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Abstract Targeted cognitive training, such as n-back or speed
of processing training, in the hopes of raising intelligence is of
great theoretical and practical importance. The most important
theoretical contribution, however, is not about the malleability
of intelligence. Instead, I argue the most important and novel
theoretical contribution is understanding the causal structure
of intelligence. The structure of intelligence, most often taken
as a hierarchical factor structure, necessarily prohibits transfer
from subfactors back up to intelligence. If this is the true
structure, targeted cognitive training interventions will fail to
increase intelligence not because intelligence is immutable,
but simply because there is no causal connection between,
say, working memory and intelligence. Seeing the structure
of intelligence for what it is, a causal measurement model,
allows us to focus testing on the presence and absence of
causal links. If we can increase subfactors without transfer to
other facets, wemay be confirming the correct causal structure
more than testing malleability. Such a blending into experi-
mental psychometrics is a strong theoretical pursuit.
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A lot of attention has been directed toward raising intelligence
through targeted cognitive training interventions. These inter-
ventions involve training a specific component of intelligence,
most often processing speed (PS) or working memory (WM).
The goal of much of this research in nonclinical populations is

to enhance intellectual life. Here, I argue, there is a second
equally important outcome of this research: it allows us to test
the structure of human cognitive ability.

This article is organized as follows: First, I present a sam-
pling ofmodels regarding the structure of intelligence. Each of
these models represent top-down processes (as is standard in
much intelligence research). Then, I describe the logic of cau-
sality found within structural equation models, with a small
diversion to some additional assumptions of latent variable
modeling. Following from these two points, we immediately
see that a top-down causal structure makes upward causation
from subfactors (like working memory) to general intelligence
impossible. I then introduce targeted cognitive training, inter-
ventions that target distinct cognitive processes for improve-
ment. I argue that these targeted interventions allow one to test
the causal assumptions made in hierarchical and nonhierarchi-
cal models of the structure of human cognitive abilities.
Failures to find transfer may be indicative of the correct causal
direction between intelligence and its subprocesses.

Intelligence and its structure

Intelligence, broadly defined, may be

a very general mental capability that, among other
things, involves the ability to reason, plan, solve prob-
lems, think abstractly, comprehend complex ideas, learn
quickly and learn from experience. It is not merely book
learning, a narrow academic skill, or test-taking smarts.
Rather, it reflects a broader and deeper capability for
comprehending our surroundings—Bcatching on,^
Bmaking sense^ of things, or Bfiguring out^ what to
do. (Gottfredson, 1997, p. 13).
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This conceptual definition carries with it a measurement
model relating observed and latent variables (e.g., Bollen,
1989). Specifically, it defines the measurement of intelligence
as a single latent variable that is the reason disparate cognitive
tests and/or latent subfactors are correlated with one another.
Whether a single latent variable model or a bifactor model or a
hierarchical model, the reason tests of cognitive ability corre-
late with one another is because they are measuring the same
underlying thing: intelligence (Jensen, 1998).

Different models, however, alter how we understand the
structure of intelligence. A single-factor model of intelligence
(see Fig. 1, top left) poses that all cognitive tests, from vocab-
ulary to reaction time tomath skills, correlate with one another
because they all are measures of intelligence and little else.

A hierarchical factor model (see Fig. 1b) acknowledges
that, for example, vocabulary tests and tests of general knowl-
edge and verbal reasoning tasks correlate with one another
because they are all measuring verbal ability. This could be
the same with other latent variables such as processing speed,
inductive ability, and memory. Those latent variables, howev-
er, correlate with one another. The proposed reason they cor-
relate with one another is that they are measuring intelligence.
A bifactor model (see Fig. 1c) allows for the latent subfactors,
but proposes that the reason the factors correlate with one
another is because the cognitive tests are still measuring intel-
ligence on top of the latent factor (e.g., verbal ability).1

The number of subfactors and specific relations do not matter
for the measurement of intelligence, however. The correlation of
a hierarchical g factor across different batteries and different tests
range from .83 to 1—effective unity (Jensen, 1998; Johnson,
Bouchard, Krueger, McGue, & Gottesman, 2004; Thorndike,
1987). The different structures are all measuring the same thing.

