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A B S T R A C T

This paper is an attempt to provide a brief guide to major conceptual and statistical problems that are unique to the study of individual differences in intelligence and
various intellectual abilities, in the context of laboratory experimental studies, and to suggest strategies to successfully navigate these problems. Such studies are generally
designed so that the goal is to evaluate the relationships between individual differences in basic task performance or related markers on the one hand, and individual
differences in intellectual abilities on the other hand. Issues discussed in this paper include: restriction-of-range in talent, method variance and facet theory; speed vs. power;
regression to the mean; extreme-groups designs; difference scores; differences in correlations; significant vs. meaningful correlations; factor- pure tests; and criterion
variables. A list of representative “do” and “don't” recommendations is provided to help guide the design and evaluation of laboratory studies.

1. Background

Ever since the groundbreaking work by Hunt and his colleagues
(e.g., Hunt, Frost, and Lunneborg, 1973), numerous researchers have
attempted to investigate the relationships between intellectual abilities
on the one hand, and constructs from experimental cognitive psy-
chology, on the other hand. However, there is a mismatch between the
standard paradigm used in experimental psychology and the procedures
that are optimal for investigating individual differences in intellectual
abilities. Some of the difficulties may be due to the fundamentally
different approaches taken by experimental and correlational (differ-
ential) psychology, as articulated by Cronbach (1957). In Cronbach's
view, experimental psychologists are interested only in variation in
behavior that they create through, for example, manipulation of ex-
perimental conditions and control conditions, or by parametrically
varying a set of stimulus or response conditions. By contrast, correla-
tional psychologists (including those who seek to assess intelligence)
are interested in variation in behavior that exists in the world at large,
which they largely cannot control or cannot even hope to control (e.g.,
genetics, education, socio-economic status).

This paper was written as a guide to the design of experiments that
attempt to link laboratory-based assessment of basic cognitive/in-
formation processing constructs to individual differences in intellectual
abilities. Many of the topics and problems reviewed here are not unique
to such studies – for example, they also arise in studies that only con-
sider relations among various intellectual abilities or other trait mea-
sures. However, the issues discussed here are notable because even
though many of them are familiar to researchers who are concerned
mainly with the study of individual differences, they are frequently not
addressed adequately in experimental studies that include considera-
tion of individual differences in intellectual abilities. Table 1 contains a
list of “don't” and “do” recommendations for design and analysis for
laboratory studies assessing intelligence. Each of these recommenda-
tions is discussed in turn.

2. Reliability and validity

The first difficulty in this area of research is that experimental and

correlational orientations create a fundamental conflict. In the context
of cognitive research, the experimental approach typically involves
using stimuli that are either believed to be substantially “overlearned”
by most or all study participants (e.g., letters, numbers, high-frequency
words, simple polygons), or entirely novel stimuli (e.g., artificial
grammars, random number sequences), such that either way, the ex-
pectation is that there will be little or no variance accounted for by
participant familiarity with the material. To further minimize in-
dividual-difference variance in numerous variables, the typical la-
boratory experiment is based on participants who are highly homo-
geneous on age, educational attainment, and even socio-economic
status (e.g., college/university freshmen). In contrast, because appli-
cations of intelligence assessments are in the realm of predicting real-
world behaviors (e.g., academic success/failure) with examinees re-
presenting a wide range of backgrounds, the kinds of test (stimulus)
materials on intelligence assessments also have a wide range of famil-
iarity, ranging from well-learned to highly novel, but also many items
somewhere in between familiar and novel, such as vocabulary, general
information, math word problems, comprehension, and so on.

The second difficulty is that there is a frequent lack of under-
standing among experimental cognitive researchers about both relia-
bility and validity concepts. Issues of reliability and validity are core
concepts for assessment of individual differences in intellectual abil-
ities, and they represent a central problem for choices to be made in the
use of particular measures in the study of intelligence. As elementary
textbooks on psychological assessment repeatedly assert (e.g., Anastasi
& Urbina, 1997), individual tests do not have inherent reliability or
validity; both are multifaceted concepts that are dependent on the po-
pulation under investigation, the conditions of testing, and the in-
ferences that the researcher intends to make.

2.1. Reliability

1. Don't disregard inadequate reliability indices
2. Do evaluate reliability with indices that are appropriate to the

research question
Experimental cognitive researchers rarely confront issues of relia-

bility in any comprehensive manner (e.g., if the scores on a measure
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have too much variability for the comparisons of interest, the choice is
often made to add additional task trials or more study participants to
yield more stable [reliable] results). For example, in a review of ex-
perimental research, Green et al. (2016) found that only 5.7% of the
recent articles in one journal and 11.7% in another reported reliabilities
of their measures. Of these, most reports contained only internal con-
sistency reliabilities, and only one study included an estimate of test-
retest reliability. As Green et al. noted, “The results are consistent with
our hypothesis that reliabilities are infrequently presented for experi-
mental task scores.” (p. 750).

When reliabilities are reported in this area of research, they are
often startlingly low. For example, Hedge, Powell, and Sumner (2018)
examined the reliability of a set of standard experimental tasks and
noted that for “Eriksen Flanker, Stroop, stop signal, go/no-go, Posner
cueing, Navon, and Spatial Numerical Association of Response Co-
de....Reliabilities ranged from 0 to .82, being surprisingly low for most
tasks given their common use.” (p. 1166). Furthermore, reliabilities are
frequently misinterpreted. For example, in another recent study, Craik,
Bialystock, Gillingham, and Stuss (2018) reported a test-retest relia-
bility of their alpha span test as “r(42) = .61 (p < .001). This highly
significant correlation provides good evidence that the alpha span test
is a reliable measure of working memory, at least in older adults.” (pp.
145–146). However, the criterion for reliability is not a test against a
null hypothesis of a zero correlation between a test administered on two
occasions, as these authors imply. Rather, it is an estimate of the con-
sistency of rank-ordering of individuals over some period of time. Ide-
ally, if there are no changes in the underlying construct, their rank-
ordering will not change, except for measurement error. So, the ap-
propriate “standard” would be a correlation of r = 1.0.

Because test reliability sets an upper bound for validity (e.g., see
Anastasi & Urbina, 1997), the choice of an appropriate indicator of test
reliability is a critical component of determining the potential useful-
ness of the measure for the intended purpose. For example, internal
consistency reliability for intelligence tests is often useful, at best, as an
indicator of the homogeneity/heterogeneity of the underlying measure
and can be too low or even too high, depending on the context in which
the investigator is attempting to understand the construct under in-
vestigation. Coefficient α (also known as Cronbach's α) is the most
frequently employed index of reliability, but it is very often mis-
understood, and as a result, interpreted inappropriately. Coefficient α
reflects the average of all possible split-half correlations among test

items (Cronbach, 1951). As such, it is a statistic that essentially con-
founds the internal consistency reliability of test items with the
homogeneity of the test, but as others have pointed out, not in a par-
ticularly straightforward manner, especially when there is more than
one factor underlying the test items (e.g., see Schmitt, 1996; Sijtsma,
2009). In addition, α increases with the number of items in a test.

