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S
cores on psychometric tests of cognitive abilities are pro-
spectively associated with educational performance, 
socio-economic attainments, everyday functioning, health 

and longevity1–3. In 1904, Charles Spearman identified a positive 
manifold of intercorrelations among school test results and esti-
mates of intelligence, leading him to propose that they arise from 
a single general dimension of variation, which he termed general 
intelligence (and which he denoted as g)4. He theorized that most of 
the remaining variance in each cognitive test was accounted for by 
a factor specific to that test, which he called s. Thus, some variance 
in each cognitive test was thought to be shared with all other cogni-
tive tests (g), and some was thought to be specific to that test (its s). 
Hundreds of studies have since replicated the finding that, when 
many diverse cognitive tests are administered to a sizeable sample 
of people, a g factor is found that accounts for between about 25% 
and 50% of the total test variance, depending on the specific com-
position of the participants and test battery5–7. Considerable efforts 
over the past century have been placed on identifying biological 
associations with g, spanning levels of analysis from molecular, to 
neuro-anatomical, to cognitive8–12.

Psychometrically, a hierarchical structure of cognitive abilities is 
commonly agreed, with cognitive tests’ variance accounted for by 
three different strata of variation (Supplementary Fig. 1), represent-
ing (1) each test’s specific variance (s), (2) broad domains of cogni-
tive function (for example, reasoning, processing speed, memory) 
and (3) g (ref. 5). All cognitive tests have some g loading, though this 
varies from test to test. Twin studies that have employed multivari-
ate methods to examine genetic associations within the hierarchy 
of cognitive test score variance13 indicate a strong heritable basis 
for g, suggesting that cognitive traits are positively correlated sub-
stantially because of strongly overlapping genetic architecture14–18. 
Multivariate approaches, however, have not yet been combined with 

the modern molecular genetic methods needed to separate general 
from specific genetic associations with cognitive traits at the level of 
individual genetic loci.

Genome-wide association studies (GWAS) have been applied 
to individual cognitive measures or composite scores formed from 
multiple such cognitive measures19–23. However, existing univari-
ate approaches are limited in their capability in separating g from s  
variance. In the case of GWAS of individual cognitive tests—for 
example, a measure of verbal declarative memory or processing 
speed—the identified loci could be related to g and/or to the named 
cognitive property22,23. This is a common limitation in both pheno-
typic and genetic cognitive studies24. Here we sought to test for a 
genetic g factor directly, using genomic structural equation mod-
elling (Genomic SEM25), a multivariate, genome-wide molecular 
genetics approach. We model both shared and unique genome-wide 
architecture in aggregate across the entirety of the genome, and we 
distinguish individual variants that are broadly relevant for many 
cognitive traits (via genetic g) from those associated with only indi-
vidual cognitive traits (via genetic s factors). Thus, this investiga-
tion attempts to provide insights into the shared genetic architecture 
across multiple cognitive traits and affords the explicit identification 
of genetic variants underlying g.

Results
Data for the present study came from the UK Biobank (UKB), a 
biomedical cohort study that collects a wide range of genetic 
and health-related measures from a population-based sample 
of community-dwelling participants in the United Kingdom. 
Participants were measured on up to seven cognitive traits using tests 
that often show substantial concurrent validity with established psy-
chometric tests of cognitive abilities, and modest to good test–retest 
reliability26: reaction time (RT, n = 330,024, which assesses perceptual 
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motor speed); matrix pattern recognition (n = 11,356, non-verbal 
reasoning); verbal numerical reasoning (VNR, n = 171,304, verbal 
and numeric problem solving; the test is called ‘fluid intelligence’ 
in UKB); symbol digit substitution (n = 87,741, information pro-
cessing speed); memory pairs-matching test (n = 331,679, episodic 
memory); tower rearranging (n = 11,263, executive functioning); 
and trail-making test-B (trails-B, n = 78,547, executive functioning). 
Scores on all tests were coded such that higher scores represented 
more optimal (that is, faster or more accurate) performance.

Phenotypic covariance structure. A positive manifold of pheno-
typic correlations was observed across the seven cognitive traits. 
All correlations were positive, ranging from 0.074 to 0.490, indi-
cating that more optimal performance on a given test is associated 
with more optimal performance on the other tests (Supplementary 
Fig. 1 and Supplementary Table 1). The mean phenotypic correla-
tion was 0.232. In principal component analysis (PCA), the first 
unrotated component accounted for a total of 35.8% of the pheno-
typic variance. A confirmatory factor model with a single common 
g factor (Fig. 1, bottom) fit the phenotypic covariance matrix well 
(χ2(14) = 740.748, P < 0.001; standardized root mean square resid-
ual (SRMR) = 0.024; comparative fit index (CFI) = 0.985; root mean 
square error of approximation (RMSEA) = 0.013). Table 1 reports 
both the proportion of phenotypic g/phenotypic s variance for each 
cognitive trait, and the respective absolute contributions. The g  

factor accounted for 26.5% (s.e. = 0.2%) of variance in the seven 
cognitive traits. That this proportion is appreciably lower than that 
obtained from the PCA highlights the distinction between factor 
analysis, which formally models the effects of factors on constel-
lations of variables, and PCA, which simply seeks to maximize the 
variance of a weighted linear composite of those variables. All of the 
standardized loadings were statistically significant, ranging from 
0.231 to 0.766 (M = 0.48, s.d. = 0.19).

Multivariate genome-wide architecture. We next aimed to esti-
mate the extent of genetic sharing across the cognitive traits using 
molecular genetic data. We used a multivariable version of linkage 
disequilibrium score regression (LDSC)27 implemented in Genomic 
SEM25 to estimate genetic correlations among the cognitive traits. 
Prior to this formal modelling, we conducted descriptive analyses 
of the cognitive traits’ genetic correlations, similar to those often 
conducted on cognitive phenotypes. We report those descriptive 
analyses’ results first.

As was first reported at the phenotypic level by Spearman in 
1904 (ref. 4), we identified, using LDSC, a positive manifold of 
genetic correlations among the UKB cognitive traits, ranging from 
0.135 to 0.869 (M = 0.53, s.d. = 0.22; Supplementary Fig. 3 and 
Supplementary Tables 2 and 3). The mean genetic correlation was 
0.530, and the first principal component accounted for a total of 
62.17% of the genetic variance. Using genomic-relatedness-based 
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Fig. 1 | Standardized genetic and phenotypic factor solutions for the covariance structure of seven uKB cognitive traits used in the present study. 

Squares represent observed variables (the phenotypes that are directly measured). Circles represent latent variables that are statistically inferred from the 

data—that is, the genetic (top) and phenotypic (bottom) g factors that are inferred through factor analysis and the genetic components of the observed 

phenotypes that are inferred through LDSC. Arrows are standardized factor loadings, which can be interpreted as standardized regression relations with 

the arrow pointing from the predictor variable to the outcome variable. Genetic factor models were estimated using Genomic SEM, and phenotypic models 

were estimated using the lavaan package for R. Matrix, matrix pattern completion task; memory, memory pairs-matching test; symbol digit, symbol digit 

substitution task; tower, tower rearranging task. All variables are scaled such that higher scores indicate better cognitive performance. The genetic g 

factor accounts for an average of 58.37% of genetic variance in the seven cognitive traits. The phenotypic g factor accounts for an average of 26.50% of 

observed phenotypic variance in the seven cognitive traits.
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restricted maximum likelihood (GCTA–GREML)28,29, a different 
estimator of the genetic correlations among the seven cognitive 
traits (Supplementary Fig. 4), the mean genetic correlation was 
0.502, and the first principal component accounted for 61.24% of 
the genetic variance. The correlation between LDSC- and GCTA–
GREML-derived genetic correlations was r = 0.947, indicating 
very close correspondence between the results of the two methods 
(Supplementary Fig. 5).

