the data equally well, as reflected in identical fit statistics. The
models provided an excellent account of the data, �2(63) � 56.20,
p � .715, CFI � 1.00, RMSEA � 0.00 (95% CI [0.00, 0.05]).
Across all three models, we found converging evidence that the
variance specific to functional connectivity during later stages of
information-processing was substantially related to fluid intelli-
gence, whereas functional connectivity during earlier stages of
information-processing and overall functional connectivity across
the whole time-course of information processing (captured in the
hierarchical latent variable) were not related to fluid intelligence.
The latter two were only spuriously related to fluid intelligence
when the model did not include an association between functional
connectivity during later stages of information-processing and
fluid intelligence (see Figure 4C). These spurious correlations
disappeared when the latent factor specific to functional connec-

tivity during later stages of information-processing was allowed to
directly correlate with fluid intelligence (see Figure 4A and 4B),
because it then did not have to exert its influence on fluid intelli-
gence via the hierarchical latent variable.

Because structural equation models did not allow to relate all
three variables (overall functional connectivity, functional connec-
tivity during earlier stages of information-processing, functional
connectivity during later stages of information-processing) to fluid
intelligence simultaneously owing to reasons of submodel identi-
fiability and multicollinearity, we specified two separate structural
equation models describing (a) individual differences in functional
connectivity and (b) individual differences in fluid intelligence to
extract individual estimates of the latent variables for each partic-
ipant. Subsequently, we correlated the estimates of all three latent
functional connectivity variables (i.e., the latent functional con-
nectivity variable across both time windows and the residuals of
functional connectivity in the earlier and later time windows) with
the latent intelligence variable using Pearson correlations. This
analysis has the advantage of allowing the simultaneous estimation
of correlations of all three functional connectivity variables with
fluid intelligence. However, it comes with a caveat: Because
correlations are only estimated at the manifest level, treating latent
parameter estimates as observed variables violates mathematical
assumptions by ignoring estimation uncertainty. This leads to an
underestimation of standard errors and an overestimation of sta-
tistical significance of the estimated correlations. Nevertheless, we
conducted this analysis to supplement conclusions from the for-
mally more rigid structural equation models presented above.

Both the higher-order functional connectivity variable and the
variable specific to functional connectivity in the later time-
window were related to intelligence, r � .23, p � .025, and r �

.34, p 	 .001, respectively, whereas functional connectivity in the
earlier time-window was unrelated to intelligence, r � .08, p �

.424. All three correlations differed significantly from each other,
p � .002, suggesting that the correlation between fluid intelligence
and functional connectivity in the later time window was larger
than the correlation between fluid intelligence and functional con-
nectivity across both time windows, which was in turn larger than
the correlation between fluid intelligence and functional connec-
tivity in the earlier time window.

Subsequently, we tested a fourth model that allowed a correla-
tion between functional connectivity during later stages of infor-
mation processing and intelligence only, with all other correlations
between functional connectivity measures and intelligence fixed to

Table 1
Mean (SD in Parentheses) Connectivity Degrees for the Earlier Time Window (0–335 ms After

Stimulus Onset; N � 97), Connectivity Degrees for the Later Time Window (335–575 ms After

Stimulus Onset; N � 97), Reaction Times (in ms; N � 98), and P3 Latencies (in ms; N � 95)

Measure
Connectivity degree

(earlier time window)
Connectivity degree
(later time window) Reaction time P3 latency

Odd/Even – repeat 6.40 (1.37) 6.86 (1.31) 916.20 (190.88) 456.82 (81.53)
Odd/Even – switch 6.14 (1.46) 6.70 (1.58) 1000.71 (224.27) 452.42 (90.27)
Less/More – repeat 6.26 (1.46) 6.60 (1.45) 873.90 (155.81) 456.89 (82.58)
Less/More – switch 6.12 (1.43) 6.71 (1.38) 942.97 (194.11) 451.76 (79.75)

Note. Odd/Even – repeat � repeat trials in the odd/even condition; Odd/Even – switch � switch trials in the
odd/even condition; Less/More – repeat � repeat trials in the less/more condition; Less/More – switch � switch
trials in the less/more condition.
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zero (see Figure 4D). These modifications did not lead to a
deterioration of model fit, �2(64) � 56.19, p � .746, CFI � 1.00,
RMSEA � 0.00 (95% CI [0.00, 0.05]), �LLR

2 (1) � 0.02, p � .890.
Functional connectivity in the theta-band during later stages of
information processing was positively related to fluid intelligence,
r � .81, p 	 .001, 95% CI [.43, 1.00], and explained 65.12% of
variance in general intelligence (see Figure 5D).