In practical terms, what this means for experimental research re-
lated to intelligence is that there is no specific, universal threshold for
what constitutes a good or even an acceptable α value. Tests with narrow
content or redundant items will have typically higher α indices, com-
pared with tests of broad content. Thus, an evaluation of internal
consistency reliability for a particular experiment and measure requires
that the investigator determine a priori what is an appropriate value
and evaluate the index against the expected value. Using an arbitrary
threshold for all measures (e.g., rxx’ = 0.70), testing against a null
hypothesis of zero reliability, or simply reporting a range of α values
and proceeding to analyze and interpret the results regardless of the
values of α (e.g., Miyake, Friedman, Emerson, Witzki, Howerter, and
Wager, 2002; where reported reliabilities were as low as 0.31 and 0.42,
p. 69), are all ill-advised, because each of these approaches will likely
result in the inclusion and interpretation of measures with inadequate
theoretical or measurement characteristics. When there is a mismatch
between the expected measure reliability/homogeneity and the actual
reliability/homogeneity index, there are likely both conceptual pro-
blems indicated and/or measurement difficulties (e.g., a measure with
inappropriate low internal consistency reliability may have exceedingly
low diagnostic power).

In addition, for many intents and purposes, α does not address the
fundamental questions of reliability that need to be evaluated for
measures of ability. R. L. Thorndike's (1947) depiction of the sources of
variance in test performance provides an essential framework for un-
derstanding what type of reliability assessment is appropriate for a
given measure (i.e., the dimensions of temporary vs. lasting and specific
vs. general sources of variation). For example, α is not an appropriate
reliability estimate for general intelligence, because in addition to the
psychometric limitations discussed, it lumps all four quadrants of
Thorndike's framework into ‘true’ score variance. Rather, the frame-
work dictates that a suitable index of reliability for a measure of general
intelligence is obtained by examining delayed test-retest alternate-form
reliability (which puts temporary and specific, temporary and general,
and lasting and specific variance into the error term, leaving only

Table 1
A list of Don'ts and Dos for laboratory studies examining intelligence.

Don't… Do…

1. Don't disregard inadequate reliability
indexes.

2. Do evaluate reliability with indices that are appropriate to the underlying construct.

4. Don't overgeneralize to external criteria without validation. 3. Do consider the validity of selected
intelligence tests.

6. Don't use intelligence tests in a non-standard manner without norms and validation. 5. Do understand data are theory-laden.
7. Don't use extreme-group designs. 9. Do adjust correlations to account for

restriction-of-range in talent.
8. Don't use difference scores. 12. Do pre-specify expected correlations.
10. Don't use samples too small to detect

differences in correlations.
14. Do take account of speed vs. power
of reference tests.

11. Don't confuse statistically significant with meaningful magnitude correlations. 15. Do take a faceted approach to
assessing particular abilities.

13. Don't ignore common content as method variance. 17. Do take account of ‘historical’ and
‘current’ aspects of crystallized
Intelligence.

16. Don't use ‘indifference of the indicator’
as a guide to test selection.

18. Do take account of underlying
heterogeneity of the general intelligence
construct.

20. Don't assume that all ‘processing speed’
ability assessments measure the same
underlying factor.

19. Do use multiple tests to assess
underlying ability factors.

21. Don't assume that adequate assessment
with multiple measures requires excessive administration time.
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lasting and general variance as ‘true’ scores, yielding a much more
meaningful index of the test reliability, in contrast to an index of in-
ternal consistency (e.g., see Cronbach, 1960; [p. 138] illustration with
the DAT Mechanical Reasoning Test, where 7% of test variance was
found to be “temporary-specific”, 8% “lasting-specific”, 20% “tem-
porary-general”, and 65% of the variance was reliable [“lasting-gen-
eral”] variance). To sum up, if reported at all, reliability statistics from
laboratory studies seeking to link experimental cognitive constructs and
intellectual ability are often misinterpreted, inappropriate, or both.

3. Validity

3. Do consider the validity of selected intelligence tests
In experimental cognitive psychology, there is ongoing debate about

what particular laboratory tasks are suitable for assessing a particular
construct (e.g., memory search speed, decision time, reaction time or
movement time, verbal or spatial working memory). The “validity” of
such tasks is established through discussion in the literature, leading to
a set of relatively standardized procedures to establish that a particular
set of task conditions yields an estimate of the speed or accuracy of
responding underlying a particular construct. But in experimental stu-
dies considering intellectual abilities, the extant literature is largely
devoid of explicit examination of content validity—that is, whether the
content of the tests used to assess intelligence adequately sample the
domain of intellectual ability. For example, a single figural reasoning
test such as Raven's Progressive Matrices will often be used to measure
general intelligence (e.g., Jaeggi, Buschkuehl, Jonides, and Perrig,
2008; see numerous other examples in the “brain training” literature, as
reviewed by Simons et al., 2016).

3.1. Construct and criterion-related validity

Reports of construct validity are more frequent than reports of
content validity, though few studies include any specification of criteria
for acceptable convergent or discriminant validity, making such reports
largely impressionistic at best. There is an occasional mention of “cri-
terion validity,” but indicators of criterion-related validity are usually
not presented. For example, Redick, Broadway, Meier, et al. (2012)
purported to address the “Construct and Criterion-Related Validity” (p.
167) of complex span tests. However, only correlations between
working memory tests and Raven's Progressive Matrices and a Voca-
bulary test were reported. The values reported were correlations ran-
ging from 0.20 to 0.53 for the Raven's, and from 0.09 to 0.15 for the
Vocabulary test, with little critical evaluation to determine whether
such values should be considered good or poor indicators of validity.

