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Abstract: Cognitive performance varies widely between individuals and is highly influenced by structural and func-
tional properties of the brain. In the past, neuroscientific research was principally concerned with fluid intelligence,
while neglecting its equally important counterpart crystallized intelligence. Crystallized intelligence is defined as the
depth and breadth of knowledge and skills that are valued by one’s culture. The accumulation of crystallized intelli-
gence is guided by information storage capacities and is likely to be reflected in an individual’s level of general knowl-
edge. In spite of the significant role general knowledge plays for everyday life, its neural foundation largely remains
unknown. In a large sample of 324 healthy individuals, we used standard magnetic resonance imaging along with
functional magnetic resonance imaging and diffusion tensor imaging to examine different estimates of brain volume
and brain network connectivity and assessed their predictive power with regard to both general knowledge and fluid
intelligence. Our results demonstrate that an individual’s level of general knowledge is associated with structural
brain network connectivity beyond any confounding effects exerted by age or sex. Moreover, we found fluid intelli-
gence to be best predicted by cortex volume in male subjects and functional network connectivity in female subjects.
Combined, these findings potentially indicate different neural architectures for information storage and information
processing. © 2019 European Association of Personality Psychology
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INTRODUCTION

From the day we are born, we acquire knowledge about the
world around us. Across our lifespan, we gather a whole trea-
sure of information and master an impressive set of skills by
asking, reading, observing, or just trying. The knowledge
and abilities obtained in this way are traditionally subsumed
under the concept of crystallized intelligence (Cattell, 1963).
Among the variety of cognitive abilities, crystallized intelli-
gence takes a special place because it includes both dynamic
procedural knowledge and static declarative knowledge
(Flanagan, 2013). Procedural knowledge, on the one hand,
refers to the canon of learned procedures that allow us to
utilize previously acquired knowledge in order to fulfil
different tasks. Declarative knowledge, on the other hand,
is stored in long-term memory and tends to be verbal in
nature (Flanagan, 2013). It comprises different types of static

information like rules, relationships, abstract concepts, or,
most importantly, general knowledge. For example, knowing
the street address of the best pizza place in town would be
considered declarative knowledge, whereas the act of driving
there for lunch would draw on procedural knowledge.

The Gf–Gc theory, conceived by Cattell (1963), is one of
the first fundamental theories about the structure of human
cognitive abilities. According to this theory, crystallized
intelligence constitutes one of the two major factors
representing the overall cognitive capacity of an individual.
The overall cognitive ability is also referred to as general in-
telligence or simply g. The counterpart to crystallized intelli-
gence, called fluid intelligence, represents all mental
operations that come into play when one cannot draw on pre-
viously acquired knowledge but has to solve an unfamiliar
problem. Over the past decades, the dichotomic concept of
cognitive ability being constituted by crystallized and fluid
intelligence has been refined by means of factor analytical re-
search. One of the more recent theories, the well-established
Cattell–Horn–Carroll (CHC) model (Flanagan, 2013;
McGrew, 2005; W. Schneider & McGrew, 2012; W. J.
Schneider & Newman, 2015), suggests that the structure of
cognitive ability can be represented by three hierarchically
organized levels or strata. In this model, crystallized and fluid
intelligence are referred to as Gc and Gf. Both constructs are
placed in stratum II along with several other cognitive abili-
ties. As in Gf–Gc theory, these broad abilities from stratum II
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load on a common factor, general intelligence or g, that is
placed at the apex of the model in stratum III (Figure 1).
All cognitive abilities from stratum II, including crystallized
and fluid intelligence, are treated as higher order factors that
are manifested in more narrow abilities that can be quantified
by suitable test inventories (W. Schneider & McGrew, 2012).
For fluid intelligence, abilities in deductive and inductive
reasoning, which are usually assessed by matrix reasoning
tests, are considered to be the most essential indicators of
the construct. In the case of crystallized intelligence, underly-
ing narrow abilities are centred around culturally relevant
skills and information. Hence, it is a common practice to
quantify crystallized intelligence by means of verbal ability
tasks such as vocabulary or verbal analogy tests. Several
studies also include numerical reasoning as an indicator of
crystallized intelligence (Colom et al., 2009; Roman et al.,
2014). However, the most important narrow ability within
crystallized intelligence is arguably that of general verbal
information. It is defined as ‘the breadth and depth of
knowledge that one’s culture deems essential, practical, or
otherwise worthwhile for everyone to know’ (W. Schneider
& McGrew, 2012). General verbal information refers to
acquired knowledge across many domains and can therefore
be distinguished from achievement tests or domain-specific
tests of more specialized knowledge. Given these definitions,
it is feasible to use general verbal information synonymously
with a term that is more common in everyday language,
namely, general knowledge. Unfortunately, general knowl-
edge has been widely neglected by scientific research in the
past, despite being of outmost interest for the general public
(Ackerman, 1996; W. Schneider & McGrew, 2012).

Psychologists are able to estimate the amount of general
knowledge held by an individual quite precisely (Ackerman,
1996; Ackerman, Bowen, Beier, & Kanfer, 2001) and discov-
ered that it is associated with many aspects of everyday life

such as occupational success (Ackerman, 1996), physical
well-being (Kenkel, 1991) and partner choice (Regan & Joshi,
2003). In addition to that, mankind’s continuous gain in
general knowledge of the world is supposed to be the driving
force behind its fast-paced cultural evolution (Workman &
Reader, 2014). In fact, we are the intellectual heirs of all of
the savants and geniuses throughout history (W. Schneider &
McGrew, 2012). The solutions and ideas they conceived, using
their outstanding creative capacity and fluid intelligence, are
passed down as general knowledge and add to the crystallized
intelligence of future generations (W. Schneider & McGrew,
2012). As with fluid intelligence, individuals differ with regard
to their abilities in the acquisition, storage, and retrieval of
general knowledge. This variance is likely to be brought about
by interindividual differences in certain brain properties.
Despite its importance for our everyday life, the neural founda-
tion of general knowledge largely remains unknown.

Over the last decades, neuroscientific research concerned
with the cognitive abilities of the human brain was mainly fo-
cused on perceptual performance and fluid intelligence as its
objects of investigation (Deary, Penke, & Johnson, 2010;
Kanai & Rees, 2011). Consequently, fluid intelligence has
been linked to a wide variety of neural properties such as brain
volume (McDaniel, 2005; Pietschnig, Penke, Wicherts, Zeiler,
& Voracek, 2015), cortical thickness (Karama et al., 2011;
Narr et al., 2007), white matter integrity (Penke et al., 2012;
Ritchie et al., 2015), N-acetylaspartate and creatine levels
(Jung et al., 2005; Rae, Digney, McEwan, & Bates, 2003),
structural and functional connectivity (Hilger, Ekman, Fiebach,
& Basten, 2017; Li et al., 2009; van den Heuvel, Stam, Kahn,
& Hulshoff Pol, 2009), and cortical microstructure (Genc
et al., 2018). Such relationships were identified for the overall
brain as well as single brain regions (Jung & Haier, 2007).

