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ABSTRACT

The most replicated result in the field of intelligence is the positive manifold, which refers to an all-positive
pattern of correlations among diverse cognitive tests. The positive manifold is typically described by a
general factor, or g. In turn, g is often identified as general intelligence, yet this explanation is contradicted
by a number of results. Here we offer a new account of g: process overlap theory. According to the theory,
cognitive tests tap domain-general executive processes, identified primarily in research on working
memory, as well as more domain-specific processes. Executive processes are tapped in an overlapping
manner across cognitive tests such that they are required more often than domain-specific ones. The
theory provides an account of a number of findings on human intelligence. As well, it is formalized as a
multidimensional item response model and as a structural model, and the neural mechanisms underlying
the proposed overlapping processes are discussed.
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g: A Well-Aged Puzzle

Why do people differ in their cognitive abilities? Is there a gen-
eral intelligence that permeates all human intellectual activity?
Or is it more reasonable to postulate specific kinds of talent?
After more than a century of research, these questions are still
unresolved, and the nature and origin of individual differences
in mental abilities remain open to debate.

The most compelling result in this field of study is that peo-
ple who perform above average on one kind of cognitive test
(e.g., vocabulary) tend to perform above average on other kinds
of cognitive tests as well (e.g., mental rotation). This pattern of
positive correlations was first observed more than a century
ago (Spearman, 1904) and is often referred to as the positive
manifold. Indeed, because mental testing of large samples
became common practice, for example, in military and aca-
demic contexts, literally hundreds of studies have revealed the
positive manifold (Carroll, 1993), making it perhaps the most
replicated result in all of psychology.

With the development of factor analysis, a statistical tech-
nique that aims to reduce the number of dimensions in large
correlation matrices, the empirical observation of the positive
correlations among diverse cognitive tests was accounted for by
a general factor of intelligence, or g. Factor analysis is consid-
ered a data-reduction technique because a relatively small num-
ber of factors, or latent variables, identify common sources of
variance across tests, which are referred to as manifest varia-
bles. In other words, the correlation between two manifest vari-
ables can be explained by their connection to a common latent
variable. For example, a vocabulary test and a mental rotation

test are correlated because they both correlate with the same
latent variable “X.”

The first factorial model of intelligence (Spearman, 1904)
proposed that a single latent variable, g, accounts for all of the
positive correlations between measures of mental ability (see
Figure 1). The variance in a test not attributable to g was there-
fore explained by a test specific factor, s.1 According to this ini-
tial theory, the specific factors were orthogonal, each a
reflection of unique test content and, necessarily, measurement
error. Spearman’s idea of a latent causal variable, g, as the
underlying reason for the correlations among different cogni-
tive tasks, developed contemporaneously with factor analysis
itself.

A general factor is indeed reliably obtained when mental test
data are submitted to exploratory factor analysis. Yet the test
variance that the general factor could not account for turned
out not to be entirely test specific, and some groups of tests, for
example, vocabulary and reading comprehension, correlate
more strongly with one another than with other groups of tests,
for example, mental rotation and spatial navigation. Hence
Spearman’s view of intelligence was quickly met with criticism
and alternative accounts were proposed; the strongest compet-
ing model consisted of multiple uncorrelated group factors,
representing a set of “Primary Mental Abilities” (Thurstone,
1938; see Figure 2). However, Thurstone’s original model was
challenged in a similar fashion as he challenged Spearman; the
idea of orthogonal factors turned out to be untenable, and their
correlations needed to be accounted for by a higher order
general factor.
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The decades that followed the work of Spearman and Thur-
stone witnessed numerous studies of individual differences in
cognitive ability as well as the development of confirmatory fac-
tor analysis (CFA). Contrary to exploratory factor analysis,
CFA is a statistical procedure that enables hypothesis testing;
one can specify a model of cognitive abilities and test whether
observed data corroborate what one would expect based on
predictions of the model. These further studies with more
advanced methods gravitate toward latent variable models of
intelligence that incorporate both a general factor and more
specific group factors.

This has been accomplished in two ways: bifactor models
and hierarchical models (see Figures 3 and 4). In bifactor mod-
els, tests correlate directly with g as well as with specific factors,
whereas in hierarchical models no test loads directly on g.
Instead, in hierarchical models domain-general variance is
manifested in the correlations between group factors and is
ultimately accounted for by the general factor, g, at the top
level. Thus, contrary to Spearman’s original conception “hierar-
chical g” explains correlations among abilities rather than cor-
relations among tests. It arguably does a good job indeed; g
usually accounts for about 40% (Deary, Penke, & Johnson,
2010) or 50% (Jensen, 1998) of the total variance measured in
diverse sets of mental tests administered to sufficiently large
samples.

Of course, instead of having uncorrelated first- or second-
order factors and a general factor on top of the hierarchy, one
could always have correlated first- or second-order factors in
the model and no g (see Figure 5). Because the higher-order
factor model is a nested/constrained version of the oblique
first-order factor model, the latter is also usually applicable to
describe the positive manifold. But the superficial impression is
that the non-g model leaves the correlations unexplained,
whereas g-models do explain them. Or do they?

The problem with g is simply that still to this day there is no
satisfactory consensus about how to interpret it: If there is a
casual factor behind g, it has not been identified yet. Moreover,
it is not only the case that there is controversy about what g is;
there is substantial confusion about what kind of thing g, or
indeed what any latent variable, is in the first place (Borsboom,
Mellenbergh, & van Heerden, 2003; Conway & Kovacs, 2013).

Here we propose a novel solution to this well-aged puzzle,
which we refer to as process overlap theory. The primary aim
of process overlap theory is to explain the positive manifold,
yet the theory also provides a comprehensive account of estab-
lished findings on individual differences in intelligence. It is
important that process overlap theory explains interindividual
differences in behavior in terms of intraindividual psychologi-
cal processes and neural mechanisms. There have been other
approaches, discussed later on, that question the latent cause
interpretation of the positive manifold and have offered alter-
natives. However, in our view, process overlap theory is unique
in the sense that it integrates psychometrics, cognitive psychol-
ogy, and neuroscience.

Such an ambitious integrative approach requires a solid the-
oretical foundation, which we describe in detail next. To pre-
view, here we consider three axioms, or fundamental premises
of the theory:

1. g is a necessary consequence of the positive manifold;
whenever there are only positive entries in a correlation
matrix, it is always possible to extract a single general
factor via factor analysis, and this factor will correlate
positively with all of the manifest variables or, in the case
of hierarchical models, with all of the first- or second-
order factors. Of importance, this is not an empirical
finding but a mathematical necessity, of which there

Figure 1. A model depicting Spearman’s original conception of a single general
factor.

Figure 2. A model depicting Thurstone’s original (but later revised) conception of
orthogonal group factors.

Figure 3. A bifactor model of cognitive abilities.

Figure 4. A hierarchical model of cognitive abilities.
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exists adequate algebraic proof (Krijnen, 2004). That is,
in a technical sense, g is no more, no less, than a reflec-
tion of the positive manifold. Hence, “it is always impor-
tant to remember that it is the positive manifold, not g as
such, that needs explanation” (Mackintosh, 2011b,
p. 165).

2. An ontological stance of entity realism is required if one
is to seriously evaluate the theoretical status of latent var-
iables2 (Borsboom et al., 2003). Theorizing about a latent
variable must transcend the world of mathematical
abstractions and pinpoint a real entity, which plays a
causal role in the correlations among manifest variable—
regardless of whether this entity is a process, a set of pro-
cesses, or some common property/characteristic of
processes.

3. Latent variables are differential constructs that do not
directly translate to within-individual processes or mech-
anisms (P. C. M. Molenaar & Campbell, 2009; Voelkle,
Brose, Schmiedek, & Lindenberger, 2014). Also, latent
variables exist because of individual differences, and
without variation in mental abilities there would be no
latent variables—the last survivor of a meteor collision
with Earth would still have cognitive abilities and mental
limitations but would not have g. Naturally, this stems
from the fact that the positive manifold, being a correla-
tion matrix with only positive entries, is itself a between-
individual phenomenon. Hence the scope of any expla-
nation of the positive manifold, including but not
restricted to latent variables, is not necessarily directly
applicable to single individuals.

The structure of the article is as follows. First we discuss the
relation between within-individual processes and sources of
between-individual variance and provide a critique of the inter-
pretation of g as a within-individual construct. A few important
characteristics of the general factor that any theory of the posi-
tive manifold should probably take into account are surveyed
next. The following two sections discuss working memory, first
as a within-individual construct and then as a latent variable
that is strongly related to variation in fluid reasoning. The rea-
son for discussing working memory is detail is that there is a
positive manifold and a general factor obtained in such tasks as
well; not only is it strongly related to the positive manifold in

intelligence but it is quite likely that there is a similar explana-
tion of these two positive manifolds.

This is followed by a discussion of goal neglect and prefron-
tal function, and how they are related to both working memory
and fluid reasoning, highlighting the importance of cognitive
processes in fluid intelligence that we believe to be crucial in
causing the positive manifold. Having surveyed a large bulk of
empirical evidence that function as the grounds of our theoreti-
cal framework, we turn to outlining process overlap theory as
both a cognitive and a structural model of human intelligence,
accompanied by a mathematical (psychometric) model. The
next section covers studies that employed a network approach
to brain functioning; such studies highlight a functional overlap
of neural circuitry that corresponds to the overlap of psycho-
logical processes hypothesized by our theory. This is followed
by a comparison of our theory with previous attempts to
explain the positive manifold without a single underlying causal
dimension, and we close the article with a few concluding
remarks.

The gWithin?

A parsimonious interpretation of the general factor, based
solely on the statistical evidence, is that it represents a single,
general ability (“general intelligence” or “general cognitive abil-
ity”) that manifests itself in all kinds of different tests. However,
this is not the only possible explanation of the positive mani-
fold. Thomson (1916) demonstrated that a general factor could
appear as the result of a large number of independent, uncorre-
lated psychological processes, “sampled” by a battery of tests.
Thomson’s “sampling theory” proposed that every mental test
randomly taps a number of “bonds” from a shared pool of neu-
ral resources, and the correlation between any two tests is the
direct function of the extent of overlap between the bonds, or
processes, sampled by different tests.

Because its original formation, there have been statistical
elaborations and extensions of the sampling model
(Bartholomew, Allerhand, & Deary, 2013; Bartholomew, Deary,
& Lawn, 2009; Maxwell, 1972; McFarland, 2012) as well as sub-
stantial ones, claiming that the overlap takes place at the genetic
(Anderson, 2001) or neural (Hampshire, Highfield, Parkin, &
Owen, 2012; Rabaglia, Marcus, & Lane, 2011) level. A develop-
mental account based on mutually beneficial interactions has
been proposed that also provides a mathematical explanation
of the positive manifold without assuming the causal action of
a single general factor (van der Maas et al., 2006). Crucially,
with regard to the distinction between sampling models and g-
models, it has been mathematically demonstrated that “there is
no statistical means of distinguishing between the two” (Bar-
tholomew et al., 2009; see also Maxwell, 1972). The conclusion
from these studies is that general intelligence, a single common
cause of the positive correlations between mental tests, is surely
a sufficient, but definitely not a necessary explanation of the
positive manifold.

A crucial thing to notice is that the concept of general intelli-
gence interprets g as a within-individual mental ability, the
involvement of which, in all kinds of cognitive activity, is caus-
ally responsible for the positive manifold. Therefore, if the con-
cept of general intelligence is correct, then the following

Figure 5. An oblique model of cognitive abilities.

2More precisely: to evaluate the theoretical status of reflective latent variables, see
“Process Overlap Theory.”
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statement is valid: “John used his general intelligence to cor-
rectly answer items on both the vocabulary test and the mental
rotation test.” This, however, is substantially different from the
statement: “If John performs better on the vocabulary test than
most people, it is likely that he will perform better on the men-
tal rotation test as well,” because the latter statement leaves the
possibility open that John in fact did not use the same general
cognitive ability to solve items in the vocabulary test and the
mental rotation test, respectively. Nevertheless, the statistical
evidence based on between-subject data validates only the sec-
ond statement, not the first. To validate the first statement, one
has to review other kinds of evidence, and the result is far from
convincing.

First, there is a substantial amount of neuropsychological
evidence contradicting the idea that people use the same
general cognitive ability to perform tests with different con-
tent. Damage to different areas of the brain results in the
double dissociation of various cognitive abilities. In particu-
lar, spatial and verbal abilities can be dissociated this way, as
well as fluid reasoning from crystallized abilities (Duncan,
Burgess, & Emslie, 1995). Similarly, specific developmental
disorders result in impaired spatial abilities, whereas certain
verbal skills remain intact, or vice versa (e.g., Vicari, Bellucci,
& Carlesimo, 2007; Wang & Bellugi, 1994). This provides
strong evidence against the explanation of the positive mani-
fold by a general cognitive ability operating within individu-
als. For if John excels in both vocabulary and mental
rotation because he uses the same single general ability for
both, it would not be possible for his performance to deterio-
rate on only one of these tests following damage to specific
areas of his brain. Similarly, there is ample evidence for the
dissociation of verbal and spatial tests as a result of various
experimental manipulations; such results are also incompati-
ble with the notion that both tap a single general ability
(Jonides et al., 1996).

Sex differences can also be a means toward fractionating
human intelligence (Mackintosh, 2008); a large number of
studies indicate that on average, male and female individuals
have somewhat different cognitive profiles, with female partici-
pants outperforming male participants in most verbal tests, as
well as tests measuring perceptual speed, whereas male partici-
pants excel in three-dimensional spatial skills.

Finally, the Flynn-effect, which refers to the secular increase
in IQ across generations, also contradicts the within-individual
notion of general intelligence. In tests requiring fluid inductive
reasoning (see “Understanding g: Characteristic Features,” par-
ticularly “Figure 1: g and Gf Are Very Strongly Correlated”),
such as Raven’s Progressive Matrices, the gains per generation
have been as high as 15 IQ points, whereas in tests measuring
crystallized abilities, such as vocabulary and mental arithmetic,
the gains have been negligible; 2–3 IQ points over half a cen-
tury (Flynn, 2007).

To be fair, g-theories of intelligence could account for all
these phenomena by assuming that all fractionation and dis-
sociation occurs only in lower order specific abilities.
Because sex differences appear in specific abilities, that argu-
ment does indeed seem valid. Similarly, claims have been
made that the Flynn-effect is independent of g (e.g., Rushton,
1999), even though this conclusion is controversial (see

Flynn, 1998). However, the neuropsychological evidence is
harder to dismiss; it appears as if there is simply no place in
the brain for general intelligence (see “Overlapping Networks
in the Brain” for details). Also, taken together, these con-
verging lines of evidence point to the elusive nature of gen-
eral intelligence. With all different lines of fractionating
evidence taken into account, there is hardly any space left
for a general cognitive ability that permeates all human
cognition.

It is also important to point out that not all g-theorists
equate the general factor with a general ability. Actually, one of
the leading g-theorists, Arthur Jensen, opposed such an inter-
pretation: “It is important to understand that g is not a mental
or cognitive process or one of the operating principles of the
mind, such as perception, learning, or memory” (Jensen, 1998,
p. 94–95.). More generally, our emphasis on g being a differen-
tial construct is in perfect agreement with his theorizing about
the general factor: “A simple distinction between process and
factor is that a process could be discovered by observing one
person, whereas a factor could be discovered only by observing
a number of persons” (Jensen, 1998, p. 95; see also Jensen,
2000).

So how does Jensen, and other g-theorists, interpret g
other than a general cognitive ability? They hypothesize that
it is a common parameter that influences all of the specific
abilities or modules. For instance, Jensen proposed that g
reflects individual differences in the speed of mental opera-
tions, whereas Eysenck emphasized the role of the efficiency
of neural transmission (e.g., Eysenck, 1998). There is indeed
valuable contemporary research exploring the link between
such phenomena and the general factor; for instance, white
matter tract integrity appears to be a promising candidate
for such a parameter (Penke et al., 2012). However, even this
explains only 10% of the variance in the general factor. Speed
and efficiency, even though they surely have explanatory
power, only explain a portion of the across-domain variance
in mental tests.

Moreover, there are other problems with the theory of men-
tal speed: Among others, attention seems to be responsible for
much of the speed–IQ relationship (e.g., Conway, Kane, &
Engle, 1999), and it is also most pronounced on psychometric
tests of perceptual speed (e.g., Mackintosh & Bennett, 2002). It
is not the aim of this article to do justice on the mental speed
hypothesis of g, so we stop here by saying that this line of expla-
nation has not been sufficient, and we kindly refer the inter-
ested reader to Chapter 3 of Mackintosh’s (2011b) textbook for
an extansive elaboration on why not

Not a within-individual general cognitive ability, and proba-
bly much more than mental speed, the general factor of intelli-
gence remains an unsolved puzzle, and so does the positive
manifold. Although several candidates have been offered, there
is still no consensual explanation of why there are substantial
correlations between cognitive tests that appear to measure
very different things.

From a cognitive perspective, the puzzle itself can be sum-
marized as follows: Why does the variation between people in
test performance appear massively domain-general if the abili-
ties they employ to solve such tests are largely domain-specific?
To answer this question, we provide a cognitive account of
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item response processes and a corresponding structural
model, which are compatible with current research in cogni-
tive psychology and neuroscience as well as with a century
of research on the structure of individual differences in
intelligence.

Understanding g: Characteristic Features

The positive manifold and, consequently, the general factor
of intelligence have a number of important characteristics,
which process overlap theory attempts to explain. We list four
such features of g:

Feature 1: g and Gf Are Very Strongly Correlated

The first feature to consider is g’s relationship with various
group factors, or specific abilities. To fully understand this fea-
ture, a brief review of the fluid/crystallized (Gf/Gc) model of
intelligence (Cattell, 1971; Horn, 1994) is warranted.3 The
main idea of the model is the distinction between the ability to
solve problems in novel situations, regardless of previously
acquired knowledge (fluid intelligence or Gf), and the ability to
solve problems using already acquired skills or knowledge
(crystallized intelligence or Gc). The model includes other
group factors as well, the most important of which are Gv
(visual-spatial), Gs (speed), and Gr (retrieval from memory). A
more recent development is the Cattell–Horn–Carroll (CHC)
model (McGrew, 2009), which merges the fluid/crystallized
model with Carroll’s three-stratum hierarchical model with one
crucial difference: the original conception of Gf/Gc did not
allow a general factor, whereas CHC does.

A particular appeal of the Gf/Gc model is that the group
factors are relatively easy to interpret as within-individual
abilities, which can account for correlations at lower levels of
the hierarchy, that is, in primary abilities or the mental test
scores themselves. Gf is interpreted as fluid reasoning, a
thoroughly studied cognitive ability, the neural correlates of
which are also identified. Gc, on the other hand, mostly
translates to acquired knowledge and/or the amount of for-
mal schooling one has been exposed to (Kan, Kievit, Dolan,
& van der Maas, 2011).

Demonstrated first by Gustafsson (1984), and by numer-
ous studies since, the higher order general factor, g, is statis-
tically identical to the lower order fluid reasoning factor, Gf,
that is, g and Gf correlate perfectly. Matzke, Dolan, and
Molenaar (2010) reviewed 14 such studies, and even though
they emphasized that most of them were underpowered and
thus could not have refuted the g-Gf identity, the single
study with necessary power, as well as two only slightly
underpowered studies, equivocally found that the general

factor is identical to the fluid reasoning factor. Moreover, in
the remainder of the studies, the correlations between g and
Gf were between r D .93 and r D .99 and the fluid reasoning
factor had the strongest correlation with g, much higher
than any other group factor in the CHC model. As well, a
perfect correlation between Gf and the lower order factor
“inductive reasoning,” measured typically by matrix reason-
ing items and number series was found (Kan et al., 2011),
which means that the correlation between g and inductive
reasoning is perfect or almost perfect as well.

Feature 2: Factor Differentiation

A second important feature of the positive manifold is fac-
tor differentiation. Originally discovered by Spearman
(1927) who called it the “Law of Diminishing Returns,” fac-
tor differentiation means that g explains more variance at
lower levels of mental ability than at higher levels of ability
(e.g., Detterman & Daniel, 1989; Kane, Oakland, & Brand,
2006; Molenaar, Dolan, Wicherts, & van der Maas, 2010).
Because g reflects the strength of the positive manifold, this
result means that there are higher cross-domain correlations
in samples with lower average ability.

The same phenomenon exists across populations as well; it
was recently found that the higher a nation scores on interna-
tional standardized tests, the less the general factor explains the
variance of test scores in that nation (Coyle & Rindermann,
2013). The Flynn-effect is also related to the phenomenon of
factor differentiation; the secular gains in IQ are accompanied
by a decrease in the average correlation between scores on dif-
ferent intelligence tests and thus a decrease in the variance
explained by g (Juan-Espinosa, Cuevas, Escorial, & Garc�ıa,
2006; Kane, 2000; Kane & Oakland, 2000; Lynn & Cooper,
1993, 1994; Must, Must, & Raudik, 2003). Even though it has
been claimed that the g of intelligence is similar to the g (the
gravitational constant) in physics (Miele, 2002), factor differen-
tiation, both according to ability within a single cohort and
between different cohorts with different levels of ability, dem-
onstrates that g is far from being a constant. Instead, the
average correlation between diverse tests and thus the domain-
generality of the positive manifold varies across time and ability
level, and g is only informative of the extent of domain-general
variance in a given population at a given time.

Feature 3: Complex Tests Correlate Strongly With g

A third important feature is that more complex tests load
higher on g than less complex tests (Jensen, 1981). This implies
that g is related to the complexity of cognitive activity. An
example is backward digit span, a test in which examinees have
to recall digits in reversed order, which has a higher g loading
than forward digit span, in which digits are recalled in the origi-
nal order of presentation (Jensen, 1981, 1998).

However, “complexity” is not an explanatory construct that
can help our understanding of g, nor is it consensual, as there is
no necessary agreement between experts about how complex a
test is and how complexity differs from difficulty (Mackintosh,
1998). Moreover, there are certainly different “complexities.”
For example, in a simple continuous performance test, reaction

3We are aware that there are several important models of intelligence other than
the Gf/Gc model (e.g., Johnson & Bouchard, 2005). Yet in practically the entirety
of research on working memory and intelligence, as well as on goal neglect and
intelligence, Gf-Gc is the model that was applied, and this line of research lays
the foundations of our theory. Hence our focus on Gf/Gc is motivated by its prolif-
eration of recent cognitive research on intelligence through providing the com-
prehensive framework of “fluid reasoning,” which is readily interpretable by
cognitive psychologists. See, for instance, Blair (2006); Heitz et al. (2006); and
Kovacs, Plaisted, and Mackintosh (2006).
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time shows a moderate correlation with intelligence but making
the continuous performance test more “complex” can enhance
the magnitude of the correlation. Three different ways to
achieve this enhancement are (a) using the odd-man-out para-
digm, in which participants have to select a light that is farther
apart from two other lights; (b) showing words instead of lights,
and the word that is synonymous to a target word has to be
selected; (c) having participants perform a dual task, that is,
having them perform a simple reaction time test while informa-
tion from another test has to be remembered. Although these
versions are clearly more complex than the original, they prob-
ably invoke rather different cognitive processes.

To explain why “complexity” is related to g, we need to bet-
ter understand the nature of the cognitive processes involved in
more “complex” tests. That is, the nature of “complexity” (or
complexities) has to be conceptualized, which we attempt in
“Process Overlap Theory.”

Feature 4: The Worst Performance Rule

The final g-related phenomenon we consider here is the “worst
performance rule,” a phrase coined by Larson and Alderton
(1990) to describe the finding that worst performance predicts
g-loaded measures better than best performance. Larson and
Alderton found that the correlation between g and the slowest
reaction times was almost twice as large as the correlation
between g and the fastest reaction times in a reaction time task.
Also, the same effect was found between reaction time and
working memory, and the effect was also of the same magni-
tude. In practice, the worst performance rule means that the
difference between the fastest reaction times between high- and
low-ability groups is much smaller than the difference between
the slowest reaction times. This is consistent with the finding
that the correlation between the variability of reaction time and
g is as high as the correlation between mean reaction time and
g; moreover, the mean and variability of reaction time explain
independent parts of the g variance (Jensen, 1992).

Larson and Alderton argued that the worst performance rule
is the result of lapses in attention or working memory in people
with low cognitive ability. The phenomenon that the difference
between high- and low-ability groups is largest in the slowest
reaction times and smallest in the fastest reaction times has
been found in a number of other studies, some of which used
different reaction time tests (e.g., choice vs. simple reaction
time). The results demonstrated that the more complex a reac-
tion time test, the stronger the worst performance rule, that is,
the larger the slowest reaction times’ correlation with intelli-
gence—whereas the correlations between the fastest reaction
times and intelligence remained relatively constant (Jensen,
1982; Kranzler, 1992).

Coyle (2001) studied the worst performance rule in a word
recall test and found the same effect; the correlation between
intelligence and worst performance was significantly larger than
it was with best performance. This suggests that this phenome-
non is not restricted to reaction time measures. Of importance,
Coyle (2003a) repeated a study with an additional group from
the top 1 percentile of the intelligence distribution and found no
evidence of the worst performance rule in this high-ability
group. Also, Coyle (2003b) reviewed studies of the worst

performance rule and concluded that it is the function of the
tests’ g loading: The difference between the correlations with
best and worst performance is larger on tests that are more g
loaded.

Overall, these g-related phenomena point to four
conclusions:

1. A theory of intelligence must account for the central role
of fluid abilities in g.

2. Because the strength of g, and thus of the positive mani-
fold, is population dependent, a new theory must
account for why it is stronger in some populations and
weaker in others. In particular, it must account for the
increasing explanatory power of the general factor at
lower levels of ability.

3. Complex tests reveal strong correlations with g. A new
theory should, therefore, provide a framework that
explains test complexity without falling prey to circular
logic.

4. Indices of the worst performance on complex tests reveal
strong correlations with g. A new theory should, there-
fore, focus on the limitations of cognitive processes that
result in errors in complex cognitive activity.

Working Memory

Working memory is a construct developed by cognitive psy-
chologists to refer to the processes that enable one to hold goal-
relevant information in mind, even in the face of concurrent
processing and/or distraction. The construct was introduced in
a seminal chapter by Baddeley and Hitch (1974). Prior to their
work, the dominant theoretical construct used to explain
“immediate” memory performance was the short-term store
(STS), epitomized by the so-called modal model of memory
popular in the late 1960s (Atkinson & Shiffrin, 1968). Accord-
ing to these models, the STS plays a central role in cognitive
behavior, essentially serving as a gateway to further information
processing.

However, the concept of STS could not account for a num-
ber of within-individual phenomena, demonstrated by experi-
mental and neuropsychological studies. Baddeley and Hitch
therefore proposed the construct “working memory” that could
maintain information in a readily accessible state, consistent
with the STS, but could also engage in concurrent processing,
as well as maintain access to more information than the limited
capacity STS could purportedly maintain. According to this
perspective, a small amount of information can be maintained
via two domain-specific “slave” storage systems, verbal and spa-
tial, but more information can be processed and accessed via a
domain-general central executive (and according to later mod-
els, an episodic buffer; see Baddeley, 2000).

Even though the model of working memory was developed
to account for intra-individual phenomena, interest soon arose
in measuring individual differences in the capacity of this sys-
tem and, as it happens, such research has greatly furthered our
understanding of the limitations of human cognition. It is
important to clarify the distinction between working memory
and the capacity of working memory. Working memory refers
to a complex cognitive system including mechanisms involved
in stimulus representation, maintenance, manipulation, and
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retrieval, whereas the capacity of working memory refers to the
maximum amount of information an individual can maintain
in their working memory.