3.2. External (criterion) validity

4. Don't overgeneralize to external criteria without validation
Over the modern history of intelligence assessment, there have been

two, sometimes partly divergent, streams of research, mainly identified
with their initial proponents – Spearman (1904) and Binet (Binet &
Simon, 1905). Spearman's approach, while initially focused on school
performance (grades and ratings) as indicators of intelligence, even-
tually developed to mainly focus on articulating a theory of intelligence
that was about finding fundamental properties of g, largely independent
of external validation. The Binet approach was explicitly concerned
with using assessments of intelligence for prediction of individual dif-
ferences in academic success or failure. Followers of Spearman's ap-
proach have often focused on finding correlates of g, where g is oper-
ationalized by tests such as Raven's Progressive Matrices. But, there are
two inherent limitations of this approach. First, scores on the Raven's
test and similar non-verbal reasoning tests are imperfect measures of g
(e.g., see Gignac, 2015), much in the way that any single test does not
provide a robust assessment of the higher-order g factor. Second, in
contrast to Binet's approach, use of tests like the Raven's is only

moderately successful in predicting real-world criteria, such as aca-
demic or occupational success (e.g., see P.E. Vernon & Parry, 1949). For
Binet and his followers, and especially for Wechsler, the construct of
intelligence is not the score on an intelligence test, but rather is in-
dicated by successful accomplishments in academic and occupational
settings, and other real-world endeavors (e.g., see Wechsler, 1975).

Much experimental laboratory work tends to ignore external vali-
dation of measures (e.g., see Mook, 1983), which probably explains a
certain affinity for approaches to intelligence assessment more in line
with Spearman than with Binet. This isn't to say that such an approach
is inherently flawed – it is an internally coherent approach within a
reductionist framework. The potential problem is when a researcher
attempts to generalize beyond the laboratory, on the basis of a highly
limited assessment of intellectual ability, to make statements about the
meaning of task/intelligence correlations for external criteria, such as
academic or occupational success. Such statements mistake what is
inherently a limited “predictor” variable for the “criterion” of in-
telligence assessment (e.g., for a discussion, see Ackerman, 2017). If the
researcher desires external validation for experimental tasks to in-
tellectual ability criteria, the researcher must actually conduct cri-
terion-related validity research, by obtaining direct assessments of ex-
ternal criteria.

4. Data are theory-laden

5. Do understand that data are theory-laden
Thomas Kuhn (1977), physicist-turned-philosopher of science, pro-

posed the theme of “paradigm” to describe the amalgamation of as-
sumptions and methods used within individual laboratories. Although
there was a lively argument in the literature about whether psychology
could be considered paradigmatic, it is clear that within the domain of
intelligence research, there are multiple paradigms, loosely associated
with the Spearman and Cattell-Horn-Carroll (CHC) paradigms. The
Spearman paradigm, as realized in modern experimental research, takes
a reductionist view to intelligence, with its measurement typically op-
erationalized by Raven's Progressive Matrices test or a similar figural
reasoning test. The CHC paradigm is somewhat less unified, but it en-
compasses a consideration of a hierarchy consisting of a general in-
telligence factor, major group factors (e.g., fluid and crystallized in-
telligence), minor group factors, and so on (e.g., see McGrew, 1997).
Variants of other hierarchical models (e.g., P. E. Vernon, 1950) provide
for different identification of major and minor group factors, but most
such variants consider these factors as themselves important indicators
of intellectual ability, sometimes in the aggregate more important than
the general intelligence factor.

The critical issue for research relating experimental research is that
adoption of the Spearman approach, for example, implicitly disregards
consideration of the possible relations between individual differences in
task performance, and individual differences in major and minor group
factors. With adequate sampling of the major and minor group factors
one can estimate a general intelligence score, but one cannot examine
the role of such factors when one only assesses a single measure that is
thought to provide an estimate of general intelligence.

5. Standardized intelligence tests

6. Don't use intelligence tests in a non-standard manner without
norms and validation

The traditional ‘gold standard’ assessments of intelligence (e.g.,
Stanford-Binet, Wechsler) are considered to be standardized tests, in
that all of the examiner's words, apparatus, and procedure, and the
scoring rules are fixed. The same is true for college admissions tests,
such as the SAT or ACT, or tests administered in the manner dictated by
test manuals. However, there are numerous variations that have been
developed by various researchers that deviate from these procedures.
Changing the context (e.g., administering the SAT in a low-stakes
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laboratory environment), shortening the test, imposing different time
limits, computerizing presentation of items, changing the instructions,
and so on, may have unintended consequences for both the reliability
and validity of the test. For example, several short-form versions of the
Raven's Progressive Matrices have been developed (e.g., Arthur Jr.,
Tubre, Paul, and Sanchez-Ku, 1999; Biker et al., 2012), changing it from
a two-part relatively untimed test to as few as 9 items with a strict time
limit. Ceteris paribus (everything else being equal), having fewer test
items will reduce the reliability of the test (e.g., by the Spearman-Brown
prophecy formula). Arthur Jr. and Day (1994) reported a correlation of
their short form and the standardized Raven's test to be r = 0.66, in-
dicating that the two measures share less than 50% of their variance
(r2 = 0.436). Whether such a reduction of common variance (compared
to test-retest reliability of the standardized Raven's test) is entirely at-
tributable to the reduced reliability of the short form, or perhaps is at
least partly attributable to the imposition of a speed requirement, is as
yet unknown. But, if there is an increase in influence of speededness of
processing, that could result in an artificially higher correlation be-
tween a short-form Raven's test and individual differences in perfor-
mance on speeded experimental tasks that is not uniquely attributable
to their respective common variance associated with g.

When tests are used in non-standardized fashion, two requirements
need to be satisfied. First, norms need to be collected, so that there is an
adequate basis for calculating correlations that are adjusted for re-
striction-of-range of talent (see below). Second, the test needs to be
validated against other indicators for both convergent and discriminant
validity. Convergent validity for such a test could be obtained from
independent standardized measures of the ability under examination.
Discriminant validity is especially important in this context, as it will
allow for an assessment of ‘extraneous’ factors, such as processing speed
or verbal comprehension (e.g., when abbreviated instructions are used).

6. Regression-to-the-mean

7. Don't use extreme-group designs

6.1. Extreme-group designs

This issue was first encountered in Wellman's (1940) study of the
influence of a nursery school experience on intellectual abilities. In that
study, Wellman reported observing increases in intellectual abilities on
a low-IQ sub-sample, and a lack of increases in IQ in a high-IQ sub-
sample. As noted by McNemar (1940) and Goodenough and Maurer
(1940), the increases in IQ were entirely predictable because of the
relatively low reliability of the IQ test for young children and the ex-
pected regression-to-the-mean from pre-test to post-test. Although most
statistical experts recommend against using extreme-groups designs in
general (e.g., see Preacher, Rucker, MacCallum, and Nicewander,
2005), at the very least, one must account for expected regression ef-
fects and interpret only those effects that significantly exceed the ex-
pected results on the basis of regression-to-the-mean effects.

