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A B S T R A C T

The Flynn Effect (FE; Flynn, 1984, 1987) is the decades-long increase in measured mean IQ of approximately 1/3 point per year, observed in industrialized nations

over the course of at least a century. An obvious and practical implication of the FE is that the FE can cause test norm obsolescence. If norms from 1970 were used

today, the average score would be approximately a standard deviation above the original mean. A more subtle effect was suggested by Mingroni (2007): Age-normed

tests could have a FE “built-in” through the norming process. His observation can be true in any case where there are cohort differences (between- or within-family);

it is almost certain to occur in cases where cross-sectional samples are used to age norm in the presence of cohort effects. We illuminate this process in several ways,

because it can significantly impact longitudinal research. If the “built in FE” hypothesis is supported, then the FE potentially affects resulting scores assigned to test-

takers from all age-normed cognitive tests exhibiting a FE. A series of graphic simulations demonstrate the logic. Following, analysis of the National Longitudinal

Survey of Youth Children data suggest that the Flynn Effect is indeed built into the PIAT-Math scores.

1. Introduction

The Flynn effect (e.g., Flynn, 1984, 1987; Lynn, 1983) is the long-

itudinal increase in measured IQ over the past century. Many me-

chanisms/potential theories have attempt to explain the Flynn effect,

including improved nutrition (Lynn, 2009), improved test taking stra-

tegies (Brand, 1987), changes in life history (Woodley, 2012), improved

niche picking (Dickens & Flynn, 2001), and heterosis (Mingroni, 2007).

More recently, a peak and subsequent decline in the Flynn effect has

been noted in several countries (see Teasdale & Owen, 2008 for early

documentation, and Dutton, van der Linden, & Lynn, 2016, for review).

A number of authors have noted methodological challenges associated

with studying the Flynn Effect (e.g., Rodgers, 1998; Rodgers, 2015).

Starting with Flynn's (1984) original paper, studying the Flynn effect is

associated with an important set of questions: Is the increase “real”, i.e.,

is it the result of actual increases in cognitive ability? More recently, is

the decline noted in some countries an indication of a true turn-around

in cognitive ability? Ultimately, can we identify the cause(s), and will

that identification have implications for how we evaluate and under-

stand human intelligence?

A subtle and problematic methodological mistake in the behavioral

science literature is to interpret a cross-sectional age effect as though it

is a longitudinal within-person pattern. This mistake can easily happen

when respondents are individuals of different ages obtained and mea-

sured in a cross-section. Interpreting cross-sectional age comparisons as

though they are age-related within-person changes to be expected

across time is an incorrect logical inference. Nevertheless, the psycho-

logical (and other) literature is filled with examples of that incorrect

logic. The primary reason this logic is fallacious is that at a given point

in time, 20- year-olds have aged through an entirely different world

than 40-year-olds or 60-year-olds. If the 20-year-olds of 40 years ago

are different from today's 20- year-olds, we obviously can't expect to-

morrow's 60-year-olds to be the same as today's. Importantly for the

present paper, the cross-sectional methods that assume age differences

are the same as age changes are highly related to the same methods

used to age norm testing instruments.

There are many reasons that persons of different ages are expected

to differ, beyond developmental differences. Schaie (1986, 1994)

identified a number of processes potentially causing these differences,

including changes in childrearing practices, improved health care,

changes in the educational system, and shifts in public policy innova-

tions. The Flynn effect can be shown on logical and empirical grounds

to cause confounding in cross-sectional studies of aging. Dickinson and

Hiscock (2010) compared 20-year-olds to 70-year-olds in terms of

verbal and performance-related IQ scores on different versions of the

WAIS. Of course, the 20-year-olds performed better; the typical inter-

pretation would attribute that finding to the well-documented decline

in IQ (and subscales) that occurs within individuals as they age. But

Dickinson and Hiscock posited that the Flynn effect might be at work.

Their estimates show that around 85% of the supposed within-person

decline in performance was due to the Flynn effect, not within-person

change.
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Mingroni (2007) noted how the Flynn effect could result in age

differences that are independent of actual developmental differences:

“…consider a test like the WISC (Wechsler, 1991), which has age

appropriate norms for children between the ages of 6 and 16. If

these norms were generated in, say, 1970, then the 6-year-old norm

would likely have been derived from children in the 1964 birth

cohort, but the 16-year-old norm would have been derived from the

1954 birth cohort. A 3-point Flynn effect between the two cohorts

would make the 6-year-old norm 3 points more difficult, on average,

because it was generated using a later born, and hence higher per-

forming, cohort.” (Mingroni, 2007).

