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Abstract
Intelligence is a socially and scientifically interesting topic because of its prominence in human behavior, yet there is little clarity
on how the neuroimaging and neurobiological correlates of intelligence differ between males and females, with most investiga-
tions limited to using either mass-univariate techniques or a single neuroimaging modality. Here we employed connectome-based
predictive modeling (CPM) to predict the intelligence quotient (IQ) scores for 166 males and 160 females separately, using
resting-state functional connectivity, grey matter cortical thickness or both. The identified multimodal, IQ-predictive imaging
features were then compared between genders. CPM showed high out-of-sample prediction accuracy (r > 0.34), and integrating
both functional and structural features further improved prediction accuracy by capturing complementary information (r = 0.45).
Male IQ demonstrated higher correlations with cortical thickness in the left inferior parietal lobule, and with functional connec-
tivity in left parahippocampus and default mode network, regions previously implicated in spatial cognition and logical thinking.
In contrast, female IQ was more correlated with cortical thickness in the right inferior parietal lobule, and with functional
connectivity in putamen and cerebellar networks, regions previously implicated in verbal learning and item memory. Results
suggest that the intelligence generation of males and females may rely on opposite cerebral lateralized key brain regions and
distinct functional networks consistent with their respective superiority in cognitive domains. Promisingly, understanding the
neural basis of gender differences underlying intelligence may potentially lead to optimized personal cognitive developmental
programs and facilitate advancements in unbiased educational test design.
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Introduction

Individual differences in overall intellectual performance can
be measured using the intelligence quotient (IQ), which
covers a variety of cognitive domains including memory, ver-
bal comprehension, processing speed, reasoning, spatial abil-
ity and executive function (Deary et al. 2010). Consequently,
intelligence is postulated to draw on communications between
regions that are responsible for multiple high-order cognitive
functions. A paper reviewed advances in functional and struc-
tural neuroimaging findings (Jung and Haier 2007) reported a
striking consensus, named the Parieto-Frontal Integration
Theory (P-FIT), which suggested that individual differences
in intelligence can be characterized by a distributed network
mainly involving the parietal and frontal regions (Vakhtin
et al. 2014). This theory has been corroborated by numerous
neuroscientific studies across various neuroimaging modali-
ties (Langeslag et al. 2013; Song et al. 2008; Glascher et al.
2010; Vakhtin et al. 2014; R. T. Jiang et al. 2017). Specifically,
this theory implied that basic sensory/perceptual regions were
responsible for visual/auditory recognition, imagery, elabora-
tion, the parietal regions for structural symbolism, abstraction,
the frontal regions for problem solving, evaluation, hypothesis
testing, and then the anterior cingulate accounted for selecting
the response (Colom et al. 2010).

On the other hand, sex discrepancy in intelligence has been
of enduring biological interest in cognitive psychology, with
existing studies converged in demonstrating superior memory
and social cognition abilities in females, and better motor and
social skills in males (Ingalhalikar et al. 2014). A wealthy of
neuroimaging studies on intelligence have also demonstrated
marked gender difference, focusing on showing how brain
imaging measures differentially correlate with intelligence in
males and females. For example, females’ intelligence dem-
onstrates a greater reliance on functional connectivity (FC)
between the bilateral Wernicke's areas and left posterior supe-
rior temporal gyrus, while males’ intelligence displays a closer
correlation with FC between Broca's area and auditory pro-
cessing areas (Schmithorst and Holland 2007). Males show
stronger intelligence/gray matter (GM) correlations in primar-
ily frontal and parietal areas (Brodmann area, [BA] 8, 9, 39,
40) (Haier et al. 2005), and greater hemispheric lateralization
for various high-level cognitive domains like affective, lan-
guage and memory (Cahill et al. 2001; Schmithorst and
Holland 2006), whereas in females the strongest correlations
are in frontal lobe (BA 10) along with Broca’s area (Haier
et al. 2005). Regarding cortical thickness, females’ intelli-
gence is strongly correlated with prefrontal and temporal as-
sociation cortices, whereas intelligence of males exhibits pre-
dominated correlations in temporal-occipital cortices (Narr
et al. 2007; Goriounova and Mansvelder 2019). In addition,
males exhibit stronger correlations with overall white matter
volume, enhanced modularity, and greater within-hemisphere

connectivity (Ryman et al. 2016), whereas females show
greater local and global efficiency, as well as between-
hemisphere connectivity (Yan et al. 2011; Ingalhalikar et al.
2014). Moreover, differences in hemispheric laterality are also
hypothesized to exist between males and females. For exam-
ple, males showmore left hemisphere specialization for verbal
processing and greater bilateral activity for visuospatial tasks,
whereas females show greater bilateral activity for verbal pro-
cessing and more right hemisphere specialization for visuo-
spatial tasks (Clements et al. 2006). Studies also suggested
that the male brain was more strongly lateralized than the
female brain, which may underlie their greater vulnerability
to disorders with disrupted brain asymmetries like schizophre-
nia, dyslexia and autism (Tomasi and Volkow 2012; Baron-
Cohen et al. 2005).

Despite the fact that males and female exhibit striking dif-
ferences in brain structure and function, there is little differ-
ence in general intelligence between them (Ryman et al.
2016). It appears that males and females may achieve compa-
rable levels of general intelligence by using distinct strategies
when solving cognitive tasks (Deary et al. 2010). Although
gender difference in intelligence is socially and scientifically
important, there is little clarity on how the neuroimaging and
neurobiological correlates of intelligence differ between males
and females. In addition, most existing investigations on in-
telligence focused on mass univariate approaches at the group
level, ignoring the individual heterogeneity, or were restricted
to using a single modality without utilizing complementary
information provided by multimodal imaging data (Sui et al.
2018).

