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Abstract
Human intelligence can be broadly subdivided into fluid (g f ) and crystallized (gc) intelligence, each tapping into distinct
cognitive abilities. Although neuroanatomical correlates of intelligence have been previously studied, differential
contribution of cortical morphologies to g f and gc has not been fully delineated. Here, we tried to disentangle the
contribution of cortical thickness, cortical surface area, and cortical gyrification to g f and gc in a large sample of healthy
young subjects (n = 740, Human Connectome Project) with high-resolution MRIs, followed by replication in a separate data
set with distinct cognitive measures indexing g f and gc. We found that while gyrification in distributed cortical regions had
positive association with both g f and gc, surface area and thickness showed more regional associations. Specifically, higher
performance in g f was associated with cortical expansion in regions related to working memory, attention, and
visuo-spatial processing, while gc was associated with thinner cortex as well as higher cortical surface area in
language-related networks. We discuss the results in a framework where “horizontal” cortical expansion enables higher
resource allocation, computational capacity, and functional specificity relevant to g f and gc, while lower cortical thickness
possibly reflects cortical pruning facilitating “vertical” intracolumnar efficiency in knowledge-based tasks relevant mostly
to gc.
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Introduction
General intelligence (g) is frequently decomposed into fluid (g f )
and crystallized (gc) components (Cattell 1963). While g f is asso-
ciated with problem solving independent of previous knowl-
edge, gc reflects acquired knowledge and general facts (Deary
and Caryl 1997). Although they are correlated, they tap into
distinct cognitive abilities and show different trajectory with
aging, with g f generally declining with aging, while gc tending to
increase with education and age (Horn and Cattell 1967; Manard

et al. 2014). Abilities related to g f , such as working memory,
attention, and mental manipulation, are generally thought to
benefit from a higher number of processing units, allowing
for a more flexible allocation of resources during hypothesis
testing (Unsworth et al. 2014; Duncan et al. 2017). On the con-
trary, knowledge-based cognitive performance relies on life-
long learning, which is associated with optimization of existing
computational schemes, where increased efficiency might be as
important as computational power (Wenger et al. 2017a).
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Identifying the neuroanatomical correlates of human intel-
ligence has a long history. The initial attempts to relate brain
anatomical measurements with intelligence started in the 19th
century by relating head size to intelligence (Pearson 1906).
These studies found a modest correlation between head size and
intelligence, accounting for about 4% of variance (Pietschnig et
al. 2015). The advent of neuroimaging techniques made it possi-
ble to measure brain volume noninvasively and relate regional
cortical gray matter volume to intelligence measures, leading to
the formalization of the well-known parieto-frontal integration
theory (Jung and Haier 2007). While such evidence has helped
localizing pivotal regions supporting g in humans, the exact
nature of the contribution provided by specific structural prop-
erties of the brain is still unclear. Previous investigations on
the association of cortical morphologies and human intelligence
have mainly focused on gray matter volume and cortical thick-
ness and have found inconsistent results across studies (Choi et
al. 2008; Karama et al. 2011, 2014; Schnack et al. 2015).

Recent studies have shown that cortical gray matter volume
can be decomposed into cortical thickness and cortical sur-
face area, which are more biologically plausible morphological
measures of cortical architecture (Winkler et al. 2010). Cortical
surface area and cortical thickness have distinct developmental
trajectories and uncorrelated genetic backgrounds (Panizzon et
al. 2009). Cortical thickness is associated with radial neuronal
migration and the number of neurons, dendritic arborizations,
and glial support in cortical columns. In contrast, cortical surface
area is related to tangential neuronal migration and captures
the number of mini-columnar units in the cortex (Chenn and
Walsh 2003; Rakic 2009; Rakic et al. 2009). Parsing the effect of
cortical thickness and surface area on cortical volume has also
functional relevance. For instance, cortical surface area and cor-
tical thickness in human early visual cortices have been shown
to exert opposite influences on neural population tuning with
behavioral consequence for perceptual discrimination (Song et
al. 2015). Therefore, in exploring the neural substrate of g f and
gc, assessing the contribution of surface area and thickness
seems important.