In other words, Mingroni's suggestion implies that a cohort differ-

ence due to the Flynn effect could be embedded within a test that has

been age normed using a cross-sectional sample. As a result, apparent

differences across ages, across groups, or due to treatments, could be at

least partially reflecting the Flynn effect, and not the processes that

were studied. In a similar vein, Rodgers (2014) noted that the well-

researched negative birth order relationship with intelligence can also

be an artifact caused by the Flynn effect, with cross-sectional research

confounding cohort differences with age differences. Our goal in the

current paper is to evaluate empirically whether the effect proposed by

Mingroni can be observed within the PIAT-Math instrument, taking

advantage of the knowledge that the Flynn effect is already identified in

this measure.

We know empirically from Dickinson and Hiscock (2010) and

Rodgers (2014) that some well-known patterns are at least partially

artifacts of the Flynn effect. We know from Mingroni that there are

conceptual reasons to believe that the Flynn effect may be embedded

within well-known intelligence (and other) instruments. In what in-

struments? Can it be identified empirically? How does it become em-

bedded within a test? We address these questions in this paper.

2. Background

In this section, we present two motivations for our empirical ana-

lyses. First, we discuss conceptually how the Flynn effect can become

embedded within a test. Second, we present several graphical results

from simulations that show empirically how this embedding process

can occur. To show that it can occur does not necessarily mean that it

has or routinely will occur (though it implies that it likely has oc-

curred). In the empirical part of our paper, we demonstrate that such

embedding can be observed in a well-known dataset.

2.1. Age norms

Across ages, we expect differences in cognitive performance due to

development. If an IQ or an achievement test is administered to kin-

dergartners, 6th graders, and 12th-graders, we expect different per-

formance at different ages. Age norms are designed to equate scores

across ages. A 6-year-old who scores 100 on an IQ instrument is con-

sidered to have scored at approximately an average level; a 12-year-old

who scores 100 on the same instrument is also considered to be ap-

proximately average. But because of development, a higher perfor-

mance level is required to be average for a 12-year-old than for a 6-

year-old. But by using age norms, researchers can more effectively

compare performance across ages.

A “built-in” embedded Flynn Effect comes about because the mean

differences between age group performance is assumed to be caused by

development – refer to that developmental difference as d. This value d

is represented as a positive mean shift for an older age groups, and is

what age norms are supposed to account for. However, there is another

factor at play: the negative effect for older cohorts caused by the Flynn

Effect. We will call this change f. During most of the past century, the

Flynn effect has caused scores to move in the opposite direction to

development (although recently, the Flynn effect in some locations may

have reached an asymptote, and even turned slightly negative; see

Fig. 1. This figure shows the results of test norming for a test that measures development and has no between cohort differences. Any differences in the plot are due

either to age or jittering.
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Dutton et al., 2016). When norms are created using cross-sectional data,

instead of correcting solely for development, d, the actual correction

will be d-f, the observed ability difference between younger and older

cohorts. This re-norming process will have the effect of biasing age-

based norms downward (in areas with a negative Flynn Effect the im-

pact is reversed). The existence of the f component, combined with the

age-norming process, is the component to which Mingroni (2007) re-

ferred. But few researchers or test users seem to be aware of the dif-

ference between d and d-f.

2.2. Graphical Portrayal

We present several figures, based on the simple model above, to

visualize the effects previously described. In the first set of patterns,

assume a true, linear, within-person effect (development, d). There is no

systematic between-cohort effect (in graphing, the cohorts are jittered

to allow the plots to show each cohort separately). In Fig. 1a in-

dividual's scores are plotted against individual ages. Each line re-

presents a single individual, and each individual is from a unique co-

hort. Differences between cohorts are due to jittering in the plot, and

are what cause the separation between individual lines in Fig. 1a. In

Fig. 1b we see what each individual's scores look like if we plot over

period (year) instead of over age. Each individual has identical within-

person patterns of effects, and scores increase linearly with age and

time; the increase in scores due to d. Assume that individuals are

measured in a single year, year 13. If we wished to adjust for age effects

in the typical way, we could use this cross-section to establish age

norms. Fig. 1c shows the age-normed scores. The third panel (Fig. 1c)

shows what we would usually hope to achieve with age-norming, with

the within-person slope of 0. This pattern reflects the reality that, apart

from development, a person's scores are not changing over time.

The panels in Fig. 2 show a different pattern. This case illustrates a

systematic cohort difference of 0.30 points (a Flynn effect) for each year

later that a person was born, what we refer to above as f. However,

there is no within-person change, d, as we can see in Fig. 2a (note that,

as in Fig. 1, each line represents an individual, and shading distin-

guishes cohorts). In Fig. 2b we have plotted each person's score by year

of observation. In year 13 we have measured an observation from each

cohort, which also corresponds to an observation for each age. We can

norm our scores using this sample (as we would in a standard cross-

sectional age norming), resulting in Fig. 2c. In Fig. 2c a spurious within-

person effect has arisen because we have built-in the cohort differences

into our age norms. It appears that as individuals age they score better

and better on our test. In this case development, d, is zero and has no

impact on a person (Fig. 2a), and over time an individual has no other

change (Fig. 2b), yet if we observed a person over time using age norms

we would see apparent change within-person (Fig. 2c) because of f.