In the current study, we are motivated to ascertain the de-
gree to which intelligence of males and females is
underpinned by different neurobiological correlates using
multimodal neuroimaging data in the context of individual-
ized prediction. Addressing these issues could advance our
understanding of the potential neurobiological basis underly-
ing gender difference in intelligence, and promisingly lead to
optimized personal cognitive programs which can narrow the
gender gap that is believed to exist in some specific cognitive
domains (Irwing and Lynn 2006). Specifically, we employed a
recently developed machine learning-based multivariate ap-
proach —connectome-based predictive modeling (CPM)
(Shen et al. 2017)—to quantitatively estimate individual’s in-
telligence scores using resting-state functional connectivity,
grey matter cortical thickness or both. Previously, it has been
stated that the strengths of CPM include its use of linear op-
eration which allows for fast computation, robust generaliza-
tion and straightforward interpretation of feature weights, as
well as its purely data-driven nature which helps guard against
the possibility of ignoring potentially important features
brought by hypothesis-driven approaches (Shen et al. 2017).
The CPM has been successfully applied to predict aspects of
human behaviors like personality traits (Hsu et al. 2018),
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attention (Rosenberg et al. 2016), creative ability (R. E. Beaty
et al. 2018; Z. Liu et al. 2018) and treatment outcomes for
cocaine use disorder (Yip et al. 2019) from patterns of
brain connectivity. Moreover, CPM has also been used
for the prediction of fluid intelligence. Specifically,
Finn’s work successfully predicted the individual fluid
intelligence scores with CPM in rigorous cross-validated
analysis, demonstrating the potential of using CPM to
reveal brain-behavior relationships and search for promis-
ing imaging biomarkers (Finn et al. 2015).

However, this study only used a single neuroimaging mo-
dality and didn’t investigate the gender difference. In the cur-
rent study, we improved CPM which can now deal with mul-
timodal neuroimaging features here, and derived improved
prediction accuracy. Within a rigorous cross-validated analy-
sis, our results showed that the intelligence generation of
males and females may rely on opposite cerebral lateralized
key brain regions and distinct functional networks, which is
consistent with their superiority in cognitive domains.

Materials and methods

Subjects

Data used in the current study is same as our previous work
(R. Jiang et al. 2018). A total of 440 healthy college students
who were all Han Chinese covering a wide range of research
areas, were recruited from the University of Electronic
Science and Technology of China (UESTC). The Ethics
Committee of School of Life Science and Technology at the
UESTC approved the research protocol. Participants provided
written informed consent and were paid for their participation.
Participants had no history of neurologic or psychiatric disor-
ders, and were not taking medications that could interfere with
their ability to complete a questionnaire or provide MRI data
(R. Jiang et al. 2018). All participants completed the Chinese
version ofWechsler Adult Intelligence Scale (WAIS-RC) (Dai
et al. 1990; Wechsler 1981). With high test-retest reliability,
WAIS is a widely used measurement system that includes
several fundamental cognitive performance subtests contrib-
uting to intelligence (Jensen 1998) including digit span, pic-
ture arrangement, information, block design, similarities, and
digit symbol. The computed overall score from WAIS, i.e.,
Full-Scale IQ, can be used to represent the general intellectual
abilities. Participants with either missing imaging data, incom-
plete WAIS assessment score or excessive head motion (de-
fined as >3 mm translation, or >3° rotation during the run)
were excluded. Finally, 326 righted-handed subjects
(160F/166M, mean age 19.0±1.1 years, range: 17-24 years)
were retained for further analysis. In this investigation, Full-
Scale IQ scores ranged between 74 and 126 (mean IQ = 109.9
± 11.1). There is no difference between males and females in

age (p=0.55, Supplementary Figure S1) or education (males:
12.33±0.80 years; females: 12.38±0.84 years; p=0.57). Males
have a slightly higher IQ scores than females (p=0.041).

MRI data acquisition

Details of the imaging protocol can be found in our previous
work (Zhang et al. 2015). Whole-brain imaging was per-
formed on a 3T MR750 magnetic resonance scanner (GE
Healthcare). Resting-state fMRI data were acquired using a
gradient echo, echo-planar-imaging (GRE-EPI) sequencewith
the following parameters: Repetition Time (TR) =2000 ms,
Echo Time (TE) = 30 ms, field of view (FOV) = 240×240
mm2, flip angle = 90°, matrix = 64×64, voxel size =
3.75×3.75×4.0 mm3, 36 slices, and 245 volumes. High-
resolution T1-weighted volumetric sequence was acquired
using the following parameters: TR = 8.16 ms, TE = 3.18
ms, FA = 7°, FOV =256×256 mm2, acquisition matrix
=256×256, slice thickness = 1 mm without gap, slice number
= 188. Before scanning, all subjects were instructed to move
as little as possible, keep eyes closed, think of nothing in
particular, and not fall asleep. Subjects were asked right after
the scan whether they had fallen asleep during the scan.
Notably, the mean framewise displacement (FD) was not cor-
related with IQ scores (p>0.05).

Whole-brain functional connectivity analysis

Functional imaging data were preprocessed using
DPARSFA (Data Processing Assistant for RestingState
fMRI Advanced Edition, http://rfmri.org/DPARSF).
Details of preprocessing have been published elsewhere
(Jin et al. 2015; R. Jiang et al. 2018). The first 10
volumes were discarded to allow for magnetization
equilibrium. Subsequent preprocessing included slice
timing correction, head motion correction, spatial nor-
malization to the Montreal Neurological Institute
(MNI) template, resampling to 2 × 2 × 2 mm3 ,
smoothing using a 4 mm Gaussian kernel, temporal
band-pass filtering (0.01 Hz to 0.08 Hz), and regressing
out nuisance signals of head motion parameters, white
matter, CSF, and global signals.