Finally, we tested whether model comparisons supported the
conclusion that individual differences in functional connectivity

were related to fluid intelligence only during later, but not during
earlier stages of information processing. For this purpose, we
specified two additional models, which were modifications of the
model shown in Figure 4A. In the first model, we imposed equal
residual variances on the latent factors of functional connectiv-
ity during earlier and later stages of information processing and
allowed both latent factors to correlate freely with fluid intel-
ligence. This model still provided an adequate account of the
data, �2(64) � 56.38, p � .740, CFI � 1.00, RMSEA � 0.00

Figure 2. Pearson correlations between connectivity measures (N � 97), intelligence test scores (N � 98), reaction
times (N � 98) and P3 latencies (N � 95). FC:earlier � functional connectivity during earlier stages of information
processing (0–335 ms after stimulus onset); FC:later � functional connectivity during later stages of information
processing (335–575 ms after stimulus onset); RT: reaction times; P3L: P3 latency; OR � odd/even task repeat
condition; OS � odd/even task shift condition; LR � less/more task repeat condition; LS � less/more task shift
condition; PC � processing capacity; PS � processing speed; M � memory; C � creativity. See the online article
for the color version of this figure.
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(95% CI [0.00, 0.05]), and model fit did not deteriorate signif-
icantly in comparison to the model without equal residual
variances shown in Figure 4A, �LLR

2 (1) � 0.00, p � .953. We
then specified a second model in which we forced both factors
to covary equally with fluid intelligence, which deteriorated
model fit significantly in comparison to the model without this
restriction, �2(65) � 71.69, p � .266, CFI � .98, RMSEA �

0.03 (95% CI [0.00, 0.07]), �LLR
2 (1) � 27.36, p 	 .001, which

suggests that the associations of connectivity degrees with fluid
intelligence differed significantly across earlier and later stages

of information processing. Taken together, this confirms our
conclusion that individual differences in functional connectivity
were related to fluid intelligence only during later, but not
during earlier, stages of information processing.

Are These Results Confirmed by More Data-Driven

Analyses?

In cognitive neuroscience, there are, broadly speaking, two
approaches to data analysis. One approach is to define a priori

6.0

6.5

7.0

7.5

0 500 1000250 750

C
o

n
n

e
c
ti
v
it
y
 d

e
g

re
e

ms

less intelligent individuals

more intelligent individuals

less intelligent individuals
more intelligent individuals

-0.5

0.0

0.5

1.0

c
o

n
n

e
c
ti
v
it
y
 d

e
g

re
e

 a
n

d
 g
f

C
o

rr
e

la
ti
o

n
 b

e
tw

e
e

n
ms

0 500 1000250 750

P
o

te
n

ti
a

l 
(

V
)

4

A B

Pz time window
CD during later stages of
information-processing

FzFz

2

0

-2

-4

0-200 200 400 600 800 1000

DC

earlier time window later time window 

connectivity degree and gf
Correlation between

(0 - 335 ms) (335 - 575 ms)

-0.5

-1.0

0.0

0.5

1.0

r

Figure 3. Descriptive overview of associations between connectivity degree and P3 latencies with intelligence
test scores. All data were averaged across experimental conditions. (A) Differences in connectivity degree
between more and less intelligent participants. Groups were allocated based on a median split of their mean
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connectivity degree during the earlier (0–335 ms) and later (335–575 ms) time window depending on the
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²(63) = 56.20, p = .715

RMSEA = 0.00 [0.00; 0.05] 
CFI = 1.00 

²(63) = 56.20, p = .715

RMSEA = 0.00 [0.00; 0.05] 
CFI = 1.00 

²(64) = 56.19, p = .746

RMSEA = 0.00 [0.00; 0.05] 
CFI = 1.00 

Figure 4. Graphical illustration of four structural equation models on the association between functional
connectivity and fluid intelligence during earlier and later stages of information processing. Standardized
regression weights and correlation coefficients are shown next to paths. Nonsignificant correlations are grayed
out. Because of their mathematical identity, identical fit statistics are reported for the models shown in A, B, and
C. FC:earlier � functional connectivity during earlier stages of information processing (0–335 ms after stimulus
onset); FC:later � functional connectivity during later stages of information processing (335–575 ms seconds
after stimulus onset); Res:FC:earlier � residual of the latent FC:earlier variable; Res:FC:later � residual of the
latent FC:later variable; gf � fluid intelligence; or � odd/even task repeat condition; os � odd/even task shift
condition; lr � less/more task repeat condition; ls � less/more task shift condition; PC � processing capacity;
PS � processing speed; M � memory; C � creativity. N � 98.
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regions of interest (e.g., brain areas, electrodes, frequency bands,
time windows, etc.) based on psychological theories and to limit
data analysis to these prespecified regions of interest. A compli-
mentary more data-driven approach is to define regions of interest
based on robust cluster-based permutation testing. To further ex-
plore correlations between fluid intelligence and functional con-
nectivity in the theta-band across the time course and different
seed regions, we complimented our more theory-driven analyses
with data-driven analyses to identify robust Time 
 Sensor clus-
ters.