The third set of plots demonstrates what we expect in the case of a

cohort based Flynn effect, f, combined with true development, d.

Within-person there is an effect of age of 0.50, we consider this de-

velopment d (Fig. 3a). There is also an additional effect for cohort, f,

seen in the separation of cohorts in Fig. 3a. This cohort effect is such

that being born one year later results in a 0.3 point increase in scores.

This scenario is essentially a combination of the effects from the pre-

vious two sets of figures. Again in year 13 there is overlap between all

the cohorts and we can “norm” the scores by age (Fig. 3b). As happened

in the pure cohort effect case there is still a within-person effect after

age norming the tests. This again is the built-in Flynn effect, which we

see in Fig. 3c. In fact, the observed within-person change in scores is

exactly equal to the between-cohort difference of 0.3. This is the pattern

of effects that we believe to be most plausible (i.e., true development

mixed with cohort effects).

A reviewer noted that the Flynn effect may not be strictly linear.

This is in line with current research (e.g., Pietschnig & Voracek, 2015),

although we note that in reported meta-analyses the Flynn effect is still

largely monotonically increasing. However, the non-linearity of the

Flynn effect has little bearing on the present discussion, as non-linear

effects are as easily built into a test as linear ones.

The logical conclusion of the simple model and graphical results

presented in this section is that, in the presence of a cohort based se-

cular trend like the Flynn effect, age normed tests that use cross-sec-

tional data will inevitably “build-in” the effect into the age norms. The

argument for a built in Flynn effect is based on logic; the purpose of this

paper is to develop this logic, and to demonstrate a case using empirical

analysis in which this result has actually happened. The methodological

basis for our study emerges from the presentations above.

We will search empirically for an embedded Flynn effect by looking

at within-person changes in the NLSY PIAT-Math data. An embedded

Fig. 2. This figure shows a test with no within-person development, but between-cohort differences. The result of norming is a within-person slope.
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Flynn effect will show up across an individual's scores over time.

However, there exist other explanations for a within-person increase,

and these explanations should be evaluated as well. First, development

could exist, however the age norming is supposed to eliminate the de-

velopment that occurs in within-individual scores, although if age

norms were set incorrectly development may not be fully accounted for.

Second, there can be practice effects, caused by “learning a test,” if

individuals take the test more than once. Thus, in our analysis – defined

in the Methods Section below – we will outline two analytic efforts: (1)

We will evaluate whether our cognitive ability measure has a within-

person trend; and (2) We will rule out two alternative explanations

(development and practice) for that within-person trend.

3. Methods

3.1. Participants

Participants were respondents from the National Longitudinal

Survey of Youth – Children (NLSYC; Bureau of Labor Statistics, 2014b)

survey between the ages of 5 and 13 during the survey years from 1986

through 2014. These children were the children of women from the

National Longitudinal Survey of Youth 1979 (NLSY79; Bureau of Labor

Statistics, 2014a) sample. The NLSY79 sample was a household prob-

ability sample representative of the adolescent population of the United

States on December 31, 1978. In addition, the survey design included

an oversampling of poor, minority and military respondents in the

NLSY79 sample, whose children are represented in the NLSYC sample

until 1992 (at which point many of the respondents were dropped for

budgetary reasons). The inclusion of the non-representative portion of

the sample in our analyses is acceptable because, although there may be

mean differences between the groups, age-based differences should be

largely unaffected. The primary analyses occur within person and these

should not be substantially affected if there are (non-cohort based)

group mean differences; only age based differences should affect these

within-person results. Informed consent was obtained from all partici-

pants at the beginning of the study in accordance with the U.S. Office of

Management and Budget and the U.S. Bureau of Labor Statistics. Ana-

lysis of the publically available, deidentified, data was declared to be

IRB exempt by the Vanderbilt University IRB.

In the present sample there were 9173 children with PIAT-Math

scores, with an average of 3.34 observations per child, resulting in

30,664 total observations. In the child sample, 49.0% of the children

were female, 51.0% were male. The child's race and ethnicity was based

on their mother's report, with three categories: Hispanic, Black, and not

Hispanic/not Black. In our sample 20.6% were Hispanic, 30.5% were

Black and the remaining 48.9% were non-Hispanic-non-Black. The age

of participants was limited between 5 and 13 inclusive, through the

design of the NLSYC survey. Data have been collected biennially

starting in 1986. For the PIAT-Math instrument, data are available from

1986 through 2014.