Aside from thickness and surface area, cortical folding,
or gyrification, has also been proposed as a candidate neu-
roanatomical correlate of intelligence. Comparative anatomical
studies have shown positive correlation between overall cortical
gyrification and cognitive abilities across species (Zilles et
al. 2013). Only recently, the regional association between
gyrification and intelligence has been carved out, showing
higher gyrification in large portions of parietal and frontal
regions in subjects with higher g score (Gregory et al. 2016).

Human Positron Emission Tomography (PET) and task-
based functional magnetic resonance imaging (fMRI) studies
have shown activation of lateral prefrontal as well as parietal
regions while subjects perform intelligence tasks. More recently,
advances in human resting-state fMRI studies have shown
the importance of specific functional networks including the
frontoparietal network (FPN), default mode network (DMN),
and dorsal attention network (DAN) in explaining individual
variability in human intelligence (Colom et al. 2010; Santarnec-
chi et al. 2017a). The extent to which structural correlates of
intelligence correspond to functional correlates of intelligence
could offer new insight into structure–function relationship in
the neuroscience of human intelligence.

In this study, we tested the hypothesis that g f and gc load on
distinct cortical morphologies with different patterns of regional
associations. To test this hypothesis, we first used a large sam-

ple of young healthy subjects from the Human Connectome
Project (HCP, n = 740) (Van Essen et al. 2013) with high-resolution
structural T1-weighted MRIs and cognitive tests (identification
phase). MRIs were analyzed using FreeSurfer pipeline (Fischl
2012), and a vertex-wise analysis followed by cluster-wise cor-
rection was pursued to identify the most significant clusters for
each cortical morphology (cortical surface area, cortical thick-
ness, and cortical gyrification). Afterwards, we showed that the
structural correlates of intelligence follow the topography of
resting-state human brain networks implicated in fluid and
crystallized intelligence. Finally, we sought to replicate the find-
ings of the identification phase in a separate data set (NKI-
Rockland data set) (Nooner et al. 2012) with different cognitive
tests in order to identify the most generalizable clusters linked
to g f and gc.

Materials and Methods
Identification Data Set

A total of 740 subjects (age range, 21–35; right-handedness, >40)
from the HCP who had 3T structural T1-weighted MRIs as well
as neuropsychological data were included for this study.

Behavioral Measures

The standard test for measuring fluid intelligence is the Raven’s
Standard Progressive Matrices (RSPM), a 60-item multiple-choice
test with increasingly difficult pattern-matching tasks. The test
assesses abstract reasoning with little dependency on language
abilities. In the HCP, g f was measured using an abbreviated
version of RSPM called Penn Progressive Matrices (PMAT). PMAT
consists of 9-item subset of RSPM, which predicts the origi-
nal RSPM with great accuracy (Bilker et al. 2012). We used the
number of correct responses in the PMAT test for this study
(PMAT24 A CR, ranging from 0 to 9). The PMAT24 A CR test has
also been previously used in functional imaging studies (Finn
et al. 2015). Also, a composite g f score (CompGfScore) derived
from National Institutes of Health (NIH) toolbox (including the
Dimensional Change Card Sort Test, the Flanker Inhibitory Con-
trol and Attention Test, the Picture Sequence Memory Test, the
List Sorting Working Memory Test, and the Pattern Comparison
Processing Speed Test) was tested (Akshoomoff et al. 2013),
which gave similar results to PMAT24 A CR. Here, we only report
results for PMAT24 A CR, which is considered a more direct
measure of g f task.