Cluster-based permutation testing identified one frontocentral
cluster in which the connectivity degree was significantly related
to fluid intelligence in the time window from 411 ms to 647 ms
after stimulus onset (see Figure 6). This cluster overlapped partly
with our a priori specified electrode and time window of interest,
but contained also neighboring electrodes (electrodes 1, 2, 5, 6, 7,
and 15) and adjacent time points.

Do Individual Differences in Functional Connectivity

Reflect Cognitive Control Processes Measured in RTs?

To support our key assumption that individual differences in
global theta connectivity reflect cognitive control processes, we
subsequently investigated whether functional connectivity during
later stages of information processing and reaction speed in the
cognitive control task were related and to what degree they pre-
dicted individual differences in fluid intelligence. For this purpose,
we introduced RTs in the experimental task into the model (see
Figure 7A). To model individual differences in RTs, we specified
a hierarchical model with lower-order factors of repeat- and shift-

specific variance, and a higher-order factor of reaction time (RT).
The overall model provided an acceptable account of the data,
�2(114) � 170.88, p 	 .001, CFI � .94, RMSEA � 0.07 (95% CI
[0.05, 0.09]), but the residual variances of both lower-order RT
factors were not significant and one was even negative, all ps �

.267. Specifying an alternative bifactor model of RTs led to
convergence issues. We therefore fixed these variances to zero,
which did not impair model fit, �2(118) � 178.72, p 	 .001,
CFI � .94, RMSEA � 0.07 (95% CI [0.05, 0.09]), �LLR

2 (4) � 7.84,
p � .098. Individuals with faster RTs also showed greater func-
tional connectivity during later stages of information processing,
r � �.34, p � .045, 95% CI [�.65, �.04], and greater fluid
intelligence, r � �.33, p � .006, 95% CI [�.58, �.08]. See Figure
7B for scatterplots of the three latent correlations.

We then altered the model by regressing both RT and intelli-
gence on functional connectivity (see Figure 7C). This model still
provided an acceptable account of the data, �2(118) � 118.18, p 	

.001, CFI � .93, RMSEA � 0.08 (95% CI [0.06, 0.10]). When the
variance of functional connectivity was partialed out of the rela-
tionship between RT and fluid intelligence, their relationship be-
came numerically smaller, but was still statistically significant,
r � �.28, p � .025, 95% CI [�.54, �.01].

We also specified a mediation model to test whether individual
differences in functional connectivity mediated the association
between RT and intelligence (see Figure 7D). This model provided
an acceptable account of the data, �2(118) � 185.94, p 	 .001,
CFI � .93, RMSEA � 0.08 (95% CI [0.06, 0.10]). The indirect
effect of reaction speed on intelligence mediated via functional
connectivity was significant, �ab � �.09, p � .036, 95% CI

A

C

B

D

Figure 5. Scatterplots of the latent correlations shown in Figure 3. FC:earlier � functional connectivity during
earlier stages of information processing (0–335 ms after stimulus onset); FC:later � functional connectivity
during later stages of information processing (335–575 ms after stimulus onset); Res:FC:earlier � residual of the
latent FC:earlier variable; Res:FC:later � residual of the latent FC:later variable; gf � fluid intelligence.
N � 98.
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[�.17, �.01], suggesting that about 25% (�ab/�total � �.07/-
.28 � .25) of the association between RT and intelligence was
mediated by individual differences in functional connectivity. In
addition, RT still predicted variance in fluid intelligence beyond
the mediation path, �c’ � �.24, p � .034, 95% CI [�.48, �.01].
Taken together, these results suggest that RTs in the cognitive
control task and functional connectivity during higher-order pro-
cessing are linked in their association with intelligence differences,
but that there is also specific variance in RTs in the experimental
task that is related to intelligence differences and cannot be ac-
counted for by individual differences in functional connectivity.

Do Individual Differences in Functional Connectivity

Account for the Association Between P3 Latencies and

Fluid Intelligence?