We then proceeded with Genomic SEM to formally model 
the genetic covariance matrix. This allowed us to evaluate the 
fit of the genetic g factor model, estimate s.e. for model param-
eters, estimate genetic correlations with collateral phenotypes and 
incorporate genetic g explicitly into multivariate discovery. We 
applied Genomic SEM to fit a single common factor model to the 
LDSC-derived genetic covariance matrix among the seven cognitive 
traits. This model specified the genetic component of each cogni-
tive trait to load on a single common factor, which we term genetic 
g. For each trait, we additionally estimated residual, trait-specific 
genetic variance components (genetic s). Thus, we formally distil 
the molecular genetic contributions of g and s to heritable varia-
tion in each of the cognitive traits, and test the fit of this model. 
Fit indices (χ2(14) = 117.019, P < 0.001; CFI = 0.970; SRMR = 0.088) 
indicated that the factor model closely approximated the observed 
genetic covariance matrix (Supplementary Figs. 7 and 8). Figure 1  
displays the standardized estimates for this model (top) and the 
standardized estimates from a phenotypic factor model (bottom) 

fitted to the phenotypic covariance matrix (Supplementary Fig. 5 
and Supplementary Table 1). A factor model that constrained the 
standardized genetic factor loadings to be equal to the standardized 
point estimates for loadings from the phenotypic model produced 
a substantial decrement in model fit (χ2(7) = 823.037, P < 0.001), 
indicating that the genetic and phenotypic factor structures were 
not strictly equivalent. Indeed, the standardized genetic factor load-
ings were consistently higher in magnitude than the standardized 
phenotypic factor loadings, but there was a strong linear asso-
ciation between them (Supplementary Fig. 6). Table 1 reports the 
proportions of genetic g and genetic s variance for each cognitive 
trait, and the respective absolute contributions. The genetic g factor 
accounted for 58.36% (s.e. = 4.84%) of the genetic variance in the 
seven cognitive traits. All of the standardized loadings on genetic g 
were statistically significant, ranging from 0.308 to 0.976 (M = 0.74, 
s.d. = 0.22).

The proportion of genetic variation in each trait accounted for 
by genetic g differed substantially across traits. Supporting this 
inference, a factor model that constrained the standardized genetic 
factor loadings to be equal across traits produced a substantial 
decrement in model fit (χ2(12) = 749.122, P < 0.001). Four of the 
cognitive traits have a genetic contribution to their variance that is 
derived principally from genetic g and much less from genetic s; 
these are trails-B (95.26% genetic g; 4.74% genetic s), tower (72.76% 
genetic g; 27.20% genetic s), symbol digit (69.06% genetic g; 30.94% 
genetic s) and matrices (68.23% genetic g; 31.77% genetic s). VNR 

Table 1 | Common factor solutions for the genetic (top) and phenotypic (bottom) covariance structure of seven uKB cognitive traits

Standardized factor 
loadings

Common (g) and specific (s) sources of genetic variation

Genetic g Proportion of genetic variation explained 
by genetic g and genetic s

Proportion of phenotypic variation explained by genetic g and 
genetic s (HapMap3 common variants only)

Cognitive trait Estimate s.e. Common (g), % Specific (s), % Common (g), % Specific (s), % Total SNP h2

Matrices 0.826 0.070 68.23 31.77 10.60 4.90 15.50

Memory 0.651 0.031 42.38 57.62 1.70 2.30 4.00

RT 0.308 0.026 9.49 90.51 0.70 6.70 7.40

Symbol digit 0.831 0.034 69.06 30.94 7.60 3.40 11.00

Trails-B 0.976 0.035 95.26 4.74 14.20 0.70 14.90

Tower 0.853 0.080 72.76 27.24 8.30 3.10 11.40

VNR 0.717 0.024 51.41 48.59 10.90 10.30 21.20

Mean (%) 58.36 41.64 7.71 4.49 12.20

Phenotypic g Proportion of phenotypic variation 
explained by phenotypic g and 
phenotypic s

Cognitive trait Estimate s.e. Common (g), % Specific (s), %

Matrices 0.501 0.009 25.10 74.90

Memory 0.257 0.003 6.60 93.40

RT 0.231 0.003 5.34 94.66

Symbol digit 0.628 0.004 39.44 60.56

Trails-B 0.766 0.003 58.68 41.32

Tower 0.487 0.009 23.72 76.28

VNR 0.514 0.003 26.42 73.58

Mean (%) 26.50 73.50

All traits are scaled such that higher scores indicate higher cognitive performance. Total single-nucleotide polymorphism (SNP) h2 = total proportion of phenotypic variance in the corresponding cognitive 

trait accounted for by all tagged common variants. By definition, the common (g) and specific (s) proportional contributions to total phenotypic variation sum to total SNP h2, and the common (g) and 

specific (s) proportional contributions to genetic variation sum to 100%. Standardized factor loadings indicate the standardized linear relationship between the factor and each of the cognitive outcomes. 

Models are fit to LDSC-derived genetic covariance matrices using Genomic SEM. As per best practices for LDSC, genetic covariance matrices were derived using HapMap3 SNPs with minor allele 

frequencies >1%, excluding SNPs with imputation quality (INFO) < 0.9 and those from the major histocompatibility complex (MHC) region.
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(51.41% genetic g; 48.59% genetic s) and memory (42.38% genetic 
g; 57.62% genetic s) are more evenly split. RT has the majority of its 
genetic influence from genetic s (9.49% genetic g, 90.51% genetic 
s). We emphasize one important implication of these results, which 
is that univariate genetic analyses (for example, GWAS) of some of 
these individual traits will largely reveal results relevant to g rather 
than to the specific abilities thought to be required to perform the 
test24. As the prespecified model was parsimonious and the fit was 
close, we chose to forego implementing data-driven exploratory 
steps to further improve fit. Supplementary Tables 4 and 5 report 
full parameter estimates for genetic and phenotypic factor models.

Multivariate genome-wide discovery. We next aimed to deter-
mine the contributions of individual genetic loci specifically to 
genetic g, and to distil those from loci associated with other levels 
of the cognitive hierarchy. We fit a multivariate GWAS of genetic g  
within Genomic SEM25 to distinguish loci relevant to genetic g 
from loci whose patterns of association across the individual traits 
are inconsistent with their operation on genetic g, as indexed by 
the heterogeneity statistic, Q. We provide detailed explication of 
the Q statistic and how it can be appropriately interpreted in the 
section ‘Interpreting the heterogeneity statistic’ in Supplementary 
Information.