One of the first tests of the capacity of working memory was
the reading span test (Daneman & Carpenter, 1980). The test
requires subjects to read sentences aloud and remember the
last word of each sentence for later recall, thus heavily taxing
both the storage and the central executive component of work-
ing memory, contrary to memory tasks requiring only storage
and retrieval. The number of sentences/words per list varies,
typically from two to six or seven.

Another early example is the counting span test (Case,
Kurland, & Goldberg, 1982), in which subjects are presented
with an array of items, such as blue and red circles and squares,
and instructed to count a particular class of items, such as blue
squares. After counting aloud, subjects are required to remem-
ber the total and are then presented with another array. They
again count the number of blue squares aloud and remember
the total. After a series of arrays, they are required to recall all
the totals in correct serial order. Thus, the storage and recall
demands are the same as a simple digit span test, but there is
the additional requirement of counting the arrays, which
demands controlled attention and therefore disrupts active
maintenance of the digits.

A large number of such “complex span tests” have now been
developed to measure the capacity of working memory (for a
review, see Conway et al., 2005). The crucial point here is that
the construction of complex span tests is a theory-driven enter-
prise. Such tests require subjects to engage in some sort of sim-
ple processing task between the presentations of to-be-
remembered items. After several items have been presented,
the subject is prompted to recall all the to-be-remembered
items in correct serial order. Such tests are thought to be valid
measures of working memory as proposed by Baddeley and
Hitch because they require access to information in the face of
concurrent processing.

Simple memory span tests (e.g., digit span, word span, letter
span), in contrast to complex memory span tests, do not
include an interleaved processing task between the presentation
of to-be-remembered items. For example, in digit span, one
digit is presented at a time, and after a series of digits the sub-
ject is asked to recall the digits in correct serial order.

One of the most important findings from studies investigat-
ing complex and simple span tests is that, from an individual
differences perspective, complex span is less domain specific
than simple span (Turner & Engle, 1989). Kane et al. (2004)
administered several verbal and several spatial complex span
tests, and the range of correlations across domains was as high
as the within-domain correlations among simple span tests,
and about two thirds of the covariance among complex span
tests was across domains. These results suggest that, although
simple span tests appear to be more domain specific, the pro-
cesses that complex span tests tap beyond the pure storage and
retrieval of information appear to be largely domain general.
Hence. general factor models fit better for working memory
tasks than for simple span tasks (see the next section).

Individual difference studies of working memory reveal the
same type of positive manifold common in the intelligence lit-
erature; as with batteries of intelligence tests, patterns of

convergence and divergence are typically observed amidst the
positive manifold. For example, complex span tests with verbal
content tend to be more strongly correlated with other verbal
tests than with tests with spatial content. Yet the positive mani-
fold is still observed. Because the positive manifold in itself is
always sufficient to extract a general factor (see “g: A Well-
Aged Puzzle”), it comes as no surprise that a general factor of
working memory could be extracted, which is generally referred
to as “working memory capacity” (WMC; Conway, Cowan,
Bunting, Therriault, & Minkoff, 2002; Conway, Kane, & Engle,
2003; Engle, Tuholski, Laughlin, & Conway, 1999).

In the working memory literature, there is considerable
debate about the domain-generality of variation in WMC or, in
other words, whether there is a unitary source of variation or
multiple sources. The debate bears a striking resemblance to
the debate between Spearman and Thurstone. On one side is
the more general/unitary view, which assumes that variation is
largely caused by domain-general factors, and on the other side
is the specificity view, which assumes that variation is largely
caused by more specific factors. In the end, the two sides
acknowledge the existence of both domain-general and
domain-specific sources of variation but they argue about their
relative importance.

There are, however, crucial differences between the possible
interpretation of the general factor of WMC and the general
factor of intelligence. First, as opposed to tests of intelligence,
positive correlations between complex span tests have never
been a prerequisite of “validity,” hence the positive manifold
cannot be attributed to test design.4 Second, working memory
researchers cannot interpret this general factor as a unitary,
within-individual, domain-general working memory process
and/or mechanism that is employed in every working memory
task, similarly to how g is often identified with general cognitive
ability. Such an interpretation would contradict the very find-
ings that complex span tests were built upon and that define
the within-individual construct of working memory as a com-
plex system of domain-general and domain-specific processes.
The right question to ask, then, is, Which component(s) of
working memory cause(s) the general variation?

The answer probably is that WMC reflects individual differ-
ences in the executive component of working memory, particu-
larly executive attention and cognitive control (Engle & Kane,
2004; Engle et al., 1999; Kane, Bleckley, Conway, & Engle,
2001; Kane & Engle, 2002). Cognitive control is a construct,
synonymous to executive function, used mostly in cognitive
neuroscience to refer to the processes, and their neural sub-
strates, that enables top-down, goal-oriented behavior and that
describes different functions such as

sustained activity that is robust to interference; multimodal conver-
gence and integration of behaviorally relevant information; feed-
back pathways that can exert biasing influences on other structures
throughout the brain; and ongoing plasticity that is adaptive to the
demands of new tasks. (Miller & Cohen, 2001, p. 182)

This is a natural candidate to explain the cross-domain cor-
relations among complex span tests, as opposed to the within-

4This is a typical (albeit incorrect; see Mackintosh, 2011b) line of criticism against
the importance of the positive manifold.
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domain correlations among simple span tests, because the the-
ory of working memory is in fact an overlap-theory: The pro-
cesses that bridge verbal and spatial tests are the ones that
constitute the executive component.

According to this view, the reason for the domain-generality
of WMC, as measured by complex span tests, is that complex
span tests “reflect primarily general executive processes and
secondarily, domain-specific rehearsal and storage processes,”
whereas simple span tests “reflect domain-specific storage and
rehearsal skills and strategies primarily and executive attention
processes only secondarily” (Kane, Conway, Hambrick et al.,
2007, p. 24). WMC, then, reflects “the ability to engage con-
trolled attention. That is, they reflect the ability to maintain
activation to a representation in the face of interference or dis-
traction. Therefore, working memory capacity is not ‘capacity’
per se, but rather the ability to control activation” (Conway
et al., 1999). That is, individuals with greater WMC have better
cognitive control processes, such as goal maintenance, selective
attention, and interference resolution (inhibition).

There is a great deal of support for this theory. For example,
individuals who perform better on complex span tests also per-
form better on tests of cognitive control, requiring goal mainte-
nance and the inhibition of irrelevant stimuli (Conway, Cowan,
& Bunting, 2001; Conway, Tuholski, Shisler, & Engle, 1999;
Kane et al., 2001; Kane & Engle, 2003), and are better at resolv-
ing proactive interference from previous trials (Bunting, 2006;
Kane & Engle, 2000; Unsworth & Engle, 2007). Similarly, indi-
viduals who perform better on complex span tests are also
more accurate on lure trials in the n-back test (Burgess, Gray,
Conway, & Braver, 2011; Gray, Chabris, & Braver, 2003; Kane,
Conway, Miura, & Colflesh, 2007).

Research on WMC thus demonstrates that it is domain-gen-
eral processes of cognitive control that are responsible for
across-domain correlations in complex span tests. These pro-
cesses can be operationally defined as what complex span tests
measure beyond the storage and retrieval of information, or
more precisely, for instance, in the case of the reading span
test, the processes that we do not engage when we remember a
simple list of words but we do engage when we remember a list
of words presented as the last word of sentences we read aloud.

So the available evidence points to the role of the central
executive component in the positive manifold of WMC. But
how should one conceptualize this component? In the original
working memory construct,

the central executive was initially conceived in the vaguest possible
terms as a limited capacity pool of general processing resources.…
Implicitly, the central executive functioned as a homunculus, a little
man who took the important decisions as to how the two slave sys-
tems should be used. (Baddeley, 2002, p. 89)

Thus, further research was required to investigate whether
the executive component of working memory is “a single coor-
dinated system that serves multiple functions, a true executive,
or a cluster of largely autonomous control processes—an execu-
tive committee” (Baddeley, 1996, p. 26).

Further research indeed found that this “homunculus” can
be fractionated to subcomponents and should not be conceptu-
alized as a single, unitary executive. Many different tests pur-
port to measure executive functioning directly, including

random number generation, Stroop, Tower of Hanoi/London,
Stop-signal, Wisconsin Card Sorting Test, and several others.
The n-back test, and especially lure trial performance, is also
thought to tap executive processes involved in updating and to
reflect interference resolution. Research on these tests also indi-
cates a multiplicity of executive processes rather than a unitary
central executive. For instance, relatively low correlations have
been found between (a) n-back lure trial performance and com-
plex span (Kane, Conway, Miura et al., 2007); (b) complex
span, Tower of Hanoi, and Wisconsin Card Sorting (Lehto,
1996); and (c) Tower of Hanoi and random number generation
(Miyake, Friedman, Rettinger, Shah, & Hegarty, 2001). Neuro-
maging and neuropsychological studies also support the frac-
tionation of executive processes (Dreher & Berman, 2002;
Kievit et al., 2014; Parkin, 1998; Robbins, 1996).

A latent variable study of executive functions (Miyake et al.,
2000) identified three correlated processes: “(a) shifting
between tests or mental sets, (b) updating and monitoring of
working memory representations, and (c) inhibition of domi-
nant or pre-potent responses” (p. 54). However, even though
the result of some studies are in agreement with the three-com-
ponent model of executive functions (e.g., Lehto, Juuj€arvi,
Kooistra, & Pulkkinen, 2003), others are inconsistent with it
(e.g., McCabe, Roediger, McDaniel, Balota, & Hambrick, 2010;
Salthouse, Atkinson, & Berish, 2003; St Clair-Thompson &
Gathercole, 2006).

Overall, the emerging view is that there are multiple execu-
tive processes involved in the performance of working memory
tests and there are multiple and independent sources of vari-
ance contributing to variation in test performance. The general
factor of WMC does not appear to be linked to a single psycho-
logical process. Instead, it reflects multiple domain-general,
executive processes that are tapped in an overlapping fashion
across a battery of working memory tests.

Working Memory Capacity and Fluid Reasoning (GF)

Because a positive manifold is observed among measures of
WMC, as well as measures of intelligence, it is reasonable to
ask how these general factors are related. The reading span test,
one of the initial complex span tests, was in fact designed to
study the extent to which individual differences in WMC pre-
dict reading comprehension and reasoning, and results demon-
strated that reading span correlated more strongly with the
verbal SAT than did a simple word span test (Daneman &
Carpenter, 1980).

Subsequent work showed that other complex span tasks that
do not involve reading, or even verbal memoranda, also corre-
late more strongly with verbal SAT and other reasoning tests
than do simple memory span tests such as word span, digit
span, and letter span, suggesting that the relationship between
complex span performance and intelligence is largely domain-
general (Kane et al., 2004; Turner & Engle, 1989). Thus, even
though within-domain correlations between working memory
tests and cognitive tests are generally stronger than cross-
domain correlations, complex span tests have shown strong
correlations with measures of reasoning in a domain-general
fashion: verbal complex span tests predict spatial reasoning
tests and vice versa.
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A large number of cognitive tests have been correlated with
diverse complex and simple span tests, and as expected, com-
plex span tests have been shown to be more strongly correlated
with measures of complex cognition, including intelligence
tests, than simple span tests. Most of this research has focused
on tests of fluid reasoning, such as Raven’s Progressive Matrices
or Cattell’s Culture Fair tests. This should come as no surprise,
because working memory is most important in situations that
do not allow for the use of prior knowledge and less important
in situations in which previously learned skills and strategies
guide behavior (Ackerman, 1988; Engle et al., 1999). This
largely echoes Cattell’s original definition of fluid intelligence:
“an expression of the level of complexity of relationships which
an individual can perceive and act upon when he does not have
recourse to answers to such complex issues already stored in
memory” (Cattell, 1971, p. 115).

Two meta-analyses, conducted by different groups of
researchers, estimate the correlation between WMC and the
fluid intelligence factor (Gf) to be somewhere between r D .72
(Kane, Hambrick, & Conway, 2005) and r D .85 (Oberauer,
Schulze, Wilhelm, & S€uss, 2005). Moreover, a study suggests
that it might be even higher for when imposing certain time
contraints on the tests (Chuderski, 2015). This is substantially
higher than the correlation between the general factor (g) and
WMC (r D .48) found in another meta-analysis (Ackerman,
Beier, & Boyle, 2005). Thus, according to these analyses, WMC
accounts for at least half the variance in Gf but only about one
fourth of the variance in g.

Therefore, despite being statistically (near)-identical when
appearing in a latent variable model of cognitive tests, g and
Gf are different constructs. Besides prefrontal damage
(see “Overlapping Networks in the Brain”) and the Flynn-
effect, their different correlation with WMC is a further
means toward dissociating g and Gf (see “Process Overlap
Theory” and “Conclusion” for more elaborate discussions of
this issue).

As well, complex span tests are a stronger predictor of Gf
than simple span tests (Conway et al., 2002; Engle et al., 1999;
Kane et al., 2004) and, of importance, what WMC involves

beyond simple storage correlates to a smaller extent with tests
of crystallized intelligence (Gc) or perceptual speed (Gs).
Although Ackerman et al.’s meta-analysis of working memory
and intelligence independently explored short-term memory’s
and working memory’s correlation with various types of cogni-
tive tests, it did not originally compare these results for each
individual cognitive domain. Based on their results, Figure 6
shows in decreasing order the difference in correlations with
working memory and short-term memory in different types of
ability tests (from Conway & Kovacs, 2013).

It is clear that on one side, with the largest difference, is
the Raven’s Progressive Matrices (Gf), whereas on the other
side, with negligible differences, are tests of general knowl-
edge, as well as tests with verbal content (Gc) and the ones
that measure perceptual speed (Gs). In the middle, with sig-
nificant, but less substantial differences than in the case of
Gf, are spatial tests (Gv) and ones that purport to measure
“general ability” or g. Therefore, this result shows that the
processes complex span tests tap beyond simple storage and
retrieval are strongly associated with Gf, but to a much
smaller extent with Gc and Gs.

There is also evidence showing that the relation between
Gf and WMC is driven by executive processes. A study by
Bunting (2006) demonstrated a correlation between Gf and
complex span and, more important, found that the correla-
tion is a function of the degree of proactive interference in
the span test; the more proactive interference in the test, the
stronger the correlation with Gf. Also, a detailed analysis of
item performance on the Raven’s Progressive Matrices (Car-
penter, Just, & Shell, 1990), a trademark test of Gf, con-
cluded that an important aspect of the test was the discovery
and maintenance of rules that govern the variation among
entries in a problem. More difficult matrix problems (as evi-
denced by more errors) typically involve more rules. Thus,
to solve difficult matrix problems, one must discover a rule
and then maintain that rule while searching to discover a
second rule, and so on. Therefore, the ability to maintain
goal-relevant information (i.e., rules) in the face of concur-
rent processing (i.e., searching for new rules) and distraction

Figure 6. The difference between the correlation with working memory and short term memory for different types of mental tests (based on Kovacs, 2009, p. 94).
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(i.e., filtering of irrelevant features) is essential for successful
performance.

Another study, using the same rules Carpenter et al. identi-
fied, revealed that it is the application of new rules and switch-
ing from old ones that drives the correlation between complex
span and Gf (Wiley & Jarosz, 2011). Finally, it has been demon-
strated that as soon as performance on elementary cognitive
tests becomes automatic and therefore does not require con-
trolled attention, the correlation between such tests and Gf
decreases (Ackerman, 1988; Rabbitt, 1997).

Although a large number of studies have relied on complex
span tests to demonstrate the link between working memory
and Gf, there are other tests that purport to measure individual
differences in WMC but are based on slightly different opera-
tionalizations of the construct. One such method is the visual
array comparison test (Luck & Vogel, 1997), in which an array
of objects (e.g., colored squares) is briefly presented, followed
by a delay interval, then followed by another array of objects
that may be the same or different as the previous array. An
example of a “different” array would be one in which the color
of one square changed from the first array to the second. The
examinee must determine whether the second array is the same
or different from the first. Performance is nearly perfect when
there are fewer than three items in the array but then declines
as more items are added, reflecting the capacity of working
memory. Such array comparison tests have been shown to cor-
relate quite strongly with tests of fluid intelligence (Chow &
Conway, 2015; Cowan et al., 2005; Fukuda, Vogel, Mayr, &
Awh, 2010; Shipstead, Redick, Hicks, & Engle, 2012).

Another kind of working memory test requires coordination
and transformation; subjects are presented with infor–
mation and required to manipulate and/or transform that
information to arrive at a correct response. An example is let-
ter-number sequencing, a test originally developed for neuro-
psychological research, which also appears in the most recent
versions of the Wechsler Intelligence Scales (Gold, Carpenter,
Randolph, Goldberg, & Weinberger, 1997). In this task a series
of alternating digits and letters are presented (e.g., K 6 D 3),
and the subject is required to recall first the letters in alphabeti-
cal order and then the digits in ascending order.

Another widely used coordination and transformation test is
alphabet recoding, which requires the subject to perform addi-
tion and subtraction using the alphabet, for example, (C ¡ 2) D
A. The subject is presented with a problem and required to gen-
erate the answer. Difficulty is manipulated by varying the num-
ber of letters presented, as (CD ¡ 2) D AB. Very strong
correlations have been found between reasoning ability and a
variety of working memory tests that can all be considered in
this “coordination and transformation” class (Kyllonen & Chris-
tal, 1990; Oberauer, 2004; Oberauer, S€uß, Wilhelm, & Wittman,
2003; S€uß, Oberauer, Wittmann, Wilhelm, & Schulze, 2002).

An n-back test constitutes yet another kind of working
memory test. In an n-back test, the subject is presented with a
series of stimuli, one at a time, and must determine if the cur-
rent stimulus matches the one presented n-back. The stimuli
may be verbal, such as letters or words, or visual objects, or spa-
tial locations. Gray et al. (2003) showed that a verbal n-back
test was a strong predictor of performance on the Raven’s
Advanced Progressive Matrices.

Modified versions of simple span tests that transcend simple
storage also tap domain-general WM processes and correlate as
well with measures of Gf as complex span tests. For instance,
simple span tests with long lists correlate as strongly with meas-
ures of Gf as complex span tests (Unsworth & Engle, 2006,
2007). Correlations between simple span and Gf also increase if
the presentation of stimuli is swift. In a running memory span
test (Pollack, Johnson, & Knaff, 1959), subjects are rapidly pre-
sented with a very long list of to-be-remembered items, the
length of which is unpredictable. At the end of the list, the sub-
ject is prompted to recall as many of the last few items as
possible.

Cowan et al. (2005) found that running span correlates well
with various measures of cognitive ability in children and
adults (see also Mukunda & Hall, 1992). Cowan et al. argued
that the rapid presentation in the running span task (e.g., four
items per second as compared to one item per second in digit
span) prevents verbal rehearsal and that any working memory
test that prevents well-learned maintenance strategies, such as
rehearsal and chunking, will serve as a good predictor of Gf. It
is important to note that Cowan does not restrict this interpre-
tation to the running span task: He argued that the critical fea-
ture of working memory tasks such as complex span as
opposed to short term memory tasks such as digit span is that
the former prevent rehearsal, hence they provide a more direct
measure of the scope of attention.

In sum, results with working memory tests other than com-
plex span indeed suggest that it is not the dual-task nature of
complex span tests (i.e., processing and storage) per se that is
necessary for a working memory test to be predictive of Gf;
instead, it is the involvement of executive processes, achievable
in different ways—including but not restricted to dual task-
ing—that is common to these tasks, and what drives their rela-
tion with fluid intelligence.

However, even though all these tests—array comparison,
coordination and transformation, n-back, simple span with
long lists, and running span—are able to predict Gf, multiple
regression analyses indicate that the variance explained by these
tests is not entirely the same as the variance explained by com-
plex span tests (Conway, Macnamara, Getz, & Engel de Abreu,
2011; Kane, Conway, Miura et al., 2007). Hence they probably
tap overlapping but different executive processes, each of which
is differently related to Gf.

Overall, according to the available evidence, the strong corre-
lation between Gf and working memory is driven by the opera-
tion of multiple domain-general cognitive processes that are
required for the performance on tests designed to measure the
capacity of working memory and for the performance on test
batteries designed to assess fluid intelligence.

Goal Neglect

Further evidence for the association between Gf, WMC, and
executive processes comes from studies on goal neglect (Dun-
can, Emslie, Williams, Johnson, & Freer, 1996; Duncan et al.,
2008). In a standard goal-neglect experiment, subjects are pre-
sented with two streams of stimuli on a computer screen and
are instructed to monitor the appearance of targets in one
stream but not in the other. For instance, they might watch two
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streams of digits and letters, and they have to read aloud the let-
ters but ignore the digits in one stream and completely ignore
the other stream. The task starts with an instruction “watch
left” or “watch right,” indicating which stream the subjects
must watch. Near the end of each trial, subjects see another
cue, a C or a – sign, meaning that for the remainder of the task
the subject has to watch the right or left stream, respectively.
That is, if they are already watching the right stream, a C sign
indicates they have to keep watching to the right, whereas a –

sign indicates they have to change to the left.
Some subjects regularly fail to follow the goal instructions.

Duncan and colleagues (Duncan, 1995; Duncan et al., 1996)
termed these errors goal-neglect. They found that the correla-
tion between the subjects’ ability to effectively switch attention
according to the cue strongly correlated with Gf as measured
by the Cattell’s Culture Fair. Moreover, the relationship was
not linear: “Neglect is hardly ever seen among people whose
Culture Fair scores are above the population mean but is almost
universal at more than one standard deviation below the mean”
(Duncan, 1995, p. 725). That is, neglect is almost universal
below a fluid IQ of 85 but practically nonexistent above 100.

Also, Duncan concluded that people in the lowest seg-
ment of the IQ distribution show symptoms of perseveration
similar to those of frontal patients. People with fluid IQ
scores under 1 standard deviation below the mean could
recall the task requirements after the instruction phase, and
just like frontal lobe patients, they were able to correctly
recall the instruction at the end of the experiment; they sim-
ply failed to maintain the goal throughout the course of the
test. Neglect was also sensitive to external prompts, such that
when subjects were given trial-by-trial error feedback so that
their attention was drawn to the neglected task requirement,
those who previously demonstrated goal neglect were able to
perform at a normal level. These results demonstrate that
goal neglect is due not to people with lower IQ being unable
to understand instructions but to their inability to follow
them during the task.

Subsequent experiments (Duncan et al., 2008) revealed a few
important characteristics of goal neglect. One of these is that
goal neglect is unaffected if, instead of C and – signs, more spa-
tially orienting cues, such as arrows pointing to the left or right,
are used. Moreover, neglect is determined neither by the atten-
tional demand during task execution nor by readiness to multi-
ple task components. Various experimental modifications of
the original goal neglect task, such as increasing the processing
demand of the task by increasing the number of letters or num-
bers to be monitored, or having different instructions simulta-
neously prepared for different components of the task, had no
influence on the extent of goal neglect.

However, a manipulation of the complexity of task instruc-
tion, without a corresponding change in the actual real-time
demands of the task to be executed, has a strong effect on goal
neglect (Duncan et al., 2008). That is, goal neglect reflects a
limit in WMC that manifests itself in maintaining representa-
tions of task-relevant rules and requirements rather than limits
in the actual attentional processing required for the task. This
conclusion is further supported by a study (Duncan, Schramm,
Thompson, & Dumontheil, 2012) examining a “rule working
memory” task. In this new task, participants had to remember

a list of complex rules and apply them to stimuli. Duncan et al.
(2012) found that performance on this task correlated more
strongly with Gf than operation span.

Overall, studies on goal neglect and rule maintenance dem-
onstrate that as task requirements become more complex, and
more facts, rules, and instructions have to be stored in working
memory while actually performing the task, the more often
lapses in goal-related control processes will occur in people
with low fluid intelligence.

Process Overlap Theory

We offer a new explanation of the positive manifold, which we
refer to as process overlap theory. The briefest possible sum-
mary of its central assumption is that any test item or cognitive
task requires a number of domain-specific as well as domain-
general cognitive processes. The domain-general processes that
are central to performance on cognitive tests are primarily the
ones that are identified as executive processes in cognitive psy-
chology in general and the working memory literature in par-
ticular. Such processes are recruited by a large number of test
items, alongside domain-specific processes, which are tapped
by items appearing in specific types of tests only. In turn,
domain-general executive processes overlap with domain-spe-
cific processes more than the domain-specific processes overlap
with one another. Such a pattern of overlap of executive and
specific processes explains the positive manifold as well as the
hierarchical structure of cognitive abilities. In this section we
elaborate on this idea as well as its implications.

Process overlap theory is clearly not the first account of the
positive manifold that proposes an overlap of psychological
processes. In particular, it is in many ways similar to Thom-
son’s sampling theory. However, it is also different in crucial
aspects, as becomes apparent from this section and further
highlighted in “Comparison with Other Theories.” Process
overlap theory is also not the first cognitive approach to human
intelligence. Yet it is the first cognitive theory that also provides
a latent variable model and an item response model (discussed
next), as well as an account of the neural mechanisms underly-
ing the proposed overlap of psychological processes (see “Over-
lapping Networks in the Brain”).

Crucially for the theory, the general factor of intelligence
seems not to reflect a single, unitary process but instead
emerges from a limited number of independent sources. Det-
terman (1994) demonstrated mathematically, by calculating
limits of correlations in different scenarios, that g is the result
of a limited number of independent processes, rather than of a
single, unitary process or an almost infinitely large number of
processes. As well, a large number of studies looked at the cor-
relation between so-called elementary cognitive tasks and intel-
ligence. Summarizing the result of such studies, Detterman
(2000) concluded that these elementary tasks do not correlate
with one another, yet each task independently correlates with g,
and it is only together that they explain a substantial part of the
g variance. Similar conclusions were reached by Kranzler and
Jensen (1991, 1993).

In fact, in the intelligence literature the expression “0.30 bar-
rier” refers to the fact that although virtually any cognitive task
correlates with IQ (in this case, as a proxy for g), the correlation
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is always smaller than 0.30 (see Mackintosh, 2011a). Of impor-
tance, this barrier is exceeded by tasks measuring WMC with
correlations as high as 0.80. However, WMC arguably reflects
executive processes and is therefore hardly elementary. More-
over, as we have seen, WMC itself is the result of a number of
independent processes. In fact, according to process overlap
theory, WMC correlates with fluid intelligence exactly because
it is a multicomponent construct with overlapping processes.
Results with tasks that are indeed elementary, and supposedly
tap a small number of cognitive processes, show that g reflects
a number of independent sources.

Process overlap theory can be translated to a structural
model, similar to the ones depicted in Figures 1 to 5. However,
it is different from all those models in a crucial aspect; it chal-
lenges the idea that the across-domain correlations between
diverse mental tests are caused by an underlying factor. Instead,
it proposes that the positive manifold is an emergent property
and, consequently, it translates to a formative model with
regard to the general factor.

The difference between reflective and formative models is
illustrated in Figure 7. The model on the left is a reflective
model, in which the measurements reflect the latent variable.
Such a model requires a stance of entity realism with respect to
the latent variable, in this case the general factor. For reflective
measurement to make sense, one must assume that there is
something out there, represented by the construct, and the
measures are (imperfect) indicators of this something (Bors-
boom et al., 2003). In the case of g, it is proposed that g causes
the measures as well as the covariance of the measures. Accord-
ing to the theory of general intelligence, g causes the measures
because a person’s score on the measure, that is, the IQ-test, is
determined by his score on the latent variable, that is, g. Conse-
quently, variance in the latent variable determines variance in
the manifest variable; hence, the manifest variables’ covariance
is caused by the latent variable.