There are additional concerns about valid interpretations of ex-
treme-groups differences when the sample being investigated is already
restricted in range-of-talent. For example, a so-called ‘low-working
memory’ group sampled from a highly selective college or university is
probably not all that representative of a ‘low-working memory’ group
from an unselected sample. This was once a common practice in re-
search on working memory (see numerous papers by Engle and col-
leagues before the mid-2000s, e.g., Kane, Bleckley, Conway, & Engle,
2001), and is still occasionally used in this area of research. For ex-
ample, Hourihan and Benjamin (2010) classified University of Illinois
undergraduate students as low-span or high-span based on their scores
on the operation span task, even though the median SAT scores of this
population are about the 90th percentile for the SAT (University of
Illinois, 2020). In addition, by examining only extreme groups, one has
greater difficulty in estimating the true score correlations between

experimental variables and ability variables, unless statistical correc-
tions are made. Under an extreme-groups design, any overall correla-
tions observed across groups will typically over-estimate the underlying
true score relations – correcting for the higher variance than the un-
derlying population will result in an attenuated (closer to zero) esti-
mated true score correlation.

6.2. Difference scores

8. Don't use difference scores
The statistical limitations of difference scores were first encountered

in the study of learning abilities by Woodrow (1946). Woodrow cal-
culated learning scores as the difference between initial performance on
a set of tasks and final performance on the same tasks, after task
practice. On finding extremely low correlations between these
“learning” scores and extant ability measures (or even each other),
Woodrow concluded that intelligence was not related to learning, and
that there was no general or group learning factors. The problem with
this assertion was that difference scores are notoriously unreliable
(Cronbach and Furby, 1970). Even in the absence of any learning or
treatment effect, the reliability of difference scores is determined by the
reliability of the component (pretest and posttest) scores, and the cor-
relation between the two scores. As the correlation between the scores
increases, the reliability of the difference scores decrease; and as the
reliability of the component scores themselves increase, the reliability
of the difference scores increases, but ceteris paribus, increasing the
reliability of the individual component scores will increase the corre-
lation between the scores (Ghiselli, Campbell, & Zedeck, 1981). For
example, if the reliabilities of the two component scores are rxx’ = 0.8
and ryy’ = 0.8, and the correlation between the two component scores is
rxy 0.70, the reliability of the difference score is rdd’ = 0.33, a value that
would render such a score without merit for further correlations with
other variables. The use of measures based on difference scores has
been common in laboratory studies of intelligence, and not surprisingly,
reliability estimates are often quite low for these measures (for a recent
example, see Kalra, Gabrieli, and Finn, 2019).

7. Restriction-of-range in talent

9. Do adjust correlations to account for restriction-of-range in talent
When a researcher chooses a sample that is restricted in range-of-

talent – a typical phenomenon when the study participants are students
from a moderate to highly selective college/university, correlations are
expected to be attenuated than would be observed in the population-at-
large. Corrections can be made to the correlations, on the basis of
comparing the variances of the sample on the variables of interest to the
variances in the population at-large (e.g., see Ghiselli et al., 1981). Of
course, if there are no representative data from the population at large
on the variables, it is not possible to provide an accurate estimate of
true-score correlations. As an example, as yet, there are no norms based
on representative data for widely used working memory tasks such as
operation span, running span, and visual arrays; the vast majority of
data for these tasks are from undergraduate students who were selected
for college admission based on intellectual talent (i.e., SAT or ACT
score).

A related issue concerns the restriction-of-range that is the result of
explicit selection, such as occurs when intellectual abilities or measures
that are substantially related to intelligence (e.g., SAT, ACT, grade point
average) are used to determine which individuals are in the sample to
begin with. Fortunately, although such corrections are rarely, if ever,
used in laboratory experimental studies, formulas also exist for esti-
mating true score correlations under explicit selection conditions (e.g.,
see Boone & Lewis, 1978; Gulliksen, 1950; Thorndike, 1949; Wiberg &
Sunström, 2009). Failure to attend to these issues may result in a sub-
stantial underestimate of the relations between experimental tasks and
measures of intellectual abilities. But, more seriously, if particular
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intellectual abilities are more highly associated with the selection
variables than other abilities, failure to account for explicit selection
may result in differences in correlations between the experimental task
and different ability measures that are statistical artifacts of the explicit
selection process.

8. Differences between correlations

10. Don't use samples too small to detect differences in correlations

8.1. Detecting differences in correlations

Often, an investigator will wish to show that there is a difference
between sets of correlations between experimental task performance
and one or more ability measures. Detterman (1989) provided an in-
cisive analysis of the difficulty in obtaining statistically significant re-
sults with such an analysis. The test for differences between correlations
has a much lower statistical power than testing for significance of in-
dividual correlations against a null hypothesis (r = 0) or specific value.
To illustrate, assume that an investigator finds that general intelligence
correlates r = 0.5 with one experimental task and r = 0.3 with another
experimental task, and wishes to test the difference between the cor-
relations. According to Detterman, it would require a sample size of at
least 200 participants to detect a difference between correlations of this
magnitude, far more participants than are sampled in a typical la-
boratory experimental study. For smaller correlations, the sample sized
required increases exponentially (e.g., 1000 participants are needed to
detect a difference of 0.1 when the smallest correlation is r = 0.3).

It is also critical to note that when one correlation is significantly
different from zero whereas another correlation is not, this doesn't
mean that there is a significant difference between the two correlations.
In fact, it is not at all uncommon for the difference between two such
correlations to be non-significant. As one example, in a review, Ericsson
(2014) cited the finding by Ruthsatz, Detterman, Griscom, and Cirullo
(2008) that scores on a test of reasoning ability (Raven's Progressive
Matrices) correlated significantly with a measure of musical achieve-
ment in novice musicians (r = 0.25) but not in samples of highly skilled
musicians (rs = 0.12 and 0.24) as support for his hypothesis that the
acquisition of skill attenuates the effect of cognitive ability on domain-
specific performance. However, this conclusion is not warranted, be-
cause the correlations are not significantly different from each other
across skill level.