The GWAS results for genetic g and Q are displayed in Fig. 2 as 
a Miami plot, with further information provided in Table 2. Our 
method distinguishes four types of genome-wide significant loci. 
First, highlighted in red are genome-wide significant loci for genetic 
g that are not genome-wide significant loci for the univariate GWAS 
analyses of individual traits. These are loci influencing general 
intelligence identified by leveraging the joint genetic architecture of 
the traits. Second, highlighted in blue are genome-wide significant 
loci for g that are also genome-wide significant loci in the univari-
ate GWAS analyses for at least one individual cognitive trait. These 
loci might otherwise have been interpreted as relevant specifically 
to the individual trait, when in fact the multivariate results indicate 
that they are relevant to genetic g24. Third, highlighted in green are 

genome-wide significant loci for univariate phenotypes that are not 
genome-wide significant loci for g. These might be loci that are spe-
cific to the individual traits, but not genetic g. Fourth, highlighted 
in yellow are loci that evince genome-wide significant heterogene-
ity (Q), indicating that they show patterns of associations with cog-
nitive traits departing from the pattern that would be expected if 
they were to act on the traits via genetic g. Q findings that exceed 
the genome-wide significance threshold for genetic g (yellow tri-
angles) are implicated as false discoveries on genetic g that are likely 
driven by a strong signal in a subset of cognitive traits or in a single 
cognitive trait. The Q statistic helps to safeguard against these false 
discoveries. The Q findings that do not surpass the genome-wide 
significance threshold for genetic g (yellow diamonds) are not sig-
nificantly related to genetic g but are significantly heterogeneous 
in their patterns of association with the cognitive traits. These loci 
may be relevant to specific cognitive traits, or to cognitive domains 
that are intermediate in specificity and generality between g and s, 
but not to general intelligence (see Supplementary Fig. 1). Note that 
these four types of genome-wide significant loci are represented 
in both the top and bottom panels of the Miami plot, with their 
locations corresponding to the –log10(P) of their associations with 
genetic g in the top panel, and with the –log10(P) of their Q statistic 
in the bottom panel.

Overall we identified 30 genome-wide significant (P < 5 × 10−8) 
loci associated with genetic g. Of these, 18 (60%) have previously 
been reported as hits for cognitive tests (five loci) and/or cogni-
tively relevant phenotypes, such as educational attainment or high-
est maths course taken (16 loci) in GWAS that did not include data 
from UKB. Of the 18 genetic g hits that replicated outside of UKB, 
16 were also hits on at least one cognitive test included in the mul-
tivariate UKB analysis. Of the 30 total genetic g loci, 12 were dis-
coveries specific to UKB, five of which were specific to the present 
study’s multivariate modelling and seven of which were also hits on 
at least one cognitive test included in the multivariate UKB analy-
sis. Thus, of the 30 total loci that were found here to be associated  
with genetic g, 23 were in common with the univariate GWAS of 
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Fig. 2 | Miami plot of unique, independent hits for genetic g and Q (7,857,346 variants). The heterogeneity statistic (Q) indexes whether a SNP evinces 

patterns of association with cognitive traits departing from the pattern that would be expected if it were to act on the traits via genetic g. Thus, genetic g 

loci in common with Q loci are false discoveries on genetic g. The dashed grey horizontal lines denote the genome-wide significance threshold (P < 5 × 10−8). 

The genome-wide significant loci represented by the triangles, circles and diamonds are shown in both upper and lower parts of the Miami plot, with their 

locations corresponding to the –log10(P) of their associations with genetic g (upper) and the –log10(P) of their Q statistic (lower). Red triangles, genetic g loci 

unique to univariate loci; blue triangles, genetic g loci in common with univariate loci; green circles, univariate loci unique to genetic g loci; yellow triangles, 

genetic g loci in common with Q loci; yellow diamonds, Q loci unique to genetic g loci.
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individual cognitive traits that served as the basis for our multi-
variate analysis, indicating that seven loci were discoveries specific 
to multivariate modelling (Supplementary Tables 15 and 22). An 
LDSC analysis of genetic g GWAS summary statistics yielded an 
intercept slightly <1.0, indicating that inflation of the test statistics 
(mean χ2(1) = 1.471; λGC = 1.373) was attributable to true polygenic 
signal rather than to under-controlled population stratification.

We identified a total of 24 genome-wide significant loci for Q, 
three of which were significantly associated with genetic g (and 
therefore likely to be relevant to more specific cognitive traits and 
false discoveries on g) and 15 of which were significantly associated 
with at least one individual cognitive trait in the test-specific GWAS 
(and may therefore be interpreted as hits for more specific cognitive 
traits, rather than for a general dimension of cognitive function). Of 
the 24 loci for Q, five (21%) have previously been reported as hits for 
cognitive tests (one locus) and/or cognitively relevant phenotypes 
(four loci) in GWAS that did not include data from UKB, and 19 loci 
were specific to UKB (Supplementary Tables 16 and 23). Two of the 
Q loci previously reported in non-UKB GWAS were also genetic g 
loci (but, because they were Q hits, are most likely to be false dis-
coveries for genetic g and more relevant to specific cognitive traits).

Inspection of univariate GWAS results for the individual traits 
may help to determine the sources of heterogeneity for the Q 
findings. For instance, a SNP (rs429358) within APOE, which is 
a known risk factor for Alzheimer’s disease30, was a significant Q 
finding. With the exception of its association with VNR, this SNP 
displayed a pattern of association with traits corresponding closely 
with the degree to which they represented genetic g. However,  
consistent with the inference that APOE is specifically relevant 

for cognitive ageing, the SNP displayed a negligible null asso-
ciation with VNR (P = 0.142), which is a test that shows minimal 
age-related differences in the UKB data31. Another example of a Q 
finding is located on chromosome 17 (chr17:44021960–44852612), 
which was reported to be significantly associated with both general 
cognitive ability and RT19. From the univariate GWAS results, the 
largest association for this locus was with RT, a measure of psycho-
motor speed with a relatively low loading on genetic g. This locus 
may have a particularly pronounced association with speeded abili-
ties, rather than a general association with genetic g. The third Q 
locus that is also significant for genetic g is located on chromosome 
3 (chr3:49120040–50234126). This locus has previously reported 
associations with general cognitive ability, educational attainment, 
intelligence and maths ability19–21,32. In the current study, this locus 
demonstrates significant heterogeneity and displays its largest 
associations with VNR, tower, matrices and trails-B, all measures 
of higher-order cognition. Its associations with measures of speed 
and episodic memory (arguably more basic cognitive processes)  
are negligible.