Investigations into the psychometric structure of intelligence
generally rely on testing different models and comparing model
fit statistics. As a simple concrete example, one study compared
different structures of intelligence on the same batteries of tests
to see which fit best. Some of the structures included a Gf/Gc
nonhierarchical model (see Fig. 2a), a hierarchical verbal/
perceptual model (Fig. 2b), a three-strata hierarchical multifac-
tor model (Fig. 2c), and a hierarchical multifactorial four-strata
model (Fig. 2d). It was the final model that provided the best fit
to the data (Johnson & Bouchard, 2005).

Based off this analysis, the authors concluded that the
structure of intelligence is verbal, perceptual, and image rota-
tion ability (VPR).2

Model fit is one way to test competing models, but it does
not ensure that we identify the correct model. What is more
important to the discussion is given the same number of var-
iables and parameters, the direction of the arrows has little to
no effect on model fit. Our models of intelligence can be
entirely misspecified because, for example, verbal ability is
causally related upwards to intelligence. This would not likely
show up in model fit statistics, but may instead be discovered
through experimental research.

Causality in latent-variable models

These modeling approaches toward understanding what the
structure of intelligence is involve structural equation models
with directed arrows. These models are, by their very nature,
causal models that reflect what we take to be traits that exist in
the world independent of their measures (e.g. Borsboom,
Mellenbergh, & Van Heerden, 2003; Pearl, 2009). So every
arrow in a given model of the structure of intelligence is a
strong causal claim about the effects of, say, a latent variable
causing responses on another factor or test.

Equally important is all of the causal arrows that are absent.
Under no model are there arrows going upward in the hierar-
chy (e.g., no arrows from verbal ability to g), and no arrows
going directly or indirectly from one latent variable to another
(e.g., processing speed and executive functioning are causally
unrelated and independent). These are all strong causal claims
that are inferred from covariance patterns and model fit statis-
tics (e.g., Hausman & Woodward, 1999).

Consider another causal graph. The probability of rain and
readings on a barometer are correlated—the higher the baro-
metric reading, the higher the probability of rain. This is be-
cause they both share a common cause—atmospheric pres-
sure. I can make this causal connection explicit in Fig. 3.

Figure 3 represents how atmospheric pressure causes both
rain and changes in barometer readings (indicated by the ar-
rows). If we were to artificially change the reading on a ba-
rometer (putting it in a pressure-cooker, for example), it would
not alter the probability of rain. This fact is noted by the
absence of any arrows from barometer reading to rain. It is
important to note that there is no difference between the causal
claims being made in Fig. 3 versus those being made in Figs. 1
and 2.

This creates a problem given hierarchical models of intel-
ligence. If the models in Figs. 1 and 2 are indeed correct in that
they represent the true causal structure of intelligence and its
subfactors, then every intervention that attempts to raise a
cognitive subtrait, be it working memory, processing speed,
verbal ability, will necessarily show no transfer whatsoever to
intelligence. This is because there is no causality from any test
or subfactor going back to g.

1 There are, of course, other nonhierarchical models of test score patterns that
do not have a single intelligence factor. Thesemodels often involved correlated
latent traits. While in this article I only discuss intelligence models, the causal
arguments throughout apply to all latent variable models, not just hierarchical
ones.
2 All hierarchical models share the same basic assumptions. I present only the
VPR model for simplicity, as I do not wish to engage in the debate about
Bwhich^model may best fit the data. For another, more expansive hierarchical
model, see the CHC model (McGrew, 2009).
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Take a simplified version of the VPR model in Fig. 4. This
model of intelligence makes the strong causal claim that if one
were to increase verbal ability, we would see no increases in g,
in any other latent variable, or in any other test that is not
causally related to verbal ability. The absence of causal arrows
in this structure are claims to those facts. Increases in verbal
ability will show resulting increases only in those tests that are
causally connected to verbal ability, and nothing else. I argue
that it is exactly the presence and absence of causal connec-
tions that allow for experimental testing, as well as the stron-
gest theoretical contribution of targeted cognitive training.