In formative models the chain of causation is the opposite.
The latent variable emerges because of the indicators and not
the other way around. In a formative model of g, g is the result,
rather than the cause, of the correlations between group factors.
Similar formative latent variables are socioeconomic status and
general health, which each tap common variance between
measures but do not explain it; according to process overlap
theory, g is no different (see also van der Maas, Kan, & Bors-
boom, 2014).5

However, at the level of specific abilities, process overlap the-
ory translates into a reflective model. That is, tests indeed reflect
specific abilities, which do have ontological reality. Therefore,
for the stratum (or strata) below g, process overlap theory is
compatible with a standard oblique model, depicted in Figure 5.
The only addition is that the specific abilities are not perfectly
independent, in the sense that they tap overlapping psychologi-
cal processes. Consequently, there is no possible categorization
of abilities in which the abilities will not be correlated.

Thus, overall, process overlap theory translates to a hybrid
structural model: part formative, part reflective. As a reflective
causal model it corresponds to the oblique model, but it can
also accommodate g as a formative latent variable—the com-
mon consequence, rather than the common cause, of the corre-
lation between group factors. This is illustrated in Figure 8 on a
simplified model, consisting only of a verbal, a spatial, and a
fluid ability factor, and corresponding verbal, visuospatial, and
executive processes.

Because process overlap is probably not the only source of
the all-positive correlations, this model also accommodates
other sources of the general factor, which can range from white
matter tract integrity to mutualism, and so on. In the model,
this is represented as z, the unique variance of g.

The most important difference, then, from g-oriented
accounts of the positive manifold is that, whereas reflective
general factor theories propose a causal influence of a latent
variable, g, on the positive manifold, according to process
overlap theory the positive manifold is an emergent property,
the result of the specific patterns in which item response
processes overlap. A crucial aspect of the theory is that it
emphasizes the processes responsible for errors in perfor-
mance on cognitive test items. The processes that are
responsible for various aspects of executive attention (goal-
monitoring, updating, inhibition of irrelevant stimuli, etc.),
and that are incorporated in the more global concept of
WMC, reflect limits in domain-general processes that affect
performance on a wide range of items.

Therefore, according to process overlap theory, the processes
sampled by different mental test items are not additive. Each
process has its own limitations, and each process has to be
functioning at an appropriate level to arrive at a correct answer
to a mental test item. Thus, executive processes act as a bottle-
neck, and they mask individual differences in specific abilities.
Even if someone were, in theory, capable of successful perfor-
mance on the domain-specific aspect of a mental test item, he
or she might be unable to arrive at a correct answer because of
failing to meet its executive attention demands.

The aforementioned aspects of process overlap theory are for-
malized in an item response model (Equation 1), which provides
the probability of a person (p) arriving at a correct answer on a
test item (i) that taps component processes (C) from a number
of different domains (D). Item response theory is a paradigm of
psychometrics for the study of the mathematical relationship
between latent traits (abilities, in this case) and test scores. Even
though item response theory is primarily used for the construc-
tion and scoring of psychometric instruments, including mental
ability tests, it also has explanatory applications.

According to process overlap theory, there are distinct
within-individual processes (C) tapped by different test items,

Figure 7. A reflective (left) and a formative (right) model.

5Formative and reflective measurement is drastically different, but this issue can-
not be dealt with in this article. The interested reader is referred to Bagozzi
(2007); Edwards (2011); and Howell, Breivik, and Wilcox (2007).
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and these might belong to different cognitive domains (D).
Therefore, process overlap theory translates into a multidimen-
sional item response theory (MIRT). There are two general
kinds of multidimensional models: compensatory and noncom-
pensatory models (for an introduction to MIRT, see Reckase,
2009). In compensatory models, the different dimensions (pro-
cesses) are combined in a linear, additive manner to produce
the probability of solving the item correctly. Therefore a high
score on one of the dimensions can compensate for a weakness
in another.

In noncompensatory models, each dimension is treated sep-
arately, and the final probability of solving the item is the prod-
uct of all of the individual probabilities, as if a single item
consisted of a set of independent, unidimensional “subitems,”
each of which has to be solved correctly in order to arrive at a
correct answer. Therefore the probability of solving the item is
a nonadditive and nonlinear function of the score on each indi-
vidual dimension. In such a model, because each dimension
has to be passed individually, a low score on any of the dimen-
sions will not be compensated by a high score on another one.
Mathematically, the main difference is that in compensatory
models it is the sum of ability scores that determine the overall
probability of success, whereas in noncompensatory models it
is their product.

P.Upi D 1 jQplm; ail; bil/D
YD

lD 1

e

XC

mD 1

ail.Qplm ¡ bil/

1C e

XC

mD 1

ail.Qplm ¡ bil/

where:
Qplm D the process score for the pth person on the mth process

of the lth domain

ail D the discrimination parameter for the lth domain on the
ith item

bil D the difficulty parameter for the lth domain on the ith

item
D D number of domains tapped by the item
C D number of processes in the given domain tapped by the

item
Again, process overlap theory translates into a hybrid between

the two general families of MIRT models. Within each cognitive
domain (D) the processes are additive, which is reflected by a
compensatory model. Across domains, however, the model is
noncompensatory. The probability of passing each individual
dimension (i.e., executive, spatial, verbal, etc.) is calculated, and
their overall product determines the probability of solving the
item. Therefore, if there is a single one of the dimensions
involved that the person cannot pass, they will not provide a cor-
rect answer—in practice, the model behaves as if the individual
cognitive domains are individual and independent obstacles to
overcome within the same item.

For example, a person with low-executive “ability” scores
will have a low probability of getting an item right, even if the
person has high scores on the specific processes that are also
tapped by the items. That is, with lower executive functioning,
errors are more likely to be the result of not being able to cope
with the executive demands of the task, regardless of the addi-
tional domain-specific components. This nonlinearity is
responsible for the bottleneck nature of the overlapping execu-
tive processes, which in turn explains why the strength of the
positive manifold differs between populations.

For instance, let us assume that the processes that are tapped
by the tasks developed by Duncan and colleagues, outlined in
the previous section, and that are involved in maintaining task
goals in working memory, are tapped along with domain-
specific abilities by different tests. Populations that differ in
their average level of goal maintenance processes will show
marked differences in the extent of domain-general versus

Figure 8. Process overlap theory as a latent variable model.
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domain-specific variance. The greater the probability of failing
on the goal maintenance component, the less individual differ-
ences in specific processes matter in arriving at a correct answer
in different tests. Therefore, different tests will correlate more
strongly, and a general factor will explain more variance.
Process overlap theory proposes that this is the cause of factor
differentiation.

Yet, according to process overlap theory, the strength of the
positive manifold is not the sole function of the population’s
level of executive functioning; it is also of the extent to which
the tests tap executive processes. The more they do, the more
probable it is that a person’s error will be the result of a failure
on the executive dimension(s) of the task, regardless of its bur-
den on other processes, and the person’s possible high level on
those processes.

Take working memory as a theoretically unambigous exam-
ple.6 As we have seen, working memory tasks, such as complex
span, require executive processes to a much larger extent than
short-term memory tasks, such as simple span. According to
process overlap theory, this is exactly why WMC is much more
domain-general than short-term memory capacity, that is, why
the patterns of variation are more domain-general in complex
span than in simple span. In complex span, relative to simple
span, errors are more likely to occur as the result of domain-
general executive processes, regardless of whether the task is
spatial or verbal.

The example of short-term versus working memory also
highlights how complexity is defined in the context of process
overlap theory: It refers to the extent to which a test taps execu-
tive/attentional processes. Hence, the reason why tests of fluid
reasoning have the highest g-loading is the same reason why
complex tasks have higher g-loadings than less complex tasks;
they all tap central executive processes that are involved in a
wide variety of mental test performance across domains. This
also explains why working memory is strongly related to intelli-
gence in general, and in particular why what working memory
tasks measure above and beyond pure storage is most strongly
related to fluid reasoning.

Through its emphasis on errors due to ineffective executive
processes as well as executive task demands, the theory also
accounts for the worst performance rule, because worst perfor-
mance is often indicative of failures in executive attention pro-
cesses (Larson & Alderton, 1990). In particular, in the vast
majority of studies, the worst performance rule has been identi-
fied in reaction time tasks, in which the slowest reaction times
are hypothesized to be the result of posterror slowing, which, in
turn, reflects response-monitoring and cognitive control
(Dutilh et al., 2012).

Overall, the most important aspect of the MIRT model pre-
viously proposed is that it formalizes the interplay between a
tests’ load on the executive system and a given population’s
level of executive functioning in determining the strength of
the positive manifold and therefore the amount of variance
accounted for by the general factor. This is because the proba-
bility of not arriving at a correct solution to a mental test item

due to failures on domain-general rather than domain-specific
processes will be a function of both the extent to which a test
item taps domain-general executive processes and the level of
functioning of these domain-general processes in the popula-
tion studied.

Process overlap theory therefore explains the strength of the
positive manifold in a given population. This also means that a
complete understanding of the within-individual processes that
are required to solve an item is not needed in order to explain
patterns of individual differences. Figure 9 illustrates this point.
The figure shows a matrix-reasoning item, the kind that is typi-
cally found in tests of inductive, nonverbal, fluid reasoning that
load highly on fluid intelligence (Gf). To solve the item, one
has to apply the rule that Carpenter et al. (1990) defined as
“distribution of three”: The triangles come in three different
colors, and the reversed S-s in the middle of the triangles come
in three different sizes. Applying this rule to both dimensions
gives the correct answer: 1.

Let us imagine that we have a test that comprises dozens
of similar items, all of which require the discrimination and
interpretation of color in order to map the relation between
the figures. If one analyzes the latent dimensions of perfor-
mance on this test, one is unlikely to find that individual dif-
ferences in the accuracy of color discrimination, measured
by a standard psychophysical task, contribute to variation in
the total score.

However, this changes dramatically once the test is adminis-
tered to a population of completely color-blind people when
contrast is equated. If one is not able to discriminate red, green,
and yellow, his chances of arriving at a correct answer on this
example item is reduced to 33%, because the best response is a
guess between Answers 1, 4, and 6—provided, of course, that
the person already successfully applied the “distribution of
three” rule on the other dimension. In a population where color
vision is impaired but still exists, individual differences in color
discrimination ability may become important and explain a
large portion of the variance in test performance. The point is
that, even though color vision is clearly required to solve the
task, in normal healthy populations it will not contribute to
variation in performance.

Similarly, if one modifies the item so that, instead of three
different colors, three blue figures are of slightly different
shades, with hardly noticeable differences, variation in the abil-
ity to notice such differences will also contribute to individual
differences in the performance on the task. In fact, it is such
subtle details of test content that determine what a test actually
measures:

Virtually any test can be made into a measure of Gf by raising the
requirements for exercising reasoning. Similarly, almost any test
can be made into a measure of Gc by increasing the extent to which
individual differences in knowledge are assessed. And, by increasing
the requirements for speeded performance, almost any test can be
made to measure Gs, at least in part. (Horn, 1989)

At the same time, it is important to emphasize that the over-
lap of cognitive processes tapped by various mental tests is not
simply a measurement problem. Of course, the characteristics
of the task determine the nature of the processes involved at
arriving at a correct solution. For instance, one can design a

6Working memory serves only as a comprehensible illustration here: Scores on
working memory tasks are nondichotomous, and the actual IRT model, described
by the preceding equation, is applicable only to dichotomous test scores.
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spelling test, in which examinees have to decide whether a list
of English words appearing on a screen, such as “baccalaureate”
or “reconnaissance,” are written correctly. Such a task purport-
edly measures crystallized skills, acquired through formal
schooling. Now imagine that each item is mirrored to an axis
above the given word. As a result of that, the test would start
invoking visual skills. Finally, by adding a strict time constraint
to make the correct-incorrect decision, variation in processing
speed would start to have a strong role.

However, in practice, the exact opposite is the case. Test
developers devote a lot of time and effort to constructing unidi-
mensional measures, tests that purportedly tap a single ability
only. That there is still an overlap in executive/attentional pro-
cesses is more revealing of the psychological nature of such
processes than of psychometric test construction.

Crucially, process overlap theory predicts that the psycho-
logical processes that determine whether individual differences
will be primarily domain-general are not necessarily deter-
mined by the cognitive domain the test purports to measure.
Consider, for instance, the following number series item, which
is typically categorized as numerical reasoning (e.g., in Acker-
man et al., 2005). To find the next element in the series, one

has to find the simplest rule according to which the last num-
ber(s) can be calculated from the previous one(s).

2, 4, 8, ??
A) 9 B) 12 C) 14 D) 20
When eyeballing the three numbers in the preceding series,

the first thing to occur is that they are 2 on the power of 1, 2,
and 3. In other words, the subsequent number is always twice
the number before, which instinctively provides 16 as the natu-
ral continuation of this series. The number 16, however, is not
among the possible answers. One must, therefore, find another
rule. The correct answer is in fact C, which one can figure out
in two ways: (a) the difference between two subsequent num-
bers increases by two after each element (i.e., 4 – 2 D 2, 8 – 4 D
4, X – 8 D 6?) or (b) the subsequent number equals the sum of
the last two elements plus 2. Both rules lead to 14 as the next
element (albeit the one following the next differs in the two sol-
utions: 22 and 24, respectively).

What kind of psychological processes contribute to arriving
at a correct answer on this item? On a global level, this task
requires the ability to find general rules from specific instances,
which qualifies as inductive reasoning. Yet on a more refined
scale, there are a number of processes at play. Naturally, one

Figure 9. Example item to demonstrate process overlap theory.
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needs to be aware of numbers, as well as basic arithmetic opera-
tions. But more important, it also requires cognitive inhibition.
One has to suppress a dominant response (16) and discard a
superficially obvious rule in order to find another one.

Number series items correlate strongly with matrix tests,
consisting of items like the one presented in Figure 9. The rea-
son, according to process overlap theory, is the overlap of the
psychological processes tapped by the two kinds of tests: Both
require inductive reasoning and thus cognitive inhibition. Nev-
ertheless, these two kinds of items are regularly categorized as
numerical and figural, respectively, in accordance with the con-
tent of the items.7 In a similar vein, verbal analogies, which also
probably tap processes that overlap with the ones required for
number series and matrix reasoning, are often categorized as
tests of verbal ability.

Naturally, both test makers and test takers need to categorize
tests, and at a practical level it does indeed make perfect sense
to categorize number series, matrix reasoning, and verbal anal-
ogies as numerical, figural, and verbal, respectively. Yet, accord-
ing to process overlap theory, categorization of tasks according
to the kind of material, by domain or content, is not necessarily
instrumental in understanding the determinants of individual
differences.

The reason why tests of fluid intelligence are particularly
successful at measuring the processes responsible for the
across-domain correlations between mental tests is that they
are more or less free from particular domains. Therefore they
are able to reflect “pure” complexity, that is, executive/atten-
tional requirements, which are also present in tests of verbal or
spatial reasoning, but in those cases they are tapped alongside
with the corresponding domain-specific processes.

This, according to process overlap theory, explains the rela-
tion between g and Gf. They are conceptually different, as Gf rep-
resents individual differences in fluid reasoning, whereas g does
not represent any psychological process. Yet, according to confir-
matory factor analysis, they correlate perfectly or almost per-
fectly. This is because, provided that the general factor was
extracted from a large-enough test battery measuring diverse
cognitive abilities, which is a key point in obtaining a “good” g
(Major, Johnson, & Bouchard, 2011), variation in the specific
abilities will be mostly cancelled out, and the variation reflected
by g will mostly be the result of individual differences in domain-
general processes. Process overlap theory proposes that such pro-
cesses could mostly, although probably not exclusively, be labeled
as executive processes, involved in cognitive control, goal moni-
toring, inhibition of irrelevant stimuli, and the like.

To sum up this section: Process overlap theory interprets g
as a formative construct while accepting a reflective and there-
fore realist interpretation of specific abilities. It proposes that
mental test items tap a number of items in different cognitive
domains, and whereas a weakness in a process can be compen-
sated by a strength in another process within the same domain,
such compensation is not possible across domains.

Overlapping Networks in the Brain

A comprehensive review of neuroimaging studies, which
reviewed imaging studies not only of a wide range of intelli-
gence tests but also of mind games such as chess, found that
intelligence is distributed throughout the entire brain (Jung &
Haier, 2007). One of the main findings of the publication was
that multiple discrete brain regions are associated with intelli-
gence, with no single area activated in all of the studies sur-
veyed. However, the article also demonstrated that the areas
active in most studies are typically found in the frontal as well
as the parietal lobes.

Another study, focusing on the subscales of the Wechsler
Intelligence Scales, demonstrated that the neural correlates of g
were to be found in several brain areas, with the strongest rela-
tionship in the frontal lobes (Colom, Jung, & Haier, 2006a). Yet
another study, which applied the method of correlated vectors
(cf. Jensen, 1998) in order to focus specifically on g, reinforced
the conclusion that neural correlates of g are distributed across
the entire brain, but the majority of them are found in the fron-
tal lobe (Colom, Jung, & Haier, 2006b).

Besides neuroimaging, lesion studies have arrived at a simi-
lar conclusion, highlighting distributed brain regions for g but
also the importance of prefrontal cortex as well as the white
matter tracts connecting it with other areas (Barbey, Colom, &
Grafman, 2013; Gl€ascher et al., 2010). However, as we see, dif-
ferent components of g can be dissociated through frontal dam-
age, because performance on some tests is sensitive to such
damage while performance on other kinds of tests remains
intact.

Because of a lack of corroborating results, the search for a
“neuro-g” has met with minimal success. As discussed earlier,
the g factors extracted from different batteries are virtually
equivalent from a statistical perspective, provided that the bat-
teries are diverse enough. In the light of this, it is remarkable
that the search to find the common neural underpinnings of
different g factors has failed:

If two test batteries, for example, are weighted differently with tests
of memory, spatial reasoning, verbal ability and the like, different
brain correlates of the respective g-factors may emerge, gray matter
(GM) correlates of g depend in part on the tests used to derive g.
(Haier et al., 2009, p. 137)

A confirmatory modeling approach to the brain correlates of
g (Kievit et al., 2012) also found that “neuro g should not be
taken to refer to a unidimensional constellation of neural prop-
erties identical to g” (p. 7); on the contrary, “neuro-g” is a for-
mative latent property determined by, rather than the cause of
or reflected by, neural measures. It indeed appears that “intelli-
gence is a moving target” (Colom et al., 2011). Overall, studies
that have focused on g to identify the neural correlates of intel-
ligence have found little consistency, but of equal importance,
especially for process overlap theory, is the result that also
emerged from such studies, that the prefrontal cortex seems to
play an important role.

Instead of g, other studies have focused on specific ability
factors, and indeed identified different brain correlates for each
factor. For instance, scores on the Wechsler Intelligence Scales
have weaker neural correlates in the prefrontal cortex than
scores on the Raven’s Progressive Matrices, suggesting that the

7With notable exceptions: Horn (1989), for instance, in his categorization of ability
tests according to the Gf-Gc model, put “inductive reasoning, measured using let-
ter series, number series and/or figure series” as the first example of indicators of
Gf, “matrices reasoning with visual patterns” comes only second (p. 79).
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prefrontal cortex is more strongly related to Gf than to Gc. On
the other hand, the temporal lobes were strongly related to Gc
but not Gf (Choi et al., 2008). Another study also found that
Gc is uniquely correlated with activity in the temporal lobes,
whereas Gv, the spatial factor, had nonoverlapping correlates
in the frontal and occipital lobes (Colom, Haier, & Head, 2009).

Again, the results of lesion studies corroborate with imaging
studies: They also imply different neural substrates for different
specific abilities. In classic neuropsychology, the received view
was that frontal lobe damage does not impair IQ (e.g., Hebb,
1940; Weinstein & Teuber, 1957) exactly because the clinical
tests used in such patients were strongly biased toward crystal-
lized intelligence, Gc. Once the distinction between Gf and Gc
is made, it becomes clear that frontal lobe damage severely
impairs the former, whereas the latter indeed often remains
intact (Duncan, 1995; Duncan et al., 1996).

In the light of such results, it should come as no surprise that
the “intelligence” measured by different test batteries gravitat-
ing to different specific abilities cannot be universally localized,
and the g factors derived from such batteries, despite being sta-
tistically indistinguishable, do not have identical neural
correlates.

Instead of g, then, let us focus on fluid reasoning (Gf). Again,
even though it is statistically identical to g, imaging studies dem-
onstrate their dissociability; whereas g cannot be localized, Gf is
linked to the prefrontal (primarlily dorsolateral) and partly to the
(primarily posterior) parietal cortex with remarkable consistency.
That is, diverse tests tapping fluid reasoning, including matrix
items, letter series, or verbal syllogisms, all have similar patterns
of activation in the prefronal, and partly in the parietal cortex (for
a review, see Kane, 2005). In particular, reasoning problems iden-
tical or similar to the ones found in Raven’s Progressive Matrices,
probably the most typical test of Gf, consistently activate certain
areas in the prefrontal cortex (Christoff et al., 2001; Prabhakaran,
Smith, Desmond, Glover, & Gabrieli, 1997; Wharton et al., 2000),
and this conclusion is further supported by lesion studies (e.g.,
Waltz et al., 1999). Similar activation was found in other, mostly
verbal analogical reasoning tasks (Green, Fugelsang, Kraemer,
Shamosh, & Dunbar, 2006; Luo et al., 2003; Volle, Gilbert, Benoit,
& Burgess, 2010; Wendelken, Nakhabenko, Donohue, Carter, &
Bunge, 2008), pointing to an indifference of content in fluid tasks
(see also Duncan et al., 2000).

A lesion study provides further evidence that is in agreement
with imaging studies by pointing to the importance of specified
areas within the prefrontal and parietal cortex (Woolgar et al.,
2010). The study compared different areas of the brain to
explore the extent to which, statistically, brain damage in a
given area is associated with loss of fluid intelligence on aver-
age. Using multiple regression, it found that the same amount
of tissue damage that predicts a 1-point loss of fluid IQ, if it
occurred elsewhere in the brain, corresponds to a 6.5-point
impairment if found in particular prefrontal and parietal
regions. Of importance, partial correlations showed that each
of the regions studied made an independent contribution to the
impairment in fluid intelligence, pointing to the involvement of
independent neural mechanisms.

Imaging studies of working memory have identified similar
patterns of prefrontal and parietal activation for the central
executive as the ones identified for Gf (see Henson, 2001;

Wager & Smith, 2003). A large-scale review concludes that “the
central executive maps to mid-lateral prefrontal regions, partic-
ularly left and right dorsal lateral prefrontal cortex” (Henson,
2001, p. 166).

Looking at various actual cognitive functions that any mecha-
nism called the “central executive” could be reasonably expected
to perform, it has indeed been found that one of the chief
functions of the prefrontal cortex is cognitive control (Badre &
Wagner, 2004; Botvinick, Braver, Barch, Carter, & Cohen, 2001;
Cole & Schneider, 2007; E. K. Miller, 2000; E. K. Miller & Cohen,
2001; Vincent, Kahn, Snyder, Raichle, & Buckner, 2008) or, syn-
onymously, the top-down monitoring of goal-directed behavior
(Asplund, Todd, Snyder, & Marois, 2010; Braver & Bongiolatti,
2002; Corbetta & Shulman, 2002; Farooqui, Mitchell, Thompson,
& Duncan, 2012; B. T. Miller & D’Esposito, 2005). On a less
global scale, the prefrontal cortex is involved in such cognitive
operations as task switching (e.g., Derrfuss, Brass, Neumann, &
von Cramon, 2005; Sohn, Ursu, Anderson, Stenger, & Carter,
2000) and response inhibition (e.g., Aron, Robbins, & Poldrack,
2004; Chambers et al., 2006), among others.

Once again: In agreement with neuroimaging studies of
healthy participants, lesion studies also point to a large com-
monality between the neural substrate of executive functions
and fluid intelligence, and locate this substrate in the prefrontal
and posterior parietal areas (Barbey et al., 2012). Yet it is crucial
to note that the prefrontal cortex comprises a large portion of
the entire cortex and contains a number of distinct subsystems,
both cyto-architectonically and functionally. Accordingly, dif-
ferent executive functions probably map on different parts of
the prefrontal cortex (e.g., MacDonald, 2000; Stuss & Alexan-
der, 2000).

In particular, some of the studies surveyed earlier in this
article have found more medial activation, whereas others reg-
istered the activation of lateral areas; some processes seem to
induce bilateral activation, whereas the neural substrate of
others appears to be unilateral; finally, some studies found the
coactivation of the anterior cingulate and/or parietal areas,
whereas others have not. However, a recent meta-analysis of
193 imaging studies of different executive processes tapped by
various executive tasks was able to identify common activation
in what they call a “cognitive control network,” comprising the
dorsolateral prefrontal cortex, the frontopolar and orbitofrontal
cortices, and the anterior cingulate (Niendam, Laird, & Ray,
2012).

To sum up the argument so far: fluid intelligence (Gf), the
central executive component of working memory, and various
cognitive processes that serve the top-down control of goal-
directed behavior have strongly overlapping neural substrates
in the prefrontal cortex (for a summary of related evidence, cf.
Kane & Engle, 2002).

It is at least as important from the perspective of process
overlap theory that the activation of these brain areas is inde-
pendent of content: These same brain areas of the prefrontal
and parietal cortex are involved in different domains of cogni-
tion. For instance, Duncan and Owen (2000) reviewed 20 stud-
ies that explored brain activation in different types of tasks, the
content domain of which included both spatial and verbal
tasks. They concluded that the recruitment of frontal areas “is
extremely similar from one cognitive demand to another,
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suggesting a specific network of prefrontal regions recruited to
solve diverse cognitive problems” (Duncan & Owen, 2000,
p. 476). The same areas that compose the “cognitive control
network” have also been labeled the “multiple demand system”

in order to directly refer to the fact that they are involved in
diverse cognitive activities (Duncan, 2010).

However, there is a danger of such analysis revealing over-
lapping activation at the group level even when it does not exist
within individuals. This methodological problem was addressed
by Fedorenko, Duncan, and Kanwisher (2013), who undertook
a study looking at activation overlap within individual subjects.
They used seven tasks, including a spatial and a verbal working
memory task, a mental arithmetic task, and the Stroop task,
and found domain-general activation in the expected frontal
and parietal areas at the indivdiual level, too, confirming the
results of previous studies that employed group analysis.

A study by Duncan et al. (2000), which purportedy
attempted to identify a neural system associated with g but in
fact employed tests of fluid reasoning (Gf), found that when
high g-(Gf)-loading was contrasted with low g-(Gf)-loading, a
pattern of activation in the lateral frontal cortex emerged, and
this was the only area commonly activated by spatial and ver-
bal tasks. Another study investigated neuroanatomic overlap
of different cognitive abilities and identified specific regions in
the frontal lobes that are frequently shared (Colom et al.,
2013).

A recent study conducted by Rom�an et al. (2014) took a dif-
ferent perspective: They looked at brain correlates of latent var-
iables at different levels of the “hierarchy of intelligence,” that
is, in the higher order latent variable model (see “g: A Well-
Aged Puzzle”). They found that as one moves upward in the
hierarchy from specific factors through group factors to g, the
gray matter correlates are smaller and more frontal. The study
concluded that “factors capturing the variance common to
both specific measures and group factors partial out the speci-
ficity present at the measurement level. Interestingly, removing
specific variance reveals that frontal regions in the brain are
crucial for supporting human intelligence” (p. 3816).

Process overlap theory proposes that as one moves up the
hierarchy of abilities, specific component processes gradually
disappear, and by the time one gets to the processes directly
reflecting g, executive ones are of great importance. Because
specific processes have diverse brain correlates, whereas it is
mostly frontal regions that are involved in executive processes,
the results of Rom�an et al. can be interpreted as the neural
equivalent of the psychological explanation proposed by pro-
cess overlap theory.

Having discussed the domain-general involvement of fron-
toparietal areas in reasoning tasks, it is important to point out
that imaging studies of working memory have also registered
the domain-generality of neural activation in the frontal cortex.
A meta-analysis of 60 neuroimaging studies (Wager & Smith,
2003) found that the fractionation of working memory accord-
ing to content was limited to the posterior areas: No fraction-
ation was found in the frontal cortex according to content
domains. More precisely: They found that the central executive
could be further fractionated as well, but according to processes
rather than the type of material.