3.2. Measures

The primary measure of interest in this study is the Peabody

Individual Achievement Test – Math subscale (PIAT-M; Dunn &

Markwardt, 1970). The PIAT-Math is an age normed test of mathema-

tical reasoning and ability for children. The original norms were used

throughout the whole NLSYC survey (for comparability), despite the

introduction of new norms in 1986. The new norms were introduced

too late to be incorporated at the beginning of the study and for con-

sistency the old norms were used throughout. In the present study only

the PIAT-M scores, child's year of birth, and the year of test adminis-

tration for each PIAT-M score, are needed. The primary focus regards

within-person change; higher level variables are generally unnecessary

for answering this specific question.

3.3. Design

This study requires an age-normed measure exhibiting the Flynn

effect (in order for there to be a built-in Flynn effect, there must first be

a Flynn effect). The PIAT-M satisfies this goal, as it is an age-normed

test with the means for every age set equal. Further, the PIAT-M has

shown a Flynn Effect in past research (see, Ang, Rodgers, & Wänström,

2010; Rodgers & Wänström, 2007). In addition to the measure, long-

itudinal data are necessary to test the hypothesis that individual scores

increase as children grow older, and pass through age norms. The

Fig. 3. This figure shows a test with both a developmental effect and a between-cohort effect. After norming a within-person effect is observed due to the cohort

differences.
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National Longitudinal Survey of Youth-Children (NLSYC) provides an

ideal dataset of more than 30,000 PIAT-M observations. We outlined

three potential causes of a within person increase in PIAT-M scores: a

built-in FE, inadequate norming to wash out a developmental effect,

and practice effects. Each of these effects may be evaluated within the

design of the NLSYC. Prior to testing for additional effects we will en-

sure that the age norms are set properly. If the age norms were set

improperly (e.g., the mean score of 13 year olds was set too high), an

apparent within-person increase in scores could occur. We can easily

remedy the problem by creating our own sample-based age norms.

3.4. Models

The following models illustrate the multi-level analysis that will be

used to answer the questions necessary to determine whether or not the

Flynn effect was built-in to the NLYSC PIAT-Math. The explanation of

these models is relatively brief; further discussion can be found in the

appendix. The first two models (Model 1 & 2) test for an age effect

within-individual. This is the most basic requirement. If there is no

within-individual age effect at all then it is not relevant to attempt to

extract a cause for the change. The two models differ in that the first

includes all random effects (slope and intercept) whereas the second

only includes a random intercept. The different models were included

for practical purposes as in the actual model fitting we encountered

estimation difficulties with the original (Model 1) formulation.

Model 1: Multilevel model of the overall age effect, with random

and fixed effects. Score is PIAT-Math score, age is age at measurement.
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Model 2: Multilevel model of the overall age effect, with random

intercept and fixed slopes. Score is PIAT-Math score, age is age at

measurement.

= + ∗ +score β β age eijk jk ijk ijk0 100

= +β β ujk k jk0 00 0

= +β β uk k00 000 00

= + ∗ + + +score β β age e u uijk ijk ijk jk k000 100 0 00

e N σ~ (0, )ijk
2

u N τ~ (0, )jk0 00
2

u N τ~ (0, )k00 000
2

The third model (Model 3) attempts to evaluate whether or not the

age effect is due to typical development. If development is the sole

cause of the age effect then we would expect that, all else being equal,

older children should perform better than younger children and older

families should perform better than younger families. This analysis,

using the same data, has already been reported in O'Keefe and Rodgers

(2017); only the within-person age effect was present. Here we present

a condensed version of that model looking only at age effects. Age is

group mean centered within each child and then the child mean ages

are group mean centered within family; group mean centering is in-

dicated by dots above the relevant variable. To identify that develop-

ment is the cause of the within-person effect we would expect sig-

nificant effects for all components of the age variable (means and mean

centered components), and we would expect those values to be ap-

proximately equal to the magnitude of the overall Flynn effect.

Model 3: Multilevel model of Piat-Math scores by age. Age is group

mean centered at the child and family level. This model has a random

intercept and fixed slopes.

= − +age age age agė ( ¨ )ijk ijk jk k. ..

= −age age age¨ jk jk k. . ..

= + ∗ + ∗ + ∗ +score β β age β age β age ė ¨ijk jk ijk jk k ijk0 100 200 . 300 ..