The registered fMRI volumes in the MNI template were
parcellated into 116 nodes according to the Automated
Anatomical Labeling (AAL) (Tzourio-Mazoyer et al. 2002).
Mean regional time series were obtained for each individual
by averaging voxel-wise fMRI time series in each of the 116
regions of interests (ROI). Pearson correlations of time
courses between each node pair were calculated, and Fisher
transformed, generating a 116 × 116 symmetric connectivity
matrix per subject. After removing 116 diagonal elements, we
extracted elements in the upper triangle of the FC matrix as
features for analyzation.
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Overall, the FC matrix was reshaped in a feature vector in
the dimension of (116 × 115)/2 = 6670.

Cortical thickness calculation

Vertex-wise estimates of cortical thickness were calculated
using publically available software package FreeSurfer (ver-
sion 5.3.0, http://surfer.nmr.mgh.harvard.edu/). Initially, grey
matter/white matter (white) and grey matter/cerebrospinal flu-
id (pial) surfaces were constructed for each participant.
Detailed processing procedures refer to (Fischl and Dale
2000; Cui et al. 2016). The generated cortical surfaces were
then quality checked to ensure accurate quantification of cor-
tical thickness. The shortest distance between the white and
pial surfaces at numerous vertices across the entire cortical
mantle were calculated. Finally, the reconstructed cortical sur-
faces for each participants were aligned to a standardized cor-
tical surface tessellation with 40,962 vertices per hemisphere
and smoothed with a 20 mm full-width at half-maximum
Gaussian filter (B. Liu et al. 2016).

Individualized prediction

In this study, we applied CPM to estimate participants’ IQ
scores using either whole-brain FC or cortical thickness for
males, females and all subjects separately. Figure 1 demon-
strates a summary of our analysis flowchart. In light of CPM
has been described in detail elsewhere (Shen et al. 2017), we
briefly describe the procedure in the context of functional
connectivity here. We employed a leave-one-out cross-
validation (LOOCV) strategy to predict the IQ scores of novel
individuals. Previously, the CPM procedure, along with
LOOCVapproach, has been widely applied for the prediction
of multiple cognitive metrics and demonstrated robust predic-
tion performance (Finn et al. 2015; R. E. Beaty et al. 2018;
Feng et al. 2018; Greene et al. 2018; Hsu et al. 2018;
Rosenberg et al. 2016). During LOOCV, each subject is des-
ignated as the testing sample in turns while the remaining
subjects are used to train the CPM model. Each iteration
consisted of three steps:

(1) Feature selection. We calculated the Pearson correlation
between IQ scores and each of the 6670 FCs (edges)
across training subjects, obtaining an r-value with an
associated P value for each edge (Hsu et al. 2018).
Next, edges that were positively correlated with IQ
scores with a P value < Pthreshold

+ made up the positive
network or high-intelligent network (edges whose
strength indexed higher IQ scores), while edges nega-
tively correlated with IQ scores with a P value <
Pthreshold

− made up the negative network or low-
intelligent network (edges whose strength indexed low
IQ scores).

(2) Model building. By summing edges in the high-
intelligent or low-intelligent network, we obtained a sin-
gle summary statistic ‘network strength’ for each train-
ing subject. Then, a simple linear regression model was
constructed to estimate the relationship between the
high-intelligent or low-intelligent network strength with
observed IQ scores (R. E. Beaty et al. 2018). A general
linear model (GLM) was also built by combining the
high- and low-intelligent network strengths.

(3) Prediction. The model built in training subjects was ap-
plied to the one left out subject, generating a predicted IQ
score. By exchanging the role of training and testing
subsets in turn, and pulling together all testing subjects
across N (sample size) loops, we obtained the predicted
IQ scores for all participants.

Additionally, we repeated the CPM procedure with 81924
cortical thickness values as input features and acquired the
high-intelligent and low-intelligent regions. The prediction
performance was assessed by calculating the Pearson’s corre-
lations between observed and predicted IQ scores and the
normalized root mean square error (NRMSE). Moreover, to
confirm the specificity of the IQ-predictive models and con-
trol for potential confounds, we also calculated the partial
correction between predicted and observed IQ scores after
ruling out age, mean frame-to-frame displacement and educa-
tion years.

Note that the optimal parameters of Pthreshold
+ and

Pthreshold
- were determined by the data for each imaging

modality, and once determined, they remained constant
across all cross-validation loops (R. Jiang et al. 2018).

Details regarding parameter tuning and the optimal param-
eters used in final results are provided in Supplementary File
S1 and Table S1. To implement multimodal prediction, we
then combined functional and structural features using multi-
ple linear regression. Specifically, positive network strength,
positive cortex strength, negative network strength and nega-
tive cortex strength were concatenated horizontally as input
features. Notably, the multimodal prediction was also per-
formed within a LOOCV strategy.

IQ-predictive grey matter cortices and functional
networks

Considering that our prediction was performed within a
LOOCV strategy, in each iteration, slightly different imaging
features were selected. Supplementary Table S1 demonstrates
the number range of features identified across all loops.
Predictive regions/FCs were determined by pulling together
all features that appeared in each of the cross-validation loops.
To facilitate characterization of the biological substrates
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underlying functional networks to prediction, we grouped the
116 AAL nodes into seven canonical networks similar to
those defined previously in resting-state studies: default
mode (DMN), visual, cognitive control (CC), sensorimo-
tor, auditory, cerebellar and subcortical networks (Rashid
et al. 2014; Allen et al. 2011). Furthermore, to confirm the
predictive power of each individual canonical network,

we reran the CPM procedure in two ways: (1) prediction
with whole-brain FCs after excluding FCs that appeared
in one of the seven canonical networks in turn (Rosenberg
et al. 2016); and (2) prediction by restricting the feature
selection step in CPM to FCs from each of the seven
canonical networks alone (using only within-network
edges) (Finn et al. 2015).

r = 0.34

p = 7.0e-6

AAL

...