Because the significance of complex span tasks has been
emphasized throughout this article, an imaging study of com-
plex span tasks is particularly interesting, especially because it
directly looked for the common neural underpinnings of spatial
and verbal complex span, applying a novel methodology that
uses both within-domain and across-domain conditions, as
well as contrasting complex span with both pure storage and
pure processing (Chein, Moore, & Conway, 2011). The study
indeed demonstrated the domain-general activation of the pre-
frontal cortex, the posterior parietal cortex, and the anterior
cingulate in complex span tasks.

More recent studies employing a network perspective have
also concluded that the prefrontal cortex is often coactivated
with brain areas involved in domain-specific cognition. The
network approach to brain functioning is an emerging para-
digm in cognitive neuroscience, based on the recognition that
neural computations involved in cognition are not performed
by isolated brain areas but rather are the result of networks of
interconnected areas (Bressler & Menon, 2010; He & Evans,
2010; Heuvel & Pol, 2010; Sporns, 2002). Therefore, the study
and graph theoretical modeling of the structural and functional
connectivity of the human brain—the human connectome
(Toga, Clark, & Thompson, 2012)—is the central aim of
research in the network approach.

Network analysis of the human brain has revealed that it can
be characterized as a “small world network,” that is, a network
consisting of local clusters of strongly interconnected nodes but
also of short paths that link the individual clusters (Achard, Sal-
vador, Whitcher, Suckling, & Bullmore, 2006; Bassett & Bull-
more, 2006). This architecture, which is both modular and
strongly interconnected, makes brain wiring economical and
highly efficient at the same time. The specialized modules are
connected with the aid of connector hubs: sets of highly con-
nected and central nodes with diverse and long-range connec-
tions that function as global interlinks or bridges between the
individual modules or clusters, ensuring short overall path
length and thus high efficiency (Sporns, Honey, & K€otter,
2007).

Of importance, “most studies identified hubs among parietal
and prefrontal regions, providing a potential explanation for
their well-documented activation by many cognitive functions”
(Bullmore & Sporns, 2009, p. 190), and “studies on the network
of areas of the primate and human cerebral cortex showed that
the PFC, especially the dorsolateral part (PFC DL) is an impor-
tant hub region where information from different functional
brain systems are integrated” (N�egyessy, B�anyai, Nepusz, &
Bazs�o, 2012, p. 39). N�egyessy et al. (2012) also documented
that in the imaging literature the single area identified most
often is the prefrontal cortex, and they performed network
analysis to demonstrate that this is not the result of the selectiv-
ity of eresearchers but an inevitable consequence of cortical
processing.

Apparently, the same regions that were identified in tradi-
tional studies as the overlapping neural substrate of executive
processes, working memory, and fluid reasoning are referred to
as the “frontoparietal control system” in network neursocience
as well (Spreng, Sepulcre, Turner, Stevens, & Schacter, 2013;
Vincent et al., 2008). Being one of the most connected networks
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of the brain (Cole, Pathak, & Schneider, 2010), this system is
attributed with functions of regulating other subnetworks.

It is remarkable from an individual differences perspective
that of all brain networks the frontoparietal network has the
largest variability in functional connectivity, larger than any
other network in the brain (Mueller et al., 2013). Moreover,
several studies have demonstrated that variation in the global
connectivity of these regions correlates with intelligence as well
as cognitive control (Cole & Yarkoni, 2012; Heuvel & Stam,
2009; Santarnecchi & Galli, 2014; Song et al., 2008).

There are two further results in cognitive neuroscience that
are highly relevant with regard to process overlap theory. First,
a number of studies found that the same frontal areas that func-
tion as hubs are capable of serial processing only, and therefore
they severely limit the capacity of different domain-specific
cognitive systems: “The prefrontal and dorsal medial frontal
cortex [function] as a frontal lobe network recruited to meet a
wide variety of cognitive demands, making this system well
suited to act as a central, amodal bottleneck of information
processing” (Dux, Ivanoff, Asplund, & Marois, 2006). These
areas are therefore primary candidates for being the neural sub-
strate of capacity limits (Dux et al., 2006; Koechlin & Hyafil,
2007; Marois & Ivanoff, 2005; Tombu et al., 2011), probably
strongly affecting working memory and intelligence. Because
process overlap theory focuses on the limitations of executive
processes as the cause of both the positive manifold and factor
differentiation, this provides a direct link from the theory’s psy-
chological hypothesis to its possibly underlying neural
mechanism.

Second, process overlap theory proposes that the interaction
between the level of executive processes and the executive
demands of the task is of critical importance with regard to the
strength of the positive manifold. Hence it is of great signifi-
cance that activation in relevant regions appears to be a func-
tion of both the level of ability and the executive demands of a
given task. The vast majority of the studies just cited, docu-
menting prefrontal and parietal activation for executive pro-
cesses, working memory, and fluid intelligence, demonstrated
increased activation as a function of the demand for the con-
struct in question. As well, several studies found an increase in
activation that is inversely related to the participants’ level on
the construct. Kane’s (2005) review of prefrontal involvement
in fluid reasoning concludes that “PFC is recruited to solve
inductive reasoning problems under worst-case conditions,
such as when problems are most difficult or when one has
reduced fluid abilities” (p. 156).

Unfortunately, simultaneous tests for brain activity as the
function of performance within a task and as the function of
differences between tasks are largely missing from the litera-
ture. That is, activation differences due to task complexity and
activation differences due to variation in individuals’ ability are
not clearly differentiated. Therefore a current study, which
addresses exactly this question, is particularly interesting. Kievit
et al. (2016) employed a modern psychometric approach to
neuroimaging to test for overlapping brain correlates of diffi-
culty and ability parameters in fluid reasoning tasks. Using a
conjunction analysis, they found three regions the activation of
which depended on difficulty and ability: bilateral angular gyri,
bilateral precuneus, and the left superior frontal gyrus. This

demonstrates that the regions that are registered in between-
subject designs (of differing fluid intelligence) are the same
ones that are registered in within-subject designs (of increasing
difficulty in fluid tasks); again, this seems to point to the neural
underpinning of the interaction proposed by process overlap
theory.

To summarize this section: According to process overlap
theory, the positive manifold is caused by the overlap of execu-
tive processes that are involved in both working memory and
intelligence. The present state of research in neuroscience dem-
onstrates that the neural correlates of such processes are (a)
indeed involved in working memory and intelligence, and (b)
indeed activated in an overlapping fashion that is in agreement
with the tenets of the theory, and finally: (c) the frontal lobe is
strongly connected to other, more specialized parts of the brain.
In other words, the overlap the theory proposes appears to
actually take place in the human brain.

Comparison With Other Theories

There have been enormous theoretical endeavors in the field of
human intelligence, mostly focusing on the nature, structure,
or interpretation of the concept itself. Even a simple elaboration
of these accounts is beyond the possibilities or aims of this arti-
cle. We have provided an explanation of the positive manifold
and a number or strongly related phenomena. In this section,
therefore, we compare only process overlap theory to accounts
of the same empirical phenomena and not to theories of intelli-
gence in the broad sense. Similarly, because process overlap
theory is not a taxonomy of the structure of variation in human
abilities, no comparison to such taxonomies (like the CHC,
McGrew, 2009; or the VPR, Johnson & Bouchard, 2005, model)
is provided.

The first theory to consider is, of course, g-theory, the idea
that different IQ-tests correlate because they all measure the
same latent variable, which can be interpreted as either general
intelligence or a parameter affecting all cognitive operations.
Because this idea is thoroughly criticized in the first part of the
article, we find it unnecessary to further elaborate on why pro-
cess overlap theory is more plausible than this account.

The second is Thomson’s sampling theory, which proposes
that the correlation between any two mental tests is the func-
tion of the number of shared “bonds” the tests sample. Thom-
son demonstrated that this principle is sufficient to produce the
positive manifold, without postulating a general factor. This
account has a lot in common with process overlap theory, espe-
cially with regard to higher order, more general processes ver-
sus lower order, more specific processes:

The mind, in carrying out any activity such as a mental test, has two
levels at which it can operate. The elements of activity at the lower
level are entirely specific, but those at the higher level are such that
they may come into play in different activities. Any activity is a
sample of these elements. (Thomson, 1916, p. 341)

In fact, from a broad perspective, process overlap theory can
be considered a modern sampling theory.

The continuation of the preceding paragraph, however,
already highlights a crucial difference: “The elements are
assumed to be additive like dice, and each to act on the ‘all or
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none’ principle, not being in fact further divisible”8 (Thomson,
1916, p. 341). Contrary to this assumption, process overlap the-
ory proposes a nonadditive overlap of psychological processes.
In particular, the executive/attentional processes that typically
overlap with domain-specific ones function as a bottleneck:
Failure to pass the executive demands of a test renders individ-
ual differences in specific processes unimportant for overall
performance. As a consequence, the correlation between tests is
not simply the function of the sheer number of overlapping
processes in relation to the total number of activated processes,
as in Thomson’s account.

The two accounts also differ markedly in their view of brain
functioning. The bonds theory subscribed to a version of con-
temporary views on “equipotentiality,” denying the localization
of brain function. In fact, Thomson argued that the human
brain consists of a myriad of bonds and assumed that the sam-
pling process is completely random, with tests differing only in
the number of bonds they sample. Process overlap theory, on
the other hand, draws heavily on results from neuroscience
that have been obtained since Thomson’s time, and which
demonstrate that executive processes are primarily seated in
the prefrontal cortex and that this area of the brain is the one
most heavily interconnected with other areas.

This is an important difference, as it directly addresses two
valid criticisms of the sampling model (summarized in
Eysenck, 1987, and van der Maas et al., 2006). First, it logically
follows from the sampling model that the more bonds a test
samples, the higher its average correlation with all other tests,
because it is more likely to randomly share bonds sampled by
other tests. This means that a test’s g loading is the sole func-
tion of the number of bonds sampled by the test. However, a
number of tests, which supposedly measure a narrow range of
“bonds,” load highly on g. Yet, according to process overlap
theory, g loadings depend on the involvement of executive pro-
cesses seated primarily in the prefrontal cortex rather than on
the number of processes measured.

The second criticism is even more directly related to the
brain: It has been cited as falsifying evidence against the sam-
pling model that brain damage can lead to specific impair-
ments, whereas its conception on brain functioning determines
the bonds theory to predict general impairments. Again,
according to process overlap theory it is damage to the neural
substrate of overlapping executive process that is relevant in
predicting the generality of the impairment rather than the
total amount of damage.

There is a third criticism against the sampling model, which
is particularly informative in highlighting the difference
between Thomson’s account and process overlap theory:
“Some seemingly completely unrelated tests, such as visual and
memory scan tasks, are consistently highly correlated, whereas
related tests, such as forward and backward digit span, are only
modestly correlated” (van der Maas et al., 2006, p. 843.)

Because process overlap theory, as opposed to sampling,
does not propose additive processes, it does not predict a linear

relationship between the size of the correlation and the extent
of the overlap relative to the total number of activated pro-
cesses. Instead, it predicts that the size of the correlation will be
a function of the overlap of domain-general executive processes.
Therefore the third criticism is not relevant for process overlap
theory. In particular, whereas forward digit span measures only
the storage and retrieval of digits, backward digit span also taps
executive processes involved in fluid reasoning (Kovacs et al.,
2016). With regard to visual and memory scan tasks: They cor-
relate strongly exactly because both are good measures of the
executive component of working memory.

Anderson (2001) provided an account of the general factor
similar to the one provided by Thomson, but here the overlap
of elements takes place at the level of genes. He argued that any
cognitive task requires the coordinated functioning of distrib-
uted neurons, and because the development of these neurons
depends on a large number of genes, “any two cognitive tasks
of the type used for IQ tests will share some fraction of their
genetic determinants" (p. 368).

Assuming that each locus has an independent and equal
effect on behavioral variance, Anderson (2001) claimed that
the overlapping genetic components cause the positive mani-
fold: “Any two traits with shared components will have a
positive correlation" (p. 369). Indeed, this account is very
similar to the one proposed by Thomson, even to the equa-
tion predicting the size of the correlation based on the num-
ber of shared genes.9 Therefore, the reasons why process
overlap theory is more empirically plausible than the sam-
pling model are also relevant to Anderson’s account. More-
over, we disagree about the optimal level of explanation. It is
not genes but psychological processes that are involved in
cognitive behavior, hence we need an understanding of the
nature of psychological processes as a proximate cause for
the positive manifold.

The third theoretical account of the positive manifold that
we wish to discuss is the mutualism model, a developmental
account of the positive manifold that proposes positive recipro-
cal interactions between cognitive processes during develop-
ment (van der Maas et al., 2006). The model describes the
development of intelligence as the emergence of a complex
dynamical network through the mutually beneficial interaction
of modules or processes. According to this model, individual
differences in cognitive abilities are uncorrelated at the begin-
ning of development and start to correlate only because of such
interactions.

The mutualism model bears many similarities to process
overlap theory. It also explains g without postulating a single,
general ability; it also rejects the reflective interpretation of g;
and the explanation also relies on the interaction of separate
processes. At the same time, van der Maas and colleagues pro-
posed the functional independence of cognitive processes in
mental test performance in their model while arguing that the
positive manifold is the result of mutual interactions between
cognitive processes only during development. That is, whereas
in the mutualism model the interaction between processes takes
place during development only, process overlap theory claims

8This assumption by Thomson (1916) was, in fact, more practical than substantive:
“Note that I do not for one moment suggest that psychological ‘factors,’ if they
exist, can be added together like dice: I merely intend to apply Professor Spear-
man’s formulae to dice throwing” (p. 275). 9Even though the article does not refer to Thomson or to the concept of sampling.
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that such interaction takes place when people solve mental
tests.

The central assumption of the mutualism model is that
learning in one cognitive domain positively affects development
in other domains. In our opinion, even though the mathemati-
cal scaffolding of the mutualism model is greatly sophisticated
and appealing, this assumption may need further empirical
grounding. In particular, the strong cognitive transfer across
domains that it proposes seems somewhat implausible. Fur-
thermore, mutualism predicts that in adults, elementary cogni-
tive tasks will be correlated, and as we have seen, this is not the
case. Finally, combining evidence from psychometrics, experi-
mental cognitive psychology, and neuroscience, process overlap
theory is arguably based on more converging evidence.

On the other hand, because cognitive transfer probably
occurs more easily within than across domains, mutualism
appears as a very plausible explanation of how specific psycho-
logical processes get organized into clusters of abilities, repre-
sented by broad group factors—more so than of the
correlations between the group factors themselves or between
tests tapping different domains. Therefore, it might be possible
to reconcile the two accounts, as it is quite likely that some pro-
cesses indeed interact during development but not later in life,
whereas others interact during actual problem solving.

The final theoretical account of the positive manifold to dis-
cuss is Detterman’s (1987) system theory of intelligence. It
argues that human intelligence functions as a complex system
composed of smaller parts, and a global rating of cognitive
functioning, such as IQ, does not reflect its constituents. In his
conception of intelligence, Detterman borrowed two central
concepts from system theory: wholeness and centrality. Whole-
ness refers to the interrelatedness of different parts of the sys-
tem, and centrality means the extent to which a single part of
the system influences the operation of the entire system.

Detterman (1987) argued that “the amount of variance
accounted for by the first principal component is considered to
be a measure of system wholeness for the variables measured”
(p. 6). Therefore, the identification of individual components of
the system results in processes that do not correlate. Moreover,
according to Detterman, “a measure of wholeness, which I
regard the first principal component to be, says nothing about
centrality” (p. 7).

We completely subscribe to Detterman’s basic theoretical
approach and his conception of intelligence as a complex sys-
tem with many independent components. In fact, it is quite
easy to integrate the two theories. Employing his system termi-
nology, process overlap theory emphasizes the centrality of
executive processes rather than system wholeness as the main
reason for the emergence of the positive manifold. The empiri-
cal evidence points to such executive processes overlapping
with domain-specific ones in cognitive activity rather than to
every process being related to every other process, as would be
the case if intelligence were a system with very high wholeness.

Conclusion

Process overlap theory builds on available knowledge from psy-
chometrics, cognitive psychology, and neuroscience to explain
patterns of variation in mental abilities. As such, it is not a

taxonomy of human cognitive abilities and more than a latent
variable model: It is a theoretical account that specifies the
within-individual item response processes that are responsible
for the positive manifold in intelligence. Besides the positive
manifold, the theory explains a number of related phenomena:
factor differentiation, the decrease of across-domain variance
as a result of the Flynn effect, the identity or near-identity of Gf
and g from an individual differences perspective, and the worst
performance rule.

The theory proposes that the positive manifold, and thus g,
will emerge from a battery of tasks that tap various important
domain-general processes in an overlapping fashion. In partic-
ular, executive processes, seated primarily in the prefrontal and
partly in the parietal cortex, overlap more with domain-specific
processes in mental test performance than such specific pro-
cesses overlap with one another. To arrive at a correct answer
on a mental test item, one has to pass each tapped “dimension”;
therefore, individual differences in executive processes function
as a bottleneck for variation in specific processes. As a conse-
quence, complex tasks requiring substantial executive process-
ing, as well as errors in tasks requiring attention, are the most
indicative of the domain-generality of the positive manifold.

It is important to note that the prefrontal cortex is not the
seat of a unitary central executive, nor is executive function
unitary from a psychological point of view. Hence there need
not be a single psychological process tapped by all intelligence
tests to obtain the positive manifold. Instead, a set of executive
processes function as a “bridge” connecting more specialized
networks of cognitive processes. Accordingly, process overlap
theory’s interpretation of double dissociation results in the light
of the positive manifold is that cognition is not characterized by
independent encapsulated processes or “modules” but instead
by multiple sets of processes that are engaged in an overlapping
fashion by cognitive operations.

Process overlap theory does not question the existence of
psychometric g. In fact, it is not even logically possible to admit
the existence of the positive manifold but not of a general fac-
tor, because the latter is a necessary algebraic consequence of
the former. What is discarded is “psychological g”: the interpre-
tation of psychometric g as a psychological construct. There is
no psychological process that corresponds to psychometric g.
Instead, g is conceptualized as a formative variable: It emerges
because of the positive manifold rather than explaining it.

Thus, it is imperative not to interpret process overlap
theory as if it identified g with executive functions—with a
few possible mediators like fluid reasoning and working
memory. The theory indeed says that working memory and
fluid intelligence are hugely overlapping constructs and that
the overlap is caused by executive functions but g is not
interpreted as a psychological construct of any kind.
Instead, it is characterized as an emergent property, a result
of how processes overlap to produce cognitive activity
required by mental tests.

Also, even though our reading of the evidence is that such a
functional overlap can account for the bulk of the domain-gen-
eral variance that can be described with psychometric g, we are
ready to acknowledge that there might be other sources con-
tributing to the positive manifold. Mutualism is a likely candi-
date (see “Comparison with Other Theories”), and so is
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associative learning (e.g., Kaufman, DeYoung, Gray, Brown, &
Mackintosh, 2009).

Besides explaining a large number of empirical phenomena,
process overlap theory also makes a number of unique predic-
tions. First, if the theory is correct, differentiation should occur
in working memory as it occurs in intelligence. That is, correla-
tions between verbal and spatial working memory tasks should
be stronger below the population mean than above, and such
differentiation should be more characteristic of working mem-
ory than of short-term memory. Second, there is a controversy
surrounding age-differentiation, the assumption that the posi-
tive manifold is stronger in younger children. The available
results are inconclusive, largely because the batteries and age
groups are created in an arbitrary manner. Process overlap the-
ory predicts that age patterns of the maturation, as well as aging
of the prefrontal cortex and thus of executive processes, should
determine the domain-generality of the positive manifold.
However, this prediction might be difficult to test because dif-
ferent executive processes show different developmental and
aging patterns, and there is large individual variation in the
maturation and aging process itself.

Finally, process overlap theory and sampling provide differ-
ent predictions for neuroscience. Thomson postulated a large
number of domain-general bonds that are randomly sampled
by different cognitive demands, and the more bonds sampled
the higher they correlate with the general factor. Therefore,
according to original sampling models, g loadings should corre-
late with the number of activated clusters in the brain, regard-
less of their location. Process overlap theory, on the other
hand, predicts that g loading should be a function of the
involvement of particular areas of the brain rather than total
activation. We hope that the theory will inspire substantial
empirical research and data-driven development in the fasci-
nating field of human intelligence.
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COMMENTARIES

Process Overlap and g Do Not Adequately Account for a General Factor of Intelligence

Phillip L. Ackerman

School of Psychology, Georgia Institute of Technology, Atlanta, Georgia

Reasoning problem:
Proposition: Process measures correlate with a general factor

of intelligence.
Conclusion: Therefore, the general factor of intelligence is

defined by process measures.
Question: True or false?
Process overlap theory (Kovacs & Conway, this issue) pro-

vides an interesting account of basic elements of some mental
processes—especially those that include working memory
tasks and abstract reasoning tests (such as Raven’s Progressive
Matrices). The theory appears to be internally consistent
within the boundaries that are described in Kristof Kovacs
and Andrew R. A. Conway’s target article. Yet there is some-
thing highly unsatisfactory when the theory is presented as
accounting for general fluid intelligence (Gf), a general factor
of intelligence or even general intelligence, as represented in
the article.

Kovacs and Conway describe a variety of theories of the
structure of intelligence and provide a good review of one
approach to intelligence. But the approach is almost entirely
devoid of any consideration of the much larger field of intelli-
gence research and application. The reasons for this are com-
plex, but some history is important to review.

In the early 1900s, two approaches to human intelligence
were proposed, one by Spearman and the other by Binet. In
1904, Spearman set out his theory of General Intelligence (g).
He offered several propositions about g in that original paper,
and others subsequently. What g actually was, was not entirely
clear in his early statements. The foundation of g that Spear-
man derived empirically in 1904 was a hodgepodge of academic
performances (Classics, g-loading of .99; Common Sense, g-
loading of .98) and psychophysical abilities (Pitch Discrimina-
tion, g-loading of .94; Spearman, 1904, p. 276). Later, however,
Krueger and Spearman (1907) pointed to the Ebbinghaus Com-
pletion Test as the single best test of g (Ebbinghaus, 1896–
1897). In fact, in the 1907 paper, they reported the g-loading of
the Ebbinghaus Completion Test was .97! The Ebbinghaus
Completion Test is a measure of verbal fluency and memory
(e.g., see Ackerman, Beier, & Bowen, 2000). Much later (in the
1930s), Spearman decided that the spatial inductive reasoning
test developed by Penrose and Raven was an ideal measure of g
(Spearman, 1938). Spearman showed little interest in the exter-
nal validity of intelligence assessments. That is, prediction of
criteria such as school success or occupational success was not

a concern for the validity or utility of his theory of general
intelligence.

Binet, in contrast, had as his central focus, the use of intelli-
gence assessments to predict failure in educational situations.
Although Binet rightly pointed out the importance of an indi-
vidual’s knowledge in predicting academic success (Cattell
would later refer to knowledge as subsumed under Crystallized
Intelligence [Gc]), Binet largely rejected including assessments
of knowledge in his intelligence scales, for the practical reason
that he believed that such tests would place lower socioeco-
nomic status students at a disadvantage to students from more
enriched backgrounds. Even without extensive intellectual
knowledge assessments, the Binet and Simon (1905/1961)
scales were quite successful in predicting which students would
not succeed in the normal classroom environment. There was a
wide variety of components to these scales, ranging from
counting, naming colors and the days of the week, constructing
sentences, long-term and short-term memory, defining words,
identifying similarities, and so on. The main criteria for reten-
tion of particular items/scales were (a) age differentiation (older
students, on average, performed better than younger students)
and (b) relevance to predicting academic performance. The
scales became a nearly instant success. Within a short time,
numerous translations and adaptations of the Binet–Simon
scales appeared in the United States and elsewhere, such as the
versions by Goddard, by Kuhlman, and later the Stanford–
Binet by Terman (1916). The Binet scales became the bench-
mark against which most newer intelligence tests were assessed.
The contents of general intelligence tests used today are
markedly similar to those that Binet used/developed more than
100 years ago. Also, although Binet’s tests were aimed at chil-
dren between ages 3 and 13, extensions of the tests for adult
assessment are also in wide use. Even Wechsler’s Adult Intelli-
gence Scales have substantial overlap with those in the Binet
scales (Boake, 2002). Spearman (1930) denigrated Binet’s
assessments, partly because Binet’s tests were fundamentally
based on the notion of intellectual development during child-
hood (i.e., age differentiation), whereas Spearman’s theory
called for fixed intelligence, unchanging during development.
Spearman’s proposition is clearly not tenable—the average 10-
year-old is much more capable than the average 5-year-old on
any intellectually demanding task one could administer. Even
studies with tests of abstract reasoning, such as the Penrose and
Raven (1936) progressive matrices test, show higher average
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scores for older children and adults, compared to young
children.

In the decades that followed Spearman’s theory of intelli-
gence and Binet’s intelligence scales, developments in these two
areas often interacted. Although some researchers attempted to
develop models of the structure of intellectual abilities that
include Spearman’s g, other more recent adherents of Spear-
man’s theory have searched for the fundamental sources of g.
In contrast, many of Binet’s followers have attempted to
improve intelligence assessments in terms of completeness and
reliability, but ultimately such improvements were measured
against the external validity of the assessments. Those who fol-
lowed Spearman in attempting to measure g for application
purposes were often substantially disappointed by the lack of
validity shown by Raven’s Progressive Matrices for real-world
criteria, such as job performance (e.g., see Vernon & Parry,
1949).

In many ways, though, the connection has been broken
between those who take Spearman’s approach as the means
toward understanding intelligence and those who actually
develop and apply intelligence tests in the real world. In the
past 30 years or so, numerous experimental psychologists have
focused entirely on only the kinds of tests that Spearman advo-
cated late in his career (e.g., the abstract reasoning tests that
require little or no content knowledge), and they ignore both
domain knowledge (Gc), and external validity concerns.

Even if we take on face value the fact that Kovacs and Con-
way adopt Vernon’s (1950) notion that g might account for
about 40% of the variance in general intelligence, how can an
“adequate” theory of intelligence fail to account for roughly
60% of the variance in general intelligence? Moreover, how can
an adequate theory be so firmly disconnected from any consid-
erations of external validity?

Additional Issues

There are some additional concerns about the approach pro-
posed by Kovacs and Conway (this issue), which I mention
only briefly here.

1. g/Gf/Gc distinction. In Spearman’s view, g was innate
and fixed. Cattell’s view of Gf theoretically diverged from
Spearman’s g, in that Gf “increases until adolescence and
then slowly declines” (Cattell, 1943, p. 178). Although
Cattell suggested that Gc represents intelligence that is
educational or experiential, there is more than ample evi-
dence that both Gf and Gc are developed through educ-
tion and experience (e.g., see Ackerman & Lohman,
2003; Ceci, 1991; Snow, 1982, 1996). If a child does not
go to school, for example, his or her performance on g-
type tests will be seriously impaired (Ferguson, 1954).
The effect of education on g does not appear to be
accounted for in the process theory representation pro-
vided by Kovacs and Conway—indeed, the subject of
education in the context of intelligence does not appear
in the article at all.

2. Brunswik Symmetry. This is a concept introduced by
Wittmann and Suß (1999), and it pertains to the match/
mismatch between the breadth of predictors and crite-
rion measures. The measures advocated by Kovacs and

Conway appear to conflate “complexity” with
“breadth”—that is, although many working memory and
abstract reasoning tests are complex, they fail to repre-
sent the kind of breadth that is inherent in the general
intellectual ability factor.