Genetic correlations with external GWAS traits. As expected, 
the genetic g factor identified here displayed strong but imperfect 
genetic correlations (as estimated by LDSC) with general cogni-
tive function from Davies et al.19 (rg = 0.90, s.e. = 0.02) and Savage 
et al.21 (rg = 0.87, s.e. = 0.05), which were univariate GWAS of 
broad cognitive phenotypes, and that from Hill et al.20 (rg = 0.80, 
s.e = 0.02), which was a GWAS of intelligence that incorporated 
educational attainment GWAS summary statistics to boost power 
via multi-trait analysis of GWAS33. As reported in Supplementary 

Table 2 | Summary of multivariate (genetic g) and univariate GWAS results

outcome Significant loci 
(P < 5 × 10−8)

Independent of 
univariate loci

Independent of 
Q loci

Common with loci 
previously reported 
for cognitive tests and 
cognitively relevant traitsa 
in GWAS that did not 
include uKB

Mean χ2(1) LDSC 
intercept

λGC

Multivariate GWAS

Genetic g 30 7 27 18 1.471 0.973 1.373

Significant loci 
(P < 5 × 10−8)

Independent of 
univariate loci

Independent of 
genetic g loci

Common with loci 
previously reported 
for cognitive tests and 
cognitively relevant traitsa 
in GWAS that did not 
include uKB

Mean χ2(1)

Heterogeneity (Q) 24 9 21 5 1.337

univariate GWAS

Significant loci 
(P < 5 × 10−8)

Independent of 
genetic g loci

Independent of 
Q loci

Mean χ2

Matrices (n = 11,356) 0 – – 1.040 1.013 1.033

Memory n = 331,679) 10 9 7 1.223 1.002 1.187

RT (n = 330,024) 39 34 23 1.420 1.021 1.318

Symbol digit 
(n = 87,741)

1 0 0 1.188 1.021 1.169

Trails-B (n = 78,547) 7 1 5 1.203 1.005 1.177

Tower (n = 11,263) 0 – – 1.022 1.001 1.025

VNR (n = 171,304) 89 71 83 1.640 1.025 1.471

The same 7,857,346 variants were used for univariate and multivariate GWAS. Genome-wide significant loci that were 250 kb or closer were merged into a single locus. Here we report loci that are 

independent from each other at r2 < 0.1. λGC, genomic inflation factor. For Q, mean χ2 was calculated by conversion of Q statistics (which are χ2 distributed with six degrees of freedom) to distributed test 

statistics with one degree of freedom, and then taking their mean. Matrices, matrix pattern completion task; memory, memory pairs-matching test; symbol digit, symbol digit substitution task; tower, tower 

rearranging task. Supplementary Tables 8–28 report the individual SNPs, loci and, for those reported in previous studies, the references for the studies and implicated phenotypes. aCognitive tests and 

cognitively relevant traits include performance-based cognitive test scores, educational attainment, self-reported maths ability and highest maths course taken.
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Table 6, genetic g had a positive genetic correlation with educational 
attainment32 (rg = 0.48, s.e. = 0.02) that is lower than those found 
between education and previous GWAS of cognitive ability (all esti-
mated at r > 0.69)19–21. To determine whether this lower association 
was driven by the inclusion of RT, or more generally with speeded 
measures as indicators of genetic g, we re-estimated the genetic cor-
relations using a genetic g factor formed from the cognitive traits 
that excluded either RT or all speeded measures (RT, trails-B and 
symbol digit). The version of the genetic g factor that excluded RT 
accounted for 66.76% (s.e. = 5.85%) of the genetic variance in the six 
remaining cognitive traits, and the version that excluded all speeded 
tests accounted for 69.66% (s.e. = 8.08%) of the genetic variance in 
the four remaining cognitive traits. These versions of genetic g pro-
duced somewhat higher genetic correlations between genetic g and 
educational attainment (rg = 0.50 when excluding RT, rg = 0.55 when 
excluding all three speeded measures) that continued to be lower 
than those found between educational attainment and previous 
GWAS of general cognitive ability.

Negative genetic correlations were found between genetic g 
and Alzheimer’s disease34 (rg = −0.34, s.e. = 0.06), schizophrenia35 
(rg = −0.38, s.e. = 0.03) and attention deficit, hyperactivity dis-
order (ADHD)36 (rg = −0.23, s.e. = 0.04). Additionally, genetic g 
had significant positive genetic associations with total brain vol-
ume37 (rg = 0.20, s.e. = 0.04) and longevity38 (rg = 0.26, s.e. = 0.03) 
(Supplementary Table 6). Notably, the negative genetic associa-
tion between genetic g and schizophrenia was substantially stron-
ger than that obtained for associations between other GWAS of 
cognitive function and schizophrenia, and contrasts substantially 
with the mild positive genetic correlation that has been reported 
between educational attainment and schizophrenia39. Genetic asso-
ciations between genetic g and Alzheimer’s disease, ASD, ADHD, 
total brain volume and longevity were similar to those obtained for 
other GWAS of cognitive function, particularly when the speeded 
tests were removed from the genetic g factor.

Replication of positive genetic manifold and polygenic predic-
tion in Generation Scotland. We sought to confirm key results in 
the independent Generation Scotland study (n = 6,950 unrelated 
individuals). The cognitive measures in Generation Scotland were 
Wechsler Logical Memory (episodic memory), Mill Hill Vocabulary 
(crystallized knowledge), Wechsler Digit Symbol Substitution (pro-
cessing speed) and Verbal Fluency (semantic fluency), as described 
previously40,41. Because the sample size of Generation Scotland is too 
small to produce stable estimates of heritability and genetic corre-
lation within LDSC, it was not feasible to directly integrate these 
analyses into the above Genomic SEM models to estimate joint 
models with the UKB phenotypes and other external GWAS traits. 
Instead, we estimated a genetic correlation matrix for the four cog-
nitive tests in Generation Scotland using GCTA–GREML28,29, which 
is more appropriate than LDSC for moderately sized samples such 
as this. The average genetic correlation in this matrix was 0.517, and 
eigen decomposition indicated that the percentage of genetic vari-
ance explained by a single principal component was 64.90%. These 
two values are similar to those obtained for UKB, which we reiterate 
here for ease of comparison: mean rg LDSC = 0.530; mean rg GCTA–
GREML = 0.502; proportion of genetic variance accounted for by 
PC1 LDSC = 62.17%; proportion of genetic variance accounted for 
by PC1 GCTA–GREML = 61.24%.

Using summary statistics from the above-described UKB analy-
ses, we next created polygenic scores (PGS) for genetic g and the 
individual UKB cognitive traits and used them to predict, both 
individually and simultaneously, in Generation Scotland, variance 
in performance on the individual cognitive tests, the first unro-
tated principal component of all tests (to index phenotypic g), the 
first unrotated principal component of all tests except Mill Hill 
Vocabulary (to index a more fluid g) and educational attainment 

(Supplementary Table 7). Consistent with the above findings that 
individual cognitive outcomes are associated with a combination of 
genetic g and specific genetic factors, we observed a pattern in which 
many of the regression models that included both the PGS from 
genetic g and test-specific PGS were considerably more predictive 
of the cognitive phenotypes in Generation Scotland than regression 
models that included only either a genetic g PGS or a PGS for a 
single test. A particularly relevant exception involved the digit sym-
bol substitution test in Generation Scotland, which is a similar test 
to the symbol digit substitution test in UKB for which we derived 
a PGS. We found that the proportional increase in R2 in digit sym-
bol by the symbol digit PGS beyond the genetic g PGS was <1%, 
whereas the genetic g PGS improved polygenic prediction beyond 
the symbol digit PGS by >100%, reflecting the power advantage 
obtained from integration of GWAS data from multiple genetically 
correlated cognitive traits using a genetic g model. An interesting 
counterpoint is the PGS for the VNR test, which is unique in the 
UKB cognitive test battery in partly indexing verbal knowledge26,31. 
Highlighting the role of domain-specific factors, a regression model 
that included this PGS and the genetic g PGS provided substantial 
incremental prediction relative to the genetic g PGS alone for those 
Generation Scotland phenotypes most directly related to verbal 
knowledge: Mill Hill Vocabulary (62.45% increase) and educational 
attainment (72.59%).