Next, we investigated whether the finding that more intelligent
individuals showed shorter P3 latencies (see Figure 3D) might be
explained by individual difference in functional connectivity in the
theta-band. For this purpose, we introduced P3 latencies as mea-
sures of neural processing speed into the model (see Figure 8A).
This model provided an excellent account of the data, �2(116) �

101.60, p � .827, CFI � 1.00, RMSEA � 0.00 (95% CI [0.00,
0.03]). Participants with shorter P3 latencies (i.e., greater neural
processing speed) showed both higher intelligence (r � �.43, p �

.003, 95% CI [�.64, �.22]) and greater functional connectivity

during later stages of information processing (r � �.33, p � .026,
95% CI [�.63, �.03]). See Figure 8B for scatterplots of the three
latent correlations.

We then altered the model by regressing both P3 latencies and
intelligence on functional connectivity (see Figure 8C). Unsurpris-
ingly, this model also showed a satisfactory model fit, �2(116) �

109.28, p � .658, CFI � 1.00, RMSEA � 0.00 (95% CI [0.00,
0.04]). When the variance of functional connectivity was partialed
out of the relationship between P3 latencies and general intelli-
gence, their relationship remained significant, but became smaller,
r � �.39, p � .005, 95% CI [�.61, �.17].

We also specified a mediation model to test if individual dif-
ferences in functional connectivity mediated the association be-
tween P3 latencies and intelligence (see Figure 8D). This model
provided an excellent account of the data, �2(116) � 108.32, p �

.681, CFI � 1.00, RMSEA � 0.00 (95% CI [0.00, 0.04]). The
indirect effect of P3 latencies on intelligence mediated via func-
tional connectivity was significant, �ab � �.07, p � .038, 95% CI
[�.14, �.00], suggesting that about 18% (�ab/�total � �.07/-
.17 � .18) of the association between P3 latencies and intelligence
was mediated by individual differences in functional connectivity.
Taken together, these results suggest that about a fifth of the
association between P3 latencies and general intelligence was
explained by individual differences in functional network dynam-
ics.

Figure 6. This figure locates the identified significant cluster of correlations between connectivity degree and
fluid intelligence. (A) Significant cluster in Time 
 Sensor space, highlighted by black contour lines. The cluster
comprised the electrodes 1, 2, 5, 6, 7, and 15. (B) Time course of correlations of connectivity degree fluid
intelligence, averaged across channels belonging to the significant cluster. Here, the cluster in the temporal
domain is highlighted by the green rectangle underlying the curve. (C) Topography of correlations averaged
across time points included in the significant cluster. The black stars indicate electrodes contained in the
significant frontocentral cluster. gf � fluid intelligence; CD � connectivity degree. N � 97. See the online
article for the color version of this figure.
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Figure 7. Graphical illustration of three structural equation models of the association between functional
connectivity, RT and fluid intelligence. In the model shown in A, correlations between all three measures are
estimated freely, with scatterplots of those latent correlations shown in B. The model shown in C is a partial
correlation model, and the model shown in D is a mediation model. Standardized regression weights and
correlation coefficients are displayed next to paths. Nonsignificant correlations or regressions are grayed out.
FC:earlier � functional connectivity during earlier stages of information processing (0–335 ms after stimulus
onset); FC:later � functional connectivity during later stages of information processing (335–575 ms after
stimulus onset); gf � fluid intelligence; Res:FC:earlier: residual of the latent FC:earlier variable; Res:FC:later:
residual of the latent FC:later variable; RT � response time; Res: RT: residual of latent RT variable; Res:gf:
residual of latent fluid intelligence variable; or � odd/even task repeat condition; os � odd/even task shift
condition; lr � less/more task repeat condition; ls � less/more task shift condition; PC � processing capacity;
PS � processing speed; M � memory; C � creativity. N � 98.
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Are These Results Specific to Functional Connectivity

in the Theta-Band?

Finally, we explored whether this time course of the association
between functional connectivity and intelligence was unique to the

theta-band or could be generalized to other frequency bands. If this
were the case, the association between connectivity degrees and
intelligence would be less likely to specifically reflect cognitive
control functions associated with long-range theta synchronization
(Cohen, 2011; Helfrich & Knight, 2016), but instead some

A

Functional
connectivity

²(116) = 101.60, p = .827

RMSEA = 0.00 [0.00; 0.03] 
CFI = 1.00 
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.85 .67 .59 .51
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-.20
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.43-.20

gfP3 latency -.39Res:P3L Res:gf

D

Figure 8. Graphical illustration of three structural equation models of the association between functional
connectivity, P3 latencies and fluid intelligence. In the model shown in A, correlations between all three
measures are estimated freely, with scatterplots of those latent correlations shown in B. The model shown in C
is a partial regression model, and the model shown in D is a mediation model. Standardized regression weights
and correlation coefficients are shown next to paths. Nonsignificant correlations or regressions are grayed out.
FC:earlier � functional connectivity during earlier stages of information processing (0–335 ms after stimulus
onset); FC:later � functional connectivity during later stages of information processing (335–575 ms after
stimulus onset); gf � fluid intelligence; Res:FC:earlier: residual of the latent FC:earlier variable; Res:FC:later:
residual of the latent FC:later variable; Res: P3L: residual of latent P3 latency variable; Res:gf: residual of latent
fluid intelligence variable; or � odd/even task repeat condition; os � odd/even task shift condition; lr �

less/more task repeat condition; ls � less/more task shift condition; PC � processing capacity; PS � processing
speed; M � memory; C � creativity. N � 98.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
P

sy
ch

ol
og

ic
al

A
ss

oc
ia

ti
on

or
on

e
of

it
s

al
li

ed
pu

bl
is

he
rs

.
T

hi
s

ar
ti

cl
e

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

15CHRONOMETRY OF INTELLIGENCE AND CONNECTIVITY



domain-general benefit in information processing. Inspection of
both alpha (10 Hz) and delta (2 Hz) frequency synchronization
indicated different time-courses of associations between func-
tional connectivity and intelligence for these two frequency
bands. In the alpha-band, there was no variance unique to
connectivity degrees in the time-window around P3 latencies.
More intelligent individuals showed lower functional connec-
tivity at frontal electrodes (r � �.19 to r � �.38) and greater
functional connectivity at parieto-occipital electrodes (r � .10
to r � .39) across the whole time-course of information pro-
cessing. In the delta-band, we observed variance unique to
connectivity degrees in the time-window around P3 latencies
only in a small number of topographically inconsistent elec-
trodes. More intelligent individuals showed lower functional
connectivity at central electrodes (r � �.30 to r � �.42) and
greater functional connectivity at lateralized parietal and
parieto-occipital electrodes (r � .18 to r � .35) specifically
during the earlier time window (0 – 335 ms). Moreover, they
showed lower functional connectivity at lateralized parietal and
parieto-occipital electrodes (r � �.21 to r � �.59) across the
whole time-course of information processing (captured in the
hierarchical latent variable). Taken together, these results indi-
cate that the chronometry of the observed association between
connectivity degrees and intelligence was specific to the theta-
band. Because long-range theta synchronization has been
shown to underlie cognitive control processes (Cohen, 2011;
Helfrich & Knight, 2016), these results therefore indicate that
more intelligent individuals benefit specifically from greater
functional connectivity underlying controlled processing.

Discussion

Individual differences in task-evoked global theta connectiv-
ity at midfrontal electrodes during later stages of higher-order
information processing explained 65% of the variance in fluid
intelligence. In comparison, task-evoked theta connectivity dur-
ing earlier stages of information processing was not related to
fluid intelligence. Taken together, these results suggest that
more intelligent individuals benefit from an adaptive modula-
tion of network dynamics during the time-course of information
processing, whereas less intelligent individuals experience a
slower and weaker modulation of functional network dynamics.
Because long-range theta synchronization plays a crucial role
for higher-order cognitive control processes (Cohen, 2011; Hel-
frich & Knight, 2016), these results support the idea that
individual differences in cognitive control during stimulus eval-
uation give rise to individual differences in intelligence. In
particular, our results suggest that, during stages of higher-
order processing, more intelligent individuals benefit from an
overall greater degree of node centrality in the theta-band,
which has been associated with higher-order cognitive control
processes (Cohen, 2011; Helfrich & Knight, 2016).

These results are consistent with predictions from the parieto-
frontal integration theory of intelligence (P-FIT; Jung & Haier,
2007), which proposes that effective interactions between fron-
tal and parietal brain regions underlie individual differences in
intelligence. Because synchronized theta activity has been as-
sociated with the coupling of frontoparietal and frontotemporal
functional networks (Güntekin & Başar, 2010; Harper et al.,

2017), our results are consistent with neuroimaging studies that
found associations between the connectivity of frontoparietal
cognitive control networks and intelligence (Cole et al., 2012;
Hilger et al., 2017b; Pineda-Pardo et al., 2016; Wendelken et
al., 2017) and support the notion that efficient information
transmission between these networks contributes to greater
intelligence.

However, the present study goes beyond P-FIT by accounting
for the temporal dynamics of functional network configurations
during the course of information processing. Our core hypoth-
esis was that global functional network dynamics are only— or
at least most strongly—related to intelligence when individuals
engage in higher-order information-processing. This hypothesis
was corroborated in the present study, in which we found
correlations between measures of functional connectivity dur-
ing higher-order processing and intelligence that were greater
than most previously reported correlations between functional
connectivity and intelligence in neuroimaging research (e.g.,
Cole et al., 2012; Hilger et al., 2017b; Pineda-Pardo et al., 2016;
Wendelken et al., 2017). By considering the time-course of
information processing in a cognitive control task, the present
study overcomes the limitations of resting-state fMRI data and
accounted for the task-evoked elicitation of network dynamics
and the suppression of ongoing activity in task-irrelevant areas
during attention-regulation (He, 2013).