9. Significant vs. meaningful correlations

11. Don't confuse statistically significant with meaningful magni-
tude correlations

12. Do pre-specify expected correlations
Over the past few decades, scholarly organizations and journal

editors have encouraged researchers to move beyond null hypothesis
significance testing, in favor of reporting effect sizes (e.g., Wilkinson
and Task Force on Statistical Inference, 1999). This movement is
especially important for laboratory studies of experimental tasks and
intellectual abilities, because it may force researchers to consider what
the magnitude of associations between such variables actually means.
The researcher needs to ask: “Is a correlation of r = .40 between such
variables meaningful, or is it an over- or under-estimate of what should
be expected, on the basis of existing theory?” Too often, researchers
refer to similar correlations as (for example) “large,” “medium,” or
“substantial,” without any reference to what was expected or what is
consistent with prior research or theory. By pre-specifying an expected
magnitude of correlations, it will be much more likely that the study
results will be informative and less subject to ad hoc explanations.
Moreover, such an analysis might spur the researcher to additionally
report estimated true-score correlations (based on corrections for re-
striction of range in talent, reliability of the measurements, and so on),

in addition to raw observed correlations.
A corollary to recommendation #11 is “don't ignore correlations

that are too small to be meaningful and moreover are not even statis-
tically significantly different from zero,” when adequate sample sizes
are obtained. For example, Fournier-Vicente, Larigauderie, and
Gaonac'h (2008) administered a battery of “19 tasks thought to assess ...
six executive functions” (p. 35) to a sample of N = 180 undergraduate
students. A model was constructed to represent the six executive
function latent factors of executive function. Although the authors re-
ported that the model did not fit the data, changes to the model spe-
cifications yielded a “a five factor model [that] fits the data well” (p.
42). The difficulty is that even though the structural equation model
(SEM) could not be rejected on the basis of specified criteria, the input
matrix illuminates that, in Horn's terms, the factors were essentially
‘slicing smoke’ (see Horn, 1989), particularly when one takes account of
the underlying correlations. We calculated the mean and median values
of the 19 variable correlation matrix and found that the mean corre-
lation was r = 0.11, and the median correlation was r = 0.09. What's
more, 22% of the correlations were actually negative, which should
give one pause, given the ubiquitous positive manifold found across the
ability domain. A calculation of squared multiple correlations (SMCs)
for each variable was derived to estimate the communality for each
variable in the set of tasks. Thirteen of the 19 variables had SMCs below
0.04, meaning that less than 4% of the variance of these variables was
common to the matrix, and > 96% of the variance was either unique
to each task or was error. Although it is always useful to remember that
factor solutions are not unique (i.e., there is an infinite number of other
models that equally well fit the data), when a correlation matrix that is
largely made up of essentially miniscule magnitude correlations, there
is even more potential for misleading conclusions from such analyses.
We suggest that it is doubtful that one could derive a meaningful and
valid factor-analytic model inference from variables with virtually no
common variance.

When it comes to SEM models in general, variables with low cor-
relations (because of low reliabilities [see “Don't” #1 above] or mea-
sures with otherwise low levels of SD (inter-individual differences) re-
sult in both unpredictable effects on the relations of predictors and
criterion variables (e.g., see Maruyama, 1998) or low power to reject
models because of illusory indicators of good data-model fit (e.g. see
Hancock & Mueller, 2011), respectively.

10. ‘Method’ factors

As noted by Campbell and Fiske (1959), “Each test or task employed
for measurement purposes is a trait-method unit, a union of a particular
trait content with measurement procedures not specific to that con-
tent.” (p. 81). In the assessment of intellectual abilities, “method” can
refer to a variety of different characteristics of a particular test, such as
the kinds of question formats (multiple choice, open-ended, sentence
completion), administration procedures (e.g., speed vs. power tests),
item stimuli (e.g., words, numbers, familiar pictures vs. novel poly-
gons), computerized vs. paper and pencil vs. one-on-one oral ex-
amination, and so on. Different tests of reasoning abilities, for example,
can be found with any of the above different characteristics. The gen-
eral expectation, however, is that when two tests share any underlying
method characteristic, scores on the tests may correlate more highly
than would be expected based solely on their common variance on the
underlying trait constructs; that is, they share variance on both trait
factors and method factors. When experimental tasks share any of these
method characteristics with the accompanying intellectual ability
measures, they may have spuriously higher correlations with one an-
other. Failure to take account of common method variance may yield
inappropriate conclusions about the common task-trait variance. For
example, in research on working memory (e.g., Kane et al., 2004), it has
been a common practice to use “complex span” tasks having similar
procedures to measure working memory capacity (i.e., interleaved

Correspondence Intelligence 80 (2020) 101440

5



storage and processing tasks). Consequently, a latent factor comprising
these measures will reflect not only construct-related variance, but also
method variance, and it will not be possible to determine whether
correlations of the latent factor with other factors are at least in part
due to this method variance.

11. Content as overlapping ‘Method’ factor

13. Don't ignore common content as method variance
One of the reasonably well-replicated findings from research con-

ducted under the heading of “elementary information process” corre-
lates of intelligence (e.g., Ackerman, 1986; Kyllonen, 1985), is that
common stimulus content (e.g., numbers as stimuli/test items) on both
the task and ability assessments will lead to higher correlations than
when there are different stimulus contents (e.g., a spatial stimulus task
and a verbal ability test). This phenomenon could be considered an
example of common method variance, or it could be considered as re-
presenting something closer to overlapping stimulus bonds (e.g.,
Thompson, 1919; see also Kovacs & Conway, 2016). The main concern
regarding this phenomenon is to make sure that whatever common
variance is found between task and ability measure takes into account
the fact that the source of communality may not be entirely attributable
to the underlying task or ability factor(s), if those entities also en-
compass other stimulus content types. For example, if the investigator
only examines a working memory task with spatial content and a non-
verbal (spatial stimulus) intelligence measure, but attempts to describe
the resulting correlation as revealing the common variance between
“working memory” and “intelligence,” there is likely to be an over-
estimate, compared to situations where different stimulus contents are
used for the same kind of evaluation.

12. Speed vs. power method issues

14. Do take account of speed vs. power of reference tests
As the information processing framework in experimental psy-

chology grew out of information theory (e.g., see Atkinson & Shiffrin,
1967; Attneave, 1959; Shannon and Weaver, 1949), the two major
dependent variables for such investigations were the speed and accu-
racy of responding, often with a major emphasis on speed.1 Assessments
of intellectual ability, in contrast, often take a different approach to
determining level of performance. There are a number of straightfor-
ward speed tests, such as those in the domains of perceptual speed and
psychomotor ability assessments, where items are typically low in dif-
ficulty, and the number of completed items in a fixed time period re-
present the estimated ability level of the examinee. But, the majority of
intelligence assessments either are exclusively power tests (with easy
items at the beginning of the test, and items of increasing difficulty as
the test proceeds), with no time limits or very generous time limits, or
some combination of speed and power (items of increasing difficulty,
but strict time limits). Theorists have indeed argued about whether
intelligence as a construct should include the speededness of cognitive
processing as a fundamental element (e.g., Sternberg, 1986, Vernon,
Nador, and Kantor, 1985).

Regardless of the philosophical disagreements about the underlying
nature of the construct of intelligence, when speed (restrictive time
limits) is used in intelligence assessments, along with speed as the key
dependent variable in the experimental tasks, an increase in com-
munality across the tasks will exist, in comparison to a speeded ex-
perimental task and a true power-test format for intellectual ability
assessment. This issue is essentially the same as other common method

concerns – inferences about the commonality of the underlying ex-
perimental construct and the ability construct may result in over-
estimates, mainly as a result of these common methods.