Between- and within-subjects modeling

Before delving into targeted cognitive training, I must also
briefly introduce another technical assumption of latent vari-
able modeling. Investigations into the structure of intelligence
typically rely on between-subjects modeling; it tests the pat-
terns of intercorrelations between variables across persons in
cross-sectional data. It may be that this also reflects within-
subjects’ processes, meaning the causal relations are retained
within an individual. Between- and within-subjects models,
however, are not necessarily the same (e.g., Borsboom et al.,
2003).

The critical difference of between- and within-subjects
models regards the interpretation of the probabilistic nature
of item responses (Borsboom et al., 2003; Holland, 1990).
For example, to answer why an individual answers a given
problem correctly or incorrectly, in the between-subjects in-
terpretation, out of all people with a given ability X, choosing
one randomly is the probability that we will choose one who
will get the problem right. So for a simple math problem, the
probability that a smart person will get it right is high means

that if we get a group of people with high ability (X) together,
choosing one randomly to answer the simple math problem
means we have a high probability of choosing someone who
will get it right. In the within-subjects interpretation, it means
that, for any given person, it is not guaranteed that they will
get a problem right or wrong. A high ability (X) person who
knows the answer to the simple math problem can still get it
wrong (they misspeak, misread the problem, perform a simple
calculation error, etc.), although the high ability makes it un-
likely. To give a hierarchical model built on between-subjects
differences a within-subjects interpretation (John has a high
probability of being right because he has a high g) is called the
local homogeneity assumption (see the M-IRT model in
Kovacs & Conway, 2016, for an explicit model of intelligence
granting this assumption).

An extreme version of this difference between the two
interpretaitons would posit that Bintelligence^ does not exist
within the individual, it is simply a mathematical extraction of
the correlations between the mental processes that do happen
between people. A person has different abilities to understand
verbal argument, to hold multiple pieces of information in his
or her working memory, and to rotate objects, for example.
These abilities are correlated with each other within the per-
son. When trying to solve a difficult cognitive problem, how-
ever, there is no Bintelligence^ that exists in the person’s brain.
The appearance of a strong g factor appears as a function of
these intercorrelations across people. The within-people men-
tal processes are all that are used to solve a problem. Such an
argument can point out how between- and within-subjects
approaches can give different results.

This difference of between- and within-subjects interpreta-
tions begins to fall apart if, as measurement models have it, we
interpret the relations in a measurement model as causal. Via
extrapolation from Simpson’s paradox, there cannot be a

Fig. 1 Three different models of the structure of intelligence: unified (a), hierarchical (b) and bifactor (c)
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cause within a population that is also not a cause within a
subpopulation; the reason, such a statistical result may appear,
is due to an improper formulation of covariation as causation,
along with appropriate effect modifiers (Pearl, 2009). If we
grant that individuals can count as subpopulations, it then
follows that there can be no causal effect in a population that

is also not a causal effect within at least one of its members
(see Weinberger, 2015 for the elaboration of this argument).3

For a concrete example, suppose we run an intervention
where we randomly assign people to control or to working
memory training groups. Members of the control group act
as counterfactual estimates of those in the experimental group,
allowing us to estimate the causal impact (Rubin, 2005; Pearl,
2009). In this experiment there is no variation within the indi-
vidual—they are either in the experimental or control group.
The results, however, are direct estimates of within-subject

3 This argument is formulated in terms of causality as responsiveness in an
SEM framework; however, it should be pointed out that such frameworks are
mathematically equivalent to counterfactual or potential-outcomes frame-
works more commonly used in randomized controlled trials in their underlying
assumptions and implications (Galles & Pearl, 1998).