Discussion
Until now, research on the positive manifold of correlations among 
cognitive traits has been phenotypic in nature, or has made infer-
ences regarding the roles of genes using twin approaches. Here 
we estimated and modelled the patterns of genetic sharing across 
diverse cognitive traits using genome-wide molecular data. Using 
data from seven different cognitive traits from UKB, we identified a 
positive manifold of genetic correlations. We found that a genetic g 
factor accounts for an average of about 58% (s.e. ≈ 5%) of the genetic 
variance in cognitive traits, with the proportion ranging widely 
(~9% to ~95%) across the traits. We went on to distil specific genetic 
loci broadly relevant for many cognitive traits via genetic g from 
those displaying patterns of more associations with the individual 
cognitive traits.

The importance of our results may be seen by contrasting the 
results of trails-B with RT. Analyses of multivariate genome-wide 
architecture indicated that, for trails-B, 95% of the genetic vari-
ance is accounted for by genetic g and only 5% is specific to trails-B. 
Moreover, all seven loci for trails-B have previously been reported 
in GWAS of other cognitive phenotypes (Supplementary Table 19),  
and four of these were implicated as relevant for genetic g at 
non-significant levels of heterogeneity. In contrast, for RT, analy-
ses of multivariate genome-wide architecture indicated that 9.5% of 
the genetic variance is accounted for by genetic g while 90.5% of 
the genetic variance is specific to RT. Many of the 39 loci associated 
with RT have not been found in univariate GWAS of other cognitive 
traits (Supplementary Tables 17 and 24), and only four were impli-
cated as relevant for genetic g at non-significant levels of heteroge-
neity. Therefore, when identifying loci associated with performance 
on an individual cognitive test, it is essential to know the extent to 
which its associations are broadly related to genetic g or specifically 
related to the phenotype under investigation.

Failure to take the multivariate structure of cognitive traits into 
account may lead to incorrect inferences24—either that discoveries 
made in a univariate GWAS of a cognitive trait are generalizable to 
the broader universe of cognitive traits when they are in fact spe-
cific to that trait, or that discoveries made in a univariate GWAS 
of a cognitive trait are specific to that trait when they are in fact 
broadly associated with all traits that load on genetic g. For instance, 
our multivariate analysis using GenomicSEM indicates that a locus 
on chromosome 7 (chr7:104558814–104588161) is associated with 
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genetic g. Similarly, we report an association of a locus on chromo-
some 8 (chr8:64496159–64842662) with trails-B (an index of execu-
tive function, which is itself strongly genetically correlated with g14) 
in the univariate GWAS, and our GenomicSEM analysis indicates 
that this locus is also related to genetic g. Lee et al.32 have previously 
reported both of these loci as being associated with maths ability 
(Supplementary Table 22), but there are no previously reported 
associations with general cognitive function or intelligence. The 
current results indicate that the loci are broadly relevant to many 
abilities via genetic g, not simply to maths ability. Multivariate 
methods, such as that pioneered here, are necessary to distinguish 
whether a locus is narrowly relevant for an individual cognitive trait 
or broadly relevant to genetic g.

Genetic g was highly, but imperfectly, genetically correlated with 
previous univariate GWAS of general cognitive function and intel-
ligence. Moreover, genetic g displayed lower (albeit still sizeable) 
genetic correlations with educational attainment than have previ-
ous univariate GWAS of general cognitive function and intelligence. 
This pattern suggests that previous GWAS of general cognitive abil-
ity might have tapped more academic forms of cognitive function 
(that is, crystallized abilities such as verbal knowledge) than those 
tapped by the present group of cognitive tests. Consistent with this 
hypothesis, a version of genetic g that excluded speeded tests—
which are known to be among the most culturally decontextual-
ized of the cognitive traits42—produced somewhat higher genetic 
correlations with educational attainment, though these continued 
be lower than those found between educational attainment and the 
previous univariate GWAS of general cognitive function and intel-
ligence. A priority for future research will be to distinguish between 
genetic correlates of cognitive abilities that are driven by forms of 
higher-order thinking and academic knowledge from those that 
are driven more so by forms of arguably more basic neurocogni-
tive processing43. Moreover, given that the phenotypic g values from 
different cognitive test batteries administered to the same sample 
correlate very highly6, it will be useful in future research to discover 
whether genetic g values obtained from different test batteries also 
have very high correlations. The advantage of modern genomic 
methods, such as those used here, is that it is not necessary for the 
same sample to be tested on both batteries, or even on the same tests 
within a given battery25.

Some researchers have adroitly argued that a positive manifold of 
test intercorrelations may, in principle, arise from a pattern in which 
individual genetic loci, biological mechanisms or cognitive pro-
cesses contribute to subsets of traits, with the subsets varying across 
loci, mechanisms or processes44–46. Others have similarly argued that 
positive test intercorrelations may arise from reciprocal causation 
among abilities, or between abilities and external forces, and that 
genetic effects enter through specific points in the system and come 
to be correlated through dynamic propagation47–49. Here we have 
provided evidence not only of a positive manifold of genetic cor-
relations at the aggregate, genome-wide, level of analysis, but also 
at the level of individual loci. Although these discoveries are them-
selves insufficient for determining the causes of the positive mani-
fold, they do help to inform and constrain past and future accounts 
of the positive manifold and of the heritability of cognitive abilities.

It is important to consider this work in light of its key limitations. 
First, we had measures of different hierarchically intermediate traits 
(for example, processing speed, memory, reasoning), but we did not 
have multiple measures per intermediate trait. We were therefore 
unable formally to model genetic associations with intermediate 
traits as separate from those on s factors specific to the individual 
cognitive traits. In other words, based on the data currently available, 
we have been well positioned to discriminate between genetic loci 
that are broadly relevant for genetic g from those that display more 
heterogeneous patterns of relations with individual cognitive tests, 
but we are unable to distinguish loci relevant for very narrow traits 

captured by individual tests from those relevant to intermediately 
broad traits. Future work that employs a denser battery of cognitive 
tests will be valuable for such discernment. Second, using data from 
Generation Scotland, we closely replicated the positive manifold of 
genetic correlations observed in UKB and we demonstrated the util-
ity of polygenic scores for genetic g constructed on the basis of the 
UKB data, but Generational Scotland was not sufficiently powered 
to conduct individual SNP-level analyses. Several large-scale GWAS 
exist for intelligence, but UKB appears to be the only such large-scale 
dataset for which multiple tests spanning a broad range of cogni-
tive traits is available. When large-scale datasets with multivariate 
cognitive data become available, it will be prudent to examine the 
replicability of the individual g and s loci identified here. Finally, our 
analyses were based exclusively on individuals of European ancestry 
residing in the United Kingdom. It may not be assumed that the 
results reported here will generalize beyond this population.