= +β β ujk k jk0 00 0

= +β β uk k00 000 00

= + ∗ + ∗

∗ + + +

score β β age β age β

age e u u

̇ ¨ijk ijk jk

k ijk jk k

000 100 200 . 300

.. 0 00

e N σ~ (0, )ijk
2

u N τ~ (0, )jk0 00
2

u N τ~ (0, )k00 000
2

Models 4 through 7 attempt to disentangle practice effects. If there

were a practice effect, then because of the design of the NLSY-C, there

are two age groups whose level of practice diverges over time. The five

and six year olds have never taken the test before and this is true in

every interview period. Conversely, in the first year of interviews the 12

and 13 year olds have also never taken the test, but with each passing

year they have subsequently more practice (the 13 year olds in the

second round of surveys had taken the test at 11, in the third round of

surveys the 13 year olds had taken the test at ages 9 and 11 etc.) This

feature of the design means that, if practice is the true cause of the

within-person effect, then the five year olds and the 13 year olds should

have different slopes. This is simply a preliminary model and so only

the 5 and 13 year olds are used as they provide the longest timeframe to

examine (Model 4). Models 5 through 7 use an explicit measure of

practice effect (the count of previously administered tests), and look to

see if any practice effect is reliable across levels. A solely within-person

practice effect without higher order effects cannot be a practice effect

(but can be explained by a built-in Flynn effect).

Model 4: Model of the PIAT-Math looking for interaction effect

between age at observation and year of observation. Random intercept

and fixed slopes are modeled.

= + ∗ + ∗ + ∗ ∗ +score β β age β Year β age Year eijk k ik ik ik ik ik0 10 20 30

= +β β uk k0 00 0

= + ∗ + ∗ + ∗

∗ + +

score β β age β Year β age

Year e u

ijk ik ik ik

ik ik k

00 10 20 30

0

e N σ~ (0, )ijk
2

u N τ~ (0, )k0 00
2

Model 5: Model of PIAT-Math residualized on year of observation.

This model directly evaluates practice effects using a count of prior

testing administrations. Random intercept and fixed slopes are
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modeled.

= + ∗ +residual score β β practice eijk jk ijk ijk0 100
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2

Model 6: The model is similar to model 5, except that practice ef-

fects are group mean centered at the child and family level. Random

intercept and fixed slopes are modeled.
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= −practice practice practice¨
jk jk k. . ..
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Model 7: Model of the PIAT-Math using centered practice variable

and year of observation. Random intercept and fixed slopes are mod-

eled.
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4. Results

All analyses were conducted using R and applicable R packages. In

particular, the lme4 package was used for multilevel analyses (Bates,

Mächler, Bolker, & Walker, 2014). All multilevel models utilized re-

stricted maximum likelihood (reml) for model fitting. Code for the

analyses is available in appendix A. The data as structured for these

analyses are freely available from the author upon request, and also are

freely available on the internet from Center for Human Resource Re-

search, who manages the NLSY datasets. The data can be easily ac-

cessed by googling “NLSY, Bureau of Labor Statistics”, or by going to

nlsinfo.org.

The first analysis in this paper will establish age norms for the PIAT-

Math. The PIAT-Math has pre-existing age norms. However, to account

for the possibility that the norms may be off slightly, due either to

random fluctuations in the original norming sample or to a poorly

executed norming procedure, we used the NLSYC to reset the norms.

The renorming process used the observations from the 1986 survey.

This was the first year of the NLSYC survey and thus avoids any practice

effects (and it also avoids the inclusion of the same individual twice or

more, which would occur if the whole dataset were used). The means

and standard deviations for all age groups between 5 and 13 were used

to age standardize all observations in the data set. Thus, all 5 years olds

were norm referenced to the age 5 sample mean/standard deviation in

1986; all 6 years olds were norm referenced to the age 6 mean/standard

deviation in 1986; etc. There were 1874 observations available as a

norming sample with a minimum of 32 observations for the 13-year-old

group and a maximum of 462 observations in the six-year-old group.

The median number of observations per group was 176. As expected

(due if for no other reasons to developmental increase in math ability)

the mean raw score increased monotonically across these ages.

Although it is possible that this norming could result in unaccounted

disparities between age groups in ability, unrelated to the Flynn Effect,

there are two reasons to believe that this will not significantly impact

our conclusions here. First the original principle is still the same: norms

based on cross-sectional observations do not account for ability differ-

ences between cohorts in addition to developmental differences, and

will result in an apparent within-person effect regardless of any real

existence of that effect. Second, the work in O'Keefe and Rodgers (2017)

already demonstrated, using the original PIAT-Math norms, that the

Flynn Effect operates in such a way that we would expect cohort dif-

ferences in ability. We use both the original age norms and the re-

normed version of the PIAT-Math (scaled to have a baseline mean of

100 and baseline standard deviation of 15) in all subsequent analyses as

a check to ensure that an improper age norming process is not the

primary driver of the relevant results.