Gc was measured using the NIH toolbox composite scores
(Crystallized Cognition Composite), which combines Picture
Vocabulary Test and Oral Reading Recognition Test into
one score (CompGcScore) (Akshoomoff et al. 2013). The Oral
Reading Recognition Test consists of reading and pronouncing
either English or Spanish words as accurately as possible.
The Picture Vocabulary Test measures receptive vocabulary
using a computerized test by asking the subject to identify
the correct picture for the audio recording of a word (for
detailed description of the HCP behavioral measures, see
https://wiki.humanconnectome.org).

MRI Data Acquisition

Structural T1-MRIs in HCP were acquired using a dedicated
customized 3-T Connectome Skyra scanner with the following
parameters: MPRAGE sequence, TR = 2400 ms, TE = 2.14 ms, and
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TI = 1000 ms; flip angle = 8 degrees; FOV = 224 × 224 mm; and
voxel size = 0.7 mm isotropic.

Image Processing and Statistical Analyses

Structural T1-weighted MRIs were processed with FreeSurfer
v6.0 software package to create three-dimensional representa-
tions of cortical surface. FreeSurfer pipeline includes automated
Talairach transformation, segmentation of subcortical white
matter and deep gray matter structures based on intensity
and neighbor constraints, intensity normalization, tessellation
of gray matter–white matter boundary and gray matter–
cerebrospinal fluid boundary, automated topology correction,
and reconstruction of cortical surface meshes (Dale et al.
1999). Afterwards, reconstructed white matter surfaces were
registered to FreeSurfer template (fsaverage) based on cortical
folding patterns using spherical registration implemented in
FreeSurfer (mri surf2surf). Cortical morphologies were then
smoothed using a 10 mm full-width-at-half-maximum Gaussian
kernel for thickness and surface area and 5 mm for gyrification.
Cortical thickness was calculated at each point (vertex) in
the cortex by measuring the distance between white and pial
surfaces. The vertex-wise cortical surface area was calculated
by averaging the area of all faces that meet at a given vertex on
the white matter surface. The vertex-wise cortical gyrification
was measured by calculating the gyrification index in circular
three-dimensional regions of interest (Gregory et al. 2016).
This method uses an outer smooth surface tightly wrapping
the pial surface and computes the ratio between areas of
circular regions on the outer surface and their corresponding
circular patches on the pial surface. To make sure that our
results are replicable using a different version of FreeSurfer,
we also used FreeSurfer processed files provided by the HCP
(db.humanconnectome.org) using FreeSurfer v5.3-HCP. In HCP,
both T1-weighted and T2-weighted MRIs were used for cortical
surface reconstruction. T2-weighted MRIs are mainly used to
refine pial surface reconstruction.

In order to find the regional association of cortical morpholo-
gies with intelligence measures, a vertex-wise analysis followed
by cluster-wise correction was pursued in the identification
data set. We devised a method that enables better delineation
of most significant vertices in cluster-wise correction and
enables more stable cluster visualizations across different
cortical morphologies (cortical thickness, surface area, and
gyrification). We first split the data into 10-folds (each fold,
740/10, 74 subjects). While holding 1-fold out, we fit a linear
regression model to all the remaining folds (9-folds, 666
subjects) at each vertex to test the association between
vertex cortical morphometric and gc/g f , controlling for the
effects of age, sex, and total brain volume (TBV). The results
were then cluster-wise corrected (vertex-wise threshold, 0.01;
cluster-wise P value, 0.05). We repeated this step 10 times,
each time holding 1-fold out. We then concatenated all the
resultant clusters across all iterations. The final map has
values between 0 and 10 at each vertex, with 0 indicating
that the vertex has not been selected in any of the iterations
and 10 indicating that the vertex has been present in all the
tested iterations. To show the usefulness of our approach, we
also applied vertex-wise thresholding followed by cluster-wise
correction on the whole sample (n = 740) and compared the
final clusters. To make sure that our findings are not due to
chosen vertex-wise threshold, we also performed our analyses

using vertex-wise P value of 0.001. The clusters obtained
from applying both thresholds are provided as supplementary
materials.