3. Indifference of the indicator. One of Spearman’s main
propositions was the “indifference of the indicator.” That
is, when it comes to estimating g, it “for the purpose of
indicating the amount of g possessed by a person, any test
will do just as well as any other, provided only that its cor-
relation with g is equally high” (Spearman, 1927, p. 197).
Process-based theories, such as the one proposed by
Kovacs and Conway, fail in that they don’t consider that
this proposition is highly questionable—they implicitly
assuming that content-free or content-reduced tests are
the only tests that need to be examined, to understand g.
That is, given that for example, the Ebbinghaus Comple-
tion Test has a higher g-loading than even the Raven’s
test, their theory should work as well explaining perfor-
mance on the Completion Test—which most investigators
might argue has only modest overlap with working mem-
ory tests. For example, with data from an experiment with
college students, Ackerman, Beier, and Boyle (2002) found
that a version of the Completion test correlated r D .62
with a general ability composite, in comparison to the g-
loading of Raven’s Progressive Matrices (r D .58) and the
g-loading of a battery of working memory tests (r D .55).
The Completion Test scores only correlated r D .39 with
the battery of working memory tests. A challenging test
for the process theory would be to take it beyond relatively
content-free tests and place it firmly within a broader con-
text of general intelligence (or g) as exemplified by verbal
fluency abilities.

4. Correlation and causation. There are two things to say
about this issue. First, “accounting for” variance via cor-
relations can be informative, but correlations, in and of
themselves, do not provide proof of causal relations.
There are myriad alternate theories that can account for
the correlations among ability measures, in addition to
the process overlap theory. The validity of any theory is
more likely to result from new predictions that, in one
way or another, diverge from those made by competing
theories (e.g., see Lakatos, 1970). The second point is
that even accounting for large portions of variance does
not, in itself, provide greater support for the theory; for
example, human height and weight are highly correlated
(r > .90; Diverse Populations Collaborative Group,
2005), but they are not the same thing.

Conclusion

As can probably be inferred from the preceding text, it is my
assertion that the correct answer to the reasoning test question
posed at the beginning of this article is “False.” Process meas-
ures do correlate with g, but they do not adequately represent
general intelligence. The general intelligence factor and general
intelligence are much more than what is assessed by process
measures, and the proof can be found in the fact that omnibus
intelligence tests, such as the Stanford–Binet and the Wechsler
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tests, do a much better job of predicting real-world criteria of
individual differences in intellectually demanding tasks. Until
such a time when process measures can even approach the
validity of these intelligence tests, it is not reasonable to say
that one has developed an adequate theory of the general intel-
ligence factor.
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Introduction

Scientific theories build bridges connecting available evidence in
novel ways. They are “the glue that holds scientific observations
together, for they summarize the chains of cause and effect (that
help) to understand how the world works” (Hunt, 2011, p. 65). Sci-
entific theories consider measurable variables; are objective;
account for data; and, crucially, are never confirmed. We admire
theories still playing the scientific game because they have not been
refuted. But this must be for good reasons, not for bad ones.

Let us say from the outset that we applaud Kristof Kovacs
and Andrew Conway’s (this issue) effort for introducing a theo-
retical proposal presented under the rubric process overlap the-
ory (POT). As properly underscored by Johnson (2013),
conceptual tools are essential for making sense of both the
huge amounts of already available data and the new findings
derived from neuroscience and molecular genetics.

POT is aimed at connecting evidence derived from psycho-
metrics, cognitive psychology, and neuroscience in an attempt
to explain one of the most replicated findings in science,
namely, the positive manifold: When individuals picked at ran-
dom from the general population complete varied mental tests,
those with better scores in a given test tend to have better scores
in the remaining tests (and vice versa). The statistical analysis
of a correlation matrix comprising these mental tests produces
a general factor (g). No matter how this information is ana-
lyzed, at the end of the day we will distill g if there is a truly pos-
itive manifold in the data.

The interest about the nature of g dates back to the
researcher who discovered this empirical fact, Charles Spear-
man (1904, 1927). The comprehensive book by Jensen (1998)
reviews the major and minor topics related to g and discusses
extensively the positive manifold at the psychometric, cogni-
tive, biological, and genetic levels. In this regard, several points
can be highlighted after his review: (a) g results from the com-
mon source of individual differences observed after resolving a
variety of mental tests; (b) some tests are better measures of g
than others, but the superficial characteristics of the former do
not help to characterize g, (c) individual differences in cognitive
abilities are remarkably greater than ability differences within a
given individual; (d) psychometric g cannot be interpreted as a

cognitive process or a brain feature; and (e) g might be com-
pared with a computer’s CPU.

One question of paramount relevance relates to the unitary
nature of g. In this regard, Kranzler and Jensen (1991) analyzed
a large battery of intelligence tests and elementary cognitive tasks
failing to support the proposal that a unitary process underlies
the general factor (g). However, Carroll (1991) reanalyzed their
data arriving at the conclusion that “it seems parsimonious to
assume that g is unitary and represents a single entity … that
influences a great variety of behaviors and performances, includ-
ing speed and efficiency of information processing” (p. 434). If g
is not unitary, statistical analyses should reveal several high-order
factors, but this is hardly the case.

Bridges must be solid enough to resist earthquakes. As we
show here, POT is a suggestive and courageous bridge built
over troubled water. Let’s see two examples before moving
forward.

According to the Spearman Law of Diminishing Returns, g
explains more variance at lower levels than at higher levels of
cognitive ability. Following Kovacs and Conway (this issue), this
factor differentiation shows that “g is far from being a constant
…. The domain-generality of the positive manifold varies across
ability level” (p. 155). However, there is no Spearman Law of
Diminishing Returns effect for the relationship between fluid
intelligence (Gf) and working memory capacity (WMC; Gignac
& Weiss, 2015; Kroczek, Ociepka, & Chuderski, 2016). Further-
more, Abad, Colom, Juan-Espinosa, and Garc�ıa (2003) observed
that strong differentiation effects are found when crystallized bat-
teries are analyzed (Detterman & Daniels, 1989; Lynn, 1992).
However, the analysis of fluid batteries reveals meager or null
differentiation effects (Deary et al., 1996; Fogarty & Stankov,
1995). Their own study, analyzing 4,253 individuals, compared
Gf and crystallized intelligence (Gc) batteries, finding a very
weak effect for the former and a remarkable effect for the latter.
They suggested that the higher correlations observed in the bot-
tom half of the intelligence distribution might be a by-product of
educational differences separating the low and high IQ bands,
not a genuine intelligence effect.

The second example refers to “goal neglect.” This cognitive
function is thought to reflect a limit in WMC. Individuals must
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maintain representations of the relevant information for suc-
cessfully completing a given task. Increased numbers of items
(instructions, rules, etc.) facilitate more lapses in the control
processes required for goal management. This sounds like a
simple short-term storage limitation. Nevertheless, this is not
our line of reasoning here. As noted by Kovacs and Conway
(this issue), goal neglect is “almost universal below a [Gf] of 85
but practically nonexistent above 100” (p. 161). If there are not
individual differences in goal neglect above this threshold, but
there are still 3 to 4 standard deviations in Gf beyond this point,
lapses in goal-related control processes cannot explain individ-
ual differences in Gf across the population distribution.

POT Emergent g

Departing from the parsimonious unitary view, Kovacs and
Conway seem to support the main thesis that g “emerges” from
a set of independent cognitive processes. g is a result, not a
cause. Specifically, it is argued that executive processes (such as
updating, inhibition, or switching) underlie and limit perfor-
mance across varied cognitive challenges, including intelligence
tests and working memory tasks. Of importance, Kovacs and
Conway highlight the recognized “indifference of the indicator”
just noted: The superficial characteristics of tests and tasks do
not help to understand “the determinants of individual differ-
ences” (p. 166).

Again, there is a noteworthy long tradition on intelligence
research regarding the ontological status of g. Statistical analy-
ses may produce one single unitary factor, but is it “real” (Horn
& Cattell, 1966)? g may or may not drive broad cognitive abili-
ties. The obtained higher order factor could be a simple statisti-
cal reflection of variance shared by lower order factors/abilities.
In POT’s terminology, g might be a “formative factor.”

Why g and Gf can be very strongly correlated without any
causal power of g has been elegantly explained by Cattell’s
(1971) investment theory: This is inevitable because, although g
represents variance shared by Gf and Gc, Gc itself results from
the investment of Gf across acculturation and long-term learn-
ing processes. However, the Gf–Gc correlation is far from per-
fect, because Gf is relevant for Gc at the time of learning
(historical Gf differing from the current Gf level). So one could
easily extract g out of Gf and Gc, but still g is irrelevant for
theory.

Although the investment theory provides one straightfor-
ward explanation for the “emergence” of g, Kovacs and Con-
way’s proposal is unclear (g as “emergent property”). There are
disparate conceptions of “emergent property” (Stephan, 1999):
weak, strong, synchronic, diachronic, epistemological, ontologi-
cal, and so forth. POT fails to specify in what way g “emerges”
from broad cognitive abilities. Bunge (2003) underscored that
if anything was to be an “emergent property” of a system, it
should constitute either the qualitative novelty in that system
(ontologically emergent property assumed by theories of strong
emergence) or should be unpredictable from lower levels of the
system (epistemologically emergent property assumed by theo-
ries of weak emergence), or both.

However, POT’s g does not fit any of these features, and
therefore it is hard to see how it is emergent in the strict

scientific sense. POT’s emergent g follows a kind of magic pro-
cess. As noted by Hunt (2011), theoretical statements are not
unique to science. Cause-and-effect relationships are specified
by theories, but these theories may or may not be scientific.
Speaking of “emergent properties” without the required details
just pushes the discussion toward a slippery slope.

Fluid Intelligence, Working Memory, Executive
Control,… and the Reliable Short-Term Maintenance
of the Relevant Information

After noting that research has identified one single WMC,
because a positive manifold also underlies available measures
of this capacity, Kovacs and Conway suggest that both positive
manifolds (for g and for WMC) might share their explanatory
variable(s). They ask, “Which component(s) of working mem-
ory cause(s) the general variation?” (p. 157). Their answer
opens a dangerous door: cognitive control in general and exec-
utive attention in particular. People showing high WMC do
have better executive control processes.

They also assume that (a) complex span tasks show stronger
correlations with fluid intelligence than simple span tasks, and
(b) executive processes account for the substantial correlation
between WMC and Gf. This relationship “is driven by the oper-
ation of multiple domain-general cognitive processes… identi-
fied as executive processes in cognitive psychology” (p. 160).
The problems composing standardized tests recruit both
domain-general and domain-specific processes. The positive
manifold is simply the result of the overlap between both types
of processes. Therefore, g does not reflect one single and uni-
tary process. It presumably emerges from a number of indepen-
dent sources.

However, this is mainly based on outdated empirical evi-
dence. The last decade of research regarding the analyses of the
cognitive correlates of Gf and WMC has introduced a serious
challenge to the relevance of executive control. As we see, their
review of the evidence is selective and, worse, their inferences
are incorrect.

Crucially, with regard to the second point, POT assumes

If executive control tasks (A) correlate with workingmemory tasks (B)

And if working memory tasks (B) correlate with fluid intelligence
tests (C)

Then A drives the correlation between B and C.

However, the relations are not transitive here: Variance in B
may reflect variance in A, as well as variance in another factor
(D), which (unlike A) is also reflected in C. Therefore, regard-
less of the A–B correlation, the B–C correlation may be driven
by D and data showing that some executive control tasks are
related to complex span tasks fails to support POT.

Studies addressing the relationship between executive tasks
and Gf are consistent with the conclusion that it is weak and
unstable. In this regard, Friedman et al. (2006) did not find sig-
nificant associations between inhibition and Gf, as well as
between the latter and switching. Updating was related to Gf,
but tasks tapping this executive function are highly confusing
because they merge executive control requirements and general
maintenance mental processes (Oberauer, S€uß, Wilhelm, &
Sander, 2007).
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Further evidence reveals null relationships between Gf and
shifting (Oberauer, S€uß, Wilhelm, & Wittmann, 2008) and
moderate correlations, at the latent level, between Gf and inhi-
bition (r D .39)—much weaker than the observed between Gf
and short-term storage (r D 1.0; Martinez et al., 2011). Only
7% of variance in Gf was univocally attributed to attention con-
trol in the Unsworth and Spillers (2010) study. Chuderski,
Taraday, Nęcka, and Smole�n (2012) showed that inhibition,
interference resolution, and attention control were not related
to Gf once short-term storage was controlled for (see also Ship-
stead, Lindsay, Lakey, & Engle, 2014).

It is important to note that available evidence no longer sup-
ports the first point: Complex span tasks are not stronger pre-
dictors of Gf than simple span tasks. Early reports suggesting a
large difference between complex and simple span tasks (Engle,
Tuholsky, Laughlin, & Conway, 1999) were flawed as a result of
the incorrect tasks’ scoring (absolute scoring with less than
ideal psychometric properties). Once properly scored, simple
span tasks are equally strong predictors of Gf (Unsworth &
Engle, 2007; Shipstead, Harrison, & Engle, 2015). There are sev-
eral research reports yielding similar findings (Chuderski, 2014;
Colom, Abad, Quiroga, Shih, & Flores-Mendoza, 2008; Colom,
Rebollo, Abad, & Shih, 2006; Martinez et al., 2011).

Although studies rejecting the executive control view are
ignored, some others are improperly highlighted. The Kane
et al. (2004) study is a key example: “Although simple span tests
appear to be more domain specific, the processes that complex
span tests tap beyond the pure storage and retrieval of informa-
tion appear to be largely domain general” (Kovacs & Conway,
this issue, p. 157). Their general structural model relating
Short-Term Memory (STM), WMC, and reasoning suffered
from the frequent multicollinearity problem. Surprisingly, an
alternative conceptual approach to that employed by Engle
et al. (1999) and Conway, Cowan, Bunting, Therriault, and
Minkoff (2002)—namely, the common variance between
WMC and STM was thought to reflect primarily storage,
whereas the residual WMC variance was thought to reflect pri-
marily executive control processes—was adopted by Kane et al.:
One general executive attention factor, with loadings from all
the span variables, was thought to reflect the domain-general
executive variance shared by all the span tasks (!). This is really
hard to buy into, especially because their STM tasks were care-
fully designed to measure short-term storage only. If the addi-
tional processing demand is removed from WMC tasks for
modeling STM tasks, assuming that one general factor defined
by both kinds of tasks represents executive control seems a post
hoc movement, to say the least. Finally, Gf was predicted by the
executive attention factor (.52) and by one orthogonal STM
spatial factor (.54). This hardly supports the view that execu-
tive-attention processes drive primarily the predictive utility of
memory span measures (see Colom, Abad, Rebollo, & Shih,
2005, for further arguable details).

The reanalyses of key studies by Colom, Rebollo, et al.
(2006)—including Engle et al. (1999); Miyake, Friedman,
Rettinger, Shah, and Hegarty (2001); Conway et al. (2002); Bay-
liss, Jarrold, Gunn, and Baddeley (2003); and Kane et al.
(2004)—led to several conclusions: (a) Individual differences in
memory span tasks are strongly explained by some general
component, four times more important than the observed

specific components; (b) complex span tasks cannot be clearly
distinguished from simple span tasks; (c) their shared compo-
nent might be responsible for their association with cognitive
abilities (including Gf); and (d) this shared component can be
identified with “simple” short-term storage capacity. In passing,
we note that the theoretical interpretation of the findings
observed across the reanalyzed studies (“there are cognitive sys-
tems more prone to coping successfully with several diverse
challenges … concurrent processing requirements leave less
capacity for temporary storage of information, which dimin-
ishes the reliability of the stored information, which in turn is
responsible for the behavioral effects observed in memory span
tasks” (Colom, Rebollo et al., 2006, p. 170)) was seen as consis-
tent with the Carroll’s (1991) unitary view discussed in the
Introduction section.

Relatedly, the Wiley, Jarosz, Cushen, and Colflesh’s (2011)
finding that “it is the application of new rules and switching
from old ones that drives the correlation between complex
span and Gf” (p. 30) has been refuted by at least three other
sophisticated recent studies (Harrison, Shipstead, & Engle,
2015; Little, Lewandowsky, & Craig, 2014; Smole�n & Chuder-
ski, 2015). New-rule and old-rule items of the Raven test
equally strongly predict WMC, contrary to POT predictions.

Moving from correlations to mechanisms, POT proposes
that Gf (remember: variance in abstract reasoning on novel
problems) strongly relies on executive control. In support of
this statement, Kovacs and Conway (this issue) cite the classic
model by Carpenter, Just, and Shell (1990). However, this
model is misrepresented. The requirement of maintaining
more rules was not treated by Carpenter et al. as cognitive con-
trol but as sheer storage capacity. “Control” here was related to
the ability to coordinate inference processes, backtrack from
unsuccessful hypotheses, and so forth. Such ability is a kind of
strategic control (goal management) departing from simple
executive processes. Notably, there are computational models
of Raven and analogy tests that do not rely significantly on
executive processes (Hummel & Holyoak, 1997, 2003; Kunda,
McGreggor, & Goel, 2013; Lovett, Forbus, & Usher, 2010; Ras-
mussen & Eliasmith, 2014; Wilson, Halford, Gray, & Phillips,
2001). The crucial feature of these models is the maximum
number of elements/size of a relation (relevant to the solution)
that can be stored. The simulation of individual differences in
reasoning (figural analogies) by Chuderski and Andrelczyk
(2015) has shown the key role of the number of distinct role-
filler bindings that can be maintained simultaneously.

It is true that “individuals with greater WMC have better
cognitive control processes” (Kovacs & Conway, this issue, p.
157). However, these individuals also show further cognitive
advantages, such as learning (Chuderski, 2013; Kaufman,
DeYoung, Gray, Brown, & Mackintosh, 2009), long-term mem-
ory retrieval (Unsworth & Spillers, 2010; Unsworth, Spillers, &
Brewer, 2010), short-term memory capacity (Chuderski, 2014;
Colom et al., 2008; Cowan, Fristoe, Elliott, Brunner, & Saults,
2006; Shipstead et al., 2015), or detection of simple perceptual
patterns (Chuderski, 2014; Oberauer et al., 2008). We might
infer that complex span tasks correlate with Gf because of some
of these processes, beyond executive control. Indeed, Unsworth,
Fukuda, Awh, and Vogel’s (2014) study suggests that Gf vari-
ance must be explained considering several cognitive factors
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beyond executive control (the ability for selecting and main-
taining items in the face of distractions), namely, capacity (the
ability to actively maintain distinguishable items in the short
term) and secondary memory (encode items into the interme-
diate memory and recover those relevant for the task at hand):

Working memory limitations can arise for a number of reasons.…
[These limitations] can be multifaceted and can help to resolve dis-
crepancies in the literature where some studies find evidence for the
importance of deficits in one, whereas other studies find evidence
for the importance of another. (p. 21)

Kovacs and Conway’s proposal neglects existing evidence
showing that executive control is (almost) irrelevant for explaining
individual differences in Gf. Gf and WMC can be explained by
the number of items (and/or the number of bindings between
items) that allows encoding the structure/solution in working
memory (Cowan et al., 2006; Halford, Andrews, & Wilson, 2014;
Halford, Cowan, & Andrews, 2007; Mart�ınez et al., 2011; Obera-
uer et al., 2007). Therefore, the overlap may be explained by a
common capacity (“abstract working memory”; Cowan et al.,
2011) or the ability to construct and maintain arbitrary bindings
(“relational integration”; Oberauer et al., 2007).

At the latent variable level, memory span factors (short-term
memory, WMC, and executive updating) are hardly distinguish-
able from Gf (Mart�ınez et al., 2011). From a theoretical perspec-
tive, short-term storage is the cognitive component shared by
these span measures (Colom et al., 2008; Colom, Rebollo, et al.,
2006; Hornung, Brunner, Reuter, & Martin, 2011; Krumm et al.,
2009; Shahabi, Abad, & Colom, 2014), and therefore individual
differences in Gf can be explained by basic mental processes
underlying memory span, namely, encoding, maintenance, and
retrieval (Jonides et al., 2008). Shared capacity limitations might
derive from the number of items that can be kept active in the
short term or the number of relationships between elements that
can be kept active during the reasoning process necessary for
solving problems composing standard intelligence tests (Halford
et al., 2014; Halford et al., 2007). The limitations shared by intel-
ligence and memory span might be based on the ability to build
and keep relevant connections in the short term.

After the simultaneous consideration of a varied set of can-
didate relevant constructs, Mart�ınez et al. (2011) concluded
that cognitive processes theoretically involved in working
memory and executive updating, inhibition, and processing
speed fail to add significant information for answering the
question regarding the basic processes underlying fluid reason-
ing. Chuderski et al. (2012) also supported the crucial role of
storage capacity regarding the mechanisms underlying the cor-
relation between WMC and Gf. Executive control processes
(attention, interference resolution, and inhibition) failed to
contribute in some relevant way to this relationship.

As noted in the Introduction section, scientific theories
account for data by building bridges. POT fails to connect
highly relevant recent data, which is not good for a healthy the-
ory. Looking for converging evidence only is like being in a
courtroom playing the role of the defender. But the proper con-
trast of a theory requires playing the role of the prosecutor.
Kovacs and Conway fail to do that, and, indeed, POT may be
seen more as an unfalsifiable general framework than as a pre-
cise theory of the human intellect.

Fluid Intelligence and Executive Processes in the Brain

POT ignores crucial findings observed in cognitive research for
selectively assembling supporting evidence regarding the role
of executive control processes for explaining the strong connec-
tion between Gf and WMC, as described previously. As we see
in this section, one similar strategy is applied for selecting evi-
dence accumulated by neuroscience research.

The recent meta-analysis by Basten, Hilger, and Fiebach
(2015) underscores the lack of overlap between structural and
functional correlates of cognitive ability differences (consistent
with Colom’s (2007, 2014) analysis of the evidence), noting
that a brain region might be activated for copying with a cogni-
tive challenge (task approach), but individual differences in this
activation might not be associated with individual differences
in cognitive ability (individual differences approach). Therefore,
the relevant question is, Do individual differences in brain fea-
tures predict cognitive ability differences? The well-known P-
FIT model combines the task and individual differences
approaches (Jung & Haier, 2007), whereas Basten et al. (2015)
considered only the latter in their meta-analysis.

For their meta-analysis, 457 subjects and 415 data points
provided structural data, whereas 464 subjects and 151 data
points provided functional data. Structural studies supported
the relevance of frontal, temporal, and occipital regions,
whereas functional results supported the relevance of parietal
and frontal regions. The parietal cortex was not relevant in
structural studies. The main conclusion was that structural and
functional correlates of cognitive ability differences couldn’t be
located in overlapping brain regions. The whole picture hardly
supports the crucial role of the PFC, as underscored by POT.

Kovacs and Conway assume that Gf is linked to the dorso-
lateral prefrontal cortex with remarkable consistency. This
brain structure supports cognitive control, and therefore, again,
executive functioning is highlighted. From here, they move to
the relevance of the multiple demand system (MD) defining
one cognitive control network (Duncan, 2010).

However, the MD approach has been questioned. Let’s see
one example. Hampshire et al.’s (2012) report was devoted to
demonstrating that the g factor is an invalid psychological con-
struct, because general intelligence requires at least two orthog-
onal components defined by different (MD) brain networks. In
their study, factor analysis was applied to brain image voxels to
find clusters interpreted as brain networks. One strong, unro-
tated general factor and several further factors were identified.
However, the obtained factors were arbitrarily submitted to a
varimax rotation, which impose their independence. The final
solution was the basis of their theoretical interpretation regard-
ing the independence of two brain networks. As noted by
Haier, Karama, Colom, Jung, and Johnson (2014) in their criti-
cal review, “the unrotated factor solution that shows the strong
general factor reflects brain organization to the same degree as
the statistically independent factors … and could well be a
neuro-g.”

Colom, Jung, and Haier (2006) noted similar questionable
interpretations in Duncan et al.’s (2000) report addressing the
neural basis for g (discussed by Kovacs and Conway, this issue).
A close examination of their study reveals support for a distrib-
uted model: Results obtained from the most highly g-loaded
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items in their analysis reveal activations in frontal, parietal, and
occipital brain regions. In their own study, Colom, Jung, et al.
(2006) analyzed a set of intelligence measures showing a broad
spectrum of g-loadings (range D 0.23–0.90), finding that
increasing g-loading is associated with greater gray matter vol-
ume in several areas distributed throughout the brain.
Although frontal areas clearly showed the most relationship to
g, many other areas also were related.

Therefore, there is life beyond the frontal lobes and executive
processes. The lesion study by Barbey, Colom, Paul, and Grafman
(2014) is a nice example. Here, the simultaneous relationships
between several factors representing workingmemory–related cog-
nitive processes (verbal workingmemory, spatial workingmemory,
manipulation, andmonitoring) andGf were analyzed. As shown in
Figure 1, one remarkable overlap was found for spatial working
memory and Gf. However, one executive factor defined by versions
of the n-back task, varying in their cognitive complexity, showed a
meager overlap with Gf. Furthermore, the frontal lobes were not
the only stars in the sky regarding Gf.

Network approaches also depart from this “frontal/control
perspective.” Let’s see two examples. Pineda-Pardo, Mart�ınez,
Rom�an, and Colom (2016) analyzed local and global efficiency
indices within a structural network defined by regions compos-
ing the P-FIT model (Jung & Haier, 2007). Variations on these

network indices were related to individual differences in WMC
and Gf. Parietal and frontal regions were found key for mainte-
nance of the analyzed network structural integrity. The middle
frontal gyrus, the superior frontal gyrus, and the precuneus
showed large connectivity values, and, of importance, penaliz-
ing these parietal and frontal regions degraded network effi-
ciency along with the observed relationships with cognitive
ability differences.

From another perspective, the resting-state fMRI graph-
analysis by Santarnecchi, Rossi, and Rossi (2015) showed
enhanced brain resilience to targeted and random attacks in
individuals with high intelligence scores. It is important to note
that this increased resilience was based on a greater distributed
processing capacity, including cortical regions supporting
memory and language:

By implying intelligence as responsible for a more widespread and
efficient brain resource allocation at rest, our results support previ-
ous observations of a positive spatial correlation between intelli-
gence level and brain volumes—mostly encompassing frontal,
parietal, and occipital lobes, contrasting the idea of prefrontal corti-
ces as primary brain sites related to intelligence level. (p. 305)

Furthermore, two other investigations correlating brain
spontaneous activity with individual variability in

Figure 1. Lesion results observed in the Barbey et al. (2014) study for fluid intelligence (Gf), spatial working memory, and monitoring (N D 158).
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intelligence measures have underscored the relevance of
whole-brain activity, with particular contributions by the
parietal, occipital and temporal lobes. Looking at the role of
strong and weak brain functional connections, Santarnecchi,
Galli, Polizzotto, Rossi, and Rossi (2014) documented a piv-
otal role for a widespread network of weak connections
encompassing the two hemispheres, suggesting the impor-
tance of flexible, long-range connections in determining
individual cognitive profiles. In a subsequent study focusing
on the connectivity profile of homologues brain regions, a
reduction in the symmetry of the connectivity profile of
multiple brain regions has been identified as a positive pre-
dictor of higher fluid and crystallized intelligence, with sig-
nificant differences regarding low-level processing regions
such as the visual cortex, temporal lobe, and somatosensory
cortex (Santarnecchi, Tatti, Rossi, Serino, & Rossi, 2015)
and no crucial role for the variability in the PFC.