13. Approaches to assessing intellectual abilities

The following is a set of recommendations, and their underlying
justifications, for assessing intellectual abilities in the context of la-
boratory experimental studies aimed at determining the relations be-
tween tasks and intellectual abilities. Examples are provided to un-
derline these recommendations.

13.1. ‘Factor-pure tests’ versus a faceted approach

15. Do take a faceted approach to assessing particular abilities
One of the mismatches between experimental psychology ap-

proaches to psychological constructs and differential approaches to the
assessment of intellectual abilities lies in the underlying phenomena of
interest. Experimental researchers can arguably determine fundamental
constructs, such as the amount of time required to search memorized
words or a display of various symbols, by calculating differences be-
tween task conditions, averaged across task trials, participants, or both
(e.g., Hick, 1952; Hyman, 1953; Sperling, 1960). The parallel approach
to determining individual differences in a single underlying ability
would be to find a test that is “factor pure,” that is, where the test
completely identifies the underlying ability construct. In an experiment
where experimental task variables are correlated with individual scores
on a single homogeneous test of intellectual ability (e.g., Raven's Pro-
gressive Matrices), there is either an implicit or explicit assumption that
the test is a “factor pure” assessment of the construct (e.g., Gf or
Spearman's g).

In order for a factor pure test to actually exist, scores on the test
would necessarily load only on a single underlying ability factor, within
a wide sampling of administered ability tests. Unfortunately, empirical
evidence and intelligence theory both indicate that this is not a likely
outcome of such an analysis. The hierarchical structure of intellectual
abilities that represents the dominant CHC framework for intelligence
indicates that the higher-order factors are a function of common var-
iance among minor group factors and major group factors. This means
that each test has some valid component of individual differences
variance in these lower-order factors. Even Raven's Progressive
Matrices, which is often claimed to be highly representative of
Spearman's g or Gf, shares substantial common variance with lower-
order abilities of reasoning and factors of spatial ability (e.g., see Burke,
1958; Gignac, 2015). The hierarchical representation of abilities in-
volves a partitioning of the reliable variance of each test into specific
variance (that is, reliable variance that is unrelated to any other test),
common variance with lower order factors, and common variance with
higher-order factors.

Therefore, if one wishes to compare individual differences in ex-
perimental task performance with estimates of a particular intellectual
ability, one must provide a more robust accounting of that intellectual
ability, that is less influenced by variance that is specific to the test
itself, and if desired, is less influenced by lower-order factor variance.
The solution to this problem was suggested by Humphreys (1962), with
an orientation that was suggested by Guttman's (1954-1955) facet
theory. Because, by definition, specific variance on each test is un-
correlated with specific variance on all other tests, the optimal ap-
proach to estimating individual differences on a particular underlying
ability is to maximize heterogeneity among tests that purport to measure
the same ability. More recently, this idea has been discussed in terms of
the concept of “controlled heterogeneity” (see Little, Lindenberger, and
Nesselroade, 1999).

Consider the example of an assessment of reasoning ability. The
assessment should sample across item content (e.g., “numbers, words,
figures, and photographs”) and item format (e.g., “analogies, series, and

1 Because speed and accuracy are considered to have a non-linear relation-
ship, study participants are often instructed to keep a constant high level of
accuracy, and to respond as quickly as possible without sacrificing accuracy, see
Wickelgren (1977).
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classification”; Humphreys, 1962, p. 482). By extension, an optimal
estimate of general intelligence would sample across all different test
contents and item formats that underlie the construct. Fundamentally,
aggregating across tests with each type of content and format will result
in the specific sources of variance in each test cancelling out, leaving
one with a robust assessment of the underlying ability construct. The
faceted approach also increases the breadth of the assessment, a factor
that will likely lead to increased validity for task-ability correlations
(see Wittmann & Süß, 1999 for the concept of “Brunswik Symmetry”).
Studies of cognitive aging literature by Salthouse and colleagues illus-
trate this approach to assessing intellectual abilities. In these studies,
participants complete a “reference battery” consisting of multiple tests
to measure each of several established cognitive constructs, such as
reasoning ability, memory, processing speed, and vocabulary (e.g.,
Salthouse, Pink, and Tucker-Drob, 2008; Siedlecki & Salthouse, 2014).
The tests vary in both item content and format, permitting greater
confidence that latent variables reflect the hypothesized cognitive
constructs of interest rather than facility in performing specific types of
tests.

13.2. Fluid intelligence and the so-called “indifference of the indicator”

16. Don't use ‘indifference of the indicator’ as a guide to test se-
lection

A fall-back position, whether implicit or explicit, for many experi-
mental studies, is that it doesn't much matter which test or tests are
used to assess intelligence or fluid intelligence (Gf) or g, because of
Spearman's “theory” of the “indifference of the indicator.” Briefly,
Spearman claimed that “for the purpose of indicating the amount of g
possessed by a person, any test will do just as well as any other, pro-
vided only that its correlation with g is equally high” (Spearman, 1927,
p. 197). Although there are some differential psychologists who agree
with this claim, there have been substantial objections, best articulated
by Horn and McArdle (2007) on both philosophical grounds (“it as-
sumes what it is trying to prove”, p. 222), and on empirical grounds (by
showing clear discrepancies in the constitution of g from different data
sets and even the same variables measured on different samples). As
noted by Horn and McArdle, a general factor derived from a sample of
spatial content tests will be fundamentally different from a general
factor derived from a sample of verbal content tests. Or, in more specific
terms, the g that is highly determined by the Ebbinghaus Completion
Test (Ebbinghaus, 1896–1897; a test of verbal memory and fluency; see
Ackerman, Beier, and Bowen, 2000) is inherently different in content
and both construct and criterion-related validity from a g that is highly
determined by the Raven's Progressive Matrices Test.2

13.3. Crystallized intelligence

17. Do take account of the “historical” and “current” aspects of
crystallized intelligence

Assessment of crystallized intelligence (Gc) is complicated by three
different aspects. The first is that, as with other higher-order ability
factors, Gc is made up of diverse underlying lower-order ability factors.
Sampling only one aspect of Gc (such as verbal comprehension or
general information) results in a compromised assessment similar to
measuring only a single aspect of Gf. A second complication comes from
the developmental aspect of Gc, as noted by Cattell (1971-1987). That
is the distinction between “current” Gc and “historical” Gc. In Cattell's
view, historical Gc is represented by content that was learned in
childhood or adolescence, while current Gc is represented by more

recently learned knowledge and skills. Assessments that often are pre-
sented as measures of Gc, such as the SAT verbal composite (which is
made up of reading, writing and language content) represents material
that may have been acquired years prior to the administration of the
test, and moreover, may not consider Gc content that falls outside of the
common core curriculum of a middle school or high school curriculum,
such as knowledge of different languages, literature, and so on. The
third aspect of Gc that complicates assessment is related to the lack of
consideration of “current” Gc. That issue is the diversity of knowledge
and skills that are theorized to represent the construct. For adults, that
means that substantial components of Gc include domain knowledge
that is not common to individuals with different educational, occupa-
tional or avocational experiences and expertise. Ultimately, assessments
of Gc that concentrate on the “historical” aspect of the construct need to
recognize that such an assessment substantially under-samples the
overall Gc construct. One alternative is to conduct a wider sampling of
“current” Gc, such as might be achieved with administration of a wide
variety of domain knowledge scales (e.g., see Ackerman, 2000), or to
include more specialized educational knowledge and occupational/
avocational knowledge assessments.