Fig. 3 A causal model about atmospheric pressure, rain, and barometer
readings

Fig. 2 Different patterns of intelligence structure; taken from Johnson & Bouchard, 2005
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treatment effects, despite the fact that they are between-sub-
jects’ estimates (Weinberger, 2015).

It is, however, possible to formulate interventions that
change a person’s g score without changing anything about
that person. This occurs because intelligence scores, whether g
or IQ, are relational variables, only existing in relation to other
people (for modern arguments of the existence of g within
individuals, see Colom, Chuderski, & Santarnecchi, 2016;
Deary, Cox, & Ritchie, 2016; Gottfredson, 2016; and
citations within). Thus, I can measure intelligence of an indi-
vidual from a sample of high school seniors and find that they
have a g-score 1 standard deviation above the mean, which I
will call g = 1. Now, if I take that same individual and put them
in a sample of college seniors, this same person now has g = 0,
because they are even with the rest of the new sample (college
seniors are more intelligent than high school seniors; see
Borsboom, 2015, for this argument).

The problemwith this argument is that it fails to cache itself
out in observable differences. This becomes clear if we take a
simpler example—working memory. Working memory can
be considered the ability to hold and process and manipulate
information in one’s mind (Diamond, 2013). Suppose we con-
struct a latent working memory from three observed tests: n-
back, operations span, and digits backwards (see Fig. 5).

Digits backwards is a test where participants hear a string
of numbers and then repeat the numbers back in reverse order
(e.g., 3-7-1-6 is repeated back 6-1-7-3). If we move a person
from high-school population (wm = 1) to college population
(wm = 0), given the links from latent working memory to the
digits test are indeed causal (e.g., Borsboom et al., 2003; Pearl,
2009), we should expect that simply moving the person into
this new populationwould cause him to answer larger spans of
digits correctly. Such a result would unsurprisingly not occur,
which leaves us with the following: (1) we must accept that
the causal claims from latent working memory to digit span
backwards performance are indeed false; (2) there is no
within-subjects working memory, and it exists entirely as a
between-subjects variable; (3) moving the person to a new
sample intervention does not represent a counterfactual causal
intervention. Exploration of these points is beyond the scope
of this article, but it is important to understand the implications
that causal structure has on measurement models. Having in-
troduced the difficulties of between-/within-subjects model-
ing, we can now move on to discussing raising intelligence
and targeted cognitive training in isolation.

Raising intelligence through targeted cognitive
training

There have been hundreds of attempts to raise intelligence.
Some of these attempts succeed, some of them fail. Because
attempts to raise intelligence using randomized controlled tri-
als allow us to strongly explore causality, there is also an
implication for understanding the causal connections in the
structure of intelligence.

In many attempts to raise intelligence it is difficult to pin
down precise mechanisms because they are broad. They can
involve learning to play a musical instrument (e.g.,
Schellenberg, 2004), iodine supplementation (e.g., Shrestha,
1994), completely altering the early environment of children
for the first few years of their life (e.g., Ramey et al., 1992).
The problem with such interventions for understanding the
structure of intelligence is that they are too broad. It is not
possible to understand if program effects show causality be-
tween latent variables or falsify causal connections between
latent factors and subordinate measures.

Targeted cognitive training, however, does not suffer from
the same breadth. A brief, and in no way complete, review of
the cognitive training literature, specifically with regard to
transfer across processes, follows. The nature of training and
extent of transfer allows us to investigate the causal connec-
tions presented in any model of the structure of intelligence.

In targeted cognitive training, a single specific test or process
is trained. Researchers select a given aspect of cognition and
train the underlying process. Such training is adaptive, growing
with the performance of the individuals. It is separate from

Fig. 5 Latent variable of working memory and its causal effect on three
tests

Fig. 4 Simplified VPR model of intelligence
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retest effects in that the individual is not simply practicing the
items that will be the eventual posttest. Instead, the underlying
cognitive parameters are targeted for improvement.