By contrast, the neural foundations of crystallized intelli-
gence have been studied to a lesser degree. For example,

Figure 1. Current Cattell–Horn–Carroll theory of cognitive abilities. The big black circle at the apex of this figure depicts general intelligence from the third
stratum. It represents the most abstract level of cognitive ability and subsumes 16 broad abilities from stratum II that are represented by smaller white circles
with abbreviations. Each ability from stratum II can be placed into one of six conceptual groupings. Two of these groups, reasoning and acquired knowledge,
resemble general fluid (gf) and general crystallized (gc) intelligence from Cattell’s original Gf–Gc theory (Cattell, 1963). Stratum I includes more than 80 narrow
abilities that are largely omitted from this figure because of space limitations. The three boxes at the bottom represent the segmentation of Gc into declarative and
procedural knowledge as well as general knowledge. The grey circles and boxes indicate the study’s focus on general knowledge and hence on abilities Gc and
Glr (see the Discussion section). The dashed arrow represents the involvement of the Glr ability in accumulating general knowledge. Gf, fluid intelligence; Gc,
crystallized intelligence; Gkn, domain-specific knowledge; Gq, quantitative knowledge; Grw, reading/writing ability; Gsm, short-term memory; Glr, long-term
storage and retrieval; Gv, visual processing; Ga, auditory processing; Go, olfactory abilities; Gh, tactile abilities; Gp, psychomotor abilities; Gk, kinaesthetic
abilities; Gs, processing speed; Gt, decision speed/reaction time; Gps, psychomotor speed. The figure was adapted from Flanagan (2013).
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Jung et al. (1999) conducted a magnetic resonance spectros-
copy study, in which they targeted the left occipitoparietal
white matter and employed the Wechsler Adult Intelligence
Scale (WAIS) in order to obtain measures of verbal and
performance IQ. Results showed a negative correlation be-
tween WAIS information subtest scores and choline levels
as well as a positive correlation between vocabulary subtest
scores andN-acetylaspartate levels. Pfleiderer et al. (2004) ob-
served a positive correlation between vocabulary test perfor-
mance and N-acetylaspartate levels in the left dorsolateral
prefrontal cortex and anterior cingulate cortex of healthy
women but not men. In a large sample of over 200 individuals,
Choi et al. (2008) investigated the relationship between corti-
cal thickness and intelligence as measured by the verbal and
performance IQ tests from the WAIS. The authors reported
positive correlations between information subtest scores and
cortical thickness in four different brain areas, namely, the
anterior temporal cortex, the inferior temporal cortex, the
opercular temporal cortex, and the medial temporal cortex.
However, cortical thickness in the lateral parietal cortex was
negatively associated with the information subtest. Vocabu-
lary subtest scores were positively associated with cortical
thickness in the anterior and medial temporal cortices and
showed a negative association with cortical thickness in the
lateral parietal cortex. Colom et al. (2009) investigated the
neural correlates of fluid and crystallized intelligence in a
large sample of 100 healthy individuals by means of voxel-
based morphometry. In order to assess crystallized intelli-
gence, they utilized a test battery consisting of verbal and nu-
merical reasoning tests as well as a vocabulary test. Clusters in
which regional grey matter was associated with crystallized
intelligence also exhibited correlations between regional grey
matter and fluid intelligence. These clusters were highly con-
sistent with loci proposed by the parieto-frontal integration
theory of intelligence (Jung & Haier, 2007). The anterior tem-
poral cortex, also known as Brodmann area 38, was the only
region in which grey matter volume was uniquely correlated
with crystallized intelligence. Using the same test battery,
Roman et al. (2014) analysed the relationship between test re-
sults and three morphometric indices, namely, grey matter
volume, cortical surface area, and cortical thickness, in over
100 individuals. Crystallized intelligence was associated with
grey matter volume in the right frontal lobe, with cortical sur-
face area in the frontal lobes of both hemispheres andwith cor-
tical thickness in the left parietal lobe. Using diffusion tensor
imaging (DTI), Martinez et al. (2017) reconstructed the white
matter connectomes of 80 healthy individuals. They found the
number of interhemispheric connections as well as the ratio
between interhemispheric and intrahemispheric connections
to be positively correlated with verbal ability. These results
were independent of sex or brain size.

It is noteworthy that most of the aforementioned studies
quantified crystallized intelligence either by tests of verbal
ability and vocabulary or by rather short information subtests
included in larger intelligence test inventories such as the
WAIS. Studies directly investigating the neural correlates of
general knowledge as their only variable of interest are scarce.
Usually, such studies tend to suffer from comparably small
sample sizes or employ test inventories that have an

inadequate number of items. For example, in a small clinical
sample, Waltz et al. (1999) were able to show that semantic
knowledge was lower in patients with anterior temporal lobe
damage compared to patients with prefrontal cortex lesions
or healthy controls. These findings are in accordance with
the results reported by Colom et al. (2009), indicating that
Brodmann area 38 plays a crucial rule for crystallized intelli-
gence and semantic knowledge. Nevertheless, it is reasonable
to say that the neural properties associated with general
knowledge in healthy individuals remain largely unknown.

In order to close this gap of knowledge, the present study
addresses the yet unanswered question whether interindivid-
ual differences in the brain’s structure and function are linked
to interindividual differences in general knowledge. It is well
accepted that information constituting general knowledge is
stored in synaptic connections (Wiltgen, Brown, Talton, &
Silva, 2004). Because individuals with more cortical grey
matter volume hold more neurons (Leuba & Kraftsik, 1994;
Pakkenberg & Gundersen, 1997) and cortical neuron number
correlates with synapse amount (Karbowski, 2007), we hy-
pothesized that individuals with more cortical grey matter
volume should have a higher capacity for general knowl-
edge. However, retrieving items of knowledge requires the
ability to combine information from distributed memory
(Wiltgen et al., 2004). The efficacy of retrieval is likely
shaped by the properties of brain networks that can be esti-
mated by means of probabilistic DTI fibre tractography or
resting-state functional magnetic resonance imaging (fMRI).
Thus, we assumed that individuals with greater cortical grey
matter volume and more efficiently connected brain net-
works should hold more general knowledge.

We tested these hypotheses by calculating partial correla-
tion coefficients between behavioural data (general knowl-
edge and matrix reasoning test scores) and imaging data
(estimates of brain volume and brain connectivity). Previous
research has shown that male and female individuals differ
with regard to certain brain properties such as cortical thick-
ness, cortical surface area, and cortical grey matter volume,
even after considering sex differences in body size (Escorial
et al., 2015). Hence, we included sex and age as controlling
variable in all analyses. Analyses were carried out at the level
of the whole brain as well as for single brain regions. Correc-
tion for multiple comparisons was applied accordingly.
Moreover, we performed multiple regression analysis with
general knowledge or matrix reasoning test scores being
regressed on age, sex, and the four brain properties, thereby
controlling for confounding effects within potential
structure–function relationships. In doing so, this study is
able to deliver first results specifically targeted on the neural
architecture of general knowledge and shed light on its rela-
tion to the biological basis of fluid intelligence.

METHODS

Participants

Three hundred thirty-two participants (172 men) aged be-
tween 18 and 75 years (M = 28.11, SD = 10.74) took part in
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the study. The complete dataset was checked for extreme out-
liers as defined by Tukey’s fences, that is, observations three
interquartile ranges below the first or above the third quartile,
respectively (Tukey, 1977). In following this approach, we
had to exclude eight participants because of extreme outliers
being detected in their behavioural or neuroimaging data.
Thus, all of the reported analyses were performed on data
from 324 participants (170 men) between 18 and 75 years of
age (M = 28.20, SD = 10.82). Because this is the first study
to directly investigate the neural correlates of general knowl-
edge, it was not possible to estimate the necessary sample size
a priori based on existing literature. Instead, we collected data
from a reasonably large sample and computed the achieved
power post hoc using G*Power (Faul, Erdfelder, Buchner, &
Lang, 2009). The analysis was based on the regression coeffi-
cient for NETstruc from the multiple regression model
predicting general knowledge (Figure 5(A)) (f2 = .19,
α = .05, six predictors, 324 participants) and yielded a power
of .99, thereby indicating sufficient sample size. Table 1 pro-
vides descriptive information on the overall sample as well
as male and female subjects. We did not observe a significant
sex difference with regard to age (t(322) = 0.99, p = .322,
d = .11). Two hundred ninety-four participants were right
handed, and the remaining 30 participants were left handed
as measured by the Edinburgh Handedness Inventory
(Oldfield, 1971). This ratio is representative of the human
population (Raymond & Pontier, 2004). All participants had
normal or corrected-to-normal vision and hearing. They were
either paid for their participation or received course credit. All
participants were naive to the purpose of the study and had no
former experience with any of the conducted general knowl-
edge or fluid intelligence tests. Participants had no history of
psychiatric or neurological disorders, as examined by a self-
report questionnaire, and matched the standard inclusion
criteria for fMRI examinations. Each participant completed
the behavioural tests and neuroimaging measurements de-
scribed in the succeeding texts. The study was approved by
the local ethics committee of the Faculty of Psychology at
Ruhr University Bochum. All participants had to give their
written informed consent and were treated in accordance with
the Declaration of Helsinki.