This greater temporal resolution of intelligence-related func-
tional connectivity comes, however, with a loss of spatial
resolution in comparison to fMRI neuroimaging studies. Hence,
the present study does not speak to the question of which
specific brain area or spatially defined functional network may
act as an anatomical correlate of the midfrontal cognitive con-
trol hub associated with intelligence. Because our analyses were
conducted in sensor space, we cannot claim that the midfrontal
cognitive control hub we identified reflects the connectivity
degree of midfrontal cortical sources. Owing to the three-
dimensional propagation of dipolar fields of each brain region,
any activity recorded at head electrodes reflects a summation of
all active brain sources modified by their distance, orientation,
and the resistivity of various skull tissue compartments (Nunez
& Srinivasan, 2006). This is particularly problematic for
sensor-based connectivity analyses, because any pair of two
sensors can show temporal correlations even though their un-
derlying source activities are temporally unrelated (Schoffelen
& Gross, 2009). Therefore, we cannot conclude that the asso-
ciation between connectivity degrees and fluid intelligence
identified at the sensor level demonstrates that more intelligent
individuals benefit from a greater connectivity between mid-
frontal and other brain regions. However, despite the limited
spatial inferences permitted by the present sensor connectivity
analyses, previous studies employing sensor connectivity ap-
proaches have linked long-range midline theta connectivity to
task processes associated with the frontoparietal cognitive con-
trol networks (Güntekin & Başar, 2010; Harper et al., 2017).
Future studies using a higher electrode density could go beyond
these conclusions by conducting source-level connectivity anal-
yses (Schoffelen & Gross, 2009), which was not feasible in the
present study due to the low spatial sampling density of only
32 electrodes (Liu, Ganzetti, Wenderoth, & Mantini, 2018;
Ryynänen, Hyttinen, & Malmivuo, 2006; J. Song et al., 2015).
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Source-level connectivity analyses would allow to more accu-
rately identify brain areas underlying the cognitive control hub
associated with intelligence found in the present study. Because
of the advantages of source-level over sensor-level analyses of
functional connectivity (Schoffelen & Gross, 2009), it would be
very promising for future studies to combine neuroimaging and
electrophysiological measurements of cognitive processing or
to use source modeling to localize intelligence-related differ-
ences in functional connectivity both in time and space. Al-
though volume conduction may have affected our estimates of
source-level connectivity, it is still interesting that the associ-
ation between fluid intelligence and connectivity degrees was
specific to frontal seed-electrodes and a time window associated
with higher-order processing. To explain such a specific effect
of volume conduction, the underlying generators would have to
show a complex dipole structure that induced coherence of the
sensor time series in such a way that we identified a frontal hub
in this specific time window. This specificity of time and
topology in our results makes a compelling case for repeating
these analyses using a data set with higher electrode density to
identify intelligence-related measures of functional connectiv-
ity in source space.

Can the Association Between P3 Latencies and Fluid

Intelligence Be Attributed to Individual Differences in

Functional Network Dynamics?

We found evidence that about 20% of the association be-
tween P3 latencies and intelligence could be explained by
individual differences in connectivity degrees in the theta band.
This result is consistent with previous studies reporting a close
link between attention selection and target-related memory up-
dating during the P3 and theta synchronization at frontoparietal
and frontotemporal electrode sites (Güntekin & Başar, 2010;
Harper et al., 2017). In particular, increases in theta-band
connectivity following novel and infrequent targets during an
oddball task have been suggested to reflect functional network
dynamics underlying the P3 (Harper et al., 2017). However, our
results suggest that only some part of the association between
P3 latencies and intelligence could be explained by individual
differences in functional connectivity, as the correlation be-
tween mental speed and mental abilities remained significant
after controlling for frontal midline theta connectivity degree.
Moreover, individual differences in functional connectivity and
in P3 latencies only shared about 11% of variance, suggesting
that they measured largely independent neurocognitive pro-
cesses contributing to human intelligence. Therefore, other
genetic, neural, or cognitive processes need to be considered to
comprehensively understand the neurocognitive mechanisms
underlying the relationship between P3 latencies and general
intelligence. This finding is consistent with a watershed model
perspective on human intelligence (Kievit et al., 2016), which
suggests that fluid intelligence is an observable phenotype that
is affected by many small, independent genetic factors that
exert their influence on fluid intelligence through a series of
intermediate neural and cognitive endophenotypes. Hence, a
larger number of underlying neural processes may contribute
independently to shorter P3 latencies, which may in turn facil-

itate information processing in working memory and thus affect
performance in intelligence tests.