Within the structure of intelligence, a subfactor or broad
ability is targeted for improvement. The most common targets
have been memory, speed of processing, and executive func-
tioning. Because every cognitive ability correlates with every
other ability to some extent (the positive manifold; see Jensen,
1998), the necessary ingredient for transfer is guaranteed to be
present. Then, either a single or a battery of tests that load
heavily onto the targeted process are chosen for training. The
underlying process (e.g., complex reaction time) is then trained
by increasing difficulty with the aim of improving the underly-
ing process. Provided the underlying process is accurately
targeted in isolation, transfer to other abilities or processes can
be seen as evidence of a causal connection between them. We
highlight some examples from the literature.

Memory training has been used in the elderly to improve
their basic ability to store and recall information. Interventions
often involve practice in recalling learned words and
sentences as well as already-memorized information (e.g.,
labels on prescription drugs; Ball et al., 2002). This type of
training increases verbal episodic memory, but has no effect
on speed of processing or reasoning ability (Ball et al., 2002).
Thus, wemight conclude that verbal episodic memory is caus-
ally unrelated to speed of processing and reasoning.

Speed of processing is the ability to discriminate stimuli,
react, and solve simple problems in a short time. Training
often involves practicing reaction time to either auditory
(e.g., Anderson, White-Schwoch, Parbery-Clark, & Kraus,
2013) or visual stimuli (e.g., Edwards et al., 2005). Auditory
training has resulted in increases not only in speed of process-
ing but also in short-term memory tasks (Anderson et al.,
2013). This suggests that there may be a causal effect between
auditory speed of processing training and auditory short-term
memory. That, or the training targets both processes.

Visual speed of processing training has received much
more attention, but has also found less heartening results.
Training is often on the Useful Field of Vision test, where
participants respond as quickly as possible to a target that
shows up in some area of peripheral vision. While training
has often found improvement in this task, most studies have
found no transfer to other measures of processing speed (see
Edwards et al., 2002, 2005; Vance et al., 2007; Wadley et al.,
2006, for example). However, one study found transfer to one
type of reaction time measure, but not another (choice, not
simple; Roenker, Cissell, Ball, Wadley, & Edwards, 2003;
see Takeuchi et al., 2011, for inspection time training to
congruent Stroop performance). This suggests that UFOV
practice may not be training the underlying processing speed.
There has also been a lack of transfer from speed of processing
training to executive function measures as well as measures of
intelligence (Edwards et al., 2002; Takeuchi et al., 2011;

Wadley et al., 2006). There has been some evidence of
UFOV training to visual attention (Vance et al., 2007). This
may again reflect the demands of the procedure and not the
causal connections of the underlying traits.

Executive function training is the testing of such pro-
cesses as response inhibition or working memory. It has
amassed a large body of research, with furious debate on
the nature and existence and interpretation of effects (see
Jaeggi, Buschkuehl, Jonides, & Perrig, 2008; Au,
Buschkuehl, Duncan, & Jaeggi, 2015; Au, Sheehan, Tsai,
et al., 2015; Melby-Lervåg & Hulme, 2015; Simons et al.,
2016 for example). In short, whether n-back and similar
types of training can improve tests of intelligence is under
debate, with effects being often small with wide confi-
dence intervals.

The nature of transfer to other constructs has received con-
siderably less attention than transfer to intelligence tests.
Reports conflict as to whether executive function training
can increase other abilities, such as verbal abilities (for no
effects, see Chooi & Thomspon, 2012; Redick et al., 2013;
Thompson et al., 2013) or processing speed (for effects, see
Seidler et al., 2010; Heinzel et al., 2014; no effects see: Chooi
& Thompson, 2012; Redick et al., 2013; Thompson et al.,
2013).