Acquisition and analysis of behavioural data

General knowledge and fluid intelligence were assessed by
the use of two paper-and-pencil tests. The tests were con-
ducted in a group setting of up to six participants seated at in-
dividual tables in a quiet and well-lighted room.

General knowledge assessment
General knowledge was measured with a German inven-
tory called ‘Bochumer Wissenstest’ (BOWIT) (Hossiep &
Schulte, 2008). The BOWIT inventory comprises
two parallel forms (A and B) with 154 items each. Both
forms include 11 different knowledge facets that can be
grouped into two major knowledge domains according to
their factor analytical structure (Hossiep & Schulte,
2008). The first domain is denoted ‘Humanities’ and
includes the seven knowledge facets Arts/Architecture,
Language/Literature, Geography/Logistics, Economics/
Law Philosophy/Religion, History/Archaeology, and
Civics/Politics. The second domain is denoted ‘Sciences’
and comprises the four knowledge facets Mathematics/
Physics, Biology/Chemistry, Technology/Electronics, and
Nutrition/Health. Within one test form, each knowledge
facet is represented by 14 multiple-choice items. In order
to assess every individual’s degree of general knowledge
as precisely as possible, all participants had to complete
both test forms resulting in a total number of 308 items.
The knowledge facets assessed by the BOWIT inventory
are very similar to general knowledge inventories used in
other studies (Ackerman, 1996, 2000; Ackerman et al.,
2001; Bratko, Butkovic, & Chamorro-Premuzic, 2010;
Lynn, Irwing, & Cammock, 2002; Lynn, Ivanec, &
Zarevski, 2009; Lynn, Wilberg, & Margraf-Stiksrud,
2004; Rolfhus & Ackerman, 1996, 1999). The BOWIT in-
ventory fulfils all important quality criteria regarding dif-
ferent measures of reliability and validity (Hossiep &
Schulte, 2008). The inventory’s manual specifies that
split-half reliability is .96, Cronbach’s α is .95, test–retest
reliability is .96, and parallel-form reliability between A
and B is .91. Furthermore, convergent and discriminant
validity are given for both test forms because they are
strongly correlated with the general knowledge module of
a well-established German intelligence test (r > .70,
I-S-T 2000R) (Liepmann, Beauducel, Brocke, & Amthauer,
2007) and not associated with tests of perceptual speed
(r < .15, ZVT) (Oswald & Roth, 1987). BOWIT test
performance is significantly correlated with German high
school GPA (r = �.28, reverse coded) and gross salary
per year for professionals (r = .21–.30) (Hossiep &
Schulte, 2008), demonstrating its predictive validity. The
norm sample consists of about 2300 individuals from
throughout Germany. The age range is between 18 and
66 years with men and women being represented equally.
Because the vast majority of individuals from the norm
sample received an academic education, the BOWIT inven-
tory can be considered a highly suitable test instrument for
samples mainly composed of university students and other
individuals that are expected to have above average general
knowledge.

Table 1. Descriptive information on the overall, male, and female
sample

Overall Men Women

N (%) 324 (100.00) 170 (52.47) 154 (47.53)
Age 28.20 (10.82) 28.76 (10.98) 27.57 (10.63)
BOWIT 148.56 (42.17) 162.98 (41.43) 132.66 (37.05)
BOMAT 15.81 (4.12) 16.24 (4.19) 15.34 (4.00)
GMV 491.66 (52.06) 516.63 (49.25) 464.09 (39.81)
WMV 459.74 (56.78) 490.00 (49.69) 426.32 (44.03)
NETstruc 258.33 (25.15) 265.88 (25.26) 250.00 (22.29)
NETfunc 0.27 (0.04) 0.28 (0.04) 0.26 (0.04)

Note: Mean values and standard deviations (in parentheses) of age, BOWIT
and BOMAT test results, and magnetic resonance imaging measurements
(GMV, cortical grey matter volume; WMV, white matter volume; NETstruc,
global efficiency of structural network; NETfunc, global efficiency of func-
tional network). BOWIT, Bochumer Wissenstest; BOMAT, Bochumer
Matrizentest.
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Fluid intelligence assessment
Fluid intelligence was measured with a German matrix rea-
soning test called ‘Bochumer Matrizentest’ (BOMAT)
(Hossiep, Hasella, & Turck, 2001), which is widely used in
neuroscientific research (Jaeggi, Buschkuehl, Jonides, &
Perrig, 2008; Klingberg, 2010; Oelhafen et al., 2013;
Takeuchi et al., 2014). The test examines non-verbal mental
abilities that contribute to fluid intelligence and is similar to
Raven’s Advanced Progressive Matrices (Raven, 1990).
We conducted the ‘advanced short version’ of the BOMAT,
which has the advantage of high discriminatory power in
samples with generally high intellectual abilities, thus
avoiding possible ceiling effects (Jaeggi et al., 2008). The
BOMAT inventory comprises two parallel test forms (A
and B) with 29 matrix reasoning items each. Because the
focus of the present study was not on fluid intelligence and
administering both test forms is rather time consuming, par-
ticipants had to complete only one of the two forms being
randomly assigned to them. The BOMAT also fulfils the nec-
essary test quality criteria regarding different reliability and
validity measures. Split-half reliability is .89, Cronbach’s α
is .92, and parallel-form reliability between A and B is .86
(Hossiep et al., 2001). Additionally, convergent and predic-
tive validity are given for both BOMAT test forms because
they are strongly correlated with other fluid intelligence in-
ventories (r = .59), tests of perceptual speed (r = .51) and
German high school GPA (r = �.35) (Hossiep et al., 2001).
The recent norm sample consists of about 2100 individuals
with an age range between 18 and 60 years and both sexes
being represented equally.

General knowledge and fluid intelligence analysis
The overall test performance for the BOWIT inventory was
computed as a sum score of all 308 items from both test
forms A and B. Test performance for the BOMAT inventory
was computed as a sum score of the last 28 items. The first
item was disregarded because of its low difficulty as recom-
mended by the test manual.

Acquisition of imaging data

All imaging data were acquired at the Bergmannsheil
Hospital in Bochum, Germany, using a 3T Philips Achieva
scanner with a 32-channel head coil.

Anatomical imaging
For the purpose of segmenting brain scans into grey and
white matter sections as well as for the identification of ana-
tomical landmarks for connectivity analyses, a T1-weighted
high-resolution anatomical image was acquired (MP-RAGE,
TR = 8.2 milliseconds, TE = 3.7 milliseconds, flip angle = 8°,
220 slices, matrix size = 240 × 240, resolution = 1 × 1 × 1mm).
The acquisition time of the anatomical image was 6 minutes.