Although the effect size is considered small, TBV has been
one of the most reliable and consistent predictor of intelligence.
Given that it is a matter of controversy whether TBV should
be included as a cofactor or not, we ran a follow-up analysis
without controlling for TBV. Finally, performance in gc task is
correlated with education level by the nature of the tasks, but
education is not expected to affect g f . We first checked whether
there is an association between education and g f (PMAT) and
ran the analyses only on subjects who had at least 13 years of
education. Finally, as both g f and gc are correlated with each
other, we performed the analyses for g f controlling for gc and
vice versa to find the most specific clusters associated with g f
and gc.

Overlap with Resting-State fMRI Networks

We tested the overlap between putative resting-state fMRI
human networks and regional cortical morphology associated
with g f and gc. We used 7 resting-state human networks
previously derived from group-level analysis of 1000 subjects
(Yeo et al. 2011). Dice coefficient (DC) was used to measure the
overlap, defined as:

DC = 2∗Noverlap/
(
Nnetwork + Nmorphology

)
.

Nnetwork is the number of vertices in the tested network,
Nmorphology is the number of significant vertices in the
tested cortical morphology, and Noverlap is the number of
vertices in common between the tested network and cortical
morphology.

Replication Data Set

To test the generalizability of the structural correlates, we tried
to replicate the HCP clusters in the INDI data set, which offer
distinct neuroimaging and behavioral measurements. High-
quality structural T1-weighted MRIs (3T) for 253 subjects (age
range, 21–45) were acquired using a 3-T Siemens MAGNETOM
TrioTim with the following parameters: MPRAGE sequence,
TR = 1900 ms, TE = 2.52 ms, and TI = 900 ms; flip angle = 9 degrees;
FOV = 250 × 250 mm; voxel size = 1 mm isotropic.

Structural T1-MRIs were processed similar to HCP data. g f
and gc were measured using the Wechsler Abbreviated Scale of
Intelligence, a cognitive battery composed by 4 subtests: vocab-
ulary, similarities, block design, and matrix reasoning. Vocab-
ulary and similarities are combined to index gc, while block
design and matrix reasoning are combined to form g f . Similar
to identification phase, we first ran a vertex-wise analysis con-
trolling for the effect of age, sex, and TBV. Afterwards, clusters
present in at least 7 iterations (arbitrary threshold) from iden-
tification phase were tested separately for their corresponding
cognitive measures, while controlling for the effects of age, sex,
and TBV.

Results
Global Neuroanatomical Correlates of Intelligence

The total cortical surface area and average gyrification showed
positive correlations with g f and gc, while average cortical
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thickness was not correlated with g f or gc (Fig. 1). Given that
global neuroanatomical measures might obscure the underlying
associations, further testing of regional association of each
cortical morphology with g f and gc was conducted.

Structural Correlates of G f and Gc
Figure 2 shows regional morphological associations with g f and
gc. Cortical surface area in left and right superior parietal, left
supramarginal, left caudal middle frontal, left pars-opercularis,

Figure 1. Global neuroanatomical correlates of g f and gc. Total surface area and mean gyrification are positively correlated with g f and gc. In contrast, mean cortical
thickness showed no statistically significant association with g f or gc.

Figure 2. Regional morphological correlates of g f and gc. Vertex-wise structural correlates of g f and gc for cortical surface area, gyrification, and thickness. The

subjects were divided into 10-folds. Vertex-wise analysis followed by cluster-wise correction was applied to combined subjects from 9-folds, while holding 1-fold out.
The procedure was repeated 10 times. The resulting clusters were combined across all the iterations. The color shows the number of iterations that the vertex was
within a statistically significant cluster (minimum, 0; maximum, 10). The red-yellow vertices show positive correlation; blue-cyan vertices show negative correlation.
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left inferior temporal, right inferior and middle temporal, right
medial orbitofrontal, and right rostral middle frontal were
all positively correlated with g f . Cortical gyrification in large
portions of left and right frontal, left and right inferior parietal,
supramarginal, superior parietal, and superior temporal were
positively correlated with g f . Cortical thickness did not show
any regional association with g f . Supplementary Figure S1
shows the results for the g f-associated cortical morphologies
controlled for gc.