Overall, memory training has received the least attention
and may also show the least potential for transfer. This may
suggest that short- and long-term memory are correctly spec-
ified as being causally unrelated to other aspects of intelli-
gence. Speed of processing has shown scattered transfer, but
may not be robustly trained. Failure to transfer to other mea-
sures of speed of processing suggests that interventions such
as UFOV training may not be improving the underlying con-
struct. Until that is done, we cannot be sure of the place in the
causal structure of intelligence. Executive function training
has the most potential to investigate the causal structure of
intelligence, but it is also the most controversial.
Investigations into n-back training have shown the training
to be not solely to workingmemory, and transfer with auditory
training is largely absent. Research has started to test the the-
oretical causal connections between working memory and
other traits, such as analogical reasoning. Increasing working
memory without a concomitant increase in it’s supposed con-
nections represents a positive step in the direction of testing,
and falsifying, individual differences links with targeted train-
ing (see Richey, Phillips, Schunn, & Schneider, 2014).

In addition, the first look into latent transfer has failed to
uphold n-back training as a way to improve latent working
memory (Colom et al., 2013). After training 56 participants in
either adaptive n-back or a passive control group for 3 months,
changes were observed in performance on certain working
memory (dot matrix and reading span) and attention measures
(Simon task). These improvements, however, did not appear
in the latent construct analyses. It should be pointed out,
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however, that there were a number of results in the Btrending^
direction, including for latent fluid intelligence. Whether such
evidence falsifies the training effect is far from equivocal.
With a focus of future experiments testing latent changes,
we can better understand the repercussions on our models.

Let us consider a hypothetical experiment that trains reac-
tion time. The investigators see significant effects on latent
processing speed, suggesting that the intervention has success-
fully increased the latent factor. Now, if they investigate trans-
fer to executive functioning, or upwards to intelligence, and
they find no transfer, what can we conclude from this?

An immediate interpretation, especially among those who
believe intelligence is immutable, would be Bsee, you can’t
change intelligence!^ But such an interpretation may not be
warranted. If our hierarchical structure of intelligence is in-
deed correct, with causal connections pointing in the right
direction, then we should never expect targeted cognitive
training of processing speed to increase intelligence—simply
because intelligence causes, but is not caused by, processing
speed. Therefore, the failure of transfer does not reflect the
immutability of intelligence but instead the correct causal
structure between intelligence and its subfactors.4

Nonhierarchical models

Although we have focused on hierarchical models, they are
not the only theories of the relationships between cognitive
variables. One such class of models involve feedback loops
between cognitive processes (e.g., Kovacs & Conway, 2016;
Van der Maas et al., 2006). Although these models have their
own limitations (see, e.g., Gignac, 2014; Oberauer, 2016;
Protzko, 2015), they come with the same magnitude of causal
assumptions that may be individually tested. Isolating these
causal assumptions can lead to successful testing of nonhier-
archical models as well.

As an example, the underlying assumption of one such non-
hierarchical model is that g emerges from different overlapping
cognitive processes (Kovacs & Conway, 2016). The extent of

this emergence is dictated by the weakest executive process—
the weaker the process, the lower the emergent g (really, positive
manifold). Therefore, a successful test of such amodel would be
to isolate the weakest links in each individuals’ executive pro-
cessing and conduct a training study targeting those processes. If
an increase in latent g is observed, we may have evidence for
such a nonhierarchical model of intelligence. The arguments in
this article are not restricted to hierarchical models.

The future direction of targeted cognitive training

Aside from the noble pursuit of attempting to increase our
intellectual lives, I argue that targeted cognitive training has
a deeper theoretical implication: being able to test the causal
links in the proposed structure of intelligence, telling us what
intelligence is.

