Intelligence 64 (2017) 67-70

journal homepage: www.elsevier.com/locate/intell

Contents lists available at ScienceDirect

Intelligence

Predicting group differences from the correlation of vectors @

Kimmo Sorjonen*, Jon Aurell, Bo Melin

CrossMark

Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, 171 65 Solna, Sweden

ARTICLE INFO ABSTRACT

Keywords:

Factor loadings
Intelligence

Jensen effect
Sigmoid association
Simulation

It has been proposed that a correlation between a vector of factor loadings of intelligence tests and a vector of
group differences on these same tests (= correlation of vectors) indicate that the group difference is mainly in g.
In the present simulation, we show that there is an inverse sigmoid association between the difference between
population means on a latent variable and the correlation of vectors and that the appearance and precision of
this association is moderated by sample size and the standard deviation of factor loadings. In high powered

studies, a weak correlation of vectors would falsify, while a strong correlation would not be able to verify, a
hypothesis about a sizeable difference between population means.

1. Introduction

According to Jensen (1985, 1998), a correlation between a vector of
factor loadings of intelligence tests and a vector of group differences on
these same tests (Table 1) indicates that the group difference is mainly
in g rather than in more specific abilities and that the cause of this
difference is the same as the cause of variation within populations. Such
a correlation between vectors has been found in various comparisons
(see te Nijenhuis et al., 2016, for a review).

It has been argued that some of the findings taken to support the
claim that group differences are due to the same cause as variation
within populations could be due to violation of the assumption of
measurement invariance across groups, something that can lead to a
positive correlation between factor loadings and the degree of group
differences on the tests even when there is no difference in g between
the groups (Dolan, Roorda, & Wicherts, 2004). The use of Multigroup
Confirmatory Factor Analysis (MGCFA), rather than Jensen's method of
correlated vectors, has been recommended with the argument that if
variance between groups is due to the same factor as variance within
groups, e.g. g, factorial invariance across groups should be possible to
demonstrate (e.g. Dolan, 2000; Lubke, Dolan, & Kelderman, 2001;
Lubke, Dolan, Kelderman, & Mellenbergh, 2003). Re-analyzes using
MGCFA have sometimes failed to demonstrate measurement invariance
(Dolan et al., 2004). On the other hand, Ashton and Lee (2005) de-
monstrate that the method of correlated vectors also can fail to reveal a
correlation between the vector of g-loadings and the vector of correla-
tions between subtests and a variable V even when V has a strong
correlation with g. Ashton and Lee also show that g-loadings depend on
the included subtests and this can affect the results obtained through
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the method of correlated vectors.

Schonemann (1989, 1997) performed simulations and argued that a
correlation between the vectors of tests' g-loadings and the size of dif-
ferences between populations is a tautological consequence that will
arise if (1) these tests are positively correlated, and (2) people in one of
the populations tend to score higher on the tests than people in the
other population. However, Schonemann's simulations have, in their
turn, been criticized to produce trivial results due to using the scores on
the first factor as a selection variable, and it has been argued that a
correlation between g-loadings and the size of the group differences is
not a mathematical necessity (Dolan, 1997; Dolan & Lubke, 2001).

The objective of the present simulation was to look for a function
that can be used to predict the difference between population means on
a latent variable from the correlation between the vectors of factor
loadings and group differences on items.

2. Method

Using R 3.2.2 statistical software (R Core Team, 2015), a dataset
was simulated through the following steps (code and dataset available
as supplementary material): (1) Two samples with between 50 and
12,800 (=eight doublings) persons each were created (the same
number in each sample); (2) for both samples, values were randomly
drawn from a normally distributed variable T with SD = 1 and with a
defined difference between population means varying between — 1.5
and + 1.5; (3) fifteen normally distributed items with varying corre-
lations with the variable T were created. The range of the correlations
was decreased in steps from 0.1-0.9 to 0.475-0.525 (evenly spaced) in
order to vary the standard deviation of the factor loadings. The average
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Table 1
An example where the correlation between the vector of factor loadings and the vector of
group differences equals 0.79 and the standard deviation of loadings equals 0.22.