Cortical thickness in left caudal middle frontal, left pars-
opercularis, left rostral middle frontal, left superior parietal, and
right precuneus were all negatively correlated with gc. Cortical
surface area in left and right caudal middle frontal, left inferior
temporal, right middle temporal and right postcentral, and right
superior frontal were all positively correlated with gc. Corti-
cal gyrification in large portions of left and right frontal, left
and right inferior parietal, and right supramarginal were pos-
itively correlated with gc. Supplementary Figure S1 shows the
results for the gc-associated cortical morphologies controlled
for g f.

Excluding TBV as a cofactor in the model did not influence
the association between g f/gc and cortical thickness, while the
association between g f/gc and cortical surface area and gyrifi-
cation became statistically more significant with larger clusters
(Supplementary Fig. S2).

We found a positive correlation between g f score indexed by
PMAT24 A CR and years of education (Supplementary Fig. S3).
We ran the analyses only on subjects who had at least 13 years
of education, to minimize the possible confounding effect of

education level. The resulting clusters were similar to our
original findings (Supplementary Fig. S4).

Clusters obtained from applying vertex-wise thresholding
and cluster-wise correction to the whole data set (n = 740) were
similar to identical to clusters obtained from splitting the data
into 10-folds (Supplementary Fig. S5). However, by splitting the
data, we were able to also map the most important vertices
within the clusters, providing final weighted cluster maps
(Supplementary Fig. S6).

We also performed the analyses using a more strin-
gent vertex-wise threshold of 0.001, with essentially similar
results. We have provided the final clusters from apply-
ing both vertex-wise thresholds (P = 0.01 and P = 0.001)
and the corresponding cluster-wise P value in a supple-
mentary excel file. As a final sanity check, we redid the
entire analyses using cortical surfaces reconstructions pro-
vided by the HCP and found similar to identical results
(Supplementary Fig. S7).

Overlap with Resting-State fMRI Networks

We measured the overlap between resting-state fMRI networks
and the regional cortical morphology associations of g f and gc
(Fig. 3). Gf-related areas had the largest overlap with the DAN
(DC = 0.31) in the left hemisphere and the DMN (DC = 0.34) in
the right hemisphere. Gc-related areas had the largest overlap
with the limbic (DC = 0.30) in the left hemisphere and the DMN
(DC = 0.32) in the right hemisphere. Gc-related thickness had the

Figure 3. Correspondence between structural correlates of intelligence and functional resting-state human networks. Group-average (N = 1000) resting-state human
networks by Yeo et al. (2011) (A). g f-cortical surface area associations (B), gc-cortical surface area (C), and gc-cortical thickness associations (D). The radar graphs show

the DC for each network. The circles show the correspondent network.
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Figure 4. Replication of g f and gc clusters in INDI data set. Vertex-wise analysis (P ≤ 0.05) followed by testing the most significant clusters of identification phase in

INDI for g f (A) and gc (B). The boxes show the tested HCP clusters in INDI, and the numbers are P values.

largest overlap with the FPN (DC = 0.19) in the left hemisphere
and the DAN in the right hemisphere (DC = 0.17).

Replication in INDI

Vertex-wise analyses for surface area, thickness, and gyrifica-
tion were performed for g f and gc in INDI data set. Afterwards,
significant clusters from identification phase (HCP) were sepa-
rately tested in INDI data set for their corresponding cognitive
measures. Similar to the identification phase, g f showed strong
positive association with surface area in superior parietal, infe-
rior temporal, and inferior frontal gyrus; positive association
with gyrification in distributed regions of the cortical ribbon;
no association with cortical thickness. Almost all tested clus-
ters from the identification phase had statistically significant
association with g f in INDI (Fig. 4A). Unlike g f , gc showed less
striking association with cortical morphologies, and few clusters

from the identification phase showed statistically significant
association with gc (Fig. 4B).