Beyond fMRI studies, the role for g/Gf/WMC of brain
regions both within and beyond PFC was shown by means
of transcranial electrical stimulation studies, a noninvasive
brain stimulation technique allowing modulating brain
cortico-spinal excitability as well as enhancing brain oscil-
latory patterns in a frequency-specific manner (Frohlich &
McCormick, 2010; Santarnecchi et al., 2015). Specifically,
although studies targeting the left middle prefrontal gyrus
using transcranial alternating current stimulation have
shown improvement in Gf-related reaction times and

efficiency during stimulation (Santarnecchi et al., 2013)
with no effects on WM performance (Santarnecchi et al.,
2016), several others reported increases in Gf test scores
(Pahor & Jau�sovec, 2014) and WM task recall (Jau�sovec &
Jau�sovec, 2014; Jau�sovec, Jau�sovec, & Pahor, 2014; Polan�ıa,
Nitsche, Korman, Batsikadze, & Paulus, 2012) when the
parietal cortex was stimulated (and some even reported
null effects for the frontal cortex, e.g., Jau�sovec et al.,
2014). Moreover, additional evidence for the “beyond
PFC” argument comes from a study by Polania et al.
(2012) using transcranial alternating current stimulation in
the theta frequency band, showing improvement of WM
performance after synchronous (i.e., in phase)—but not
asynchronous—oscillatory theta (6 Hz) stimulation of a
left fronto-parietal network. This plausibly reinforces the
idea that the coordinated activity of neuronal populations
belonging to a distributed network (also possibly expand-
ing subcortically and in the controlateral hemisphere)
might represent the basic neurophysiological substrate of
higher order cognition.

We close this section reporting the findings of a recent meta-
analysis by Santarnecchi et al. (2016) including fluid intelli-
gence, inhibition, switching/flexibility, and updating (Figure 2).
Clearly, capacity-related brain responses are not confined
before the central sulcus. There is definitely a distributed net-
work involved for both Gf and executive control: High-com-
plexity trials did elicit widespread activations encompassing the

Figure 2. Meta-analysis results for fluid intelligence and executive processes (adapted and modified from Santarnecchi et al., 2016).

186 COMMENTARIES

D
o
w

n
lo

ad
ed

 b
y
 [

M
rc

 C
o
g
n
it

io
n
 B

ra
in

 S
ci

 U
n
it

] 
at

 0
8
:0

9
 0

3
 A

u
g
u

st
 2

0
1
6
 



PFC but also including subcortical and occipito-temporal
regions.

Conclusion: X Marks the Spot

Indiana Jones was looking for his missing and beloved father in
Venice. Marcus Brody and Elsa—a Nazi spy—were with him in
one of the numerous churches of the unique city. When the
woman leaves the room in order to ask permission to stay in
the building, the men use their private time to look at the note-
book Dad sent to Indy. Indy finds a drawing representing the
main stained glass window placed in front. He notes that there
are printed numbers in the glass and in the columns, but he
cannot find number 10. They look from the ground to the left,
to the right, up, down, and so forth. Nothing. But then Indy
notices one spiral staircase, climbs it, and finds the missed
number in the floor: “X marks the spot” (Figure 3).

We began our comment noting that scientific theories build
bridges connecting observations. In this regard, they account
for available data better than rival theories and, ideally, predict
future discoveries. POT attempts to do that, and the authors
proposing this theory must be recognized. It is easier to find
failures in an already build structure than put together the
pieces giving rise to it. Therefore, we appreciate the effort
invested by Kovacs and Conway.

However, it was our work here to enumerate and briefly dis-
cuss what we think are problems suffered by the proposed the-
ory. In essence, we found that POT attempts to integrate
psychometric, cognitive, and neuroscience evidence, but in a
selective way, which makes their bridge shaky and unsatisfying.
The positive manifold is thought to be emergent from the oper-
ation of varied mental processes, but Kovacs and Conway’s
conception of “emergent property” is far from straightforward.
In addition, it seems, at a first glance, that varied mental pro-
cesses are crucial for the theory, but then executive control is
distinguished as the most brilliant star in the sky.

POT rejects unitary views trying to account for the positive
manifold and, therefore, the general factor of intelligence (g).
However, following Carroll (1991), it would be reasonable to
preserve the unitary view (at least because of its higher parsi-
mony) instead of accepting models based on the interaction
between a large set of independent processes (until further
notice). The unitary and multiple/sampling views cannot be
distinguished mathematically. As Kovacs and Conway (this
issue) acknowledge, “A single common cause of the positive
correlations between mental tests, is surely a sufficient …
explanation of the positive manifold” (p. 153). It may or may
not be necessary, but time and further research will tell.

This research suggests that, for instance, intelligence is a mov-
ing target in the brain (Mart�ınez et al., 2015). Available evidence
might depart from the view that there is a place in the brain for
general intelligence, and even that only “places” are relevant, as
temporal properties of neural processing like synchronization and
coordination might also play an important role (see Cohen, 2011),
as well as network-level dynamics promoting evolvability, robust-
ness, and plasticity (Csemerly, 2015).

As in the scene where we saw Indy, Marcus, and Elsa read-
ing numbers across disparate places in the building, perhaps we
still miss the X marking the spot. Maybe there is no place in the
brain for general intelligence, because the brain itself is the
place. And we only have a single brain.
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Process Overlap Theory and First Principles of Intelligence Testing

Nelson Cowan

Department of Psychological Sciences, University of Missouri–Columbia, Columbia, Missouri

The purpose of this comment is to put the process overlap
theory of Kristof Kovacs and Andrew Conway (this issue) in
the broadest possible context. I briefly discuss the nature of
intelligence testing and then relate it to the theory under con-
sideration before making a few concluding comments.

Nature of Intelligence Testing

Intelligence testing was supposed to be a means to determine
who is most capable at school or work. School itself consists of
educated guesses about what skills would be most important to
teach and assess as precursors to a successful adult life, includ-
ing but perhaps not limited to work. In the workplace, if the
task involved is specific, the test can be commensurately
specific. If the workplace includes a variety of jobs with a
variety of complexity levels, the intelligence test justifiably
comes into play to try to assess who is best able to learn a new
skill and who has the best bank of knowledge applicable to a
wide range of situations.

The criteria for intelligence tests ideally are success at school
or at work. Usually, however, these criteria are hard to come
by, a situation that has limited test development. Sometimes
there is a good proxy that can be used as a criterion; in child
testing, for example, the skills that increase with age in the
typical child have served as good proxies. The reason is that it
is a safe bet that if a child resembles the average child who is
older (younger) than him- or herself, that particular child is rel-
atively intelligent (unintelligent).

Still, a lot is left to be desired in intelligence testing because
of compromises made in the name of practicality. We all know
that social and emotional skills and wisdom in decision making
are quite important in the workplace, as is creativity, though all
of these have proven difficult to test in the conventional
sit-down situation, and perhaps for that reason have been omit-
ted from most conventional tests of intelligence.

Process Overlap Theory in the Bigger Picture of Things

The authors’ proposed theory is one example of what I see as
the most important trend in intelligence testing since its incep-
tion in the late 1800s. At that point, test developers had
hunches about what kinds of material to include in tests, result-
ing in a range of different, sometimes quirky, kinds of test
items. Whatever “worked” was kept in the test, and items that

did not predict anything important were excluded. With the
hindsight of about 150 years of experimental psychology,
though, it has become possible to make more focused predic-
tions about what kinds of test items will be most diagnostic.
Moreover, theories of the mental structure related to the tests
can be based on this knowledge. The process overlap theory
tries to capitalize on this research base, in particular from cog-
nitive psychology and cognitive neuroscience. It is hoped that
the theory will consequently be of use in (a) guiding the kinds
of test questions that would be most important to add; and (b)
predicting performance on kinds of tests that are not even
included within intelligence tests—at least not yet.

Considered most broadly, the key types of intelligence test
items might be those that help to answer the question of the
extent to which, observing the person in question, there is “any-
body home” in there, and whether it’s someone who could be
useful in a work or school situation. As one such essential,
high-level ability, working memory capacity indicates the
amount of information that can be held in mind, which is
related to the complexity of ideas that can be put across to the
individual successfully. As a simple example relevant to young
children, which I present because it is an easy example to
explain, understanding of the meaning of the word tiger
requires keeping in mind that it is a kind of cat, that it is large,
and that it has stripes (or else, overlooking one of these charac-
teristics, one could be talking about a zebra, a house cat, or a
lion, respectively).

As a more complex and intertwined set of essential, high-
level abilities, executive functions include various self-manage-
ment skills that, applied to the workplace, might be needed in
order to ensure that one can say what needs to be said
(provided that one knows what that information is); avoid say-
ing something at all, if it would be clearly unwise to do so; keep
in mind the context in which one is working; avoid making
statements without taking into account the feelings of
coworkers; switch rapidly from one task to another when that
is necessary; observe one’s own behavior enough to know when
to avoid harmful distractions; and so on. When a person puts
those higher level executive skills to good use, then we indeed
feel that someone is “at home” in there, and it may well be
someone we would want in our workplace.

As the authors note, though, it would be a mistake to insist
that these higher level management skills are all that a person
needs. If the person is out of his or her element, there might be
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knowledge missing so that the higher level skills cannot be well
applied. Although most skills that have been tested tend to cor-
relate fairly highly with one another, some people do seem to
have more facility with, say, verbal materials than with spatial
items, or vice versa. There are no doubt other individual
specialties. The process overlap theory does a good job of point-
ing out that these skills are individually important but that the
working memory and executive function skills serve as bottle-
necks for all of them. As an analogy, a restaurant can make
excellent food of various types, but the food quality doesn’t
matter unless the waiters are able to seat you and serve the food
in a timely manner, before it gets cold or you have to leave.

If we had better test criteria, theories of intelligence
would reveal other bottlenecks. For example, there are vari-
ous sociopaths who function well on executive skills and
have a lot of general knowledge and learning ability but
whom you would not want in the workplace because of a
personal defect in terms of antisocial motivation. Another
kind of person not helpful in the workplace is one undergo-
ing a sustained, debilitating depression that cannot soon be
cured. Such key elements of the mind are omitted from the
tests, and some of them are considered inappropriate for
the tests (e.g., too personal, insensitive to cultural differen-
ces, considered medical disabilities to be accommodated).
Therefore, they evade the theories based on the tests,
including the authors’ theory. What kind of test might
allow us to determine who not only has fluid intelligence,
working memory, and executive function but also who
among the capable individuals are the ones most likely to

put their talents to effective use? That kind of additional
bottleneck occupies the minds of college admissions board
members, who therefore heavily consider things like essays
and extracurricular activities.

Concluding Remarks

The authors seem to have a good theory of intelligence tests,
founded in the extant research on what factors predominate
when a problem has to be solved. Individual interests and
specific skills in a particular type of material can be important
but cannot shine through without adequate memory and
executive processes.

We must keep in mind for the future of intelligence testing
that, at present, theories such as this one come across as
theories founded on arbitrarily constructed tests. For improve-
ment in the utility of the tests, we need to consider what addi-
tional human characteristics are important in determining who
will make the most of an opportunity and who will waste it.
When such tests are conceived, the process overlap theory may
become a building block of a more general theory in which the
boundary between intelligence and personality is pretty much
blurred. For that to happen, of course, we will have to revisit
issues about the purposes of the tests and the ethical constraints
that should be placed on them.
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Introduction

Weprovide seven responses to Kovacs and Conway’s wide-ranging
theory of intelligence differences. In the first six, we: reflect on the
past theories that can be heard in this new one and how they have
fared; discuss whether, in their present state, cognitive processes
inferred frommental tests can be considered isomorphic with brain
processes and can bear explanatory weight in theories of intelli-
gence; and suggest that the positive manifold might be a formative
biological latent trait while probably being a reflective psychological
one. In the seventh, we attempt to test some hypotheses from Pro-
cess Overlap Theory in our own Lothian Birth Cohort 1936 data.

Process Overlap Theory as a Palimpsest

Knowing the history of the many attempts to explain the posi-
tive correlations between mental tests almost hinders the
assessment of this one. We kept seeing the ghosts of past theo-
ries in and between the lines of the writing. One of us has
recently reexplained and reexamined (and recompared with
others’ theories) Godfrey Thomson’s “bonds/sampling” theory
of intelligence—to which Kristof Kovacs and Andrew Conway
(this issue) concede they owe a debt—and we see strong simi-
larities (Bartholomew, Allerhand, & Deary, 2013; Bartholomew,
Deary, & Lawn, 2009). Well, yes and no: The account that
Kovacs and Conway (this issue) give is more like Thomson’s
(1916) initial dice-throwing idea and is less informed by the
later (e.g., Thomson, 1939) sampling/bonds theory, which did
not propose a small number of separate processes, instead pos-
iting a huge number of neural/cognitive entities that are sam-
pled by different tests: “Instead of showing that the mind has a
definite structure, being composed of a few factors which work
through innumerable specific machines, the low rank shows
that the mind has hardly any structure” (Thomson, 1939, p.
270).

However, we should also be fair to Kovacs and Conway,
and state that Thomson’s various writings can be perused
to get a slightly different reading of the brain substrate for
his theory, one that sounds similar to the Carroll–Horn–
Cattell hierarchy (Carroll, 1993). At a 1939 symposium at

which Spearman and Burt were also speaking, Thomson
summed up as follows:

I myself lean at the moment more towards Spearman’s g and his
later group factors than I do to Thurstone’s, since they seem to me
more in accord with the ideas of my own Sampling Theory. On that
theory g is as it were the whole mind, and the tests are part of g, not
g part of the tests. And were that mind entirely undifferentiated,
structureless, g would be the only factor needed. As the complexity
of the mind, and the complexity of the upper brain, is organized
(partly by the maturing of hereditary bonds, mainly I fancy by edu-
cation and life) and integrated into “pools”, “clusters”, call them
what you will, so additional factors, additional descriptive coeffi-
cients, are needed. (Thomson, 1939/1940, p. 106)

We agree that, based on current evidence, one cannot now
choose between Spearman’s and Thomson’s ideas either statis-
tically or biologically (Bartholomew et al., 2009). However, two
things about Thomson’s ideas were not, but should be, recog-
nized by Kovacs and Conway. First, with Cyril Burt, we agree
that Thomson’s mature theory might have been a different way
of stating Spearman’s theory:

… (to put it crudely) a homogenous brain, consisting merely of a
very large number of similar nerve cells, identical in nature and in
strength, would obviously be a brain governed by a single general
factor. In short, there is no mathematical difference between assum-
ing only a single factor, varying continuously, and assuming an infi-
nite (or indefinitely large) number of unit factors forming a single
homogeneous “pool”. A bushel of wheat is still a bushel, whether
we call it corn or insist that it is composed of innumerable grains.
(Burt, 1940, p. 160)

Second, Thomson made clear that his theory tried to make
the explanatory construct an aspect(s) of the brain, whereas he
saw that g was an aspect of the tests (which brings us on, later,
to mental test-brain structure/function isomorphism):

The difference in point of view between the sampling theory and
the two-factor theory [of Spearman] is that the latter looks upon g
as being part of the test, while the former looks upon the test as
being part of g. The two-factor theory is therefore compelled to pos-
tulate specific factors to account for the remainder of the variance of
the test, and has to go on to offer some suggestions as to what spe-
cific factors are—perhaps, neural engines [Cf Anderson, 1992]. The
sampling theory simply says that the test requires only such and
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such a fraction of the bonds of the whole mind—the same fraction
which, on the two-factor theory, g forms of the variance of the test.
(Thomson, 1939, pp. 281–282)

Given that Thomson is often recounted by many as Spear-
man’s longest serving opponent of g, we should remind readers
that he did not think that g was incorrect, only that it was, he
judged, one among other possible explanations for the positive
correlations among mental tests. He saw it as his duty to think
of other possible accounts. However, he left it to the last para-
graph of his long obituary of Spearman, that is, after Spearman
could have heard him say it, to conclude, “Probably there is a
general factor of intelligence” (Thomson, 1947, p. 382).

Can Cognitive Processes Bear Explanatory Weight?

One of us has already dealt with this issue at length in a book
(Deary, 2000) that was devoted to assessing reductionist
accounts of human intelligence differences. The levels of reduc-
tion considered were cognitive process accounts, accounts
based on varieties of reaction time procedures, psychophysical
accounts, and brain biology and genetics. The various cognitive
process accounts were found to be unsatisfactory, because they
did not reduce or explain:

The nagging worry is that this area of research, frequently employ-
ing sophisticated modelling procedures, has done little more than
neatly and attractively pull apart the layers of the psychometric
layer cake. The slices can all be pushed together to reconstruct the
cake, but they have not, in truth, revealed what we wanted: the
ingredients and procedures of the recipes for different sponges and
fillings. As Stauffer, Ree, and Carretta (1996, p. 193) commented,
“Despite theoretical foundations and arguments, cognitive compo-
nents tests appear to measure much the same thing as traditional
paper-and-pencil tests.” (Deary, 2000, p. 144)

We apologize for the extended MacArthur Park cake meta-
phor, but the point is that truly explanatory, reductionist sci-
ence does not merely redescribe phenomena; rather, one needs
lower level, validated concepts from which to build correspond-
ences. We judge that psychology—including cognitive psychol-
ogy and psychophysics—when not rooted in validated brain
mechanisms has largely failed in this regard. Just as we criticize
any psychometric intelligence researchers who imagine their
hierarchical structural equation models that show patterns of
cognitive covariance can actually tell them how the brain is
fashioned, we still challenge cognitive psychologists to show a
brain account (a mechanistic molecular account, not just corre-
lations with, for example, brain imaging variables) of differen-
ces in a complex cognitive test that rises above na€ıve
isomorphism, that is, claiming a distinct brain process can be
seen in their atom-splitting of a mental test. We think we’ll
have to be patient in waiting for an account of why mental tests
covary, because we understand too little as yet about which
brain variables underlie cognitive differences.

So, to put together our first two points—that others have
mostly been this way before, and that cognitive processes are
rarely validated entities that can do explanatory work (they are
“skyhooks” and not “cranes,” according to Dennett’s, 1995,
typology)—and apply them to Kovacs and Conway’s pithiest
statement of their theory as follows (with our responses in
brackets):

The briefest possible summary of its central assumption is that any
test item or cognitive task requires a number of domain-specific as
well as domain-general cognitive processes [Spearman, Thomson,
and Anderson, 1992, among others, said this sort of thing]. The
domain-general processes that are central to performance on cogni-
tive tests are primarily the ones that are identified as executive pro-
cesses in cognitive psychology in general and the working memory
literature in particular [So-called executive processes and working
memory have been found empirically to be almost exact redescrip-
tions of g and come from the sorts of mental tests that produce g;
Diamond, 2013, said, in his Figure 4, that for two of the three higher
level executive functions—reasoning and problem solving—“fluid
intelligence is completely synonymous with these”; and Kyllonen
and Christal, 1990, showed near-identity—between working mem-
ory and reasoning]. Such processes are recruited by a large number
of test items, alongside domain-specific processes, which are tapped
by items appearing in specific types of tests only. In turn, domain-
general executive processes overlap with domain-specific processes
more than the domain-specific processes overlap with one another.
[These sound similar to Thomson’s “pools”/“clusters” of bonds.]

Thus, the pattern of thinking here is a Spearman–Thomson–
Anderson (1992) hybrid (pushing psychometric correlations
around in an explanatory kaleidoscope), and we doubt the
validity of the explanatory variable(s).

A Psychological “Grab Bag”

The Kovacs and Conway (this issue) article is to some extent a
“grab bag” that includes both core content and some items that
we think are of less quality and importance in the field of intel-
ligence differences. It is our judgement call that the differentia-
tion effect and the worst performance rule are, if they actually
exist, relatively small-scale phenomena that are not particularly
important for a general theory of intelligence to explain. One
of us has also previously examined Duncan’s goal neglect task
and the kernel component that was supposed to account for g
variance (Deary, 2000, pp. 136–140); the analysis found its con-
struct validity wanting, although the correlations with the task
were interesting. Another phenomenon brought to bear is the
close correlation between fluid intelligence (Gf) and g; we do
not agree that this is a cause for concern in the way that the
authors do, and we have concerns about their psychometric
argument to segregate them. This is based upon apparently dif-
ferent correlations between working memory and Gf (r D .85)
and g (r D .48). However, the former statistic (Oberauer,
Schulze, Wilhelm, & S€uss, 2005) was based on a reanalysis of
the same data as the latter (Ackerman, Beier, & Boyle, 2005).
The difference was that Ackerman et al. (2005) opted to fix
their manifest-to-latent loadings based on a previous model.
The correlation between g (measured the same way in both
publications) was substantially increased when these paths were
not fixed (Oberauer et al., 2005). We deal with the further
efforts to separate g and Gf in the empirical section of this
commentary. In contrast, the crystallized–fluid intelligence divi-
sion is a useful one, particularly for describing ageing effects.
We see fluid intelligence being brain-as-knowledge-making-
machine, using external or internal stimuli to operate on and
crank out new stuff, and crystallized intelligence being brain-
as-knowledge-warehouse, manifested when we bring already-
stored items of knowledge to our or others’ consciousness.
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Other Causes of g Variance

Kovacs and Conway (this issue) recognize that, across the
human brain, the connecting white matter shows a latent factor
whereby some people’s connections tend generally to be health-
ier than others’ and that this accounts for about 10% of the var-
iance in the general factor extracted from multiple cognitive
tests (Penke et al., 2012). So, they conclude, it might be that
some general brain variance underlies most mental tasks, put-
ting a limit on performance. We commend their pluralism
here, in thinking that there might be some sources of general
brain variance (they call it z) in addition to their favored cogni-
tive processes in explaining the positive manifold. However,
they never say precisely how much variance in g they predict to
be explained by process overlap as compared to other sources
of variance (like brain integrity or mutualism). The 10% figure
comes from only one relevant brain measure; one of our recent
publications ups the number to 20% with the addition of multi-
ple other g-related measures of brain integrity, at least in older
age (Ritchie et al., 2015). In the future, more advanced tools
will probably increase the variance explained even further. If
this proportion of explained variance rises markedly, will
Kovacs and Conway still see room for cognitive processes as
formative contributors to explaining the positive manifold?

We see no reason why the biological contributions to g
should be reflective; rather, g could be characterized as the for-
mative result of multiple (sometimes uncorrelated) aspects of
biological makeup. This leaves open the possibility that g is a
formative construct at the biological level and a reflective con-
struct at the psychometric level. Vernon and Weese (1993)
noted such a prospect with reference even to multiple uncorre-
lated (rotated) aspects of information processing contributing
to g though, again, we would question the reductionist validity
of these variables. We provide a small-scale empirical demon-
stration of this “formative biology of g” idea below.

We should state that we have doubts as to whether there is a
level of explanatory constructs, at the cognitive level, that lies
between g and specific test variance and “form” g, “results with
tasks that are indeed elementary, and supposedly tap a small num-
ber of cognitive processes, show that g reflects a number of inde-
pendent sources” (Kovacs & Conway, this issue, p. 162). As far as
we see, performances on so-called elementary (they never are!) cog-
nitive tests are reflections of, rather than formative of, g (see
Luciano et al., 2005, and Plomin & Spinath, 2002, Figure 3, for dis-
cussion of this at the genetic level). Also, we judge that a set of bio-
logical (which of course includes environmental) formative
variables that contribute to g—that is, a more or less efficient
brain—is a more likely and tractable hypothesis than a set of psy-
chological skyhooks, as Kovacs and Conway suggest when they
argue that “tests indeed reflect specific abilities, which do have
ontological reality [Really?!]” (p. 162).

We think it is likely that, at the biological level, there will be
some contributors to domain-level andmore specific cognitive per-
formance, as well as to general cognitive ability. Insofar as Kovacs
and Conway agree with this, it is a restatement of Anderson’s
(1992) theory of intelligence differences. He envisaged a “basic
processing mechanism” on which all cognitive tests were imple-
mented, which had individual differences, and which therefore
contributed variance to differences in all cognitive tests. He also

thought there were “specific processors” that dealt with types of
mental problems (he mentions, e.g., spatial and verbal) and that
showed individual differences that might be uncorrelated with
each other and with the basic processing mechanism. In retro
terms, Anderson’s ideas might be translated into a cassette player
(the basic processing mechanism on which all one’s tapes are
played and that is more or less hi- or lo-fidelity) and one’s collec-
tion of cassette tapes (the specific processors that will have to bear
the limitations of the cassette player in order to be heard, and that
have their own quality variance, which has aspects not shared by
other tapes). That set of ideas—of there being mostly general brain
limitations, and some limitations that affect only specific types of
test—accords quite well with models by Spearman (1904, 1927)
and data collected from then onward.

So, when Kovacs and Conway (this issue) write, “Even if
someone were, in theory, capable of successful performance on
the domain-specific aspect of a mental test item, he or she
might be unable to arrive at a correct answer because of failing
to meet its executive attention demands” (p. 162), these are the
limitations modelled by Anderson (1992; i.e., that a perfectly
serviceable cassette tape cannot be heard on a damaged cassette
player) and can sit on a “basic processing mechanism” that is a
psychometric reflective g formed by partly uncorrelated biolog-
ical influences (i.e. a generally more or less efficient brain).
With reference to the item response theory equation, we think
that the pattern of errors they strive to explain with a cognitive
process model can be accounted for in part by biological influ-
ences on specific domains of cognitive functioning, influences
that are additional to any effect they have on g (see below).

Generally, we think there is some na€ıve cognitive process–
brain structure/function isomorphism in the target article. For
example, Kovacs and Conway (this issue) state that “test devel-
opers devote a lot of time and effort to constructing unidimen-
sional measures, tests that purportedly tap a single ability only”
(p. 165). But do they—and do the test developers—really think
we know the abilities, in terms of processes in the brain, that
are tapped by these tests? We can describe test similarities, but
we are wise to be agnostic about what stimulus-mincing and
computing goes on in the head to solve them. Some of the
material in the piece that appears to suggest that one can divine
the brain’s functional lineaments from what we can rationally
think about a mental test’s contents recapitulates the dry
Casaubonian scholarship of, for example, Carpenter, Just, and
Shell (1990) on Raven’s matrices (see the critique by Deary,
2000). We think one must understand the processing structure
and limitations of the brain and then join that to mental test
performance; mental test performance will tell us only so
much—perhaps not much—about what the brain does and
how. Translated to the kidney, in the study of cognitive differ-
ences we are still admiring and classifying the variety of colors
in our urine while we await the discovery of the nephron.

The Mysterious Figure 8

We stared at Kovacs and Conway’s (this issue) key Figure 8—
their core astrological chart purporting to explain why some
people are cleverer than others—for ages, trying to work out
what it stated explicitly and how to test that. If, we thought, we

194 COMMENTARIES

D
o
w

n
lo

ad
ed

 b
y
 [

M
rc

 C
o
g
n
it

io
n
 B

ra
in

 S
ci

 U
n
it

] 
at

 0
8
:1

0
 0

3
 A

u
g
u

st
 2

0
1
6
 

andrewconway
Highlight

andrewconway
Highlight



could crack the code of this mandala, we might find a make-or-
break hypothesis in the article. Our plight was not helped by
the fact that the relevant section of the article— titled “Process
Overlap Theory”—stops short of clearly elucidating the overlap
of the cognitive processes at the domain level of their hierarchy
in Figure 8. Instead, executive functions are shown as a constel-
lation of indistinguishable black dots. The degree to which one
dot equates to another across domains remains opaque. There
are tantalizing hints in the text (such as the idea that cognitive
inhibition is required across number series items, verbal analo-
gies and matrix reasoning), yet the missed opportunity to ren-
der this, and other such specifics, more clearly diminishes
opportunities to create a testable, falsifiable theory. We confess
we feel as if we might not fully have unpicked and understood
Figure 8 and its accompanying text, and we should like to have
grilled the authors on it; we do not rule out that we could have
missed some key ideas.