GM vertex

...

Cross Validation

r = 0.38

p = 1.3e-6

High-IQ network Low-IQ network High-IQ network

Visuospatial ability Language processing

Verbal learning

... ...

Predic�ve model

Cross Validation

Low-IQ cortex High-IQ cortex

r = 0.36

p = 

r = 0.29

p = 1.4e-4

Low-IQ cortex

Spatial perception

Motor planning

lexical memory

Intuitive thinking

r = 0.45

p = 1.2e-9

r = 0.45

p = 1.7e-9

Functional connectivity Cortical thickness

Predic�ve model Predic�ve model Predic�ve model

P
r
e
p
r
o
c
e
s
s
in

g
In

di
vi

du
al

iz
ed

 p
re

di
ct

io
n

Multimodal 

prediction

......

+

Multimodal 

prediction

......

+

M
ul

tim
od

al
 p

re
di

ct
io

n

Low-IQ network

C
on

tr
ib

ut
in

g 
re

gi
on

s
G

en
de

r d
iff

er
en

ce
Gender

difference
Gender

difference

3.4e-6

Fig. 1 Summary of the prediction flowchart and the derived neural
correlates for intelligence. In the current study, we employed CPM to
estimate individual’s IQ scores using resting-state functional connectivity,
grey matter cortical thickness or both. Importantly, integrating both func-
tional and structural features improved prediction accuracy. Within

rigorous cross-validated analysis, our results showed that the intelligence
generation of males and females may rely on opposite cerebral lateralized
key brain regions and distinct functional networks, which is consistent
with their respective superiority in cognitive domains
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Data and code availability Matlab scripts were written to im-
plement individualized prediction. The code is available from
the authors upon request. The data used for prediction in this
study can be accessed upon request to the corresponding
author.

Results

Individualized prediction

CPM achieved appreciable estimations of IQ scores, using
functional connections, cortical thickness or both for males
and females respectively (Table 1). Prediction with high-
intelligent region in males was absent from our results, be-
cause we didn’t detected any positively correlated cortical
thickness in males. Notably, combining functional connectiv-
ity and cortical thickness further improved prediction accura-
cy (r[male] = 0.45, p =1.2×10-9, RMSE= 9.83, NRMSE
=0.088; r[female] = 0.45, p = 1.7×10-9, RMSE= 10.19,
NRMSE= 0.094; Fig 2) than using any single modality alone.
In addition, predictions remain significant after regressing out
age, mean framewise head motion and education years, ruling
out these potential confounds (Table 1). Moreover, to deter-
mine whether our results were affected by the brain
parcellation, we reran the prediction pipeline using FCs based
on the 246-node Brainnetome atlas (Fan et al. 2016), and
results suggest that using a less fine-grained brain atlas like
AAL does not influence our prediction performance
(Figure S2).

Additionally, CPM also achieved comparable prediction
accuracy when reran the prediction procedure by restricting
the analysis to only subjects with IQ scores ≥85 (Table S2).
Figure S3 demonstrated the prediction results for all subjects.

IQ-predictive brain regions and functional networks

For males, the low-intelligent regions encompass 258 features
located exactly in two regions: the left inferior parietal lobule

(IPL) and right precuneus (Fig. 3a). While for females, CPM
reveals 284 positively correlated features (high-intelligent
region) concentrated primarily in the right insula, right superior
temporal gyrus (STG), and the right inferior frontal gyrus; and
444 negatively correlated features (low-intelligent region) dis-
tributed across the right IPL, right precuneus extending to the
left caudal middle frontal cortex (Fig. 3b). Together, these rep-
resented <0.6% of the total 81924 possible features (Table S1).
Specifically, for females, 93.54% of all the identified features
were located in the right brain. For males, 63.2% of all 258
features were located in the left brain (Table S3). Regarding the
consensus features (appear in every iteration of the cross-vali-
dation, with a 100% identification rate), all GM features from
females were located in the right brain, while all GM features
from males were located in the left brain (Table S4).

With regard to FCs, the high-intelligent network comprises
162 edges, and the low-intelligent network comprises 309
edges in males (Fig 3c). Anatomically, the top 5 nodes show-
ing the highest degree (i.e. the total number of connected FCs
identified across all cross-validation loops) in the high-
intelligent network were the left parahippocampal gyrus
(PHG), right middle temporal gyrus, left anterior cingulum,
and left/right middle cingulum, which are primarily hubs of
DMN and cognitive control network; while the top 5 nodes in
the low-intelligent network were the right superior parietal
lobule, right inferior temporal gyrus, left calcarine, left middle
occipital gyrus and left fusiform, spanning primarily sensori-
motor and visual networks (Fig. 4a). For females, 145 and 329
edges were detected in the positive and negative networks
separately (Fig. 3d). Anatomically, the top 5 most important
nodes in the high-intelligent network were the left putamen,
right cerebellar VIII, left medial orbital part of superior frontal
gyrus, left vermis IX, and right putamen, predominantly cor-
responding to core hubs of the cognitive control and cerebellar
network; the top 5 nodes in the low-intelligent network pre-
dominantly concentrated in the sensorimotor network com-
prising the left/right postcentral, right supplementary motor
area, right superior parietal lobule, and the right precentral
gyrus (Fig. 4b). Collectively, these accounted for <5% of the