Discussion
In this study, we tried to parse the link between different cortical
morphologies and individual variability in g f and gc in a large
data set of young healthy individuals, with replication in a
separate data set using different behavioral measures. We found
that while cortical gyrification in distributed regions of parietal,
temporal, and frontal lobes displayed a positive correlation with
g f and gc, cortical surface area and thickness showed more
specific associations, which corresponded with meaningful cor-
tical regions and resting-state fMRI networks. Specifically, g f
showed positive association with cortical surface area and no
association with cortical thickness. On the other hand, better
performance in gc was associated with overall decreased cortical
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thickness as well as higher cortical surface area. Finally, higher
surface area in left inferior temporal and right middle temporal
gyri showed positive correlations with both g f and gc, suggesting
possible shared structures contributing to both g f and gc.

Computational Power versus Optimized Processing

G f measures the ability to solve novel problems, which relies
on generating, testing, and refuting multiple hypotheses to
find the optimal solution to a given task (Fig. 5A). Cognitive
factors underlying g f have been matters of study for decades.
Importantly, performance in g f is highly correlated with working
memory, suggesting that working memory capacity might be an
important determinant of g f performance. The link between
working memory performance and g f has been attributed to
attention control, capacity to maintain goals, subgoals and
hypotheses, and long-term memory (Unsworth et al. 2014).
Moreover, functional imaging studies have shown that working
memory, attention, and g f engage similar networks, suggesting
possible shared neural correlates (Gray et al. 2003; Santarnecchi
et al. 2017a). In this study, we found that better performance
in g f was associated with cortical expansion in brain regions
previously attributed to g f , working memory, attention as well

as visuo-spatial processing in structural and functional imaging
(Gray et al. 2003; Colom et al. 2007; Kravitz et al. 2011, 2011;
Petersen and Posner 2012; Constantinidis and Klingberg 2016),
cortical morphologies (Deary et al. 2010), and lesion studies
(Woolgar et al. 2010; Barbey et al. 2014).

How can regional cortical expansion lead to better perfor-
mance in g f? Our brain has finite capacity for information
processing (Luck and Vogel 1997). While the exact nature of
the limited capacity is still not understood, two main models
have been proposed. One model claims that there are only a
limited number of available slots for holding information, and
once filled, new information cannot be added (fixed capac-
ity model) (Fukuda et al. 2010). In contrast, the second model
argues that although there is no upper limit for number of
representations, the competition between representations for
resource allocation leads to information loss as the number of
representations grow (flexible resource model) (Franconeri et
al. 2013). Recent human psychophysics studies and monkey’s
electrophysiology have found more evidence in favor of the
flexible resource model (Buschman et al. 2011; van den Berg
et al. 2012; Miller and Buschman 2015). Regardless of the exact
mechanism of capacity limit, higher cortical surface area can
lead to increased information processing capacity by providing

Figure 5. Contribution of cortical thickness and surface area to g f and gc. Schematic example of a g f task, which requires navigating the solution space to find
the correct answer (A). Cortical surface area is associated with the number of cortical columns (B). Higher cortical surface area can potentially lead to increased

capacity by increasing the number of cortical columns (information processing units) as well as to increased functional specificity of cortical columns by reducing
fraction of intercolumnar interconnections (C). Cortical surface area in superior parietal cluster morphed back into pial surface for two representative subjects (D).
Schematic example of a gc task, which relies on accessing stored knowledge (E). Cortical thickness is associated with thickness of cortical columns determined by