In summary, we have inferred a genetic g factor using molecular 
genetic data, and we have discerned genetic loci that are associated 
with genetic g from those associated with more specific cognitive 
traits. We emphasize the large extant explanatory gap between 
genetic variation and shared (that is, general) variation in cognitive 
abilities.

Methods
Sample. Data from the UKB study were used for the present study (https://
www.ukbiobank.ac.uk/). The UKB is a biomedical prospective cohort study that 
collected a wide range of genetic and health-related measures from a national 
sample of community-dwelling participants in the United Kingdom. Ethical 
approval for the UKB was granted by the Research Ethics Committee (no. 11/
NW/0382). This study uses European ancestry genome-wide genotyped data 
from seven cognitive tests of varying sample size across phenotypes. Individuals 
were removed sequentially based on non-British ancestry, high missingness, 
high relatedness (samples with over ten putative third-degree relatives) and sex/
gender mismatch between self-reported and genetic data. Our analysis sample 
included 332,050 unrelated participants of European descent with high-quality 
genotyping. Participant age ranged approximately 40–70 years at first assessment, 
and approximately 45–75 years at later assessments in which further cognitive tests 
were administered. For each cognitive test, we included no more than one test 
administration per participant in analyses.

Cognitive tests. Reaction time (n = 330,024): this test was self-administered by 
participants at the baseline UKB assessment. In this task, pairs of either identical 
or different cards were presented on a computer screen. If the two cards were 
identical, participants had to push a button as quickly as possible. Reaction time 
(RT) score corresponded with the time, in milliseconds, to identification of 
matching cards in four trials. Participants were presented with 12 trials in total.  
The first five trials were used as a practice. Of the remaining seven trials, four 
presented identical cards. The score is the mean time (in milliseconds) for 
these four trials. Whereas there were only a few trials, internal consistency is 
good (Cronbach α = 0.85). Scores were multiplied by −1 such that higher scores 
indicated more optimal performance.

Matrix pattern recognition (n = 11,356): the non-verbal fluid reasoning 
matrix pattern recognition test is an adaptation of the matrices test included in 
the COGNITO battery50, which is similar to the well-known Raven’s progressive 
matrices test. This test was self-administered during the assessment centre  
imaging visit. This test involves the inspection of an abstract grid pattern with a 
piece missing in the lower right-hand corner. The pattern has a logical order.  
The participant is asked to select the correct multiple-choice option at the bottom 
of the screen to complete the logical pattern both horizontally and vertically. 
This 15-item test aims at assessing the ability to solve non-verbal, non-numerical 
problems using novel and abstract materials. The score is the total number of  
items solved correctly in 3 min.

Verbal numerical reasoning (n = 171,304): at the baseline assessment centre 
visit, a subsample of UKB participants self-administered the verbal numerical 
reasoning test. Participants were asked 13 multiple-choice questions that assessed 
verbal and numerical problem solving. The score was the number of questions 
answered correctly in 2 min. This test has been shown to have adequate test–retest 
reliability (r = 0.65)51 and internal consistency (Cronbach α = 0.62)31. The verbal 
numerical reasoning test was also administered to three subsamples of participants 
at the first repeat assessment visit, the assessment centre imaging visit and during 
the web-based cognitive assessment. In the web-based version of this test, because 
there was an additional question the maximum score was 14. In the current 
analysis the verbal numerical reasoning score used is taken from the first testing 
occasion for each participant.
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Symbol digit substitution (n = 87,741): the symbol digit substitution test 
was self-administered during both the assessment centre imaging visit and the 
web-based cognitive assessment. Participants were shown a key, pairing shapes 
with numbers. Participants were asked to use the key to fill the maximum number 
of empty boxes with the corresponding number paired with shapes in a series 
of rows. The score is the number of correct symbol–digit matches made in 60 s. 
Those with a score coded as 0 and those with a score >70 had their score set to 
missing. In this analysis, the scores used were from the first testing occasion for 
each participant.

Memory pairs-matching test (n = 331,679): at the baseline UKB assessment, 
memory was measured using a ‘pairs-matching task’. In this self-administered task, 
participants are shown a randomly arranged, 4 × 3 grid of 12 ‘cards’, with six pairs 
of matching symbols, for 5 s. The symbols were then hidden and the participant 
was instructed to select, from memory, the locations of the pairs that matched, in 
the fewest possible number of attempts. There was no time limit for this task. The 
memory score was the total number of errors made during this task before all pairs 
were identified. Scores were multiplied by –1 such that higher scores indicated 
more optimal performance.

Tower rearranging (n = 11,263): this test was self-administered during the 
imaging assessment centre visit. It is similar to the well-known ‘tower of Hanoi’ 
task. Participants were presented with a display (display A) containing three 
different coloured hoops arranged on three pegs (towers). Another display (display 
B) was shown underneath display A, with the three hoops arranged differently.  
The task involves deciding how many moves it would take to change display A  
into display B. The score was the number of correctly completed trials achieved  
in 3 min.

Trail making test-B (n = 78,547): this test is a computerized version of the 
Halstead–Reitan trail-making test52. The trail-making test was self-administered 
during both the assessment centre imaging visit and the web-based cognitive 
assessment. In part B of the test, participants were presented with the numbers 
1–13 and the letters A–L arranged quasi-randomly on a computer screen. The 
participants were instructed to switch between touching the numbers in ascending 
order, and the letters in alphabetical order (for example, 1-A-2-B-3-C) as quickly 
as possible. The score was the time (in seconds) taken to successfully complete the 
test. Those with a score coded as 0 (denoting trail not completed) had their score 
set to missing. Scores were multiplied by −1 such that higher scores indicated more 
optimal performance. In this analysis, the scores used were from the first testing 
occasion for each participant.

Genotyping. Prior to release of the UKB genetic dataset, quality control measures 
were applied; these are described in Bycroft et al.53. Imputed dosage scores on up to 
80,639,280 autosomal variants were analysed (imputation reference panels included 
UK10K haplotype, 1000 Genomes Phase 3 and Haplotype Reference Consortium 
panels); all variants had a minor allele frequency ≥0.000009 and an imputation 
quality (INFO) score of >0.6.

Genome-wide association analyses. Univariate genome-wide association 
analyses were performed for covariate-residualized scores on each UKB cognitive 
phenotype using a linear association test in BGENIE53. The covariates were age, 
assessment centre (where relevant), genotype batch, array and 40 genetic principal 
components. For phenotypes collected across multiple testing occasions, a separate 
GWAS was performed for non-overlapping participants from each occasion 
and an inverse-variance-weighted meta-analysis was implemented in METAL54. 
Because the size of the subsets of individuals for each phenotype varies greatly, an 
additional quality control filter to remove SNPs with a minor allele count <25 was 
applied to all GWAS summary results before further analyses.