Diffusion-weighted imaging
For the analysis of structural network connectivity, diffusion-
weighted images were acquired using echo planar imaging
(TR = 7652 milliseconds, TE = 87 milliseconds, flip
angle = 90°, 60 slices, matrix size = 112 × 112,

resolution = 2 × 2 × 2 mm). Diffusion weighting was
isotropically distributed along 60 directions using a b-value
of 1000 seconds/mm2. Additionally, six volumes with no dif-
fusion weighting (b = 0 seconds/mm2) were acquired as an
anatomical reference for motion correction and for computa-
tion of diffusion coefficients during the diffusion sequence.
In order to increase the signal-to-noise ratio, we acquired
three consecutive scans that were subsequently averaged
(Genç, Bergmann, Singer, & Kohler, 2011; Genç et al.,
2011). The total acquisition time of diffusion-weighted im-
ages was 30 minutes.

Resting-state imaging
For the analysis of functional network connectivity, fMRI
resting-state images were acquired using echo planar imag-
ing (TR = 2000 milliseconds, TE = 30 milliseconds, flip an-
gle = 90°, 37 slices, matrix size = 80 × 80,
resolution = 3 × 3 × 3 mm). The acquisition time of
resting-state images was 7 minutes.

Analysis of imaging data

Analysis of anatomical data
We used published surface-based methods in FREESURFER

(http://surfer.nmr.mgh.harvard.edu, version 5.3.0) to recon-
struct the cortical surfaces of the T1-weighted images. The de-
tails of this procedure have been described elsewhere (Dale,
Fischl, & Sereno, 1999; Fischl, Sereno, & Dale, 1999). The
automatic reconstruction steps included skull stripping, grey
and white matter segmentation (Figure 2, left), and recon-
struction and inflation of the cortical surface. These prepro-
cessing steps were performed for each participant
individually. Subsequently, each individual segmentation
was quality controlled slice by slice, and inaccuracies for the
automatic steps were corrected bymanual editing if necessary.
We selected a set of 42 brain regions per hemisphere to be ex-
amined with regard to relationships between specific brain
properties and cognitive abilities (Figure 2, left). These re-
gions were extracted by an automatic segmentation procedure
in FREESURFER. Thirty-four out of 42 regions were extracted
as cortical grey matter regions following a gyral/sulcal-based
parcellation procedure on the reconstructed cortical surface
(Desikan et al., 2006). The remaining eight regions were ex-
tracted as subcortical regions (Fischl et al., 2004). In addition,
white matter was also segmented into 34 distinct regions per
hemisphere. Hereto, each white matter voxel was labelled to
the nearest cortical grey matter voxel within a distance limit
of 5 mm. This resulted in 34 white matter regions correspond-
ing to the 34 gyral-labelled grey matter regions (Klein et al.,
2014; Salat et al., 2009). Finally, six regions representing
the four ventricles of the brain were extracted to serve as a ref-
erence for later BOLD signal analyses. Brain segmentation
yielded an estimate of the overall cortical grey matter volume
(GMV) and the overall white matter volume (WMV). Further-
more, the grey matter volume of each individual cortical and
subcortical region was assessed. In a final step, the cortical,
subcortical, and ventricle regions were linearly transformed
into the native space of the diffusion-weighted and resting-
state images (Figure 2, middle). The transformed regions
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served as network nodes for graph theoretical connectivity
analyses (Figure 2, right).

Analysis of diffusion data
Diffusion tensor modelling and probabilistic fibre
tractography were carried out with FMRIB’s Diffusion
Toolbox as implemented in FSL version 5.0.7. The details
of this procedure have been described elsewhere (T. E.
Behrens et al., 2003). Preprocessing steps included a correc-
tion for eddy currents (eddy_correct) and head motion as
well as a correction of the gradient direction for each volume
using the rotation parameters that emerged from head mo-
tion. As described earlier, the 42 cortical and subcortical re-
gions from each hemisphere were transformed into the
native space of the diffusion-weighted images to serve as
seed and target regions for probabilistic fibre tractography.
We used a dual-fibre model as implemented in the latest ver-
sion of BEDPOSTX. The model allows for the representation
of two fibre orientations per voxel when more than one
orientation is supported by the data. This enables modelling
of crossing fibres and produces more reliable results com-
pared with single-fibre models (T. E. J. Behrens, Berg,
Jbabdi, Rushworth, & Woolrich, 2007). Probabilistic fibre
tractography was carried out using the classification targets
approach implemented in FMRIB’s Diffusion Toolbox
(T. E. Behrens et al., 2003; M. X. Cohen, Schoene-Bake,
Elger, & Weber, 2009). At each voxel, 5000 tract-following
samples were generated with a step length of 0.5 mm and a
curvature threshold of 0.2 (only allowing for angles larger

than 80°). The connectivity between a seed voxel and a
specific target region was quantified by the number of
streamlines originating in the seed voxel and reaching the re-
spective target region. The overall connectivity between two
brain regions was computed as the sum of all streamlines
proceeding from the seed to the target region and vice versa.

Analysis of resting-state data
Resting-state data were preprocessed using MELODIC,
which is also a part of the FSL toolbox. Images were
preprocessed in a number of steps: discarding the first two
epipolar plane image volumes from each resting-state scan
to allow for signal equilibration, motion and slice-timing cor-
rection, high-pass temporal frequency filtering (0.005 Hz).
Spatial smoothing was not applied in order to avoid the intro-
duction of spurious correlations in neighbouring voxels.
Analogous to the analysis of the diffusion data, all 42 subcor-
tical and cortical regions from each hemisphere were trans-
formed into the native space of the resting-state images to
serve as seed and target regions for functional connectivity
analysis. For each region, we calculated a mean resting-state
time course by averaging the preprocessed time courses of
corresponding voxels. We computed partial correlations be-
tween the average time courses of all cortical and subcortical
regions, while controlling for several nuisance variables. We
regressed out the trajectories of all six motion parameters as
well as the mean time courses averaged across all voxels
representing white matter or cerebrospinal fluid (Genc,
Scholvinck, Bergmann, Singer, & Kohler, 2015).

Figure 2. Processing steps for the estimation of brain properties. First, T1-weighted anatomical images were partitioned into segments of cortical grey matter
and white matter of which respective overall volume estimates (GMV, cortical grey matter volume; WMV, white matter volume) were computed. Second, T1-
weighted images were segmented into 34 cortical and eight subcortical brain regions per hemisphere according to the Desikan–Killiany atlas. Third, the respec-
tive masks were linearly transformed into the native space of the diffusion-weighted and resting-state images. For the diffusion-weighted images, probabilistic
fibre tracking was performed with the brain masks serving as seed and target regions. For the resting-state images, partial correlations between average BOLD
time courses of all brain regions were computed. Fourth, structural and functional brain networks were reconstructed with edges being weighted by the results of
either probabilistic fibre tractography (streamline count) or BOLD signal correlation analysis. Finally, global efficiency was computed as a measure of structural
(NETstruc) and functional network connectivity (NETfunc). [Colour figure can be viewed at wileyonlinelibrary.com]
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Graph theoretical analysis of imaging data

For the purpose of graph theoretical connectivity analyses,
we defined a brain network with 84 nodes, consisting of
the 68 cortical and 16 subcortical regions mentioned earlier,
which yielded a total of 3486 edges. Network edges were
weighted in two different ways. In the structural brain net-
work, each edge weight represented the total number of
streamlines between two brain regions. In the functional
brain network, each edge weight represented the partial cor-
relation between BOLD signal time courses of two brain re-
gions. In the case of negative partial correlation coefficients,
we used absolute values as edge weights.