dendritic arborizations and glial support (F). Learning can lead to pruning of random connections between neurons, creating a more structured neural network,
leading to decreased cortical thickness by reducing dendritic arborizations (G). Cortical thickness in left middle frontal gyrus morphed back into pial surface for two
representative subjects (H).
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more cortical columns (Rakic 2008), which are the functional
units of the cortex (Mountcastle 1997) (Fig. 5B). Moreover, higher
number of cortical columns should be associated with reduced
fraction of intercolumnar connections (percent interconnected-
ness) (Ringo 1991) (Fig. 5C). This has been suggested to increase
functional specificity of cortical columns and reduction of over-
lap in representations, which confer higher capacity to hold
information (Ringo 1991). This idea has been recently supported
by functional imaging study of neural population tuning in
human early visual cortex: higher cortical surface area in early
visual cortex is positively associated with sharpness of neural
population tuning and better performance in perceptual dis-
crimination (Song et al. 2015). By the same token, cortical expan-
sion in g f-related brain regions can lead to higher information
processing capacity and ability to generate (represent), test and
refute multiple hypotheses simultaneously, with less interfer-
ence between generated hypotheses (Franconeri et al. 2013). By
parsing cortical volume into thickness and surface area, we were
able to show that cortical expansion is the underlying factor for
better performance in g f rather than higher cortical thickness
(Fig. 5D). These results indicate the importance of studying cor-
tical surface area as a separate entity in future g f studies.

Unlike g f , gc is related to accessing stored knowledge and
general facts, which have been accumulated throughout years
of learning and education (Deary et al. 2010) (Fig. 5E). In this
study, we found that better performance in gc was associated
with lower cortical thickness and higher cortical surface area.
Previous studies on cortical changes associated with human
learning and plasticity have shown increased cortical thickness
(and volume, which mainly is driven by change in thickness)
shortly after learning. Recently, the expansion–renormalization
model has been hypothesized to explain unfeasible endless
expansion of cortex (increased cortical thickness) in life-long
learning (Wenger et al. 2017a). According to this model, learning-
induced increased cortical thickness, brought by many cellular
mechanisms including formation of new synapses and dendritic
arborizations as well as proliferation of astrocytes, is followed by
selection of the most efficient neural circuitries through pruning
of inefficient connections (renormalization). The renormaliza-
tion of cortical changes has been shown in human imaging
studies (Wenger et al. 2017b) as well as animal models (Xu
et al. 2009). Our findings support and extend the expansion–
renormalization model. Repeated learning followed by pruning
of unnecessary and weak connections between neurons would
lead in long term to more stable and efficient neural circuitry,
explaining decreased cortical thickness in the corresponding
brain regions (Fig. 5G,H). Furthermore, our results tie in well
with positive association of intelligence with both thinner cor-
tex as well as faster rate of cortical pruning during develop-
ment (Schnack et al. 2015) and less activation and metabolic
consumption in individuals with higher cognitive performance
(Haier et al. 1992).

Lower cortical thickness and higher cortical surface area in
left caudal middle frontal gyrus were the most significant clus-
ters for gc. Cortical thickness in left caudal middle frontal gyrus
undergoes changes in cortical thickness in subjects learning new
language (Mårtensson et al., 2012; Koyama et al. 2017). Higher
cortical surface area accompanied by lower cortical thickness
has been associated with better performance in visual percep-
tion discrimination and lend support to the proposed model of
enlarged cortical surface area and decreased cortical thickness
as the most advantageous cortical design for crystallized knowl-
edge (Song et al. 2015).

Shared Neuroanatomical Correlates of g f and gc

Although g f and gc rely on distinct cognitive abilities, individ-
uals with higher g f perform better in gc tasks as well (Deary
et al. 2010). This can imply engagement of some shared neural
networks in both g f and gc. We specifically found that corti-
cal surface area of anterior temporal lobe (including anterior
inferior temporal gyrus) and middle temporal is associated with
both g f and gc. Studies on patients with semantic dementia as
well as human imaging studies have shown the role of anterior
temporal lobe in formation of concepts and semantic knowledge
(Ralph et al. 2017). Anterior temporal lobe specifically acts as a
modality-invariant hub, which infers higher-order relationships
among sensory, motor, verbal, and nonverbal information (Abel
et al. 2015), and can play a significant role in both g f and gc.