After renorming the PIAT-Math, all available data were analyzed

using multilevel modeling for children ages 5–13 looking at the possi-

bility of an age effect. Using two models (Model 1 & Model 2, as spe-

cified above), one with fixed and random slopes for age and one with

only fixed effects, the age effect was statistically significant (t > 8.5,

p < .001). Two models were used because the model with random

slopes produced software warnings. Results for fixed effects for model 2

can be found in Table 1. Although we omit the effects for model 1

(because of the issues in computing the model) the effects that were

recovered were numerically nearly identical to the effects reported in

Table 1

Model 2, fixed age effect, estimation results.

Effect Standard error t-statistic p value

Original norms NLSY norms Original norms NLSY norms Original norms NLSY norms Original norms NLSY norms

Intercept 98.46 105.83 0.26 0.34 376.80 310.90 < 0.001 <0.001

Age 0.29 0.28 0.02 0.03 12.92 9.44 < 0.001 <0.001
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Table 1. In both cases the age effect was approximately 0.3 points per

year of age, virtually identical to the commonly cited size of the Flynn

Effect.

Further extending the model without random slopes to include child

and family mean centered ages (Model 3) did not change the within-

person effect for age substantially, although the child and family level

variables had negative coefficients with t values less than −3.5 in the

NLSY normed sample (Table 2). Overall these results indicate that there

is a positive within person effect for age even after the scores have been

set to have the same mean and variance for all ages. Importantly, the

lack of positive effects at the family and child level suggests that this is

not due to incorrect norms or child development. If the within-person

result was due to incorrect norms or development we would expect a

child and family level effect as well (i.e., older children scoring better

on average, and families with older children scoring better).

The second component of this study tests for practice effects using

two methods. The first tests for a positive age by year interaction among

5 and 13 year-old participants from 1986 to 1992. Because age 5 is the

first interview, a practice effect is implausible for 5 year olds, and any

slope corresponds only to the FE. Between the years of 1986–1992 each

subsequent cohort of 13 year olds had more test experience than the

previous cohort (on average), their slope is a combination of the FE and

increased practice effects. To maintain independence between the two

groups, the 1994 cohort of 13 year olds is omitted because it consists of

the 5 year olds from 1986. This structure also implies that we should

use a two, not three, level model (we only need to account for non-

independence due to family clustering, not repeated measurement). If

practice effects exist they would manifest as an interaction, and the

slope for 13 year olds would be steeper than that of 5 year olds (a

positive interaction). A multilevel model (Model 4; Table 3) accounting

for family clustering found a small negative interaction (t = −2.26).

This result implies that there is not a detectable practice effect in this

analysis.

A second test for a practice effect uses the whole dataset. By

counting the number of times a given child is administered the PIAT-

Math we can obtain a direct estimate of their practice. The drawback to

this method is that children may have uneven spacing between practice

rounds if they miss a survey round. The first analysis involved re-

sidualizing the normed scores on year using a linear regression model.

It makes sense to control for year of testing because the Flynn Effect is

known to exist in these scores and because only with subsequent rounds

could children have practice. It would be misleading to not control for

the passage of time when accounting for practice in light of the Flynn

Effect. Because these scores are age normed, it makes little sense to

residualize on age. If a count of the number of times a child had taken

the PIAT-Math (Model 5; Table 4) is included in a three level model

there is a slight negative effect for practice, and if that same variable is

group mean centered (Model 6; Table 5) the effect is still negative

within person. A final model (Model 7; Table 6) does not residualize

PIAT-Math scores on year of testing but instead includes it as a control

variable. In this model year of testing has a significant positive effect of

about 0.39 (t = 14.98, p < .001; a Flynn effect) and the within person

component of practice is negative, showing no practice effect

(t = −1.17, p > .05), however, this effect was statistically sig-

nificantly different from what would be predicted if practice was ac-

counting for the within person effect, an effect of at least 0.60, t= 8.46,

p < .001. The effect must be at least 0.60 because the year over year

gain is 0.30. With biennial testing the gain for each increment of

practice must be at least double the annual gain. It should be noted that

in models six and seven, which group mean centered practice, there was

a positive effect for practice at the group levels (family and child),

however this effect would not explain a within person effect, only a

mean difference between children and families. For the present analysis

these findings are uninformative.

Although renorming could account for issues with the original

norms, it could also introduce its own biases. Most importantly, the

NLSY sample is somewhat select, particularly in the earlier years (which

we use to norm the test). The oldest children were born to mothers who,

on average, had children at earlier ages. Children from younger mo-

thers are known to have lower scores on average on a test such as the

PIAT-Math compared to children of older mothers. This bias could tilt

the scales towards younger children having more difficult norms than

older children, confounding our norms with the potential Flynn effect.