13.4. Measuring general intelligence

18. Do take account of underlying heterogeneity of the general in-
telligence construct

As noted earlier, there are multiple major theoretical frameworks
for the hierarchical structure of intelligence, such as the CHC frame-
work. It is useful to note that for laboratory assessments of intellectual
abilities, where correlations between experimental tasks and in-
tellectual abilities are concerned, the overall goal of a particular study
is not typically to provide an overall assessment of all of the major in-
tellectual abilities demarcated by an overarching theory, but rather to
make comparisons with particular abilities, whether higher or lower on
the hierarchy.

If one is interested in correlating task performance or related vari-
ables to general intelligence, the best approach is to administer a bat-
tery of tests of tests that are heterogeneous in content across all the
major group or higher-order factors (e.g., as represented in the CHC
theory; fluid intelligence, crystallized intelligence, general visual in-
telligence, quantitative ability, speed, short and long-term memory, and
so on). Omnibus intelligence tests, such as the Stanford-Binet or
Wechsler tests, are generally considered to be the gold standard for
general intelligence assessments, but these require extensive adminis-
tration time and individual testing. There are group tests that attempt to
provide similar sampling, such as the Wonderlic (1981), but it is im-
portant to recognize that any such assessment will make compromises
in terms of the heterogeneity of content, reliance on speeded tests, and
potentially a more fundamental concern, require that the individual
know how to read (and sometimes know how to write). As noted by
Carroll (1982), these group tests make an unstated assumption that
individual differences in the reading and writing skills necessary to
perform the test are unrelated to individual differences on the construct
to be measured – an assumption that may not be viable, depending on
the nature of the participant sample.

13.5. Measuring content abilities directly

19. Do use multiple tests to assess underlying content ability factors
With respect to content abilities (i.e., verbal, numerical, spatial), the

CHC framework provides only separate identification of numerical (Gq,
quantitative reasoning/knowledge) and spatial (Gv, visual intelligence/
processing). As with other hierarchical theories of intelligence (e.g., P.
E. Vernon, 1950), each of the general abilities can be subdivided into
constituent narrower abilities (e.g., see Lohman, 1979 for an explicit
breakdown of spatial abilities). To achieve a robust estimate of one of
these higher-order abilities, it is necessary to administer multiple ability

2 It may be interesting to note that Krueger and Spearman (1907) reported
that the Ebbinghaus Completion Test had a loading of 0.97 with g – a value
higher than any other measure reported to that date or afterwards by Spearman
and his colleagues.
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assessments that are heterogeneous on the lower-order factors that
make-up the higher order factor. Otherwise, over-sampling or under-
sampling the constituent factors runs the risk of not fully identifying the
higher-order factor, and only estimating one or more of the lower-order
factors. Simply naming a test as representative of a higher-order factor
and using the higher-order factor name as the identified individual-
differences construct is sloppy at best, and misleading at worst. An
example of this practice comes from a study of brain training by Jaeggi
and colleagues (Jaeggi et al., 2008), who equated scores on a single test
of figural reasoning with Gf.

Verbal content in the CHC framework is encompassed in Gc, which
also includes vocabulary and production fluency, but also in a general
reading and writing ability (grw). An assessment of a broad verbal
ability factor is possible, but an assessment of grw would not ordinarily
include fluency or knowledge measures. Thus, an adequate assessment
of verbal content ability would probably need to sample across the
verbal content of Gc ability and assessments of reading and writing
abilities.

As an example, an attempt to measure the three major content
abilities might include three or four measures of each, which are het-
erogeneous on the lower-order factors. An assessment of math ability
might include a measure of math reasoning (e.g. number series), math
knowledge (e.g., math word problems), and geometry. Such an as-
sessment would have the additional advantage of utilizing three dif-
ferent stimulus types (numbers, words, figures), which means that an
aggregated composite of math ability would be expected to be less in-
fluenced by method variance. Assessments of spatial ability would be
less likely to be able to be entirely heterogeneous with respect to con-
tent, but one could construct a battery of tests that included spatial
reasoning (e.g., spatial analogies), speeded rotation (e.g., flags), spatial
visualization (e.g., the Vandenberg & Kuse, 1978), and spatial word
problems (e.g., the Verbal Test of Spatial Ability; see Ackerman &
Kanfer, 1993). Assessments of Verbal ability also have limitations on
stimulus types, but an adequate battery of measures that is relatively
heterogeneous on content and processing components might include a
verbal analogies (reasoning), vocabulary (verbal knowledge) and a
completion test similar to that developed by Ebbinghaus.

One positive example of using multiple tests to establish underling
intellectual ability factors in the context of examining correlations with
elementary processes is by Van Dyke, Johns, and Kukona (2014). Al-
though the study had a relatively modest sample size (N = 65), the
authors sampled from the community, rather than from pre-selected
college/university students. They administered 24 ability measures to
assess “print mapping, reading skill, oral language use, memory” and
they included a norm-reference intelligence measure (the Wechsler
Abbreviated Scale of Intelligence), along with measures of working
memory and memory for serial order. As a result, it was first possible
for the authors to determine the representativeness of the sample, with
respect to mean and variance of IQ (Mean = 95.88, sd = 15.08). Ex-
tensive analyses were then conducted to determine that working
memory capacity was a “spurious determinant of poor comprehension”
(p. 384). Such results probably would have been less likely to be ob-
tained if the battery of reference ability tests had not been so extensive.