Table 1 Prediction results of IQ scores using CPM

Main results Ruling out potential confounds

Males (N = 166) Female (N = 160) Males Females

Predictive region Positive NA r = 0.20, p = 0.01 NA r = 0.20, p = 0.01

Negative r = 0.29, p = 1.4× 10 −4 r = 0.29, p = 2.0 × 10−4 r = 0.27, p = 1.6 × 10−4 r = 0.28, p = 2.0 × 10−4

GLM r = 0.29, p = 1.4 × 10−4 r = 0.36, p = 3.4 × 10−6 r = 0.27, p = 1.6 × 10−4 r = 0.36, p = 2.2 × 10−6

Predictive network Positive r = 0.28, p = 2.0 × 10−4 r = 0.28, p = 3.6 × 10−4 r = 0.22, p = 3.1 × 10−3 r = 0.27, p = 6.3 × 10−4

Negative r = 0.29, p = 1.5 × 10 −4 r = 0.33, p = 2.0 × 10−5 r = 0.23, p = 1.3 × 10−3 r = 0.33, p = 4.9 × 10−5

GLM r = 0.34, p = 7.0 × 10−6 r = 0.36, p = 1.3 × 10−6 r = 0.28, p = 1.4 × 10−4 r = 0.36, p = 1.6 × 10−6

Multimodal MRI Data r = 0.45, p = 1.2 × 10−9 r = 0.45, p = 1.7 × 10−9 r = 0.39, p = 5.2 × 10−7 r = 0.44, p = 1.1 × 10−8
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brain’s 6670 total edges. Degrees of all 116 AAL nodes for
males and females can be found in Table S5 and S6.
Additionally, detailed information of the consensus FCs
(Fig. 3c, d, in bold edge) (R. Jiang et al. 2018; Dosenbach
et al. 2010) and their correlations with IQ scores can be found
in Table S7 and S8. Moreover, functional connections of fe-
males (mean length 79.76 mm) in the high-intelligent network
were significantly longer (p=0.0045) in anatomical vector dis-
tance than these of males (mean length 71.37mm), while there
was no significant difference in the length of functional con-
nections in the low-intelligent network between them (Fig.
3e, f, Table S9). The IQ-predictive GM regions and functional
connections derived from subjects with IQs≥85 were very
similar to those derived from all subjects (Table S2 and
Figure S4). Additionally, predictive GM regions and function-
al connections derived from all subjects can be found in
Table S3 and Figure S5.

Separately evaluating the importance of each canonical net-
work, we found that prediction in females was insignificant in
only one case—when CPMwas performed onwhole-brain FCs
excluding the cerebellar edges in the high-intelligent network
(r[-CB] = -0.03, p = 0.74). For males, excluding either DMN or
CC edges in the high-intelligent network generated insignifi-
cant predictions (r[-DMN] = 0.12, p =0.11; r[-CC] = 0.13, p
=0.11). By contrast, all predictions remain significant in the
low-intelligent network when excluding edges in any of the
seven networks. Interestingly, CPM achieved consistent results
when predicting using only within-network edges from each of
the seven canonical networks. Specifically, predictive model
based on the positive network was highlighted with the most
contribution for the cerebellar network in females (r[CB] =
0.36, p =3.4×10-6), and the DMN in males (r[DMN] = 0.17,
p =0.03). Negative features in all seven networks yielded atten-
uated prediction performance, with the visual network emerged
as the most predictive one for both males (r[VIS] = 0.26, p
=52.×10-4) and females (r[VIS] = 0.26, p =6.7×10-4) (Table 2).

Discussion

Intelligence is a very general capability that accurately pre-
dicts various important life outcomes including socioeconom-
ic status and health (Colom et al. 2010). Currently, there is
little understanding of how neurobiological correlates of IQ
differ between males and females. In the present study, we
successfully uncovered the functional and structural cor-
relates of intelligence using CPM for males and females
separately, demonstrating that intelligence can be charac-
terized by both the resting-state FCs and cortical thick-
ness. More importantly, we found that intelligence of
males and females may be underpinned by different neu-
robiological substrates, complementing existing work on
gender difference of intelligence.

Methodological considerations

CPM is a recently developed method that has been success-
fully employed to predict multiple cognitive traits like atten-
tion (Rosenberg et al. 2016), reading comprehension ability
(Jangraw et al. 2018), and creativity (R. E. Beaty et al. 2018)
using neuroimaging features of brain connectivity or whole
genome genes (Z. Liu et al. 2018). Rather than constraining to
specific ROIs, CPM performs a whole-brain data-driven
searching for possible neuroimaging features most related to
the target cognitive metrics, and uses the strength of these
features to generate predictions. It has been demonstrated that
CPM performs as well as or better than many of the existing
approaches in brain-behavior prediction, and confers an ad-
vantage in interpreting the derived predictive neuroimaging
features (Shen et al. 2017). However, CPM was mostly ap-
plied in FCs previously, with other neuroimaging features
limited. For the first time, cortical thickness was adopted as
input of CPM in the prediction of cognitive construct. Given
that anatomically neighboring cortical features demonstrate

Fig. 2 Scatter plot of the model-
estimated IQ scores with re-
spect to observed values using
multimodal neuroimaging
features. When integrating
functional connectivity and
cortical thickness features
together as input for CPM,
Pearson’s correlations of
r[male] = 0.45 (p = 1.2 × 10−9)
and r[female] = 0.45 (p = 1.7 ×
10−9) between predicted and
observed IQ scores were achieved
for males and females
respectively. All values were
standardized to z-scores for
visualization