Implications for Theoretical Accounts of Intelligence

By analyzing the chronometry of task-evoked functional con-
nectivity associated with cognitive control, we overcame prob-
lems associated with the measurement of individual differences
in cognitive control on a behavioral and neurocognitive level.
Because our measures did not rely on individual differences in
experimental effects and because connectivity degree measures
derived from EEG recordings allowed to capture task-evoked
fluctuations in functional connectivity with a high temporal
resolution, we were able to show that neural correlates of
cognitive control processes during stages of higher-order pro-
cessing explained 65% of the variance in fluid intelligence. To
demonstrate the specificity of our results for functional network
dynamics associated with controlled processing, we showed
that the association between midfrontal global connectivity
during stages of higher-order processing and fluid intelligence
was specific to the theta-band and did not generalize to other
frequency bands that have been associated with different cog-
nitive processes such as the alpha- and delta-band (Cohen,
2011; Helfrich & Knight, 2016). Taken together, we have
provided an alternative to the problem-riddled measurement of
individual differences in cognitive control that allowed us to
find substantial associations between neural correlates of cog-
nitive control and fluid intelligence.

Our results therefore support theoretical accounts of intelli-
gence which suggest that individual differences in cognitive
control processes contribute to individual differences in cogni-
tive abilities (Engle, 2018; Kovacs & Conway, 2016, 2019). In
particular, our results are consistent with process overlap theory
(Kovacs & Conway, 2016), which aims to identify cognitive
processes giving rise to individual differences in general intel-
ligence and by doing so bridges the fields of cognitive psychol-
ogy, individual differences research, and psychometrics. In
detail, process overlap theory proposes that domain-general
executive processes play a crucial role for individual differ-
ences in general intelligence by acting as a bottleneck con-
straining performance in a great number of cognitive tasks. Our
results underline the role of cognitive control processes in
human intelligence and demonstrate that more intelligent indi-
viduals benefit from a more efficient neural organization of
long-range information transmission and from faster neural
processing specifically during stages of information-processing
associated with higher-order cognitive control processes (Co-
hen, 2011; Helfrich & Knight, 2016).

Limitations

One limitation of the present study is that both connectivity
degrees and P3 latencies were only measured in a single cognitive
control task. Previous research has suggested that neurocognitive
correlates of intelligence only exhibit trait-like properties (i.e.,
show temporal stability and transituational consistency) if mea-
sured in a wide array of experimental tasks (Schubert, Frischkorn,
Hagemann, & Voss, 2016; Schubert et al., 2017). Although first
studies on the reliability of graph theoretic measures derived from
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EEG reported acceptable test–retest correlations suggesting a high
temporal stability (Hardmeier et al., 2014; Kuntzelman & Misk-
ovic, 2017), it is not yet known to what degree these measures
contain task-specific and task-invariant portions of variance.
Hence, future studies should consider using a broader set of
experimental tasks to more reliably capture a consistent and task-
invariant measure of functional connectivity in latent variable
models.

The shifting task used in the present study was chosen because
it is optimally suited for task-related EEG recording and has been
successfully used in previous electrophysiological studies to mea-
sure functional connectivity between prefrontal and posterior elec-
trode sites (Frischkorn et al., 2019; Sauseng et al., 2006). Individ-
ual differences in global theta connectivity in this task are likely to
reflect top-down activation and transfer of information between
memory systems (Sauseng et al., 2006), resulting from the engage-
ment of executive control processes (Monsell, 2003), the inhibition
of interference from persistent task activations (Koch, 2005), the
updating of associations between stimulus and response represen-
tations (Wylie & Allport, 2000), and/or the updating of event files
(Hommel, 2019). These cognitive processes are likely to reflect
some of the most elementary components of the concept of cog-
nitive control, but many more tasks that tap into overlapping and
different executive processes are available. Because there is cur-
rently no consensus regarding the best measures of cognitive
control (Draheim, Tsukahara, et al., 2019; Hedge et al., 2018; Paap
& Sawi, 2016; Rey-Mermet et al., 2018; Rouder & Haaf, 2019;
Schubert & Rey-Mermet, 2019), it would be important to demon-
strate that the association between functional connectivity and
fluid intelligence found in the present study can be generalized to
other measures of cognitive control. One of the most established
measures of cognitive control is the antisaccade task, in which
participants have to inhibit a prepotent saccade response toward a
lateralized cue and make a voluntary saccade to the opposite side
to identify a briefly presented target stimulus (Draheim, Tsuka-
hara, et al., 2019; Kane, Bleckley, Conway, & Engle, 2001; Rey-
Mermet et al., 2018). Because cue-evoked saccades evoke strong
electrophysiological activity (i.e., ocular artifacts) that cannot be
easily distinguished from genuine neural activity when locked to
cue onset, however, the antisaccade task is ill-suited for electro-
physiological studies. Therefore, future studies should employ a
diverse set of different cognitive control tasks tapping different
executive functions that are suited for electrophysiological re-
search (e.g., flanker task, negative priming task, number-letter
task, running span task, keep track task . . .) to evaluate the
generalizability of our results.