First, we would note that this is exactly the kind of built in effect that

we are attempting to observe, so even if this contamination did occur,

although it may not prove our point for the Flynn effect it does de-

monstrate the general principle that a norming artifact can induce ap-

parent (but spurious) growth within person. More importantly how-

ever, when we replicated all the above analyses using the official norms

(i.e., using the reported standardized scores from the NLSY database),

the conclusions were identical.

5. Discussion

These findings demonstrate that in the NLSYC PIAT-M data, where

sample norms were computed to eliminate any concerns over devel-

opmental changes, there is not a reliable practice effect, but there is a

remaining within-person increase in scores. The conclusion, by

Table 2

Model 3, centered age model, estimation results.

Effect Standard error t-statistic p value

Original norms NLSY norms Original norms NLSY norms Original norms NLSY norms Original norms NLSY norms

Intercept 101.01 108.22 0.17 0.21 604.46 508.36 < 0.001 <0.001

WP age 0.31 0.34 0.02 0.03 12.92 11.12 < 0.001 <0.001

BP age 0.16 −0.56 0.12 0.16 1.29 −3.54 > 0.05 <0.001

BF age −0.47 −1.19 0.16 0.21 −2.88 −5.65 < 0.01 <0.001

Table 3

Model 4, age by year interaction effect, estimation results.

Effect Standard error t-statistic p value

Original norms NLSY norms Original norms NLSY norms Original norms NLSY norms Original norms NLSY norms

Intercept 92.18 104.67 0.85 586.18 107.82 −3.91 < 0.001 <0.001

Age 4.98 −4.50 1.68 2.26 2.96 −1.99 < 0.01 <0.05

Year 1.34 1.21 0.22 0.29 6.13 4.09 < 0.001 <0.001

Age:Year −1.44 −1.15 0.38 0.51 −3.84 −2.26 < 0.001 <0.05
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elimination, is that the Flynn Effect is built into the age normed tests

with the PIAT-Math. This finding is (to our knowledge) the first direct

empirical support for the hypothesis that Mingroni proposed in 2007,

and that we developed conceptually and graphically above. (We note

that during the review process, a reviewer discussed the logical nature

of the built-in Flynn effect, and stated that “it is practically incon-

ceivable that it has not occurred.”) The implications are that, within-

person, year-over-year gains on tests that are both age normed and

show a Flynn Effect, are likely lower than otherwise believed. Dickinson

and Hiscock (2010) showed a powerful demonstration of the magnitude

of this inflation, suggesting that in their study of the WAIS up to 85% of

the apparent within-person decline on IQ test raw scores between ages

20 and 70 was due to the embedded Flynn effect, and not actual within-

person decline.

This inflation could have enormous implications for research on

education and cognitive development. Researchers may have to re-

evaluate many past findings that suggest within-child improvement in

scores. Somewhat paradoxically this effect could even extend to old

age, as the issues with norm scores would persist wherever there are

cohort differences. This argument implies that when using cross-sec-

tional raw scores looking at old age cognitive decline, decline may be

overestimated (as demonstrated by Dickinson & Hiscock, 2010), and yet

when using longitudinal normed scores a researcher may make the

opposite error. At the policy level, policymakers will need to consider

that efforts to increase scores within children (e.g., improve a child's

test score over time) that at first appear to be beneficial may be partly

or even almost entirely illusory, or, more accurately, due not (only) to

their interventions but (at least partially) to the Flynn effect. (Rodgers,

2014, demonstrated a form of this illusion in relation to past birth order

findings.)

There are multiple solutions to the testing problem of a built-in

Flynn effect, though none are ideal. Researchers should carefully

evaluate for themselves, within the goals of their research program, the

best way to control for age effects. Should researchers wish to age norm

their tests and hope to avoid incorporating the Flynn effect into those

norms we offer some suggestions. The first is to renorm tests annually

(or at least very often) so that every age group is being compared to its

own cohort and not a previous cohort. This approach is likely to be

prohibitively expensive (and also very time consuming), except for

large testing companies. It should be noted that some of the major

scholastic achievement tests (e.g., the GRE, SAT, and ACT) do appear to

follow this rule, with students compared against people who took the

test the same year they did. Although these are not IQ tests per se, the

standard methods of renorming tests are shared between IQ and

achievement tests. Furthermore, we used an achievement test in the

current study; our results generally are applicable to both IQ and

achievement tests.

Alternatively, instead of renorming a test annually, researchers

could norm the test over the span of time representing the age groups it

is meant to study. In this scheme a test covering ages 5–10 would obtain

the norms for age five in year one, age six in year two etc. This plan

might be less expensive than annually producing norms, however it is

far more time consuming than any other suggestion we provide. It also

has the added drawback that, given that the Flynn Effect causes norm

obsolescence over time, the length of time that a norm will be useful is

shortened by the amount of time it takes to produce the set of norms.