Big Theory, Small Data

Intelligence research, as one of us has previously argued, has a
plethora of flashy and eye-catching “big theories” that, ulti-
mately, have not been productive:

Like trying to decorate a house while a hyperactive toddler runs
around messing things up and forcing one to do trivial tidying
instead of long-term renovation, a theory can keep one busy refut-
ing or operationalising its aspects instead of focussing on less
immediately compelling, but fundamentally more important, sensi-
ble empirical advances.… Big theories divert people from the avail-
able empirical evidence and get them arguing instead about the
evidence can be forced into their scheme. (Deary, 2000,
pp. 108–109)

We data-gathering wallflowers can therefore appear grumpy
and jealous, as we follow our hair-shirt credos that, first, gather-
ing relevant and preferably large amounts of data from both
brain and behavior and creatively understanding their associa-
tions is likely to be helpful and, second, recognizing and admit-
ting that the tools and concepts are probably not in place yet to
truly understand intelligence differences. More evidence-based
intelligence research is required. We admit that this, though
perhaps correct, is rather boring:

At the risk of appearing unutterably dull, and to compound the fel-
ony of being against fanciful theory, one has to urge more replicated
studies, more inter-laboratory agreements on the operationalisation
of constructs and parameters to be measured, and generally larger
masses of data on the same topic so that one may hypothesise from
solid ground. To listen to discussions within the intelligence com-
munity is sometimes like watching an archaeologist who has dug a
trench one foot square and is speculating from that rather than wid-
ening the trench. (Deary, 2000, p. 110)

To be clear, the problem is not with the constructing of a theory
per se, it is the distance between the theory and the relevant data.
To understand cognitive differences and how variance in them is
parsed in the brain, one needs enough good cognitive and brain
data, and sufficient isomorphism between them. We have types of
mental tests—for which some are “desperately seeking a mental
cytology” (Deary, 2000, p. 88)—and a good idea about how they
covary, and models that arrange and display that covariance. We
don’t have the mechanistic brain constructs to which we can map

these packets of covariance beyond relatively gross measures (such
as those of brain macrostructure, blood oxygenation, and neuro-
anatomy, which provide only indirect—though valuable—intima-
tions of the true neurobiological nature of cognitive processes; e.g.
Zald, 2007). Identifying the existence of a cognitive process using
psychometric properties alone does not necessarily correspond to
the way in which the human brain gives rise to the behavioral phe-
nomenon beingmeasured.

Metaphorizing again, the effort to understand the psychobiol-
ogy of intelligence has a resemblance with digging the tunnel
between England and France:We hope, with workers on both sides
having a good sense of direction, that we canmeet andmarry brain
biology and cognitive differences. To date, though many have used
them to begin the biology-side-digging, we have to admit that vari-
ables like brain size and white matter “integrity,” though they have
produced interesting and replicable correlations with intelligence,
are not close to the sort of mechanistic understanding a true reduc-
tionist desires. However, it is (using Dennett’s, 1995, concepts
again) at least some progress using “cranes” rather than psychologi-
cal process “skyhooks.”

Some Empirical Tests

Consistent with our role as biology-side tunnelers, our task to
provide commentary would be incomplete without putting our
backs into some empirical testing of several points arising from
the target article. We address two specific predictions gleaned
from the Kovacs and Conway article, followed by a more gen-
eral point: (a) the strength of the positive manifold varies as a
function of frontal lobe atrophy; (b) g cannot be localized,
whereas Gf can; and (c) the formative biology of g. We test
each of these using cognitive, genetic, and brain-imaging data
from the second wave of the Lothian Birth Cohort 1936 (for
which details can be obtained from Deary et al., 2007; Deary,
Gow, Pattie, & Starr, 2012; Wardlaw et al., 2011). Although we
are still unclear as to whether the following are genuinely
unique predictions of process overlap theory, one of the bene-
fits of “big theory” is that it raises several points that one can
empirically test.

Domain-Generality of the Positive Manifold and Frontal

Lobe Atrophy

In their final paragraph, Kovacs and Conway (this issue)
describe a number of predictions made by process overlap the-
ory. One is that

process overlap theory predicts that age patterns of the maturation
as well as aging of the prefrontal cortex and thus of executive pro-
cesses should determine the domain-generality of the positive man-
ifold. However, this prediction might be difficult to test, because
different executive processes show very different developmental
and ageing patterns, and there is a large individual variation the
maturation and aging process itself. (p. 172)

We take this to mean that the positive manifold of intelligence
should become stronger as a function of greater prefrontal atrophy
(the structural integrity of which is central to executive processes).
An adequate test of this must also address the additional two cav-
eats provided by Kovacs and Conway (this issue). First, executive
processes show different ageing patterns. One plausible reason for

COMMENTARIES 195

D
o
w

n
lo

ad
ed

 b
y
 [

M
rc

 C
o
g
n
it

io
n
 B

ra
in

 S
ci

 U
n
it

] 
at

 0
8
:1

0
 0

3
 A

u
g
u

st
 2

0
1
6
 

andrewconway
Highlight

andrewconway
Highlight

andrewconway
Highlight



reports of heterochronicity in the ageing of executive functionsmay
be because not all executive processes are equally supported by the
frontal cortex (Andr�es, Guerrini, Phillips, & Perfect, 2008), nor do
all such functions necessarily receive equal support from precisely
the same frontal subregions (Kievit et al., 2014; MacPherson, Della
Sala, Cox, Girardi, & Iveson, 2015). Comparative differences in
executive test reliabilities and/or the psychometric treatment of
memory and fluid variables may also partly drive their observed
differential age effects (Johnson, Logie, & Brockmole, 2010; Kievit
et al., 2014). Kovacs and Conway are consistent in their attribution
of executive processes to the frontal lobes in general, and particu-
larly with respect to Gf and Gv (their Figure 8). Thus, one could
infer that a measure of prefrontal atrophy would more strongly
index the age effects on those executive processesmore heavily sup-
ported by this region. In their second caveat, they rightly acknowl-
edge that the link between chronological age and biological aging
varies from person to person. Fortuitously, the sample in which we
test the prediction, the Lothian BirthCohort 1936, has an extremely
narrow age range (all were born in 1936), minimizing this concern.

In this sample of 681 participants with useable MRI data at a
mean age of 72.64 years (SD D 0.72), we used Freesurfer v.5.3
(http://surfer.nmr.mgh.harvard.edu/) and the Desikan-Killiany
atlas (Desikan et al., 2006) to derive a measure of each partici-
pant’s frontal lobe volume (summing the volumes of the fol-
lowing regions: superior frontal, middle frontal, rostral middle
frontal, middle orbitofrontal, lateral orbitofrontal, frontal pole,
rostral and caudal anterior cingulate and the inferior frontal
pars opercularis, pars triangularis and pars orbitalis). We cor-
rected the measure for intracranial volume (maximum healthy
brain size in younger adulthood) to produce a proxy measure
of frontal lobe atrophy.

We then used a moderated confirmatory factor analysis
model (Tucker-Drob, 2009) to calculate the extent of (de)differ-
entiation of cognitive abilities—indexed by a varied battery of
thirteen tests, organized into four domains as previously
described by Tucker-Drob, Briley, Starr, and Deary (2014), and
corrected for age and sex—according to the extent of frontal
atrophy. We found a result that was, to an extent, in line with
the prediction of process overlap theory: The estimated factor
communality (the % of the total variance across the cognitive
tests explained by the factor) was 23.6% higher in individuals
with the greatest rates of atrophy than in those with the least
atrophy (52.7% vs. 29.1%). However, the wide confidence inter-
val on the estimate, as shown in Figure 1, means that this com-
munality difference was not statistically significant.

As previously noted, we are not certain whether this predic-
tion is specific to process overlap theory. We would expect indi-
viduals with more atrophy, and thus smaller frontal lobes, to
have lower intelligence. Thus, the prediction can be seen as
simply a restatement of the idea of ability differentiation. If this
is so, it is certainly not a new prediction. Nevertheless, we pro-
vide the result here for further discussion.

Localization of g and Gf in the Brain

Kovacs and Conway (this issue) make the following statement
in their section “Overlapping Networks in the Brain”: “…even
though [Gf] is statistically identical to g, imaging studies dem-
onstrate their dissociability; whereas g cannot be localized, Gf is

linked to the prefrontal (primarily dorsolateral) and partly to
the (primarily posterior) parietal cortex with remarkable con-
sistency” (p. 167). The strong claim that g cannot be localized,
whereas Gf can, in spite of their statistical near-unity, is to
ignore the raft of potential cross-study differences, low sample
sizes, and imaging modality limitations, as well as some studies
that do identify neural correlates of g in the very areas Kovacs
and Conway assert are the exclusive preserve of Gf (reviewed
in, e.g., Colom & Thompson, 2011). Moreover, the claim that
studies “demonstrate their dissociability” would require at least
one study to have directly compared the neural correlates of g
and Gf within the same sample, finding the former to be absent
and/or nonoverlapping with the latter. Because we are not
aware of any such study, we attempted one here.

Kovacs and Conway argue that current brain research
reports neural correlates of g are so diverse that consistent
localization is prohibited, in contrast to the correlates of Gf,
which include mainly dorsolateral prefrontal and parietal corti-
ces. A direct test of the contention that g and Gf are neuroana-
tomically dissociable requires an adequately powered study in
which these two factor scores could be created in the same pop-
ulation using appropriate, but nonoverlapping, cognitive tests,
and on whom brain MRI data are available. To this end, we
(again using data from the Lothian Birth Cohort 1936) exam-
ined the subregional volume and surface area correlates of g
and Gf across the frontal and parietal lobes. To construct g, we
used Wechsler Adult Intelligence Scale–III Digit-Symbol Sub-
stitution, a test of Choice Reaction Time, Wechsler Memory
Scale–III Verbal Paired Associates, the National Adult Reading
Test, and Verbal Fluency (see Deary et al., 2007, for all referen-
ces and descriptions). To construct Gf, we used Matrix

Figure 1. Test of prefrontal differentiation. Note. Shaded area around the mean
communality line is the 95% confidence interval. The x-axis is in standard deviation
units.
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Reasoning, Block Design, Letter-Number Sequencing (from the
Wechsler Adult Intelligence Scale–III) and Spatial Span (from
the Wechsler Memory Scale–III). We estimated factor scores
from a confirmatory factor model of both latent variables. We
corrected both the MRI and cognitive measures for age and
sex. The results are displayed in Tables 1 and 2. As mentioned
by Kovacs and Conway, g and Gf were near-perfectly correlated
(rD .98), but their cerebral correlates did not behave as the the-
ory would predict. Not only were some regions associated with

g (consistently left dorsolateral, left rostral cingulate, and bilat-
eral parietal), but the magnitude of associations for all subre-
gions for g and Gf were near-identical (vector correlation for
surface area, r D .98, and for volume, r D .99). These data pro-
vide clear evidence that g and Gf are virtually identical in terms
of bivariate associations, and with respect to their cortical
correlates.

Formative Biology, Reflective g

To test the idea we discussed above, in which formative biologi-
cal elements produce a reflective g, we took two broad-brush
measures of the biological contribution to intelligence: intracra-
nial volume (ICV) and a polygenic profile score for educational
attainment created from summary data from a recent Genome-
Wide Association Study (GWAS; Davies et al., 2016) and mod-
eled their relation with cognitive tests. Again, this was tested in
data from the Lothian Birth Cohort 1936.

Using a method similar to Tucker-Drob (2013; see section
1.3.3.), we tested whether ICV and the polygenic score were
best modeled having common, independent, or common-plus-
independent relations with g (in this case indicated by the same
four domains of cognitive ability as used in the first empirical
test, just discussed, each created from multiple tests). For both
biological variables, the parsimonious common-plus-indepen-
dent pathways model fit better than the common pathways
model (ps < .02) and no worse than the independent pathways
model (ps > .65). We combined the models for ICV and for

Table 1. Associations between frontal and parietal cortical surface area, g, and Gf.

Lobe Region Hemisphere
Association

with g sig

Association
with Gf sig

Frontal
Dorsolateral L .126 �� .123 ��

R .134 �� .127 ��

Inferior frontal L .089 � .073
R .053 .042

Lateral orbital L .095 � .084 �

R .151 ��� .130 ��

Medial orbital L .091 � .082 �

R .163 ��� .142 ���

Caudal ACC L .058 .050
R .066 .066

Rostral ACC L .157 ��� .141 ���

R .127 �� .125 ��

Caudal middle L .058 .050
R .066 .066

Parietal
Superior L .107 � .102 �

R .097 � .084 �

Inferior L .087 � .078
R .101 � .099 �

Note. Variables corrected for age at scan or testing, respectively, and sex, prior to
inclusion in model. Pearson’s r reported. Association between g and fluid intelli-
gence (Gf): r D .983, p < .001. L D left; R D right; ACC D Anterior Cingulate
Cortex.

�

p < .05. ��p < .01. ���p < .001.

Table 2. Associations between frontal and parietal cortical volume, g, and Gf.

Lobe Region Hemisphere
Association

With g sig

Association
With Gf sig

Frontal
Dorsolateral L 0.083 � 0.081 �

R 0.070 0.067
Inferior frontal L 0.075 0.067

R 0.028 0.020
Lateral orbital L 0.037 0.031

R 0.045 0.029
Medial orbital L ¡0.003 0.001

R ¡0.002 ¡0.013
Caudal ACC L 0.007 ¡0.002

R 0.018 0.015
Rostral ACC L 0.101 � 0.097 �

R 0.059 0.059
Caudal middle L 0.007 ¡0.002

R 0.018 0.015
Parietal

Superior L 0.128 �� 0.121 ��

R 0.115 �� 0.104 �

Inferior L 0.097 � 0.095 �

R 0.131 �� 0.129 ��

Note. Variables corrected for age at scan or testing, respectively, and sex, prior to
inclusion in model. Associations are Pearson’s r. Association between g and fluid
intelligence (Gf): rD .983, p< .001. LD left; RD right; ACCD Anterior Cingulate
Cortex.

�

p < .05. ��p < .01. ���p < .001.

Figure 2. Combined common-plus-independent pathways model of the associa-
tion of biological factors with g. Note. Values are standardized regression weights
with standard errors in parentheses. The dotted line indicates a nonsignificant
path.
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the polygenic score as shown in Figure 2. This model had excel-
lent fit to the data, x2(5) D 11.29, p D .046, root mean square
error of approximation D .04, comparative fit index D .99,
Tucker-Lewis index D .98). Thus, a well-fitting model could be
produced where the biological influences are on g, rather than
the specific domains alone, though there were additional
domain-specific paths as shown in the diagram. Whereas this
analysis does not directly test a prediction of process overlap
theory, it provides a small-scale example of a useful way to
think about g: formative (and in this case, uncorrelated) biolog-
ical elements giving rise to a reflective, psychometric general
intelligence.

Conclusion

We applaud Kovacs and Conway’s detailed synthesis. They
address the greatest (though still most mysterious) empirical
discovery and regularity in psychology: the positive correlations
among diverse mental tests. They combine biology, cognitive
neuroscience, and psychometrics in an attempt to understand
the positive correlations. They recognize the value of the ideas
of Thomson, a figure who has been relatively ignored and to
whom we in Edinburgh owe so much; we thank them for their
article in so far as it is a celebratory rediscovery of Thomson’s
(1916) theory, 100 years since his first throw (literally, of dice,
in his slippers) at an alternative to Spearman’s g. We trust that
our at times seemingly crotchety remarks will be taken in an
encouraging spirit: Kovacs and Conway’s ideas made us engage
our fluid and crystallized intelligence to think hard with both
some novel and more familiar materials. In many places in the
target article we wanted to ask questions and hear more from
them. Perhaps our disagreements boil down to our putting
more emphasis on what they call “z, the unique variance of g,”
than they do, and our skepticism that their cognitive processes
are “ontologically real” (whatever that apparent pleonasm
means). Now, though, because we’ve been banging on about
the importance of empirical work on the biology of g, we had
better get back to it.
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Process Overlap and System Theory: A Simulation of, Comment on, and Integration of
Kovacs and Conway

D. K. Dettermana, E. Petersena, and M. C. Freyb

aPsychological Science, Case Western Reserve University, Cleveland, Ohio; bPsychology, Otterbein University, Westerville, Ohio

Kristof Kovacs and Andrew Conway (this issue) have written an
exceptional article that accomplishes two things. First, it identifies
what they believe to be the most important processes for human
intelligence as domain-general executive processes largely derived
from working memory research. Second, it presents a theory called
process overlap theory and postulates that these executive processes
are used in an overlapping manner far more often than domain-
specific processes. This commentary addresses only the second
accomplishment, overlap theory.

Kovacs and Conway suggest that many of the findings asso-
ciated with general intelligence can be predicted from the struc-
tural characteristics of the system they propose. As they point
out, their theory is closely related to a theory proposed by
Detterman (1986, 1987, 1994, 2000) called system theory.
Indeed, the principal difference between what they propose and
system theory is the additional condition that central elements
overlap or operate simultaneously. This additional condition
could be incorporated into system theory, as we discuss later.

Perhaps the easiest way to show how a system theory or pro-
cess overlap theory can explain many of the phenomena cited
by Kovacs and Conway is to actually simulate a system. Detter-
man, Petersen, and Frey (2001) did that with a simple system,
and their findings corroborate and, to some extent, clarify what
Kovacs and Conway discuss.

One simulated person from this system is shown in Figure 1.
Each circle represents a single element. There are nine basic
elements labeled A to I. Three of the elements (D, E, F) are central
elements, and six are peripheral elements (A, B, C, G, H, I). Arrows
indicate the direction of flow through the system. This system has
nine routes, which are the three input elements (A, B, C) each
crossed with the three output elements (G, H, I). This yields a sys-
tem with nine routes (A!G, A!H, A!I, B!G, B!H, B!I,
C!G, C!H, and C!I). Note that in this system, each route
must include the central elements D, E, and F. D, E, and F are called
central elements because no output occurs without their involve-
ment. They are central to the system’s operation. The score
obtained from each route through the system could be regarded as
equivalent to a score on a mental test or a test of cognitive process-
ing. IQ would be equivalent to the average result from all of these
ninemental tests or cognitive processes.

To simulate this system, we generated 2,500 cases of nine
individual elements representing a single person similar to the
person shown in Figure 1. For each person, a random normal

deviate was assigned to each of the nine elements indicating
how well that element worked. (This was done in SPSS but
could have as easily been done with Microsoft Excel.) Because
no route can work any better than its weakest element, the out-
put of each route can be computed as the minimum value of
the five processes. For example, route A!I would be computed
as min(A, D, E, F, I) or, for the person in Figure 1, min(0.66,
0.31, 0.34, 2.30, 1.14) D 0.31.

Each route now has a value indicating its efficiency. Each
route’s value corresponds to what can be considered a score on
a single cognitive or mental test. An IQ is estimated as the aver-
age efficiency of all the routes in the system by averaging the
values of all nine routes for each simulated person. In the case
of the simulated person in Figure 1, the average of each of the
nine routes is ¡0.43. (Note that this IQ has not been standard-
ized to a mean of 100 and a standard deviation of 15, but this
could have easily been done. This transformation would have
no effect on the following results.)

Examining Figure 1, it is clear that the elements that will
most affect the outcome of each process are those that are
central elements (D, E, F), because a low minimum value
for any one of these elements will assure that every route
receives a score as low or lower than this minimum value.
Also note that the values for each element are entirely inde-
pendent and randomly assigned. Although the current
model is a very simple system, almost cartoonish in charac-
ter, compared to the processes that are probably involved in
intelligence, it is sufficient to demonstrate some of the
major findings about much more complicated systems like
human intelligence. The major findings demonstrated by
this model should be pertinent to any similar system, but
numerical values would almost certainly change according
to the complexity of the model. In the following analyses,
data exactly as just described are used without modification
unless otherwise stated.

Positive Manifold

Positive manifold means that all mental tests will be positively
correlated with each other. Remember that all elements were
assigned a random normal deviate. If the nine individual ele-
ments were correlated with each other, the average correlation
would be zero. However, the main interest is in the output of
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each route because those are assumed equivalent to the scores
obtained from cognitive tasks or mental tests.

To determine if positive manifold results from the system
constructed here, a correlation matrix for each of the scores for
the nine routes through the system for all persons simulated
was calculated. The average correlation of the variables in this
matrix was then calculated. The average correlation can be eas-
ily calculated from the eigenvalue of the first principal compo-
nent using the following formula: rave D (λ ¡1) / (n ¡1) where
λ is the eigenvalue and n is the number of routes (Kaiser, 1968).

The average correlation among the routes is rD .65. There is
substantial positive manifold. This value might be larger than
would be obtained from a real battery of mental tests, but that
is to be expected given the simplicity of the model simulated. It
is also clear from the size of the correlation that there is a very
large first principal component; that is, the general intelligence
factor, g, is very large in this simulation.

We find it amazing that the correlation among tests arises
from the simple fact that for simulated people, the central ele-
ments work better for some than for others. Because of this,
some people with one or more poor central elements generally
perform worse on all processes or routes than others with better
central processes. Across persons, these differences produce
positive manifold.

Differentiation

Differentiation refers to the fact that positive manifold is not
uniform across IQ level, age, or other variables (e.g., Detterman
& Daniel, 1989). (This is sometimes called Spearman’s Law of
Diminishing Returns, because Spearman pointed out that cor-
relations change across ability level and referred to this as the
law of diminishing returns. Because higher ability levels do not
provide diminished returns for individuals, the name seems
inappropriate, and we prefer differentiation.) Although the

methodology of demonstrating this effect in actual human data
is subject to many potential methodological problems (Mole-
nar, Dolan, Wicherts, & van der Maas, 2010), those issues are
ignored for now and are probably less likely in a simulation. In
much of the work that has been done, the counterintuitive find-
ing is that correlations between tests are higher among lower IQ
persons than higher IQ persons. Because the correlations are
higher in lower IQ persons, it means that general intelligence
(g) accounts for a larger portion of the total variance for lower
IQ person than for higher IQ persons. If general intelligence (g)
is what makes people smart, it seems contradictory that low-IQ
persons would have more of it than high-IQ persons.

To see if there were differentiation effects in the simu-
lated data, the distribution of IQs was divided at the
median. (Although the distribution of IQ scores was
roughly normal, the raw mean was ¡1.15 and the standard
deviation was 0.56. These scores were not restandardized
into the typical IQ distribution with a mean of 100 and a
standard deviation, though they could have been as raw
scores are when an IQ test is standardized.) A correlation
matrix of the nine routes was then computed for the 1,250
cases below the median and the 1,250 cases above the
median. The correlation for the low-IQ cases (below the
median) was r D .51, whereas the correlation for high-IQ
cases (above the median) was r D .27.

It seems clear why this happens. As previously discussed,
when very low values affect central elements, they have a much
more generalized, masking effect on the entire system. That
means that when low values do not have a severe effect on cen-
tral elements, this masking effect does not occur, and so higher
IQ cases will be more variable.

Test Complexity

Why do complex tests have a higher correlation with each
other than less complex tests (e.g., Vernon & Jensen, 1984)?
Although complexity, in general, has no agreed-upon scien-
tific definition when it comes to tests, most researchers
agree that people can tell when one test is more complex
than another. There is also general agreement that the more
complex the test, the higher it correlates with other complex
tests. Complexity is specifically defined here as the number
of central elements involved in a test. The more central ele-
ments a test includes, the more complex the test. Figure 2
shows three tests varying in complexity.

To simulate results from these tests varying in complexity,
the same process as before was used for each test. Each process
was assigned random deviates, and routes were calculated
assigning the minimum value to each route. Each of the tests
still consists of nine routes, with only the number of central
processes changing. The correlation among the routes was as
follows: most complex test, r D .65; less complex test, r D .58;
and least complex test, r D .44.

The explanation is much the same as for previous effects.
With fewer central elements there is less of a chance that the
minimum value occurs in a central element. That means that
route scores are more variable in the less complex tests within
cases, and therefore correlations are lower for less complex
tests.

Figure 1. A model simulating a single person’s mental architecture. Note. Letters
indicated individual elements in the system, and arrows indicate direction of flow
through the system. The pathways through the system are indicated by the sets of
letters below the flow diagram, for example, ADEFG. Each route represents a cog-
nitive test or mental test. Each route is assigned the minimum value in the route.
IQ is the average of the route values.

COMMENTARIES 201

D
o
w

n
lo

ad
ed

 b
y
 [

M
rc

 C
o
g
n
it

io
n
 B

ra
in

 S
ci

 U
n
it

] 
at

 0
8
:1

0
 0

3
 A

u
g
u

st
 2

0
1
6
 

andrewconway
Highlight

andrewconway
Highlight

andrewconway
Highlight



Less Complex Tests Can Be Combined to Predict More
Complex Tests

Detterman et al. (1992) attempted to use more basic cognitive
tasks to predict intelligence tests. How good can such predic-
tion be? To reiterate, in the model shown in Figure 1, each
route through the system was scored as the minimum of the
elements included in the route. IQ was defined as the average
score for all routes through the system. To test if less complex
tests can predict more complex tests, the more complex system
can be decomposed into simple systems that include only a sin-
gle central element (D, E, or F) producing three systems. These
systems would be equivalent to the least complex test in
Figure 2, but there would be three of them, one for each central
process. In addition, we use exactly the same random deviates
as were used for each process for each case in the complex
model. Each route in each of these systems is then scored as for

the more complex system. For each least complex system, there
would still be nine scores.

These scores were then used in various combinations using
multiple linear regression to predict IQ from the most complex
system having three central processes. First, one simple system
at a time was used to predict the IQ score from the more com-
plex system. The simple system containing D, E, or F was
entered into a multiple regression separately, and the multiple
Rs were averaged. The result was an average R D .62. Next, the
simple systems were entered two at a time so that systems con-
taining, D and E, D and F, or E and F were entered. The multi-
ple Rs were again averaged. The result was an average R D .75.
Finally, all three systems were entered in the same multiple
regression including D, E, and F as separate systems. The result
was R D 0.81. It should be noted that degrees of freedom were
increasing for each complication but that the only new infor-
mation was the central elements, as all other elements were the
same across the simple systems.

Not surprisingly, we found that the more information about
the complex system that was contained in the multiple regres-
sion, the better the prediction was. However, prediction was
never perfect. This indicates that important information about
the relationship of the parts of the system is not conveyed by
the simple systems assembled from the more complex system.
To perfectly predict the functioning of the complex system,
each part of the system has to be measured independent of
other parts of the system. When that is done, prediction
becomes perfect. This suggests that it will be difficult to per-
fectly predict more complex tests from simpler tests unless it is
possible to directly measure each element of the system.

Why Is It That Complex Tests Cannot Be Used to
Diagnose Specific Deficits?

Since the first IQ tests, clinicians have attempted to find diag-
nostic clues among the test results. They thought these clues
might be in subtest scatter or in other differences across subt-
ests. Unfortunately, none of these clinical signs have been sup-
ported by research. If a child has an IQ of 55, an IQ test gives
little information about why. For known genetic defects, a diag-
nosis can be made on the basis of other phenotypic anomalies
associated with the disorder and ultimately by genetic screen-
ing. Even more basic cognitive tasks provide very little informa-
tion about the source of cognitive deficits. For a large portion of
intellectually disabled children, no specific cause can be identi-
fied for their low IQ. They are often thought to represent the
low end of the normal distribution, though this is not a very
satisfying or explicit identification of the reason for their low
IQ.

The previous simulation suggests why clues from subtests
may not be diagnostic. Central elements are confounded with
each other and, even when measured by less complex tasks,
cannot be completely isolated and do not result in perfect pre-
diction of system outcomes. To demonstrate this fact, the data
from the complex system that has been used in the first exam-
ple are used with one modification. The value assigned to D
was changed to ¡3.00 for half of the cases, and for the other
half of the cases, the value assigned to F was changed to ¡3.00.
This creates a large sample with equal deficits in different

Figure 2. Three models differing in complexity.
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central elements. For one group, the deficit is in element D, and
for the other group it is in element F. The question to be
answered is how these groups can be diagnosed.