Factor models. We performed genetic factor analysis on the UKB cognitive 
phenotypes with Genomic SEM25, and phenotypic factor analysis with the lavaan 
package for R55. In both genetic and phenotypic factor analysis, a common factor 
model specifies that k phenotypes are described as linear functions of a smaller set 
of m (continuous) latent variables: y = Λη + ε. In this equation, y is a k × 1 vector of 
indicators, ε is a k × 1 vector of residuals, η is an m × 1 vector of common factors 
and Λ is a k × m matrix of factor loadings—that is, regressions relating the common 
factors to the set of indicators. In the genetic factor model, y represents the genetic 
components of the GWAS phenotypes whereas, in the phenotypic factor model, 
y represents the phenotypes themselves. The model-implied covariance matrix 
of a confirmatory factor analysis is Σ(θ) = ΛΨΛ′ + Θ, where Ψ is an m × m latent 
variable covariance matrix (in the case of a single common factor, Ψ is simply equal 
to the variance of the factor which we fix at 1 for scaling identification purposes), 
and Θ is a k × k matrix of covariances among the residuals, ε (typically a diagonal 
matrix, to indicate that all indicator residuals are assumed to be independent of one 
another). A set of parameters (θ) is estimated such that the fit function indexing 
the discrepancy between the model-implied covariance matrix, ∑(θ), and the 
empirical covariance matrix, S, is minimized.

For genetic factor modelling in Genomic SEM25, S is a genetic covariance 
matrix estimated using a multivariable extension of LDSC27. For phenotypic 
factor modelling in lavaan, S is a phenotypic covariance matrix that is 
empirically estimated from the raw phenotypic data using full-information 

maximum-likelihood estimation. For genetic factor modelling in Genomic SEM, 
the fit function used to estimate the model parameters takes into account the 
precision of the elements of the S matrix, along with their sampling dependencies 
(which are needed to appropriately account for sample overlap across the GWAS 
phenotypes) in the form of a sampling covariance matrix, V, that is estimated using 
a jackknife resampling procedure in the multivariable extension of LDSC available 
in Genomic SEM. Model fit is considered good when ∑(θ) closely approximates 
S. For Genomic SEM, the fit function used was diagonally weighted least squares, 
with a sandwich correction to adjust standard errors of model parameters based on 
the off-diagonal elements of V. For phenotypic modelling, the fit function used was 
maximum likelihood.

In Genomic SEM, goodness-of-fit of the model is assessed by means of the 
SRMR, model χ2, Akaike information criterion and CFI. For phenotypic factor 
modelling, we additionally consider RMSEA. Hu and Bentler56 have proposed the 
following criteria for a good fit: CFI > 0.95, RMSEA < 0.08.

Estimation of SNP-based heritability and genetic correlations using GCTA–
GREML. Our primary means of estimating the UKB cognitive phenotype 
SNP-based heritability and genetic correlations was with the multivariable version 
of LDSC available in Genomic SEM, as described in the “Factor models’ section. 
However, to verify that the estimated genetic correlation matrix was consistent 
across estimation methods reliant on different assumptions, we additionally 
implemented GCTA–GREML to estimate SNP-based heritability29 and genetic 
correlations28. Due to computational requirements for the bivariate GCTA–GREML 
analyses, a subset of individuals was created and used for all GCTA–GREML 
analyses. This subset was created by performing listwise deletion for RT, memory, 
VNR, symbol digit substitution and trails-B (n = 72,583). The same covariates were 
included in all GCTA–GREML analyses as for the SNP-based association analyses. 
One individual was excluded from any pair of individuals with an estimated 
coefficient of relatedness of >0.05.

Genetic correlations with neural phenotypes and longevity. We extended the 
factor models in Genomic SEM to estimate the genetic correlations between the 
genetic g factor from the UKB cognitive phenotypes and each of nine collateral 
phenotypes in turn: educational attainment32; general cognitive function from 
Davies et al.19, Savage et al.21 and Hill et al.20; total brain volume from UKB37; and 
Alzheimer’s disease34, schizophrenia35, ADHD36, autism spectrum disorder (ASD)57 
and longevity38.

Multivariate GWAS in Genomic SEM. Using the univariate summary statistics for 
each of the seven UKB cognitive phenotypes, Genomic SEM25 was used to conduct 
a multivariate GWAS, with the genetic g factor as the GWAS target (see left-hand 
portion of Supplementary Fig. 9). Because the typical unit variance scaling cannot 
be directly specified in a model in which the latent factor is a dependent variable, 
we specified unit loading scaling (with matrices as the reference indicator; 
Supplementary Table 29). Genomic SEM provides a SNP-specific heterogeneity 
statistic, Q, which indexes the extent to which the specified factor model is 
insufficient to account for the SNP effects on the individual traits analysed. High 
Q values for a given SNP indicate that a model that estimates SNP associations 
with each individual trait (see right-hand portion of Supplementary Fig. 9) fits 
better than a model that estimates a single SNP association with the factor. In other 
words, SNPs with genome-wide significant Q values may be interpreted as SNPs 
that do not affect the genetic g. A detailed explanation of the Q statistic is provided 
in the Supplementary Information (Interpreting the heterogeneity statistic).

For multivariate GWAS in Genomic SEM, summary statistics for individual 
tests were restricted to SNPs with a minor allele frequency (MAF) > 1% and 
INFO score >0.6, and to SNPs that were present for all seven cognitive tests. 
The summary statistics were also filtered to SNPs present in the European-only 
1000 Genomes Phase 3 reference panel, because the SNP minor allele frequencies 
from the reference panel are necessary to obtain their variance for inclusion in the 
genetic covariance (S) matrix. Using these quality control steps, 7,857,346 SNPs 
were present across all seven cognitive tests. Note that all cognitive phenotypes 
had already been residualized for covariates when conducting the univariate 
GWAS, summary statistics for which are entered into multivariate analyses within 
Genomic SEM such that further covariate adjustment was not needed at this stage.

We adopt the field standard alpha threshold of 5 × 10−8 for GWAS. This 
threshold amounts to a Bonferroni correction for the theoretical number of 
independent tests in the genome given known linkage disequilibrium structure58. 
Because all seven phenotypes are highly genetically correlated, it is inappropriate to 
perform an additional Bonferroni correction for the seven additional phenotypes, 
and we do not focus our interpretation on results of the seven univariate GWAS. 
Rather, we focus on results of the multivariate GWAS within Genomic SEM for 
which there are two families of theoretical tests, each constituting a single set of 
GWAS-type statistics: (1) genome-wide SNP associations with genetic g and  
(2) genome-wide SNP-specific heterogeneity indices (Q).

Genome-wide significant loci using functional mapping and annotation of 
genetic associations (FUMA). Genome-wide significant loci were defined from 
the SNP-based association results using FUMA59. The SNP2GENE function was 
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used to identify independent significant SNPs, defined as those with P ≤ 5 × 10−8 
and independent of other genome-wide significant SNPs at r2 < 0.6. Tagged 
SNPs, for use in subsequent annotations, were then identified as all SNPs with 
MAF ≥ 0.0005 and that were in linkage disequilibrium of r2 ≥ 0.6 with at least 
one of the independent significant SNPs. These tagged SNPs included those 
from the 1000 Genomes reference panel, and need not have been included in 
the GWAS performed in the current study. Genome-wide significant loci that 
were 250 kb or closer were merged into a single locus. Lead SNPs were defined as 
independent significant SNPs that were independent from each other at r2 < 0.1. 
We performed look-ups on all tagged SNPs (r2 > 0.6) within each locus, including 
all 1000 Genomes SNPs; previously reported genome-wide significant findings are 
detailed in Supplementary Tables 22–28.