Graph metrics
Graph metrics were computed with the Brain Connectivity
Toolbox (Rubinov & Sporns, 2010) along with in-house
MATLAB code. Both of the weighting methods described
earlier resulted in a symmetrical adjacency matrix with 84
nodes. In order to remove spurious network connections,
we employed Holm–Bonferroni pruning with a threshold of
0 (α = .01, one tailed) as proposed by Ivkovic, Kuceyeski,
and Raj (2012). In doing so, no edges were removed from
the functional network, while 2540 edges were removed
from the structural network. Among the 946 edges remaining
in the structural network, we observed considerably more
intrahemispheric connections (573, 60.57%) than interhemi-
spheric connections (373, 39.43%). We chose to quantify
network connectivity by means of global efficiency because
this graph metric has been used in previous studies investi-
gating the association between brain network properties and
cognitive abilities (Fischer, Wolf, Scheurich, & Fellgiebel,
2014; Hilger et al., 2017; Li et al., 2009; Ryman et al.,
2014; Ryman et al., 2016; van den Heuvel et al., 2009).
Global efficiency provides information about how efficiently
information can be exchanged within a network (Latora &
Marchiori, 2001). Higher edge weights and shorter path
lengths will typically increase this metric. The shortest path
lengths between all pairs of nodes are contained in a distance
matrix d. This matrix is obtained by calculating the inverse of
the weighted adjacency matrix and running a search algo-
rithm like Dijkstra’s algorithm (Dijkstra, 1959) used in the
Brain Connectivity Toolbox. Global efficiency of a specific
brain region i (Ei), also called nodal efficiency, is calculated
as the average inverse shortest path length between that par-
ticular node i and all other nodes j within the network G, with
i unequal j. The overall global efficiency (E) is calculated in a
similar fashion as the average inverse shortest path length
between each pair of nodes within the whole network G:

E ¼ 1
n
∑
i∈G

Ei ¼ 1
n
∑
i∈G

∑j∈G;j≠id
�1
ij

n� 1

Statistical analysis

Statistical analyses were performed using MATLAB version
R2017b (The MathWorks Inc., Natick, MA) and SPSS ver-
sion 25 (SPSS Inc., Chicago, IL). For all analyses, linear
parametric methods were used. Testing was two tailed with

an α-level of .05 that was Bonferroni corrected for multiple
comparisons if necessary.

Analysis of sex differences
We analysed our behavioural and imaging data in view of
potential sex differences. To this end, we compared male
and female subjects with regard to overall test performance
in the BOWIT and BOMAT inventories, test performance
in the single knowledge facets of the BOWIT inventory,
and all four brain properties GMV, WMV, NETstruc, and
NETfunc (Figure S1). Statistically significant differences were
revealed by two-sample t-tests and quantified as effect sizes
in the form of Cohen’s d (J. Cohen, 1992).

Partial correlation analysis
We examined structure–function relationships on a whole-
brain level and correlated general knowledge as well as fluid
intelligence with each of the four brain properties included in
this study, while partialling out the effects of age and sex
(Figure 3). In order to account for multiple comparisons, we
applied Bonferroni correction with a factor of four (α = .05/
4 = .0125) due to the four brain properties that were analysed.
Subsequently, we computed the same partial correlations on
the level of single brain regions. To this end, we averaged
the four brain properties of each brain region across both
hemispheres resulting in 42 regions for GMV, NETstruc, and
NETfunc and 34 regions for WMV (no subcortical regions
available). Therefore, the α-level of each partial correlation
coefficient was Bonferroni corrected with a factor of 42
(α = .05/42 = .0012, α = .01/42 = .0002; Figure 4). Addition-
ally, we computed partial correlation coefficients between
general knowledge, fluid intelligence, and all four brain prop-
erties with age and sex as controlling variables (Table 2).

Multiple regression analysis
To examine the aforementioned associations with regard to
the unique contribution of each variable included in the par-
tial correlation analyses, we utilized multiple regression anal-
ysis. In our first model, general knowledge was regressed on
the four brain properties GMV,WMV, NETstruc, and NETfunc

as well as age and sex (Figure 5(A)). In our second model,
fluid intelligence served as the dependent variable, while the
four brain properties GMV, WMV, NETstruc, and NETfunc

as well as age and sex served as independent variables (Fig-
ure 5(B)). In order to investigate the role of sex more specif-
ically, we reanalysed both models for men (Figure S2(A)
and (B)) and women (Figure S2(C) and (D)) separately.
Hence, sex was excluded as an independent variable and used
as a group variable. Given the significant relationship be-
tween the BOMAT and BOWIT test scores, we computed an-
other version of the first model with fluid intelligence serving
as an additional predictor of general knowledge (Figure S3).

The analyses were not preregistered. An SPSS file contain-
ing preprocessed data and MATLAB scripts used for various
aspects of data analysis can be obtained from an OSF page
(https://osf.io/zmw5y/). The raw data used for the analyses
are part of an ongoing research project and can only be ob-
tained upon reasonable request. They will be made publicly
available after data acquisition is completed.
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RESULTS

Associations at the whole-brain level

Descriptive information including mean test scores and
brain properties measured at the whole-brain level are pre-
sented in Table 1. We observed significant associations for
most of the brain properties included in the study
(Figure 3). As presumed, general knowledge was positively
correlated with NETstruc (r = .19, p < .001, 95% confi-
dence interval, CI [.08, .29]), indicating that individuals
with more efficiently connected fibre networks have a
higher level of general knowledge. The association be-
tween general knowledge and GMV failed to reach statisti-
cal significance after Bonferroni correction was applied
(r = .12, p = .030, 95% CI [.01, .23]). Further, general
knowledge was not significantly associated with WMV
(r = .10, p = .062, 95% CI [�.01, .21]) and NETfunc

(r = .09, p = .095, 95% CI [�.02, .20]). As expected, fluid
intelligence was positively correlated with GMV (r = .18,
p < .001, 95% CI [.07, .28]) and NETfunc (r = .15,
p = .005, 95% CI [.04, .25]). However, we observed no
significant correlation between fluid intelligence and
WMV (r = .11, p = .055, 95% CI [.00, .22]), and the asso-
ciation between fluid intelligence and NETstruc lost its sta-
tistical significance after we accounted for multiple
comparisons (r = .13, p = .017, 95% CI [.02, .24]). Impor-
tantly, all of the aforementioned associations were con-
trolled for the effects of age and sex.

Associations at the level of single brain regions

In a next step, we refined our analyses in order to identify
specific brain regions showing exceptionally high
structure–function associations, which might provoke the
correlations observed at the whole-brain level. To this end,
we defined 34 cortical and eight subcortical brain regions
per hemisphere (Desikan et al., 2006; Fischl et al., 2004;
Salat et al., 2009). For all of these 42 brain regions, we cor-
related each brain property with both general knowledge and
fluid intelligence, while correcting for multiple comparisons
and controlling for the effects of age and sex (Figure 4).