Brain Imaging and Behavior



similar characteristics and closer relationships, predictive re-
gions derived with CPM in our results are distributed densely
on neighboring brain areas, which relates to more biological
significance. In contrast to other intensity or volumetric-based
GM measures, the thickness of cortex delineates properties in
cytoarchitectural aspects of neuropil, including the arrange-
ment and density of neurons, nerve fibers and neuroglia
(Narr et al. 2007), which may more closely link with intelli-
gence (Narr et al. 2005). Similar to previous works using CPM
(Rosenberg et al. 2016), both of high-intelligent (predicting

higher IQ scores) and low-intelligent (predicting lower IQ
scores) models generated significant predictions. Generally,
FC-based models showed better numerical prediction accura-
cy, implying that intelligence may be more strongly related to
brain function than structure (Song et al. 2008; Choi et al.
2008). More importantly, two types of neuroimaging features
were leveraged to implement multimodal prediction, achiev-
ing improved prediction accuracy than using any single mo-
dality alone, indicating that complementary information can
be provided by different modalities (Meng et al. 2017; Sui

Fig. 3 Brain regions and functional connections predicting IQ scores
for males and females. For males, CPM identified 258 features in the
low-intelligent region (a), 162 connections in the high-intelligent net-
work, and 309 connections in the low-intelligent network (c). For fe-
males, a respective 284 and 444 features were encompassed in the high-
intelligent and low-intelligent regions (b), while 145 and 329 edges were
encompassed in the high-intelligent and low-intelligent networks (d). As
demonstrated in the circle figure, the 116 functional nodes are grouped

into eight AAL-defined macroscale brain regions according to their lobe
locations. Edges in the high-intelligent network are colored in orange,
while connections in the low-intelligent network are colored in blue.
Edges that appear in every iteration of the LOOCV (a 100% identification
rate) are visualized in bold. (e). Functional connections of females in the
high-intelligent network were significantly longer in anatomical vector
distance than those of males. (f). There was no difference in the length of
connections in the low-intelligent network between males and females
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et al. 2015). Putatively, multimodal data can capitalize on the
strength of each imaging modality effectively (Sui et al. 2012;
Qi et al. 2018), and holistically uncover the biological sub-
strates underlying intelligence. Correspondingly, in our study,
prediction with cortical thickness explored more gender dif-
ference in the lateralization of predictive brain regions, while
prediction with FCs detected more gender difference in the
specification of contributing functional networks.

Gender difference in intelligence-associated brain
structures

It has long been recognized that the spatial ability and verbal
ability are two core cognitive domains that are consistently
reported to exhibit significant sexual dimorphism (Bell et al.
2006). Generally, existing studies converged on an consensus
that females commonly outperform males in verbal-related
tasks including manual speed, verbal fluency, verbal and item
memory, whereas males outperform females in mathematical
and visuospatial tasks including mental rotation and logical

thinking (Kimura 1996). Consistently, brain regions and func-
tional networks detected in our results are related to males’
and females’ superiority in cognitive domains.

As shown in our results, the neuroanatomy of both high-
intelligent and low-intelligent regions concentrates primarily
in higher-order association cortices (parietal, prefrontal, and
insula cortex), which are similar to brain regions reported in
previous investigations of intelligence (Colom et al. 2010).
Interestingly, negative correlations between IQ scores and cor-
tical thickness are more pronounced than positive ones in our
study. Apparently, this finding may seem a little counterintui-
tive to the well-recognized central working hypothesis, which
attributes more neuronal mass to higher-level cognitive abili-
ties. However, our results are in line with findings on the mech-
anisms of maturation-induced and learning-induced synaptic
plasticity, both of which are associated with an initial increase
of synapse number and a subsequent synaptic pruning (Genc
et al. 2018; Huttenlocher 1990), a process which can speed up
learning and processing, and save resources of network and
energy by using less computation to perform tasks (Genc

Fig. 4 Functional nodes in the
high-intelligent and low-
intelligent networks. To facilitate
characterization, we grouped the
116 nodes defined in AAL into
seven canonical networks that
were defined previously in
resting-state studies: default mode
(DMN), visual (VIS), cognitive
control (CC), sensorimotor (SM),
auditory (AUD), cerebellar (CB)
and subcortical network (SC).
The node size denotes degree,
which represents the number of
connected functional connections
identified in the prediction proce-
dure across all cross-validation
loops
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et al. 2018). Speculatively, more intelligent adults may opti-
mize their structural brain network efficiency by employing
synaptic pruning (Schnack et al. 2015; Goh et al. 2011).

Apart from the common brain regions appearing in both
gender groups, we found significant IQ/cortical thickness cor-
relations in caudal middle frontal and STG in females, but not
in males. Our findings are in accordance with the hypothesis
that tasks requiring verbal processing and memory involve the
participation of frontal-temporal cortical networks (Narr et al.
2007). In addition, the STG, an important part of anterior
temporal lobe, is central to the acquisition of long-term lexical
memories (Bonner and Price 2013), which contributes greatly
to verbal abilities in human. The IPL is reported to participate
in language processing, mathematical operations and during
cognitive set-shifting tasks. The IPL can be activated in high-
intelligent individuals to implement feedback evaluation
through an attention-related process (Nejad et al. 2009).
Interestingly, the right IPL was reported to participate more
in tasks like sensing relationships between body parts, spatial
working memory and the recognition of affect (Frederikse
et al. 1999). By contrast, the left IPL participated more in
cognitive processes concerning spatial perception like motor
planning, mental rotation of 3-D objects, time estimation and
judgments of speed and position (Frederikse et al. 1999). In
support of our findings, (Narr et al. 2007) also reported a
negative correlation between IQ scores and cortical thickness
in the left IPL in males. Coincidentally, in our study, correla-
tions between cortical thickness in IPL and intelligence were
found to be lateralized to the left brain for males, and right for
females. However, there are also studies suggesting a func-
tional contribution of the left IPL to social cognition and