Test Loading Group 1° Group 2° Diff°
1 0.2 85 (19) 88 (19) —-0.16
2 0.3 90 (18) 81 (21) 0.46
3 0.4 95 (12) 94 (17) 0.07
4 0.5 110 (13) 99 (12) 0.88
5 0.6 115 (14) 107 (14) 0.57
6 0.7 120 (15) 106 (12) 1.04
7 0.8 125 (19) 111 (17) 0.78

@ Group mean (SD).
® Difference between group means in pooled standard deviations.

correlation was thus kept at approximately 0.5 in all of the simulations;
(4) using the psych package (Revelle, 2015) the loadings of these fifteen
items on one factor were calculated. As a group difference on the latent
factor may inflate factor loadings when using the pooled group (Jensen,
1998), the calculation was conducted in one of the two samples; (5) the
correlation of the vectors of factor loadings and group differences on
items and the standard deviation of factor loadings were calculated and
saved, together with the defined sample size and difference between
population means, in a data frame. These five steps were run a thousand
times for nine sample sizes, 31 defined differences between population
means on the variable T, and for 16 different ranges of factor loadings,
resulting in 4,464,000 simulated datasets.

3. Results
The difference between population means was found to be

0.07 <= SD(L) < 0.13 0.13 <= 8SD(L) < 0.19

0.

Intelligence 64 (2017) 67-70

inverted sigmoid function of the correlation of vectors (Fig. 1). A sig-
moid curve is given by the following formula:

_ d
1+ e

y

In this formula, d = the distance between the floor and the ceiling
of the curve; s = the steepness of the curve; ¢ = the ceiling of the curve.
In the present case, the function is symmetrical on both sides of zero,
giving that d = 2c, and the function can be simplified. After inversion
we get that the difference between population means (Dp) can be pre-
dicted by:

2
Ryr
c

Dp=—=n 1

N

In this formula, Ry stands for the correlation between vectors. An
analysis found the values of the s and ¢ parameters in this function to be
moderated by the standard deviation of the factor loadings (SD;) and
the sample size (N, in each sample) according to the following:

s = 0.883 + 0.000249-N + 23.8-SDy, + 0.00853-N-SDy,
c =238 — 0.158:In(N) + 1.22:In(SDp) — 0.142:In(N)-In(SDy)

It is also apparent in Fig. 1 that the standard error of the prediction
is affected by the standard deviation of the factor loadings, sample size,
and the correlation of vectors. In order to avoid negative predictions,
the standard error was logarithmized. This In(SE(Dp)) was found to be a
curvilinear function of the correlation of vectors (Ry) and after ex-
ponentiation:

SE (DP) — eb0+b1-Rv+b2-R1§

Fig. 1. The association between the difference between
population means on a latent variable (y-axis) and the
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correlation between the vectors of factor loadings and
group differences on items (x-axis) for the combinations of
three different sample sizes (n in each sample) and three
different ranges of standard deviations of factor loadings
(SD(L)). The predicted differences between population
means (solid lines) with 95% CI (dotted lines) have been
calculated using the formulas presented in the text.
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Table 2
Predicted differences between population means (with 95% CI) for the studies presented
in Jensen's (1985) Table 3.

Study N, N, Ry Pred. diff. (95% CI)
Jensen & Reynolds (1982) 1868 305 0.73  1.050 (0.681; 1.419)
Reynolds & Gutkin (1981) 285 285 0.51 0.510 (—0.039; 1.059)
Sandoval (1982) 332 314 0.36  0.283 (—0.217; 0.783)
Mercer (1984) 668 619 0.66  0.590 (0.250; 0.930)
National Longitudinal Study 12,275 1938 0.78  0.268 (0.091; 0.446)
Nichols (1972) 1940 1460 0.75  0.424 (0.194; 0.653)
Dept. of Defence (1982) 5533 2298 0.39  0.104 (0.023; 0.185)
Dept. of Labor (1970) 4001 2416 0.71 0.243 (0.087; 0.399)
Kaufman & Kaufman (1983) 813 486 0.56  0.419 (0.089; 0.749)
Veroff et al. (1971) 179 186 0.36  0.348 (— 0.444; 1.140)
Hennessy & Merrifield (1976) 1818 431 0.66  0.558 (0.233; 0.882)

Note: Standard deviation of factor loadings assumed to be 0.13 except for
Jensen & Reynolds (1982) where it, for computational reasons, is assumed to be 0.14.
@ Correlation of vectors.

The coefficients in their turn are given by:

by = 0.346 — 0.904-In(N) — 1.710-In(SDy)
b; = —0.0464 + 0.0116-In(N) + 0.0180-In(SD;)

b, = —1.587 + 0.726-In(N) + 1.247-In(SDy)

The 95% CI for the predicted difference between population means
has been calculated by adding and subtracting two standard errors to
the predicted difference (Fig. 1).