General knowledge was significantly associated with
GMV in the pars opercularis (r = .20, p < .001, 95% CI
[.09, .30]) and with WMV in the pars opercularis (r = .20,
p < .001, 95% CI [.09, .30]). Furthermore, 11 brain regions
showed significant positive correlations between general
knowledge and NETstruc (r = .18–.23, p < .001, 95% CI
[.07, .28]–[.12, .33]). Respective regions were distributed
across the whole brain with no clear pattern of clustering in
any of the lobes. Corresponding to the results found at the
whole-brain level, general knowledge was not significantly
correlated with NETfunc in any of the brain regions. Fluid in-
telligence was significantly associated with GMV in the
parahippocampal gyrus (r = .18, p < .001, 95% CI [.07,
.28]), the pars triangularis (r = .22, p < .001, 95% CI [.11,
.32]), the rostral anterior cingulate cortex (r = .18,
p < .001, 95% CI [.07, .28]), and the amygdala (r = .18,
p < .001, 95% CI [.07, .28]). Furthermore, we observed a

Figure 3. Partial correlation analysis of associations at the whole-brain level. Scatter plots illustrating the relationships between brain properties (GMV, cortical
grey matter volume; WMV, white matter volume; NETstruc, global efficiency of structural network derived from probabilistic fibre tracking; NETfunc, global ef-
ficiency of functional network derived from BOLD signal correlations) and cognitive abilities (general knowledge and fluid intelligence). All associations are
controlled for the effects of age and sex. The α-level was corrected for multiple comparisons using the Bonferroni method and a factor of four (α = .05/
4 = .0125) due to the four brain parameters under investigation. Statistically significant correlation coefficients surviving Bonferroni correction (N = 324,
p < .0125) are highlighted with black boxes. BOWIT, Bochumer Wissenstest; BOMAT, Bochumer Matrizentest.
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Figure 4. Partial correlation analysis of associations at the level of single brain regions. Brain properties from each brain region (GMV, cortical grey matter
volume; WMV, white matter volume; NETstruc, global efficiency of structural network; NETfunc, global efficiency of functional network) were averaged across
both hemispheres and correlated with general knowledge (left column) and fluid intelligence (right column). Confounding effects of age and sex were partialled
out. Bonferroni correction was applied with a factor of 42 to account for multiple comparisons (α = .05/42 = .0012; α = .01/42 = .0002). Correlations that reached
statistical significance after Bonferroni correction are highlighted by red (p < .0012) or yellow (p < .0002) bars. Likewise, respective brain regions are colour
coded on a cortical surface. [Colour figure can be viewed at wileyonlinelibrary.com]
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significant positive correlation between fluid intelligence and
WMV in the insula (r = .19, p< .001, 95% CI [.08, .29]). We
did not observe any significant associations between fluid in-
telligence and NETstruc, but fluid intelligence was positively
correlated to NETfunc in five brain regions, namely, the pars
triangularis (r = .19, p < .001, 95% CI [.08, .29]), the
precentral gyrus (r = .20, p < .001, 95% CI [.09, .30]), the
rostral middle frontal gyrus (r = .19, p < .001, 95% CI
[.08, .29]), the rostral anterior cingulate cortex (r = .19,
p < .001, 95% CI [.08, .29]), and the insula (r = .18,
p < .001, 95% CI [.07, .28]).

Predicting general knowledge and fluid intelligence by
means of multiple regression analysis

In accordance with previous research (Ackerman et al.,
2001), our data showed a positive correlation between gen-
eral knowledge and age (r = .48, p < .001, 95% CI [.39,
.56]) as well as significant sex differences with men
performing better than women for the majority of knowledge
facets in the BOWIT (t(322) = 6.92, p < .001)
(Figure S1(A)). Importantly, many of the brain properties in-
cluded in this study are also associated with age (e.g. GMV,

r = �.40, p < .001, 95% CI [�.49, �.30]) and show sex dif-
ferences with male subjects having a higher brain volume
(GMV, t(322) = 10.60, p < .001; WMV, t(322) = 12.16,
p < .001) and more efficiently connected brain networks
(NETstruc, t(322) = 5.97, p < .001; NETfunc, t(322) = 3.81,
p < .001) than female subjects (Figure S1(B)). Furthermore,
many of the brain properties are significantly correlated with
each other, even after controlling for the effects of age and sex
(Table 2). Thus, it is reasonable to assume that the observed
correlations between brain properties and cognitive test per-
formance might be confounded by age, sex, or some of the
explained variance being shared by multiple brain properties.
In order to address these issues, we employed an approach
similar to recent studies investigating the neural foundation
of fluid intelligence (Kievit et al., 2012; Ritchie et al.,
2015). By means of multiple regression analysis, we were
able to extract the unique contribution of each brain property
in predicting general knowledge and fluid intelligence.

In our first model, general knowledge was regressed on
age, sex, and the four brain properties included in the
whole-brain analyses mentioned earlier (Figure 5(A)). The
analysis yielded strong and highly significant associations
between age and general knowledge (β = .49, p < .001) as
well as sex and general knowledge (β = �.26, p < .001) with
older and male individuals performing better on the BOWIT.
In accordance with partial correlation analyses, general
knowledge was not significantly associated with GMV
(β = �.07, p = .517), WMV (β = .06, p = .449), or NETfunc

(β = .07, p = .131). Importantly, NETstruc remained as the
only brain property showing a unique contribution in
predicting general knowledge (β = .19, p = .006). Overall,
this regression model was able to explain 36.80% of variance
in general knowledge.

In our second model, fluid intelligence was regressed on
age, sex, and the four brain properties (Figure 5(B)). Again,
we observed results that were in accordance with those
obtained by partial correlation analyses. The only brain
properties showing unique contributions in predicting fluid
intelligence were GMV (β = .24, p = .042) and NETfunc

Table 2. Partial correlations among cognitive abilities and brain
properties

BOWIT BOMAT GMV WMV NETstruc

BOMAT .25** — — — —
GMV .12* .18** — — —
WMV .10 .11 .68** — —
NETstruc .19** .13* .66** .40** —
NETfunc .09 .15** .08 .08 .05

Note: Age and sex are used as controlling variables. N = 324. BOWIT,
Bochumer Wissenstest; BOMAT, Bochumer Matrizentest; GMV, cortical
grey matter volume; WMV, white matter volume; NETstruc, global efficiency
of structural network; NETfunc, global efficiency of functional network.
*p < .05 (two tailed). **p < .01 (two tailed).

Figure 5. Results of multiple regression analysis. (A) General knowledge was regressed on age, sex, and four brain properties (GMV, cortical grey matter vol-
ume; WMV, white matter volume; NETstruc, global efficiency of structural network; NETfunc, global efficiency of functional network). (B) Accordingly, fluid
intelligence was regressed on age, sex, and four brain properties. Standardised regression coefficients are depicted next to the respective arrows. *p < .05;
**p < .01. [Colour figure can be viewed at wileyonlinelibrary.com]
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(β = .14, p = .010). The remaining brain properties WMV
(β = �.05, p = .609) and NETstruc (β = .02, p = .824) as well
as age (β = �.06, p = .420) and sex (β = .02, p = .764) were
not significantly associated with fluid intelligence. This
model explained 9.66% of variance in fluid intelligence.

Given the substantial sex differences in terms of BOWIT
test scores and brain properties, we decided to compute the
aforementioned multiple regression models for both sexes
separately (Figure S2). We included the same variables as
described for the first and second model but used sex as a
group variable instead of an independent variable. When
regressing general knowledge on age and the four brain prop-
erties, we observed the same pattern of results for both sexes
(Figure S2(A) and (C)). As with the multiple regression anal-
ysis for the overall sample, age was significantly associated
with general knowledge in men (β = .58, p < .001) and
women (β = .47, p < .001). The association between
NETstruc and general knowledge, which we found to be sta-
tistically significant in the overall sample, could also be ob-
served for the male subgroup (β = .19, p = .042) and the
female subgroup (β = .17, p = .096). Both regression coeffi-
cients were of the same magnitude but only reached statisti-
cal significance at the level of α < .1 for female subjects.
This might be explained by the substantial decrease in sam-
ple size that is inevitable when analysing subgroups. When
computing the same regression model with fluid intelligence
serving as the dependent variable, we found the results from
the analysis of the overall sample to be a combination of
different results from the male and female subgroups
(Figure S2(B) and (D)). In men, GMV exhibited the only sig-
nificant association with fluid intelligence (β = .35, p = .018),
and in women, NETfunc turned out to be the only significant
predictor (β = .19, p = .020).