Much of the research, however, has not been able to cleanly
answer these questions. Themain problem has been a focus on
manifest instead of latent variables. In almost every case of
targeted cognitive training (see Colom et al., 2013, for the
exception), interpretations are based on the results seen on test
scores, not on the constructs under investigation. Thus, chang-
es in processing speed as a construct is interpreted solely from
changes in the scores on the Digit Symbol Substitution Test,
for example. The problem is that performance on the Digit
Symbol Substitution Test is likely multiply determined.
There may be g effects, working memory effects, short-term
memory effects, and other, unmodeled effects (see Schneider,
2013; Wechsler, 2003). While such manifest improvements
are necessary for evidence that an increase in the construct
has occurred, they are not sufficient, as the source of the per-
formance increases cannot be detected from changes in total
scores alone. The observed test not only suffers frommeasure-
ment error but also from causal influences from intelligence
and possibly other subfactors, depending on the true structure
of intelligence. Thus, the interpretation may be unwarranted
that one has increased processing speed from increases on a
test. Such thinking hints at an underlying opertionalistic ap-
proach toward measurement, which has long been discredited
in the sciences (e.g., Maul, Irribarra, T., & Wilson, 2016).

To remedy this, investigators should focus on small batte-
ries of tests comprising the constructs under investigation.
Typically, this requires at least three to four tests per latent
variable (Anderson & Rubin, 1956). If we want, at a mini-
mum, 10 participants per group per variable (e.g., Velicer &
Fava, 1998), the absolute minimum number of participants
needed to investigate, say, whether n-back training increases
latent working memory or latent executive functioning, would
be 60 participants. This says nothing of power, which further
compounds the search for transfer to more distant constructs.
Using structural equation modeling, researchers can investi-
gate whether cognitive training alters construct-level

4 One may be tempted to turn to Bayesian confirmation theory for help in
exploring the null (e.g., Dienes, 2014).We find the invocation of Bayes factors
in interpreting null hypotheses to be a largely unnecessary step, for the follow-
ing reason. In a study with n = 20 per group, a result leading to a value of p = .1
would result in a Bayes factor of 1, indicating complete indifference between
the null and alternate. Thus, with n = 20, all ps > .1, will always lead to the data
being in favor of the null. The question no longer becomes one of whether, but
to what degree, do the data support no causal connection between subfactors or
with intelligence. With larger sample sizes, nonsignificance becomes more
strongly in favor of the null. Thus, Bayes factors can be used to determine to
what extent lack of transfer supports a lack of causality, but provided any
p > .1 at minimally adequate sample sizes, the Bayes factors will always sup-
port such lack of causality. If we are willing to accept this state of affairs, then
all nonsignificant failure of transfer supports the top-down hierarchical struc-
ture of intelligence.
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variables, which can then inform the causal links to other
constructs. The most likely reform to make this common prac-
tice would be creating a simple macro for commonly used,
user-friendly statistics programs (e.g., Hayes & Preacher,
2014).

Furthermore, studies of targeted cognitive training have
subjected participants to multiple posttests in the pursuit of
transfer. Including multiple dependent variables, however,
comes with a cost. It is necessary to either model the data
concurrently (as in, say, a structural equations model, taking
into account correlations between dependent variables) or in-
cur a penalty to critical p values for each new dependent var-
iable taken (see Bird & Hadzi-Pavlovic, 2014, for some
methods of protection). One cannot subject participants to a
dozen posttests, find one or two effects at p < .05, and be
confident that a true underlying change has been made.