Our results also show that cortical gyrification in frontal,
parietal, and temporal regions was positively correlated with
both g f and gc, which is in line with previous studies of regional
cortical gyrification association with intelligence (Gregory et
al. 2016). This indicates gyrification as a possible shared neu-
roanatomical correlate of both g f and gc, with less regional
specifications but rather global characteristics of the brain.

In this study, we showed results with and without correction
for TBV. Correcting for TBV reduced the size and significance
level of the clusters for the association between g f/gc and cor-
tical surface area. While cortical thickness shows more or less
similar values across subjects with less amount of variability,
cortical surface area varies greatly across subjects, which makes
it a more prominent factor contributing to TBV. We believe that
controlling for TBV more clearly reveals the regional association
between cortical surface area and g f/gc, as the results are not
contaminated by factors that are correlated with both TBV and
intelligence, such as white matter volume.

Brain Structure–Function Relationship and Human
Intelligence

A central question in neuroscience is the relation between
structure and function in the brain. We found that structural
correlates of fluid and crystallized intelligence correspond to
brain regions that are active while subjects perform fluid and
crystallized intelligence tasks and to well-known human func-
tional networks previously associated with human intelligence.
Our results are also in line with the recent meta-analysis of
g f-related co-activation maps showing great similarity with
resting-state human brain networks including the DAN and
the FPN (Santarnecchi et al. 2017b). These findings also provide
structural evidence for the network-centric notion of human
intelligence resulting from the interaction of multiple brain
regions (Barbey 2018).

Limitations of the Study and Future Directions

It is important to mention that metrics reported in this study
are indirect measures of cortical morphologies using MRI.
Importantly, it has been proposed that cortical thickness can be
affected by myelination in deeper layers of the cortex especially
during development (Sowell et al. 2001). Higher myelination
in the gray matter–white matter boundary can lead to false
segmentation of gray matter as white matter, resulting in
apparent cortical thinning. Recently, thinning of visual cortex
during development has been linked to increased myelination
in the visual cortex, rather than pruning (Natu et al. 2018).
Future studies using myelination maps combined with diffusion
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imaging and T1-weighted MRI are needed to determine whether
the negative association between cortical thickness and gc can
be attributed to pruning or myelination.

Also, subject’s movement during MRI acquisition can lead to
underestimation of cortical thickness, which could be a poten-
tial confounding factor (Reuter et al. 2015). However, subjects
with higher cognitive ability move less compared to subjects
with lower cognitive ability (Wylie et al. 2014). This minimizes
the possibility of movement as a confounding factor in our study,
as the relationship between cortical thickness and gc was found
to be negative.

Although we did not find any statistically significant associa-
tion between cortical thickness and g f , this does not necessarily
mean no association exists. Future studies with larger sample
sizes are needed to further investigate the potential associ-
ation between cortical thickness and g f with smaller effect
sizes.

In this study, we were able to partially replicate results across
two relatively large data sets, specifically for the association
between g f , cortical surface area, and gyrification. However,
results for the association between cortical morphologies and
gc were not fully replicated. This can be partly due to relatively
small sample size in the replication data set (INDI) and partly
due to very different behavioral and psychological measurement
of gc across two data sets. Future studies with larger sample size
and more similar behavioral measures will reveal the generaliz-
ability of the findings across different data sets.

Conclusion
We tried to disentangle the contribution of different cortical
morphologies including cortical thickness, surface area, and
gyrification, to individual variability in g f and gc. Our findings
suggest a framework where “horizontal” cortical expansion,
indexed by cortical surface area, enables greater resource
allocation and computational capacity relevant to g f and
gc, whereas decreased cortical thickness possibly reflects
cortical pruning processes facilitating “vertical” intracolumnar
efficiency in knowledge-based tasks linked to gc.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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