Our data showed a significant correlation between gen-
eral knowledge and fluid intelligence (r = .16, p = .005,
95% CI [.05, .26]). This is in line with the assumptions made
by cognitive investment theory, namely, that the acquisition
of general knowledge is dependent on an individual’s fluid
intelligence (Ackerman, 1996; Horn & Cattell, 1967; Kvist
& Gustafsson, 2008). We took this into consideration by
computing a slightly different version of the first model that
included fluid intelligence as an additional predictor of gen-
eral knowledge (Figure S3). This model was able to predict
slightly more variance (R2 = .40) because fluid intelligence
turned out to be an independent predictor of general knowl-
edge (β = .19, p < .001). Apart from that, this alternative
model did not result in any substantial changes regarding
the other regression coefficients.

DISCUSSION

The overarching goal of the current study was to identify the
neural correlates of interindividual differences in general
knowledge. However, we also examined the biological foun-
dations of fluid intelligence in order to revisit previously re-
ported evidence. The respective findings concerning fluid
intelligence shall be discussed briefly before turning towards
general knowledge.

At the whole-brain level, fluid intelligence was signifi-
cantly associated with GMV and NETfunc. These results are
in line with previous research linking fluid intelligence with
cortex volume (Narr et al., 2007; Pietschnig et al., 2015;
Posthuma et al., 2002) and functional network connectivity
(van den Heuvel et al., 2009). Interestingly, the association
between fluid intelligence and WMV, which had been dem-
onstrated in the past (Narr et al., 2007), failed to reach statis-
tical significance by a narrow margin. Moreover, fluid
intelligence was associated with NETstruc, replicating previ-
ous results regarding structural network connectivity (Fischer
et al., 2014; Li et al., 2009), but this relationship lost its sta-
tistical significance after accounting for multiple compari-
sons. When employing multiple regression analysis, GMV
and NETfunc still remained as the only brain properties show-
ing significant associations with fluid intelligence, which is
comparable with results from previous studies (Ritchie
et al., 2015; van den Heuvel et al., 2009). Computing the
multiple regression analysis for both sexes separately led to
different results for male and female subjects. In the male
subgroup, we observed an association between GMV and
fluid intelligence, while NETfunc remained as the only signif-
icant predictor of fluid intelligence in the female subgroup.
On the population level, men and women do not show sub-
stantial differences regarding fluid intelligence, but our re-
sults might indicate that both sexes draw on different
aspects of their neural substrate in order to achieve compara-
ble levels of cognitive performance. Naturally, GMV is
closely linked to cortical neuron count and should thus be
representative of the potential computing power an individ-
ual has. NETfunc might be an indicator of how well these pro-
cessing units interact with each other. It is conceivable that
intelligent thinking in men is more dependent on GMV and
sheer neuron count because male brains might show less var-
iation in effective communication between neurons or benefit
less from it. Contrary to that, women might take substantial
advantage of the way in which their cortical neurons interact
with each other, while the mere number of neurons does not
influence fluid intelligence remarkably. Because the relation-
ship between GMV and fluid intelligence was only present in
the male subgroup, our data are able to explain the absence of
notable sex differences in fluid intelligence despite men on
average having about 10% larger brains compared with
women (Ruigrok et al., 2014). However, it has to be noted
that our results do not correspond with those from a meta-
analysis conducted by Pietschnig et al. (2015), which did
not show any substantial sex differences in the association
between brain size and intelligence. However, the authors ac-
knowledge the fact that brain size is just one out many vari-
ables related to intelligence. They also state that ‘many of
these factors have effects on IQ that are incremental and
compensatory to those of brain size, indicating that none of
these factors seems to be necessary or sufficient for intelli-
gence, with supervenience (many-to-one), not isomorphism
(one-to-one), best describing their relationship’.

At the level of single brain regions, we found fluid intel-
ligence to be associated with the neural properties of cortical
areas that are also included as relevant anatomical structures
in the parieto-frontal integration theory (Jung & Haier,
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2007). For example, we observed a significant correlation be-
tween fluid intelligence and GMV in the pars triangularis.
According to parieto-frontal integration theory, this structure
plays a crucial role in generating various solutions to a given
problem (Jung & Haier, 2007). Moreover, the pars
triangularis constitutes part of Broca’s area and is involved
in language processing. Language provides the possibility
of inner speech and enables us to break down a complex
problem into a series of sub-steps represented in language
sentences (Varley, 2007). Thus, it might serve as an impor-
tant cognitive tool even when dealing with abstract visuospa-
tial problems as posed in matrix reasoning tests. Further,
GMV was significantly associated with fluid intelligence in
the rostral anterior cingulate cortex, an area that is believed
to engage in response selection as well as the inhibition of
competing responses. For the insular cortex, we observed a
significant association between WMV and fluid intelligence.
Originally, this area was not included in the parieto-frontal
integration theory model by Jung and Haier (2007) but was
recognized by a more recent meta-analysis (Basten, Hilger,
& Fiebach, 2015). The analysis of NETfunc is noteworthy be-
cause it was able to replicate previous findings on the rela-
tionship between intelligence and functional connectivity.
Comparable with our approach, Hilger et al. (2017)
employed graph theoretical measures to analyse fMRI
resting-state data. Their results showed positive associations
between intelligence and nodal resting-state efficiency com-
puted for the anterior insula and the dorsal anterior cingulate
cortex. This is in good accordance with our findings that in-
clude the insula and the rostral anterior cingulate cortex as
well. Moreover, we also observed a significant association
between fluid intelligence and NETfunc of the pars
triangularis. The fact that fluid intelligence was not only
related to volumetric features of the pars triangularis, the
rostral anterior cingulate cortex, and the insula but also corre-
lated with the functional connectivity of these areas empha-
sizes the major role of these three brain regions in affecting
cognitive performance.

In view of the neural correlates of general knowledge, we
aimed to test two major hypotheses. First, assuming that the
neural fundaments of general knowledge are the synapses be-
tween cortical neurons that are formed and modified during
memory formation, we conjectured that general knowledge
should be positively correlated with GMV. However, the
simplified presumption that higher cortex volume may be
equated with more storage capacity for general knowledge
was not supported by our results. Initially, we observed a sig-
nificant positive correlation between general knowledge and
GMV. This structure–function relationship remained stable
even after controlling for the effects of age and sex, two
variables that have previously been shown to be strongly
associated with general knowledge. However, after using
Bonferroni correction to account for multiple comparisons,
the association between general knowledge and GMV failed
to reach statistical significance. Moreover, this was reflected
in the results obtained by multiple regression analyses. GMV
did not exhibit a unique contribution in the prediction of gen-
eral knowledge. Most likely, this indicates a spurious corre-
lation created by confounding effects of other neural

predictors. It is conceivable that a great amount of explained
variance in general knowledge is shared by GMV and
NETstruc due to both variables being strongly correlated with
each other (Table 2). Because GMV turned out to be a signif-
icant predictor of fluid intelligence, at least in the male sub-
group, but not of general knowledge, one might conclude
that the volume of the cortex, and hence the amount of neu-
rons and neuropil, serves as a better predictor of problem
solving abilities (Ritchie et al., 2015) than information stor-
age abilities. Nevertheless, one has to consider the substantial
sex differences that are tied to volumetric measures and their
relation to cognitive performance.