13.6. Measuring speed abilities

20. Don't assume that all ‘processing speed’ ability assessments
measure the same underlying factor

Given the inherent speededness of many experimental tasks, an
investigator might desire to directly estimate individual differences in
the speed components of intellectual abilities as a separate variable, in
order to determine the level of overlap between underlying general
intelligence and an experimental task, with speed ability partialled out.
Numerous investigators have made this kind of comparison, using one
or more measures of “processing speed” as the indicators of speeded
intellectual abilities. Although a “general speededness” ability was

posited by Horn (e.g., Horn, 1965), more recent research has estab-
lished that there are perhaps four related perceptual speed (PS) factors
(e.g., Ackerman, Beier, & Boyle, 2002): PS-Scanning, PS-Pattern Re-
cognition; PS-Memory and PS-Complex. A single test or even two tests
of PS abilities is unlikely to well-identify a higher-order PS ability.
Moreover, the degree of overlap between experimental task variables
and PS ability estimates will likely partly depend on the overlap of
underlying common content (stimulus type) and processes for the re-
spective measures. A robust estimate of a general PS factor would re-
quire assessments of tests that represented at least the three main PS
factors of Scanning, Pattern Recognition and Memory.

If one is interested in separating the accuracy from speed compo-
nents of intelligence, perhaps the most promising approach would be to
either administer tests with differing speed requirements (ranging from
pure power tests to moderately to highly speeded tests of the same
content – see Estrada, Román, Abad, & Colom, 2017; Lord, 1956), in
order to de-couple the speed from level components, or statistically
partial out estimates of perceptual speed and psychomotor abilities
from correlations between content/general abilities and the target ex-
perimental tasks, or partial out content/general abilities from correla-
tions between PS and psychomotor abilities and the experimental tasks
(e.g., see Ackerman et al., 2002).

14. Contrasting a single ability measure with multiple ability
measures

21. Don't assume that adequate assessment with multiple measures
requires excessive administration time

Ackerman et al. (2000) administered a large set of intellectual
ability tests, including the Raven's Advanced Progressive Matrices
(APM) test, and a battery of 7 working memory (WM) ability tests to a
group of 135 young adults, in order to determine the relationships
between intelligence, perceptual speed, and working memory ability.
The APM was administered in the manner specified by the manual
(Raven, Court, and Raven, 1977), where there are oral instructions
lasting 4.5 min, and a test of two parts – the first part has 12-items with
a 5-min time limit, and the second part has 36 items, with an extended
time limit of 40 items, for a total of 49.5 min administration time. In-
dividual test part scores for the Raven's APM and a unit-weighted z-
score composite of WM tests were correlated r = 0.334 for Part 1,
r = 0.470 for Part 2, and r = 0.475 for the total score (Part 1 + Part 2).
The Raven's total score correlated r = 0.330 with a Verbal Ability
composite, r = 0.352 with a Math Ability composite, and r = 0.694
with a Spatial Ability composite, consistent with the extant literature
that has described the test as much more highly related to spatial ability
than other abilities.

In contrast, selecting a representative set of tests across the Verbal,
Math, and Spatial domains could result in a more representative and
robust estimate of general intelligence, and equivalent correlations with
the WM composite, with a significant savings in administration time.
Selecting one test from each domain with the shortest administration
time to provide a general ability composite would include ETS Word
Beginnings (7.3 min total administration time), Thurstone's Number
Series Test (6.2 min) and Lohman's test of Spatial Orientation (see
Ackerman & Kanfer, 1993) (6.5 min), for a total of a 20 min adminis-
tration time. A unit weighted z-score composite of these three tests
correlated r = 0.437 with the WM composite (nearly identical to the
Raven's total score correlation of r 0.475), while this general ability
composite notably only correlated r = 0.455 with the Raven's total
score!

The study included 7 Verbal ability tests, 7 Math ability tests and 5
Spatial ability tests. Selecting one test each that loaded most highly on
respective factors of these content abilities (Completion Test for Verbal,
Arithmetic for Math, and Paper Folding for Spatial) would result in a
battery of tests that requires 33 min to administer. A general ability
composite of these three tests yielded a correlation with the WM ability
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composite of r = 0.567, yet the correlation between this general ability
composite and the Raven's total score was r = 0.606.

Tests that represent three of the four underling factors of Perceptual
Speed (PS) ability (Memory, Scanning, Pattern Recognition) also ac-
count for variance in the WM ability composite, with a minimal addi-
tional investment of administration time, as these tests are very brief.
Administrating one test from each factor (Digit/Symbol, Name
Comparison, and Summing to 10) would take less than 20 min. Yet a
composite of these tests correlated r = 0.384 with the WM ability
composite, and correlated non-significantly with the Raven's total score
(r = 0.096). A total ability composite of the shortest content ability
tests and the three perceptual speed ability tests correlated r = 0.514
with the WM ability composite, and r = 0.321 with the Raven's total
score. This battery of tests would only take about 40 min to administer,
9.5 min less than administering the Raven's APM.

Similar results were obtained in a study of N = 117 young adults by
Ackerman and Beier 2007; (Study 3). From that study, a general ability
composite of three brief tests representing Verbal (Vocabulary), Nu-
merical (Number Series) and Spatial (Spatial Orientation) abilities with
a total administration time of 20 min yielded a correlation of r = 0.639
with a composite of six Working Memory ability tests, while the Raven's
APM total test score correlated r = 0.560 with the Working Memory
composite. Including three of the same PS tests as in the earlier study
with the content ability tests in a single composite yielded a correlation
with the WM ability composite of r = 0.762, while correlating
r = 0.524 with the Raven's APM total test score.

Such results indicate that a more robust measure of general in-
tellectual ability than the Raven can be obtained with a sampling of
content ability tests, with the additional advantage that with a shorter
administration time for these tests, it is possible to more widely sample
other abilities (such as PS abilities) that would allow for an expanded
assessment of construct validity for other abilities (e.g., Working
Memory).

15. Conclusions

Many of the “don'ts” and too few of the “do's” can be found in the
extant literature on the relationship between constructs from experi-
mental cognitive psychology and intellectual ability. Although they are
prominent in laboratory experimental studies that attempt to relate task
performance to individual differences in intellectual abilities, they are
pervasive in the wider literature beyond the study of intelligence. It is
important to note that there are few, if any, “perfect” studies in the
literature, because of limitations in funding, time, effort, availability of
optimal samples, and so on. The goal of this paper was to provide best-
practice advice, in the hope that new studies will provide more defi-
nitive research results in the continuing efforts to integrate experi-
mental and correlational approaches to understanding human in-
telligence. Thankfully, many of the do's and don'ts we have listed in this
paper, such as correcting for restriction-of-range in talent, or using a
small set of content measures to generate a robust general ability
composite, require few, if any, additional resources, over and above
current and past practices. Some “do” recommendations indeed require
additional efforts, such as obtaining norms and validity estimates for
non-standard test administrations. However, these kinds of investments
are expected to provide long-term payoff in heuristic terms, by pro-
viding improved reference indicators for future investigations.
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