language tasks (Bzdok et al. 2016). Specifically, Hartwigsen
et.al demonstrated that the left angular gyrus, a key part of
IPL, participated in the language processing by facilitating
speech comprehension in challenging listening conditions
(Hartwigsen et al. 2015), which is consistent with the fact that
lesions of the left angular gyrus are associated with difficulties
in language tasks. Apart from the IPL, most brain regions
identified in females were right lateralized. Previous work
has suggested that males show dominance of left brain, which
is described as more analytical, sequential, logical, detailed,
and are excel at logical thinking and numerical computation
(Fah 2009; Bonner and Price 2013). In contrast, females tend
to use their right brain more efficiently and rely more on intu-
itive thinking in decision-making (Ingalhalikar et al. 2014).

Gender difference in intelligence-associated brain
function

Nodes showing greater degrees in the high-intelligent net-
works correspond to high-level cognitive networks, such as
the DMN and executive control network (ECN), especially for
males. Numerous studies have shown that high-level cogni-
tive processes may rely on the dynamic coupling of DMN and
ECN (Jung et al. 2013). Specifically, the DMN is responsible
for generating ideas in both domain-specific and
domain-general tasks including the semantic memory and
mental simulation (R. E. Beaty et al. 2018). Then, the ECN
contributes to the selection and modification of appropriate
response from candidate ideas by evaluating their efficacy
(Roger E. Beaty et al. 2016). Different from brain areas de-
rived in the low-intelligent regions, functional nodes showing

Table 2 The importance of each canonical network in IQ prediction

Females (N = 160) Males (N = 166)

Positive network Negative network Positive network Negative network

Whole-brain networks r = 0.28, p = 3.6 × 10−4 r = 0.33, p = 2.0 × 10−5 r = 0.28, p = 0.008 r = 0.29, p = 1.7 × 10−5

Excluded network -Sensorimotor r = 0.30, p = 1.1 × 10−4 r = 0.32, p = 4.6 × 10−5 r = 0.16, p = 0.04 r = 0.29, p = 1.1 × 10−4

-Visual r = 0.28, p = 3.6 × 10−4 r = 0.28, p = 4.5 × 10−4 r = 0.29, p = 1.2 × 10−4 r = 0.24, p = 1.6 × 10−3

-Auditory r = 0.29, p = 1.9 × 10−4 r = 0.34, p = 1.4 × 10−5 r = 0.18, p = 0.02 r = 0.30, p = 6.9 × 10−5

-Cognitive control r = 0.29, p = 1.9 × 10−4 r = 0.36, p = 3.6 × 10−6 r = 0.12, p = 0.11 r = 0.30, p = 6.8 × 10−5

-Default mode r = 0.29, p = 1.9 × 10−4 r = 0.34, p = 1.1 × 10−6 r = 0.13, p = 0.11 r = 0.33, p = 9.1 × 10−6

-Subcortical r = 0.19, p = 0.015 r = 0.33, p = 1.5 × 10−5 r = 0.20, p = 8.5 × 10−3 r = 0.31, p = 5.9 × 10−5

-Cerebellar r = −0.03, p = 0.74 r = 0.34, p = 8.8 × 10−6 r = 0.17, p = 0.03 r = 0.36, p = 6.8 × 10−6

Included network +Sensorimotor r = 0.07, p = 0.36 r = 0.25, p = 1.9 × 10−3 r = 0.15, p = 0.05 r = 0.22, p = 4.0 × 10−3

+Visual r = −0.05, p = 0.54 r = 0.26, p = 6.7 × 10−4 r = −0.03, p = 0.64 r = 0.26, p = 5.2 × 10−4

+Auditory r = 0.23, p = 3.4 × 10−3 r = 0.11, p = 0.17 r = 0.12, p = 0.12 r = 0.04, p = 0.62

+Cognitive control r = −0.11, p = 0.17 r = 0.14, p = 0.07 r = 0.04, p = 0.61 r = 0.17, p = 0.02

+Default mode r = 0.16, p = 0.04 r = 0.24, p = 2.7 × 10−3 r = 0.17, p = 0.03 r = 0.21, p = 7.0 × 10−3

+Subcortical r = 0.26, p = 1.1 × 10−3 r = 0.22, p = 5.6 × 10−3 r = 0.05, p = 0.50 r = 0.16, p = 0.04

+Cerebellar r = 0.36, p = 3.4 × 10−6 r = 0.23, p = 4.3 × 10−3 r = 0.02, p = 0.81 r = 0.01, p = 0.88
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the highest degrees in the low-intelligent networks are among
various primary sensory networks (e.g., visual, auditory and
sensorimotor). Previous work has verified the role of these
regions in processing procedural (habitual) responses, sug-
gesting that low-creative people might be unable to transcend
learned knowledge when attempting to generate novel ideas
(R. E. Beaty et al. 2018). A recent study also reported negative
associations between these primary sensory regions and crea-
tive ability (R. E. Beaty et al. 2018). Given that both creativity
and intelligence are high-level cognitions sharing some com-
mon mechanisms (Kenett et al. 2018), we thus posit that low-
intelligent people may depend more on retrieving previously
learned knowledge (Dezfouli and Balleine 2012).