4. Discussion

The present simulation found an inverse sigmoid association be-
tween the difference between population means on a latent variable
and the correlation between the vectors of factor loadings and group
differences on items. The appearance of this association, as well as
standard errors of the prediction, was moderated by sample size and the
standard deviation of factor loadings. As an example (Table 2), we have
used our function (available in the supplementary script) to predict
differences between population means in g, or whatever the used tests
are indicators of, for eleven correlations of vectors presented in Jensen
(1985). In these calculations, we have, with one exception, used 0.13 as
the standard deviation of factor loadings, as Jensen (1998) noted this to
be the case for 149 tests. It is apparent in Table 2 that, due to large
predicted standard errors, the predicted difference between population
means is small and non-significant for the studies with small sample
sizes. It is interesting to note that although the sample size is smaller
and the correlation of vectors weaker in the study by Jensen and Rey-
nolds compared to the National Longitudinal Study and the study by
Nichols, the predicted difference between population means is bigger.
The reason for this is that with a high powered study, with a large
sample size and standard deviation of factor loadings, and a nontrivial
difference between population means, we expect a very strong corre-
lation of vectors, and lack thereof indicates a small difference between
population means. For a given correlation of vectors (= 0), the pre-
dicted difference between population means will be smaller but the
confidence interval narrower for a study with higher compared to a
study with lower power. For studies with very high power (see bottom
row in Fig. 1), we expect a very strong correlation of vectors already
with a modest difference between population means, and the predicted
difference will never be large. If using the correlation of vectors as a
method to estimate the difference between population means on a la-
tent variable, such high powered studies will, maybe to Popper's (1959)
appreciation, be good at falsifying a hypothesis of a sizable difference
while lacking the capacity to verify it. It has been concluded before that
a repeated demonstration of a strong correlation of vectors is necessary,
but not sufficient, to infer a difference between population means on a
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latent variable and that the method lacks in specificity
(Dolan & Hamaker, 2001, see also Wicherts, 2017). With less power, a
strong correlation of vectors would predict a larger, but also a more
uncertain, difference between population means and it would, again, be
difficult to assume a large difference between population means. In low
powered studies, the range of predicted possible correlations between
the difference between population means and the correlation of vectors
(—c to ¢ in the formulas above) is also more restricted. For example,
given a standard deviation of factor loadings of 0.1, the range of pos-
sible correlations is predicted to be between — 0.35 and 0.35, between
—0.70 and 0.70, and between — 1 and 1 for sample sizes 100, 800, and
6400, respectively (leftmost column in Fig. 1).

4.1. Limitations

In this paper, we present approximate formulas for predicting the
difference between population means on a latent variable from the
correlation between the vectors of factor loadings and group differences
on items. There might be exact irrational numbers lurking behind the
scenes, but they have failed to reveal themselves for us. We cannot be
completely sure that our formulas do not behave erratically in some
situations and problematization of using the correlation of vectors as a
predictor of group differences on latent variables, rather than pre-
senting formulas that can be used for accurate predictions, should be
regarded as the main point of the present paper.

It should be noted that the present formulas have been calculated
with data that fulfills the assumption of measurement invariance across
groups, and probably cannot be trusted to give accurate predictions if
this assumption is violated. The assumption of measurement invariance
is central to group comparisons and testable (see e.g. Dolan et al., 2004;
Lubke et al., 2003 for a description of how). With the lavaan R-package
(Rosseel, 2012), for example, it is possible to conduct multigroup factor
analyses while constricting factor loadings, residuals, and intercepts to
be the same across groups. If these constrictions do not result in a re-
duction of model fit, compared with an unconstricted model, it in-
dicates measurement invariance and that within- and between-group
differences are due to the same factor (Lubke et al., 2003). However,
there are findings indicating that IQ test batteries often fail to be
measurement invariant across groups based on ethnicity, gender, edu-
cational background, cohort, or age, which means that these tests
cannot always be trusted to give a valid and unbiased measurement of
group differences in IQ (Wicherts, 2016).

Our simulations, and therefore also the applicability of the for-
mulas, is based on the idealized scenario in which only g is responsible
for the group differences on items. This means that if g would be re-
gressed out of item scores, the remaining group difference would be
zero on all of these scores. This would mean complete fulfillment of the
“equal intercept” part of the assumption of measurement invariance,
and is probably nothing that ever apply to genuine data.

In the present simulation, we have varied sample size and the
standard deviation of factor loadings. However, it is possible that other
factors, such as number of items and the mean of factor loadings, also
moderate the association between the difference between population
means and the correlation of vectors. It should also be stressed that our
simulations are based on normally distributed continuous item scores
and the presented formulas cannot be used with dichotomously scored
items. Wicherts (2017) demonstrated complexly non-linear associations
between vectors of item-total correlations (often considered to be the
item's g loading for dichotomous items) and phi coefficients (measure of
group difference on dichotomous items).
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