Our second hypothesis revolved around the idea that the
successful formation and retrieval of general knowledge is
heavily dependent on the quality of a widely distributed brain
network that allows for an efficient integration of informa-
tion. It has been shown that object categories are represented
by a continuous and distributed semantic map spanning the
cortical surface (Huth, de Heer, Griffiths, Theunissen, &
Gallant, 2016; Huth, Nishimoto, Vu, & Gallant, 2012). As
a consequence, knowledge that combines diverse object cat-
egories is likely to be stored in the form of differently
encoded information fragments distributed across the whole
cortex. It is conceivable that the efficacy of storage and re-
trieval mechanisms operating within the scope of such a net-
work can be quantified by measures of brain network
connectivity like NETstruc or NETfunc. In fact, we observed
a significant association between general knowledge and
NETstruc, indicating that brains comprising a very efficiently
connected fibre network indeed hold more information. Con-
trary to the aforementioned analysis of GMV, this structure–
function relationship remained statistically significant even
after controlling for multiple comparisons as well as the ef-
fects of age and sex. Moreover, the results of multiple regres-
sion analysis, with NETstruc remaining as the only significant
predictor, also ruled out the possibility that the association
between structural brain network connectivity and general
knowledge was due to confounding effects of other brain
properties. The association even remained stable after
expanding the regression model by including fluid intelli-
gence as a potential predictor of general knowledge. As sug-
gested by cognitive investment theory, fluid intelligence had
a unique contribution in predicting general knowledge,
thereby adding to the overall variance explained by the re-
gression model. However, this did not alter the association
between NETstruc and general knowledge in any substantial
way. This outcome is crucial to the claim that our findings
represent distinguishable neural fundaments of general
knowledge and fluid intelligence. Intelligence has been
linked to structural brain network connectivity in the past
(Li et al., 2009), and our data show a positive correlation be-
tween fluid intelligence and general knowledge. Therefore, it
would have been possible that the statistically significant as-
sociation between general knowledge and NETstruc merely
represented a spurious relationship arising from confounding
correlations with fluid intelligence. However, our supple-
mental analysis was able to rule out this scenario.

Because of the correlative nature of the study at hand, one
has to be careful to derive any causal relations from the

E. Genç et al.

© 2019 European Association of Personality Psychology Eur. J. Pers. (2019)

DOI: 10.1002/per



aforementioned findings. Final conclusions about the under-
lying causality and its direction have to remain speculative.
Nevertheless, we believe that there are at least two justifiable
interpretations of the observations made. The first revolves
around the idea that all general knowledge is stored as infor-
mation fragments, which are distributed across the whole
brain and embedded into a complex fibre network. In this
case, it is conceivable that every new piece of information
entering long-term memory will alter the brain’s fibre net-
work by adding new connections or by discarding old con-
nections representing obsolete information. The fibre
network’s morphology can thus be regarded as the result of
knowledge acquisition, and the degree of its structural con-
nectivity might represent the amount of general knowledge
stored within it. This line of interpretation is inevitably
linked to the assumption that BOWIT test scores mainly re-
flect the Gc component found in stratum II of the CHC model
(Figure 1), that is, the depth and breadth of knowledge and
skills that are valued by one’s culture (W. Schneider &
McGrew, 2012). However, it has to be considered that
knowledge tests like the BOWIT inventory not only mea-
sure the amount of general knowledge held by an individual
but also provide an indirect estimate of long-term storage
and retrieval abilities. These would correspond to the Glr
component from the CHC model (Figure 1), which can be
defined as the ability to store, consolidate, and retrieve infor-
mation over periods of time measured in minutes, hours,
days, and years (W. Schneider & McGrew, 2012). This
second line of interpretation thus embraces the idea that an
efficiently connected fibre network does not necessarily
represent the outcome of knowledge acquisition but rather
an advantageous infrastructure for long-term storage of
newly acquired information. From this, it follows that the
fibre network’s morphology influences the acquisition of
knowledge but does not change as a result of the storage
process. Finally, one could imagine that the two lines of
interpretation are synergetic: an efficiently connected fibre
network might emerge from information acquisition and
storage in the past. At the same time, the presence of such
a network is likely to foster the embedding of newly ob-
tained information into memory traces of already existing
general knowledge.

When performing multiple regression analysis for the
whole sample, we observed a significant association be-
tween sex and general knowledge. However, the results
from multiple regression analyses computed for both sexes
separately did not show substantial differences compared
with the whole-sample analysis and also revealed age and
NETstruc as the only significant predictors. It is a notewor-
thy finding that the association between general knowledge
and NETstruc was sex independent, although our data re-
vealed that male subjects showed higher NETstruc values
than female subjects and obtained higher test scores in
the BOWIT inventory. These sex differences observed in
our data correspond with findings reported by previous re-
search. First, pioneering work by Ackerman et al. (2001)
demonstrated that men are likely to perform better on
knowledge questionnaires than women across a wide range
of different knowledge domains. Second, a previous study

by Ingalhalikar et al. (2014) reported substantial sex differ-
ences in overall brain connectivity with men showing more
pronounced intrahemispheric fibre connections and women
showing more pronounced interhemispheric fibre connec-
tions (Hanggi, Fovenyi, Liem, Meyer, & Jancke, 2014). In-
terestingly, the structural connectome that was obtained by
means of DTI fibre tracking included about 50% more
intrahemispheric than interhemispheric edges after spurious
connections were removed. Therefore, it is reasonable to
assume that the more pronounced intrahemispheric connec-
tivity within male brains leads to higher NETstruc values
observed in the connectomes of male subjects compared
with female subjects. As revealed by multiple regression
analysis, the association between NETstruc and general
knowledge is applicable to men and women alike. There-
fore, we believe that our results, at least in parts, offer a
possible neuroanatomical explanation for the consistent ob-
servation that men tend to perform better than women in
tests of general knowledge (Ackerman et al., 2001).
However, it goes without saying that sex differences in
general knowledge are not elicited by neuroanatomical
properties alone. According to Ackerman et al. (2001),
sex differences in other factors such as ability self-
estimates, personality traits, interests, or test anxiety are
also likely to cause higher general knowledge test scores
in men compared with women. Future studies might draw
on our results and include these additional variables in their
study design.

In summary, our study is the first to demonstrate that in-
terindividual differences in general knowledge, one of the
major components constituting Gc or crystallized intelli-
gence, are tied to a neuroanatomical basis, which is dissocia-
ble from that of fluid intelligence. On the one hand, our
results show that test scores obtained by general knowledge
inventories are reflected in the efficiency of structural brain
networks that can be quantified using state-of-the-art DTI
methods. As a consequence, our findings raise the question
whether structural brain network efficiency should be
regarded as a predictor of the amount of general knowledge
held by an individual, an individual’s information storage
and retrieval capacities, or even both. On the other hand,
we were successful in confirming previous results, namely,
that abilities in information processing, as measured by ma-
trix reasoning test scores, are likely to be indicated by cortex
volume and functional network connectivity. Importantly, it
has to be considered that our sample was mainly composed
of German university students who are not representative of
the European population in terms of age, educational back-
ground, or ethnic composition. Therefore, one has to be care-
ful when drawing conclusions about the general population
based on our results.

In conclusion, our results provide first evidence of neuro-
anatomical correlates linked to general knowledge and add a
missing piece to the mosaic constituting the biological foun-
dation of cognitive performance, which still happens to be
largely incomplete. Given the complexity of the human
mind, it comes as no surprise that theories trying to capture
its structure, such as the CHC model, are constituted of nu-
merous components reflecting various aspects of cognitive
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ability. Another layer of complexity is added when taking
into account that each of these many cognitive abilities is in-
fluenced by a multitude of different brain characteristics all
contributing small amounts to the overall outcome. Thus,
the endeavour of completely disentangling the relationships
between the myriad of features constituting our neural sub-
strate and the vast array of cognitive abilities may seem like
a task that borders on sheer impossibility at times. Neverthe-
less, we hope that our findings encourage more neuroscien-
tific research focused on general knowledge and other
mainly unexplored yet exciting aspect of the human mind.
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