It is also important to ensure that the training only targets
the processes under consideration. If an intervention trains
both underlying processing speed and working memory, for
example, we cannot be sure if transfer represents common
training or true causal connections between processes. Some
interventions (e.g., Smith et al., 2009; van Ravenzwaaij,
Boekel, Forstmann, Ratcliff, & Wagenmakers, 2014) are too
broad to categorize as targeted cognitive training; so the re-
sults cannot be readily applied to understanding the structure
of human abilities. One notable example tested visual n-back
(the default of most executive function training) versus audi-
tory n-back. If the training was only increasing underlying
working memory, then this visual versus auditory difference
should not matter for transfer. The authors found different
patterns of results onmatrix reasoning subtests, with the visual
n-back groups showing improvement, whereas no improve-
ment was seen in auditory n-back (Stephenson & Halpern,
2013). This suggests we need to take a closer look at what
the training is actually doing.5

There are other concerns, which I shall not repeat here, such
as over reliance on pre × post interactions (see Huck &
McLean, 1975, for a classic criticism) or active versus passive
control groups. In addition, some studies use truncated tests or
tests only using half of the items (e.g., Lawlor-Savage &
Goghari, 2016), which can lower the reliability of the tests,
harming interpretability. Though this may also affect the ability
to investigate transfer at the latent level, we are unsure of any
explicit tests of this assertion. Such concerns as these apply to
all experimental research, not just targeted cognitive training.

So what is the way forward for experimental psychometrics
in understanding the causal structure of human cognitive abili-
ties? Only a sketch is provided here, with future research being
the real arbiter of progress. The question becomes how do we

test the direction of causality and the presence of causal links in
our understanding of the structure of human cognitive abilities.

First, a cognitive process must be identified for improve-
ment. Then, a method for improvement must be found that,
for theoretical reasons, would only involve the process under
investigation. As discussed with auditory versus verbal n-back,
this can often be difficult. Having identified a process and iso-
lating amethod of improvement, the first step would be to show
that improvements on the training task are indeed improve-
ments to the underlying latent process. A battery of posttests,
not including the training task, analyzed in a randomized con-
trolled trial with adequate sample sizes, using latent variable
modeling, would be the first test (e.g., Lubke, Dolan, &
Kelderman, 2001). After establishing that a method of training
can improve the underlying process, follow-up experiments
could be run using batteries of tests isolating distant latent pro-
cesses. The success or failure of transfer (see note 3 as well)
Bupward^ to latent g or Bsideways^ to other latent subfactors
can help us understand the causal connections underlying the
correlation of human cognitive abilities. This is only a rough
sketch of the required steps, but taking causality seriously re-
quires serious changes to the way we investigate the questions
surrounding targeted cognitive training.

Conclusion

Attempting to enhance our cognitive lives through targeted
training is a most noble pursuit, and one we fully endorse.
Interventions that train specific cognitive abilities, searching
for transfer to intelligence, may be doomed to fail not because
intelligence is immutable, but because the causal relations
between intelligence and its subfactors are unidirectional.

All of our models are incomplete; they do not capture every
cause and effect within a given system (e.g., MacCallum,
2003; Meehl, 1990). While this incompleteness from 100 %
representation is usually deemed acceptable, falsity, the wrong
specifications of our models (faulty causal paths, reference to
nonexistent variables, etc.) is not. The goal, however, is to
increase how much our models correspond to the world.
Although a popular method among individual differences re-
searchers is to compare model fit statistics of competing
models, we have the ability to directly test the causal assump-
tions underlying the structure of intelligence. We can test the
falsity of the models. We can provide greater strides in fully
understanding human cognitive ability.

The causal assumptions of our models of the structure of
intelligence are not different because they exist largely in the
latent realm. They do not require special studies or data differ-
ent from any other exploration of causality. What is important,
however, is that we recognize these causal claims and take them
seriously. With targeted training and the appropriate analysis,
we can explore the validity of these causal connections.

5 At the time of writing this article, the debate around n-back training is
currently vogue, but the arguments within apply to all future approaches to
targeted cognitive training, whatever the process.
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Much as we cannot move the hand on the barometer in the
hopes it will change the weather, the structure of intelligence may
make it impermeable to changing subfactors in the hopes of
upward effects. Seeing factor analytic structures (such as Fig. 1)
as models of strong causal claims and not just graphs to represent
data, we can understand one of the true benefits of targeted cog-
nitive training as allowing us to explore what intelligence is.
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