Moreover, it could be argued that the correlation between con-
nectivity degrees and fluid intelligence may only reflect a corre-
lation between P3 amplitudes and fluid intelligence, as an increase
in P3 amplitudes would be associated with greater phase-
synchronization spreading out from the seed region due to volume
conduction. However, this is unlikely because we calculated con-
nectivity degrees based on the PLI, which is an index defined to be
insensitive to volume conduction (see Methods section for details).
Moreover, P3 amplitudes were not related to individual differences
in connectivity degrees during the relevant time window, r � .05,
p � .749. Therefore, it is very unlikely that individual differences
in connectivity degrees reflected individual differences in P3 am-
plitudes attributable to effects of volume conduction.

Finally, although our sample size was rather large in comparison
with other electrophysiological studies and sufficiently powered
for the hypothesis of close fit, it was still comparatively small
given the complexity of the estimated structural equation models.
To assess the robustness of our findings with regard to different
model specifications, we refitted all models with factor loadings
fixed to 1 and residual variances of observed variables constrained
to be equal within each variable domain (i.e., connectivity degrees,
intelligence test scores, RTs, P3 latencies) to reduce model com-
plexity. All these parsimoniously specified models provided an
excellent account of the data except for one, which (i.e., the one
presented in Figure 4A) could not be identified because the cova-
riance matrix of latent variables was not definite positive. Except
for this model, all main results closely resembled the results of the
more complex models reported in the results section. Although this
reanalysis demonstrates the robustness of our findings with regard
to model specifications, it is nevertheless important to note that
parameter estimates contained a substantial degree of estimation
uncertainty as reflected in relatively large confidence intervals.
Therefore, point estimates of correlations may have been over- or
underestimated. To generate more precise estimates of the effect
sizes, it would be important to replicate our results in an indepen-
dent and ideally larger sample.

Conclusions

Taken together, by considering the chronometry of intelligence-
related differences in task-evoked functional connectivity, we have
demonstrated that intelligence-related differences in global theta-
band synchronization emerged during later stages of higher-order
information processing linked to the P3 time window. Individual
differences in global theta connectivity at midfrontal electrode
sites during this time window explained 65% of the variance in
intelligence differences. These results suggest that more intelligent
individuals benefit from an adaptive modulation of theta-band
synchronization during the time-course of information processing,
whereas less intelligent individuals experience a slower and
weaker modulation of functional network dynamics. In particular,
they suggest that more intelligent individuals benefit from an
overall greater degree of node centrality at midfrontal electrodes in
the theta-band, which has been associated with higher-order cog-
nitive control processes (Cohen, 2011; Helfrich & Knight, 2016),
during stages of higher-order processing. Moreover, they empha-
size the role of interregional goal-directed information processing
for cognitive control processes in human intelligence and support
theoretical accounts of intelligence which suggest that individual
differences in cognitive control processes act as a domain-general
bottleneck constraining performance in a variety of cognitive
ability measures.

Context

The initial idea for this article arose from our search for brain
properties that may contribute to the association between neural
processing speed and intelligence. In an experimental investiga-
tion, we failed to observe a positive effect of nicotine administra-
tion on participants’ intelligence test scores despite positive effects
on the speed of information-processing (Schubert, Hagemann, et
al., 2018). We therefore concluded that structural or functional
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brain properties may give rise to the substantial association be-
tween neural processing speed during stages of higher-order
information-processing and intelligence (Schubert et al., 2017).
Because P3 latencies have been associated with the efficiency of
information transfer from frontal attentional networks to temporal-
parietal process of memory storage (Polich, 2007), we decided to
investigate the role of attentional and cognitive control processes
in intelligence differences and their contribution to the association
between neural processing speed and intelligence. Owing to well-
known problems with the measurement of cognitive control on a
behavioral level (Frischkorn et al., 2019; Gärtner & Strobel, 2019;
Hedge et al., 2018; Rey-Mermet et al., 2018, 2019; Rouder &
Haaf, 2019), we used midfrontal connectivity degrees in the theta
band as a neural correlate of cognitive control with a high temporal
resolution.
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