Polygenic prediction. Generation Scotland: the Scottish Family Health Study  
(GS) is a family-structured, population-based cohort study recruited between  
2006 and 2011. Participant recruitment occurred in Glasgow, Tayside, Ayrshire, 
Arran and Northeast Scotland, yielding a total sample size of 24,084 with an age 
range of 18–100 years, and up to four generations per family, of which we selected 
one participant per family. A full cohort description is provided elsewhere40,41 and 
online at http://www.generationscotland.org/. Ethical approval for GS was obtained 
from the Tayside Committee on Medical Research Ethics (on behalf of the National 
Health Service). Genotyping, using the Illumina HumanOmniExpressExome-8 
v.1.0 chip, was performed at the Edinburgh Clinical Research Facility, University  
of Edinburgh60. Participants were removed from GS if they had contributed to  
both GS and UKB (n = 622). For PGS analyses, 6,950 unrelated GS participants 
were retained.

The cognitive measures available in GS were Wechsler Logical Memory 
(episodic memory), Mill Hill Vocabulary (crystallized knowledge), Wechsler Digit 
Symbol Substitution (processing speed) and Verbal Fluency (semantic fluency), 
as described previously40,41. We created a phenotypic g using the first unrotated 
principal component of the cognitive measures, and also a fluid g using the first 
unrotated principal component of the cognitive measures excluding the Mill Hill 
Vocabulary scores.

Polygenic scores were created using PRSice v.2 (https://github.com/
choishingwan/PRSice) using a prespecified P value threshold of 1.0—that is,  
all SNPs61. Summary results from the genetic g and univariate cognitive test  
GWAS were used to create PGS for the GS individuals. Before creating these  
scores, SNPs with MAF < 0.01 were removed and clumping was used to obtain 
SNPs in linkage disequilibrium with r2 < 0.25 within a 250-kb window. Polygenic 
scores for the individual cognitive tests were created using all available SNPs from 
the GWAS summary results. For genetic g, all SNPs located within significant Q 
loci were removed from the GWAS summary results before the creation of  
profile scores.

Linear regression models were used to examine the associations between 
polygenic scores and cognitive performance and educational attainment in GS.  
All models included age at measurement, sex and ten genetic principal 
components, to adjust for population stratification. We created regression models 
fitting each polygenic score individually, a multivariate model including all eight 
polygenic scores (genetic g, RT, memory, matrix, symbol digit substitution, trail-B 
and tower rearranging) and a series of models that fitted the genetic g polygenic 
score plus one individual cognitive test score. From these models we were able to 
determine the contributions of genetic g and each individual UKB cognitive test to 
prediction of variance in cognitive performance and educational attainment in an 
independent sample, GS.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Complete summary GWAS results from this paper are available at https://www.
lothianbirthcohort.ed.ac.uk/content/summary-data-and-other-resources. Raw 
data for UKB can be requested at https://www.ukbiobank.ac.uk/register-apply/. 
Raw data for Generation Scotland can be requested at https://www.ed.ac.uk/
generation-scotland/for-researchers/access-to-resources/access.

Code availability
Code to perform common factor modelling and multivariate GWAS within Genomic 
SEM can be found at https://github.com/MichelNivard/GenomicSEM/wiki.
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All studies must disclose on these points even when the disclosure is negative.

Sample size Describe how sample size was determined, detailing any statistical methods used to predetermine sample size OR if no sample-size calculation 
was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data exclusions Describe any data exclusions. If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the 
rationale behind them, indicating whether exclusion criteria were pre-established. 

Replication Describe the measures taken to verify the reproducibility of the experimental findings. If all attempts at replication were successful, confirm this 
OR if there are any findings that were not replicated or cannot be reproduced, note this and describe why.

Randomization Describe how samples/organisms/participants were allocated into experimental groups. If allocation was not random, describe how covariates 
were controlled OR if this is not relevant to your study, explain why.

Blinding Describe whether the investigators were blinded to group allocation during data collection and/or analysis. If blinding was not possible, 
describe why OR explain why blinding was not relevant to your study.

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We analyzed multivariate quantitative data from cognitive tests in combination with genome-wide association data.

Research sample Participants can from the UK Biobank and Generation Scotland studies, which are both population-based biomedical studies.

Sampling strategy We did not collect the data as part of this study. Data were made available to us for secondary data analysis by the UK Biobank and 

Generation Scotland lead investigators.

Data collection We did not collect the data as part of this study. Data were made available to us for secondary data analysis by the UK Biobank and 

Generation Scotland lead investigators.

Timing We did not collect the data as part of this study. Data were made available to us for secondary data analysis by the UK Biobank and 

Generation Scotland lead investigators.

Data exclusions Exclusions were made to ensure that only unrelated, European-ancestry, participants were included in the analyses.

Non-participation We did not collect the data as part of this study. Data were made available to us for secondary data analysis by the UK Biobank and 

Generation Scotland lead investigators.

Randomization This was not an experimental study. We analyzed observational data.

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested, 
hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National 
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and 
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, 
describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size 
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.
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Data collection Describe the data collection procedure, including who recorded the data and how.

Timing and spatial scale Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for 
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which 
the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, 
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to 
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were 
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why 
blinding was not relevant to your study.

Did the study involve field work? Yes No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water 
depth).

Access and import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and 
in compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing 
authority, the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies

Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the 
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) State the source of each cell line used.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for 
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.
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Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Palaeontology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 
issuing authority, the date of issue, and any identifying information).

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), 
where they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new 
dates are provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals 
were caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if 
released, say where and when) OR state that the study did not involve wild animals.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or 
guidance was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics Data from the UK Biobank study was used for the present study (https://www.ukbiobank.ac.uk/). The UK Biobank is a biomedical 

prospective cohort study, which collected a wide range of genetic and health related measures from a national sample of 

community dwelling participants from the UK. 

 

Generation Scotland: the Scottish Family Health Study (GS) is a family-structured, population-based cohort study recruited 

between 2006 and 2011. Participant recruitment occurred in Glasgow, Tayside, Ayrshire, Arran, and North-East Scotland, 

yielding a total sample size of 24,084 with an age range between 18 and 100 years, and up to four generations per family, of 

which we selected one participant per family. A full cohort description is provided online at http://www.generationscotland.org/.

Recruitment We did not recruit participants as part of this study. Data were made available to us for secondary data analysis by the UK 

Biobank and Generation Scotland lead investigators.

Ethics oversight Ethical approval for the UK Biobank was granted from the Research Ethics Committee (11/NW/0382).  Ethical approval for GS 

was obtained from the Tayside Committee on Medical Research Ethics (on behalf of the National Health Service). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.
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ChIP-seq

Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of 
reads and whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone 
name, and lot number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and 
index files used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold 
enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a 
community repository, provide accession details.

Flow Cytometry

Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples 
and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.
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Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).

Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types 
used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first 
and second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte 
Carlo).

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial 
correlation, mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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