The final alternative is to do a mathematical adjustment in datasets

with a built-in Flynn Effect of about 0.02 standard deviations (the 0.3

IQ point increase per year, divided by the 15 point standard deviation

on most IQ tests) for every year of age increase. We emphasize that this

adjustment only applies to the PIAT-Math during this time period.

There is an obvious challenge associated with developing the appro-

priate adjustment for each of many different tests at many different

points in time. Researchers may find that using the findings of recent

meta analyses (e.g., Pietschnig & Voracek, 2015; Trahan, Stuebing,

Fletcher, & Hiscock, 2014) provides another (and perhaps more precise)

adjustment. This approach is virtually identical to the approach used by

Dickinson and Hiscock (2010). In addition to the challenges noted

Table 4

Model 5, practice effect, estimation results.

Effect Standard Error t-statistic p value

Original norms NLSY norms Original norms NLSY norms Original norms nlsy norms Original norms NLSY norms

Intercept 1.14 1.37 0.19 0.24 6.02 5.62 <0.001 <0.001

Practice −0.31 −0.41 0.05 0.06 −6.71 −6.64 <0.001 <0.001

Table 5

Model 6, centered practice effect, estimation results.

Effect Standard error t-statistic p value

Original norms nlsy norms Original norms NLSY norms Original norms NLSY norms Original norms NLSY norms

Intercept −1.78 −2.50 0.71 0.92 −2.51 −2.73 < 0.05 <0.01

WP practice −0.36 −0.51 0.05 0.06 −7.49 −8.06 < 0.001 <0.001

BP practice 0.65 2.57 0.32 0.42 2.03 6.11 < 0.05 <0.001

BF practice 0.71 −0.71 0.44 0.58 1.59 −1.23 > 0.05 >0.05

Table 6

Model 7, centered practice effect and year of observation, estimation results.

Effect Standard error t-statistic p value

Original norms NLSY norms Original norms NLSY norms Original norms NLSY norms Original norms NLSY norms

Intercept −521.80 −669.48 39.62 51.40 −13.169 −13.02 < 0.001 <0.001

WP practice −0.005 −0.10 0.063 0.08 −0.07 −1.17 > 0.05 >0.05

BP practice 0.47 2.37 0.32 0.42 1.49 5.68 > 0.05 <0.001

BF practice 1.20 −0.15 0.45 0.58 2.68 −0.25 < 0.01 >0.05

Year 0.31 0.39 0.02 0.03 15.56 14.98 < 0.001 <0.001
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above, using this type of correction may not be accurate for a given test,

and current research suggests that the Flynn Effect is not necessarily

consistent across nations and may be reversing direction in some areas

(e.g., Dutton et al., 2016). Further, the use of a purely linear adjustment

will not precisely reflect the nature of a built-in Flynn effect to the

extent that the Flynn effect is non-linear for the cohorts used to norm

the test.

For research already conducted and data already collected the most

practical option would appear to be a post-hoc correction of within-

person data. If a test is age normed and shows the Flynn Effect, we

would expect a person to show a within person increase in scores

equivalent to the Flynn Effect caused by the re-norming process (i.e. an

increase of approximately 0.3 IQ points per year). The problem can

largely be avoided entirely if there is an appropriate control group with

longitudinal data as well. In that case researchers can determine if gains

on a test are “real” by comparing the within-person slope of the treat-

ment group to the control group. However, this approach necessitates

longitudinally following a control group, and simple baseline measures

will be insufficient.

Other methods of norming tests (e.g., IRT methods) do not avoid the

problems presented here. In IRT for example, the age related difference

in theta scores in the norming sample, if that sample were cross-sec-

tional, is a combination of both a positive developmental influence and

a negative Flynn Effect influence. The effects are completely con-

founded in any cross-sectional data and can only be parsed using

longitudinal data.

We conclude and summarize by warning researchers who use one or

more tests that are re-normed at multiple ages across some time in-

terval, and which are known to show a Flynn Effect, that there may be

methodological issues associated with using those tests. We have de-

monstrated that the re-norming process can potentially imbed the Flynn

Effect into the test because of the age differences in ability that are

inherent in the individuals used to norm the tests in a cross-sectional

sample. Further, we analyzed the PIAT-Math scores in the NLSY, and

ruled out other interpretations of the empirical within-person effect

that can be identified within those scores. This finding suggests that the

Flynn Effect is indeed contained within the PIAT-Math scores them-

selves, due to age norming over time.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://

doi.org/10.1016/j.intell.2020.101481.
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