Among all functional nodes in the high-intelligent network,
the left PHG exhibits the highest degree for males. The PHG
has been studied extensively and been implicated in a variety
of spatial analysis-related cognitive tasks like spatial represen-
tation, navigation and scene perception (Aminoff et al. 2013).
Studies have emphasized an involvement of PHG in learning
spatial configurations of objects. Previous evidence for the
role of PHG in spatial processing has demonstrated the exis-
tence of various types of activity in this region in the process-
ing of scenes and environmental landmarks (Levy et al. 2001;
Bar et al. 2006), aspects of spatial memory (Burgess et al.
2001), and spatial navigation (Janzen et al. 2007). In contrast,
for females, the left putamen in the high-intelligent network
demonstrates the highest degree. As an essential part of the
striatum, the putamen is intimately recognized to be crucial for
higher cognitive functions like mental flexibility, learning,
cognitive control and language processing particularly
(Becker et al. 2016). AVBM study indicated that multilinguals
are skilled in handling and mastering multiple languages (i.e.,
articulatory repertoire) primarily by inducing structural plas-
ticity in the left putamen. And compared with monolinguals,
multilinguals generally demonstrated higher GM density and
activation level in left putamen (Abutalebi et al. 2013).
Additionally, neuromodulator studies implied that dopamine
transporters availability in caudate and putamen participated
in the mediation of intelligence (Grazioplene et al. 2015).
Specially, females performed better on verbal learning tasks,
which may be due to their higher dopamine availability in
striatum.

Notably, among all brain networks, the cerebellar network
contributes the most to IQ prediction for females.
Traditionally, the cerebellum is considered to participate in
the coordination and regulation of somatic and autonomic
motor tasks (Manto et al. 2012). However, a paper reviewed
advances in functional and structural neuroimaging findings
of the cerebellum, as well as evidence from neuropsycholog-
ical and neurophysiological investigations (Murdoch 2010),
and concluded that the cerebellum also participated in media-
tion of a wealthy of cognitive functions, especially language
processing such as syntax, verbal fluency, word retrieval,

reading and writing (Mariën et al. 2014). Correspondingly,
many clinical studies showed that patients with cerebellar pa-
thology exhibited various types of impairments in linguistic
functions (Murdoch 2010). Moreover, a meta-analysis study
provided support for the participation of cerebellum in cogni-
tion, suggesting that both cognitive tasks of language process-
ing and verbal working memory employed overlapped cere-
bellar regions (Stoodley and Schmahmann 2009). Likewise,
another study posited that the cerebellum participates in verbal
working memory through two separate processes: articulatory
rehearsal which involves a cerebello-frontal circuit, and the
storage of information which involves a cerebello-parietal
loop (Chen and Desmond 2005; Stoodley and Schmahmann
2009). Moreover, a recent fMRI study employing tools from
network theory reported that both males and females have the
small-worldness characteristics, but females show higher neu-
ral network efficiency in cerebellum, especially for higher-
intelligence females (Pezoulas et al. 2017). Putatively, this
configuration maximizes the efficiency and reduces the costs
of information transfer, signifying that the network organiza-
tion in females is more efficient. Moreover, longer functional
connections distance for females in the high-intelligent net-
work may reflect more myelination and functional integration
between distant regions (Fair et al. 2007), which can facilitate
efficient interareal communication (van den Heuvel and
Sporns 2011), and consequently afford more pronounced pos-
itively correlated cortical thickness.

Limitations and future directions

Some issues relating to the current study need to be men-
tioned. First, gender differences in intelligence were discussed
primarily around the verbal and nonverbal aspects, however,
no significant differences were observed in verbal domains of
intelligence test between them in our data. It may be due to the
great homogeneity of our current samples. Participants in the
study are all young college students with a limited age range
(19 to 24 years) for whom higher intellectual capacity than
average were likely achieved. Although homogeneous sam-
ples can rule out a number of potential confounds, such sam-
ples are typically not representative of the broader population.
Moreover, it has been reported that age exerted an important
confound on both the intelligence level and cortical develop-
ment (Schnack et al. 2015; Narr et al. 2007). Studies consist of
subjects with more heterogeneous properties warrant further
consideration, and generalization of the current results should
be evaluated in external cohorts. The gender difference in
intelligence can also be interpreted from other aspects in the
future. Third, since integrating cortical thickness and resting-
state FC achieved improved prediction performance, other
types of neuroimaging features including GM volume, frac-
tional anisotropy and dynamic FC characteristics (Zhi et al.
2018) can also be adopted for prediction in the context of
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multimodal fusion in the future. Additionally, future study can
employ fine-grained brain parcellations that divide the human
brain into well-defined functional networks (Power et al.
2011), which may confer more biological significance.

Conclusions

In this study, we built a connectome-based IQ-prediction pro-
cedure based on solid cross-validation by integrating multi-
modal neuroimaging data, which complements existing work
on individualized prediction in human intelligence. Moreover,
we identified and compared the gender-different imaging bio-
markers that may predict other individuals’ educational or
health outcomes (Gabrieli et al. 2015). More importantly, we
found that intelligence of males and females were
underpinned by different neurobiological correlates.
Specifically, males IQ demonstrated closer correlations with
cortical thickness in the left IPL, and with functional connec-
tivity in the left PHG and default mode network; whereas
female IQ was more correlated with cortical thickness in the
right IPL, and with functional connectivity linking left puta-
men and within the cerebellar networks, which is consistent
with their respective superiority in cognitive and behavioral
performance (visuospatial processing vs. verbal and memory
ability). In summary, better understanding the neuroimaging
correlates and gender difference underlying human intelli-
gence may facilitate advancements on unbiased educational
or cognitive test design, particularly with regard to popular
standardized tests such as the GRE and SAT, which are criti-
cized for showing gender-bias (Hill et al. 2014). Furthermore,
females and males can be guided to take advantage of their
most efficient cognitive procedure in problem solving
(Halpern et al. 2007), which may allow more flexibility and
positively impact overall performance.
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