The first attempt to separate the groups used information
available from the system output from the nine routes through
the system. These are the scores that, when averaged, represent
the IQ score. To differentiate the groups, we used discriminate
analysis. This is a method that uses the data provided to form
the most discriminating function between groups in which
each case’s membership is identified. As expected, this analysis
was not able to discriminate group membership beyond a
chance level, meaning that it did no better than flipping a coin.

A second analysis entered the values originally assigned to
each of the nine elements in the system. This was nearly per-
fectly discriminating, assigning 91.7 and 92.8 of cases to their
respective groups, x2(9) D 2740.9, p < .000. The point here is
much the same as in the previous simulation: Perfect prediction
requires direct measurement of the basic, independent elements.
The lesson from this simulation is that it will be important to
isolate individual elements if we are to understand how cognitive
processes work. This suggests that basic brain processes involved
in cognitive processes will have to be understood. Cognitive tests,
no matter how basic, are unlikely to be perfectly diagnostic at
isolating the individual elements of the system.

Simulation Assumptions

These simulations have made as few assumptions as possible.
This allowed a focus on the ancillary effects even a very simple
system would produce. A first assumption was that abilities are
somehow assigned randomly to each element of the system.
This was done to be sure that positive manifold could not be
attributed to a priori correlations among the abilities. Every-
thing we know about human intelligence suggests that human
abilities are not random across individuals. At the very least,
assortative mating would likely produce some correlations
among abilities. Because assortative mating is high for intelli-
gence, it should be expected that the basic elements of ability
are, to some extent, correlated from conception.

The assumption that the weakest process in a serial chain of
processes would determine the outcome seems like a reasonable
one. It is hard to see how it would be otherwise. However,
future simulations could complicate this assumption by making
each process probabilistically variable. This would be much
closer to human performance, which is never as static as the
outcomes in these simulations.

The next assumption is what is meant by an element. That
has never been specified. Each process could be defined molec-
ularly or modularly. It would seem that as long as some pro-
cesses were more important than others and had greater effects
on the outcome, what each process represents has little effect
on the results found here. The effects demonstrated here should
hold up at any level of analysis. It would, therefore, seem that
overlap theory and system theory are very nearly identical. For
example, the central elements in the model shown in Figure 1
could be thought of as nodes that reflect lower level elements.
D might reflect the summation of three lower level elements,
which could be called D1, D2, and D3. D, then, would reflect
some combination of these more basic elements. The value

assigned to D could be the lowest of the three more elemental
processes, or it could be some more complicated combination
of the three more basic elements, D1, D2, and D3.

Besides the assumptions made in these simulations, we have
ignored some important issues for simplification of the model.
Chief among these is the fact that the simulated model is static.
It represents a system at a particular moment in time, but intel-
ligence is not static but dynamic. Elements in a complex system
change across time and are more or less efficient depending on
circumstances. The system simulated here could be made
dynamic by including a second parameter for each element, a
measure of variability. The random deviate assigned to each
element of the system could then be supplemented by a mea-
sure of variability. Each time a path was traced through the sys-
tem, the measure of central tendency could be altered by
randomly selecting a value within the range of the element’s
variability, which could be added to the central tendency mea-
sure. Using this method, it would be possible to generate actual
data for multiple trials for each simulated person. We have not
done this, because a static model is much easier to conceptual-
ize and explains many phenomena associated with intelligence
without further complications.

The worst performance rule requires a dynamic model for
explanation. Although we have not yet modeled a dynamic system,
it is possible to speculate about why the worst performance rule
works well at predicting overall performance. When a person is
performing at his or her worst, it is reasonable to expect that it is
because important elements within the system are at their lowest
levels. In other words, it provides the lower bound for performance
and indicates how badly central elements can perform.

Conclusions

The existential nature of g has been a question for many years
(Detterman, 1982). These simulations indicate that general
intelligence and its properties are actually a by-product of the
operation of a complex system, as Kovacs and Conway (this
issue) suggest. Central elements have an overwhelming effect
on the characteristics of the system. In general, the most impor-
tant thing these simulations demonstrate is the possibility that
there is no such thing as general intelligence or g. Rather, what
we call general intelligence is a by-product of the operation of a
complex system. General intelligence appears to be an index of
the efficiency of the brain in carrying out cognitive processing

In addition, a number of other properties attributed to general
intelligence can also be derived simply from the simple system struc-
ture simulated here. General intelligence and many of the phenom-
ena associated with it may be epiphenomena of the way our brains
are organized and how this organization is genetically programmed.
In our opinion, Kovacs and Conway are on the right path.
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No Population Is Frozen in Time: The Sociology of Intelligence

James R. Flynn

Department of Psychology, University of Otago, Dunedin, New Zealand

The target article by Kristof Kovacs and Andrew Conway (this
issue) is of great importance. Of particular interest is its divi-
sion of the common factor in IQ test performance into three
elements: induction, working memory capacity, and executive
functions. I divide my commentary as follows: the theory’s
superiority to Jensen’s theory on the within-population (indi-
vidual differences) area of intelligence, how the three elements
listed illuminate what occurs in the between-population (socio-
logical) area of intelligence, and how social trends over time
generate novel hypotheses on both the individual differences
and brain physiology areas.

Process Overlap Theory Versus g-Theory

Many deductions from Jensen’s theory have now been falsified.
All of them rest on the proposition that g is psychological process
(with its own seat in the brain) tapped by all intelligence tests to
obtain the positive manifold. I call this the “irreplaceable fuel” the-
ory, which has four parts: (a) On the neural level, there is a mental
energy (having to do perhaps with neural speed). (b) On the psy-
chological level, this engenders a problem-solving capacity tapped
by special problem-solving abilities (say those measured by differ-
ent Wechsler subtests): (c) the degree to which it is tapped varies
by subtest insofar as they pose problems of cognitive complexity
and this is measured by their g-loadings, and (d) score gains over
time that do not tally with a subtest hierarchy according to g-load-
ings are not true g-gains or intelligence gains.

They are gains of lesser consequence caused by social change
(more familiarity with test content). They are not true intelligence
gains because these come only with the upgrading of brains,
thereby upgrading the quality of g. Improved brains are caused by
factors that impinge on brains directly. For example, natural selec-
tion, hybrid vigor, better nutrition, either during pregnancy or in
early childhood (breast-feeding), elimination of childhood diseases
that damage brain development, and so forth. Needless to say,
only a fragment of IQ gains over time can be explained by biologi-
cal factors, and thus only this fragment is accorded the status of
cognitive progress. For an analysis of Jensen’s theory versus my
own, see my recent book (Flynn, 2016, Part 2).1

I elaborate the criterion Jensen (1998) offered to determine
whether score differences over time tallied with g. Take IQ
gains from one generation to the next: You rank the 10 Wechs-
ler subtests in order of the magnitude of the gains on each sub-

test, and then you rank the same subtests in order of the size of
their g-loadings. The g-loading tell you the extent to which a
particular subtest measured g, in the sense of what subtest was
most predictive of the positive manifold, that is, the tendency
of a good subtest performance to be sustained over all 10 subt-
ests. Unless you find a robust positive correlation between the
two hierarchies (biggest gain D highest g loading, etc.), the
score gains do not constitute a g difference. IQ gains over time
generally flunked this criterion and were therefore “hollow.”
Whatever fuelled them was not improved g-fuel.

We now know that whether IQ gains are g gains does not
rob them of real-world significance. Coyle and Pillow (2008)
showed that the cognitive skills measured by the Scholastic
Aptitude Test predict university grades even after g has been
removed. Woodley (2012a) showed that education in particular
cultivates specialized patterns of cognitive abilities and that
these improve independently of whether they correlate with g.
Ritchie et al. (2015) were quite explicit: The association of edu-
cation with improved cognitive performance is not mediated
by g; education directly affects specific IQ subtests. Woodley
(2012b) showed that the historical trend of IQ gains (which of
course are not correlated with g) both parallels and predicts the
growth in GDP per capita experienced by Western nations over
the last 10 decades or so (r D .930). Meisenberg (2014) argued
that over time we are accumulating “cognitive human capital”
that is interdependent with economic growth.

There is an inference here I want to defend: Schooling pro-
motes a variety of cognitive skills (g aside), and these promote
economic progress. Note that the causal arrows could go in the
opposite direction: x causes us to get richer, and we spend
more on schools and get “smarter.”My inference is more prob-
able when we look at “lagged correlations” or what happens
when the dimension of time is included. Ireland enhanced edu-
cation, its tests scores rose, and its per capita gross domestic
product rose above that of England—in that order. Finland
enhanced education of its poorest students and duplicated Ire-
land’s trend (Nisbet, in press).

Fox and Mitchum (2013) showed that IQ gains on Raven’s
reflect the kind of problems we can solve, despite the fact that
they are not correlated with g and are not factor invariant.
Using the Advanced Progressive Matrices test, Fox and
Mitchum allow us to analyze what has altered in people’s minds
when one generation scores higher on Raven’s than the last.

CONTACT James R. Flynn jim.flynn@otago.ac.nz Department of Psychology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
1I thank the syndics of the Cambridge University Press for permission to use material from James R. Flynn, Does Your Family Make You Smarter? Nature, Nurture, and
Human Autonomy, Cambridge University Press, 2016.
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The following analysis is in my language (reproduced from
Flynn, 2012a, pp. 284–286). However, we met at the University
of Richmond, and they confirmed that my interpretation is
compatible with their analysis.

Some 115 years ago, people just beginning to enjoy moder-
nity were still focused on the concrete objects of the real world.
They wanted to manipulate the real world to their advantage,
and therefore the representational images of objects was pri-
mary. If you are hunting you do not want to shoot a cow rather
than a deer; if a bird is camouflaged in a bush, you flush it out
so its shape can be clearly seen. Raven’s poses a problem that is
quite alien to your “habits of mind”: You must divine relations
that emerge only if you “take liberties” with the images pre-
sented. It is really a matter of perceiving analogies hidden
behind distracters. I present a series of analogies (the first three
are my own) to illustrate the point.

1. Dogs are to domestic cats as wolves are to (wild cats).
Presented with these representational images people a
century ago would have no difficulty.

2. & is to t as " is to (!) where the choices are ",!, -,
and%. Here you must ignore everything about an image
except its shape and position. Just as the square has been
rotated a half turn, so has the arrow.

3. & is to / as O is to (j ) where the choices are ; - Q -j - �.
Here you must ignore everything but the number of
dimensions: The analogy compares two-dimensional
shapes to one-dimensional shapes and all else is irrele-
vant. Representational images are of course three-dimen-
sional, so such a contrast requires being well removed
from them.

4. &#B is to B&# as T&T is to ##_ (enter what symbol fits).
This is an item from Fox and Mitchum that illustrates
the kind of analogical thinking you must do on the
Advanced Raven’s Progressive Matrices.

Note that the right answer in the fourth item has been left
blank. Because no alternatives were presented to choose from,
you had to deduce that “&” is the correct answer. I got it right,
which was reassuring given that I was then 78 years old, by rea-
soning as follows. In the first half of the analogy, all that has
altered is the sequence of symbols: labeling them 1, 2, 3, they have
become 3, 1, 2. Applying that to the second half of the analogy,
T&T changes to TT&. Clearly you are supposed to ignore the fact
that the doubled letter (TT) has changed to a doubled symbol
(##), so the right answer is ##&. This would really discriminate
between the generations. We have moved far away from the
“habit of mind” of taking pictorial images at face value; indeed,
we are interested only in their sequence and treat images them-
selves as interchangeable if the logic of the sequence demands it.

The key is this: Anyone fixated on the literal appearance of
the image “T,” as a utilitarian mind would tend to be, would
simply see no logical pattern. Contrast this with Wechsler
Adult Intelligence Scale Vocabulary (here gains are large as dis-
tinct from Wechsler Intelligence Scale for Children Vocabu-
lary). The etiology of enhanced scores over time would be quite
different. People over time, thanks to the bonus of more educa-
tion, simply accumulated a larger store of core vocabulary and
got no bonus from the shift from utilitarian toward “scientific”
thinking. Except of course for words that labeled abstractions
(like species), which now appeared in the new subjects taught.

Fox and Mitchum (2013) classified Raven’s items in ascend-
ing order of “relational abstraction,”more specifically: “for ana-
logical mapping when relations between objects are unrelated
to objects themselves.” Once again, in Example 4, the relation-
ship can be derived only if one sees that a “T” does not have to
retain its identity as a “T.” Their core assumption was that
“analogical mapping of dissimilar objects is more difficult than
mapping similar objects” (italics mine). I certainly found this to
be true. The fact “TT&” had to be translated into “##&” ren-
dered the item harder to solve. And if I were my father (born in
1885), and wedded to taking images at face value for reasons of
utility, I suspect I would have found it insuperable.

They analyze the performance of two samples of young
adults tested in 1961 and circa 2006, respectively. They found
that as the degree of deviation toward the abstract increased,
certain items became less predictive of performance within the
two generations than between the two generations.

We now know why Raven’s scores are so sensitive to envi-
ronmental change over time. Like our ancestors, we can still
use logic to analyze the concrete world. But we have entered a
whole new world that allows us to use logic on symbols far
removed from the concrete world. We organize the concrete
world using abstract concepts that are not represented there.

Premodern people see fish as having nothing in common
with crows. You can eat one and not the other; one swims, the
other flies. We use DNA analysis to divide living creatures into
categories that are nonobservable but offer understanding, and
this language has become that of every person who has been
exposed to several years of formal schooling. We know that
bacteria differ from one-celled animals, that whales are more
akin to land animals than fish, and that the tiny hyrax is more
akin to the huge elephant than to the rodents it resembles. We
know that stars are different from planets (they look the same
in the sky), and indeed, our whole picture of the universe (and
even our approach to explaining human behavior) is based on
logic and abstractions. We are exposed to the symbolism of
algebra. No one has ever observed an “x.”

In other words, using logic on symbols detached from concrete
reality has become a habit of mind in no way alien to us. These
skills are not merely useful in mathematics and science and com-
puter programming (programmers do very well on Raven’s). They
help us to create (and comprehend) a nonrepresentational map of
the London underground, or an organizational map that function-
ally relates the tasks a complex business organization performs.We
are more ready to engage with Raven’s because the rise of moder-
nity altered our perspective. And the rise ofmodernity has occurred
over only a few generations. Only a test that is sensitive to the new
minds that modernity has put into our heads could measure some-
thing so malleable. Raven’s, more than any other test, is a barome-
ter of the stages of modernity and thus continues to play a crucial
role in the study of intelligence.

Fox andMitchum (2014) extended their analysis to Letter Series
and Word Series and showed that the fact that the present genera-
tion has developed new habits of mind is the very reason gains are
not factor invariant. Woodley, Figueredo, Ross, and Brown (2013)
concluded that autonomous mental skills allow people to cogni-
tively adapt to modernity and thus score higher on personality
indexes. Flynn (2012a) showed that the fact that American adults
with some tertiary education went from 12% to 52% between 1953
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and 2007 registered as huge gains on theWAISVocabulary subtest.
These were the equivalent of 17 IQ points (over 1 standard devia-
tion). Irrespective of whether the overall pattern of American sub-
test gains correlated with g, this had real-world consequences: They
could carry on different conversations and read a wider range of
books. Flynn (2013) suggested how cognitive progress independent
of g has enhancedmoral maturity (but not political maturity).

There always was something odd about that the notion that
performance gains must tally with complexity for the gains to
have real-world consequences. Two basketball teams are evenly
matched. The coach of one decides to drill his players on the
fundamentals, layups, and foul shots, simple tasks that are less
“basketball-g” loaded. Therefore, the performance gains they
make do not correlate with a hierarchy of basketball-skill g
loadings (no gains on complex tasks like fade-away jump
shots). Yet there are real-world consequences: His team beats
their rivals by 10 points.

Flynn, te Nijenhuis, and Metzen (2014) put a nail in g’s cof-
fin. They compared the Wechsler subtests scores of typical sub-
jects with those who suffered from iodine deficiency, prenatal
cocaine exposure, fetal alcohol syndrome, and traumatic brain
injury. The typical subjects were higher on every subtest. How-
ever, the magnitude of their advantages by subtest had zero cor-
relation with the size of the subtest g loadings. It is difficult to
deny that the typical subjects had a significant real-world cog-
nitive advantage over the four comparison groups. This is not
to say that their advantage was analogous to that of one genera-
tion over another. The latter was influenced by the new habits
of mind that evolved over the 20th century.

Now process overlap theory puts a second nail in the coffin.
It strips g of its central role in Jensen’s theory of intelligence:
that of a psychological process tapped by all IQ tests to obtain
the positive manifold. It shows that g emerges because of the
positive manifold rather than explaining it. The proffered expla-
nation of the positive manifold involves three elements: induc-
tion, working memory capacity, and executive function. These
overlap, and the combination is always to some degree involved
in performing cognitive tasks. Better still, it adds specificity by
identifying the central role played by induction. No one actually
solves g problems (whatever they might be), that is, it is not a
functional mental ability. But people do induction, and it is clear
why Raven’s is the best test of “g”: It is a test of induction
beyond all other tests (John C. Raven called it eduction).

There is nothing odd about why the three elements cohere.
Working memory capacity is clearly a prerequisite of induction:
The greater your capacity to hold abstract concepts in mind, the
more you can look for relevant similarities and differences. Exec-
utive function in this context is the ability to exclude both cogni-
tive and emotional interference with the inductive task at hand.
It is clearly a prerequisite for both induction and high working
memory—and indeed, the solution of any other cognitive task.

One thing troubles me: the Wechsler subtests scores of typi-
cal subjects and those who suffered from iodine deficiency, pre-
natal cocaine exposure, fetal alcohol syndrome, and traumatic
brain injury. Although typical subjects were higher on every
subtest, the magnitude of their advantages by subtest had zero
correlation with the size of the subtest g loadings. If we substi-
tute for g the three-factor concept of induction, working mem-
ory capacity, and executive function, should there not be a

correlation between the extent to which this package is relevant
to the subtest and the score difference between normal and
damaged subjects? Unless these maladies collectively (and
indeed virtually singly) damage the prefrontal lobes in a way
that somehow cancels out their differential contribution to the
cognitive task set by the different subtests, perhaps by reducing
its contribution in all cases to a minimum. This does not seem
very plausible, and the authors may wish to comment.

Sociology and the Three Elements

What goes on in people’s minds as they solve cognitive prob-
lems is a product of the kind of person they are in a particular
social setting. Kovacs and Conway (this issue) confine them-
selves to a within-generation analysis (the common factor
weaker at high levels of ability) with only a nod at between-gen-
eration analysis (the common factor weakens as generations
produce more people of high ability). There is one exception:
They imagine the difference between a normal and a color-
blind population when they try to solve the colored version of
Raven’s Progressive Matrices, with the former population
largely defeated by the test.

Different societies and different stages of society on the path
to modernity alter the hierarchy of problems that are consid-
ered important and the habits of mind of the people who try to
solve them. They produce radically different populations not
unlike the difference between those who are color-blind and
those who are not. Moreover, going from one population to
another affects the balance between the three elements of
induction, working memory capacity, and executive function.

Contrary to Jensen, I make these assumptions: (a) The brain
is like a muscle and is modified by exercise; (b) Societies (and
generations) have very different hierarchies as to what prob-
lems are most important; (c) Practice at solving these problems
create different “habits of mind” suited to solving problems in
order of importance; and (d) These habits of mind alter how
induction, working memory capacity, and executive functions
interact. To elaborate, people in 1900 did not need to confront
everyday problems that required these habits of mind: taking
the hypothetical seriously, using abstract concepts to classify,
using logic to analyze relation between such concepts. There-
fore, when confronting the inductive tasks of Raven’s they were
like the color-blind confronting the colored matrices, except
worse: Not only were their minds unprepared for the inductive
tasks, but also they could not see the point of them, which
would undermine their executive capacity to ignore distractors.
As to whether they had lower working memory capacity than
we do, who knows? I cannot estimate whether we need to hold
more things in mind to analyze the relationship between
abstractions than to analyze the relationships of coping with
everyday life.

This is an example drawn from our own society as it pro-
gresses toward modernity, but other preindustrial societies also
rank the importance of cognitive tasks differently than we do.
Australian Aboriginal society put a high premium on “map
reading,” that is, noting signals of the presence of water and
game on the horizon and calculating the distance that must be
traversed. Thus, they would put map reading at the top of an
importance of cognitive skills hierarchy and inductive analysis
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of abstractions would hardly count. I do not say there would be
no input from induction—you use induction to some degree in
everyday life—but I suspect the input would be limited. Even in
our own society the balance between map reading and induc-
tion has probably altered over time. When people began to pilot
autos, they got more practice in map reading. When only the
rich could own cars, those only who had developed their induc-
tive capacity by more formal education would drive, and this
would inflate the correlation between induction and mapping.
Then the poor got cars, which would lower it. Now cars have
road-trip planners or an automatic guidance system that should
put map reading problems much lower on our scale of priori-
ties and return us to the pre-car state.

The best illustration of how executive functions correlate
with induction arises from an analysis of a consequence of cog-
nitive progress often not perceived, namely, its role in promot-
ing moral progress. Remember that the modern mind broke its
ties with the concrete world, the dominant theme as late as
1900, and asked us to take the hypothetical seriously and use
logic to analyze abstract concepts. How did these habits of
mind take moral reasoning away from the Stone Age of simply
accepting the bias and cruelty of the past?

First, there is taking the hypothetical seriously. When com-
bating racism, taking the hypothetical seriously is the founda-
tion of mature moral argument. In 1955, when Martin Luther
King began the Montgomery bus boycott, young men of my
acquaintance, home from college at 21, had dialogues with their
parents or grandparents. Question: “What if you woke up
tomorrow and had turned Black?” Reply: “That is the dumbest
thing you have ever said, who do you know that turned Black
overnight?” My father believed that problems had to be
grounded in the real world to take them seriously and had no
room for hypothetical problems.

As for nationalism, my Beyond Patriotism (Flynn, 2012b)
tries to diagnose the retreat from patriotism by some of the
American public between World War II and today. Try this
question: “What if your home was hit by a drone because some-
one nearby was sheltering a Taliban?” Or better: “If a war killed
so many foreigners to save 3,000 Americans, where would you
fall off the boat: at 10,000 or 100,000 or one million?” The
answer tends to divide the youth from the aged (the latter:
“Their government protects them and our government protects
us”). Voltaire said that all man’s reason flies before a drum.
Well, it depends on how much reason and how loud the drum.

Todaywe use logic to analyze abstract concepts. This is a power-
ful weapon against local norms that incorporate the cruelty of the
past as a residue. An Islamic father (guided by local norms, not the
Koran) shocks the world when he kills a daughter because she has
been raped.We would ask: “What if you had been knocked uncon-
scious and sodomized?’ He is unmoved. He sees moral maxims as
concrete things, no more subject to logic than any other concrete
thing like a stone or a tree. He does not see them as universals to be
generalized by logic. Today the tendency is to express moral max-
ims as generalizations and try to make them logically consistent
with one another. Question for one of my students: You say we
should never judge the customs of another culture, yet you are also
an advocate of women’s rights. What do you say about the practice
of female circumcision? Whatever the conclusion, this is a far cry
from primitivemoral reasoning.

In other words, the new habits ofmind did notmerely help us to
adapt tomodernity. They also taught us how tomodify themodern
world thanks to more mature moral reasoning. They taught us to
stride toward freedom with Martin Luther King and take seriously
the “collateral damage” of killing foreigners in Vietnam and Iraq
and Afghanistan. No general today would talk about “bombing the
Vietnamese back to the Stone Age.”

This makes it seem as if the evolution of society toward
modernity has made the use of induction on moral problems
merely a matter of developing new habits of mind, ones that
are friendlier to logical analysis. However, the social setting has
a profound influence on the role of executive functions. An
affluent resident of an area in the Middle East or Africa may
have had formal education, and thus modern habits of mind,
but also come from a family dominated by an inherited sexist
morality. The stress placed on his executive functions to banish
emotions irrelevant to the application of logic to a moral ques-
tion may be extraordinary compare to our own: The raped girl
just seems somehow tainted. The same is true of someone who
comes from a family dominated by racial prejudice: Real-world
Blacks just seem alien in a way that impedes analysis based on
the traits of hypothetical Blacks.

Intelligence and the Three Areas

In the area of explaining intelligence gains over time, causal expla-
nation involves several levels: (a) Ultimate causes are the industrial
revolution and the resulting trend toward modernity; (b) Interme-
diate causes are the effects of industrialization on society, more
education, emancipation of women, smaller families (with a better
adult to child ratio), more cognitively demanding jobs, more cogni-
tively demanding leisure, a new pictorial and symbolic world from
television and the Internet, better nutrition, and medical advance;
and (c) Proximate causes have to do with how people’s minds
altered, so that in the test room they could do better when taking
IQ tests (e.g., new habits of mind).

The Dickens/Flynn (Dickens & Flynn, 2001) model predicts
that the size of the IQ advantage between generations will vary
depending on the age at which we compare a later cohort (say
those born in 1936) with an earlier cohort (say those born in
1921). Both of these groups live their own lives. During those
lives the causal factors that differentiate the later from the ear-
lier cohort vary greatly. This means that the IQ gap that sepa-
rates the two will vary in magnitude with age according to the
potency of the differential factors that kick in at each age. This
prediction remained only a prediction until a recent study. As
Staff, Hogan, and Whalley (2014) say, their study is the first to
compare two cohorts at two different ages.

The Lothian Birth Cohorts were born in 1921 and 1936, respec-
tively. They included almost every child born in Scotland in those
years (and still attending school there at the age of 11). Both were
tested on Raven’s Progressive Matrices: The later cohort outscored
the earlier by 3.7 IQ points at age 11 and by 16.5 IQ points at the
age of 77. The difference is huge: The rates of gain differ at 0.247
points and 1.100 points per year over a period of 15 years. If any-
thing the gain in old age is an underestimate: The earlier cohort
lost more people by death (earlier death is negatively correlated
with IQ) than the later. The differing gains must reflect the relative
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potency of the causal factors that separated the cohorts at those two
ages.Whatmight these be?

When you test two cohorts at the age of 11, they both have
approximately the same number of years of formal schooling
and this serves as a leveler: The small IQ gap (and vocabulary
gap) would reflect only the fact that the later cohort came from
homes a bit higher in socioeconomic status and any progress
made in the quality of schooling. The IQ gap doubles at the age
of 21 and, indeed, the Vocabulary gap quadruples: This is
thanks to more students going on to tertiary education; the
later cohort would have more years of formal education. By age
35, the influence of more schooling would have faded in favor
of the later cohort working at more cognitively demanding
jobs. No data reveal whether this would confer a greater or
lesser advantage than was present in the university years.

At the age of 70, one might anticipate a lessening of the gap, as
both cohorts would have retired from work—except that the later
cohort would be far more healthy and alert. Modern medicine has
alleviated the many of the illnesses of old age, and older people
today have a better diet and do more exercise (I still run at 82, and
my father took no exercise after age 14). Elderly people also have
leisure activities that are more cognitively demanding. At age 77,
we have real data.We know that the three factors named produce a
huge gap (16.50 points for two cohorts only 15 years apart), a gap
unlikely to bematched at any earlier age.

I have often rejected the hypothesis that generational IQ gains
reflect gains in health and nutrition, at least in advanced nations
since 1950. This was because we were looking for them in the
wrong place: We thought they would weigh in at the beginning of
life (they do not); rather they weigh in at the end. At any rate, we
now know that Raven’s is not merely sensitive to the global envi-
ronment enriched by modernity. It is also sensitive to each and
every one of the particular factors that have triggered IQ gains over
time. This has implications not only on between-generation IQ dif-
ferences but also on individual differences within a cohort. If one
person gets more formal schooling than another, or a more
demanding job than another, or better diet and medical care in old
age, they will at the appropriate stage of life have an IQ advantage.

By their very nature, theories of brain physiology would ideally
accommodate both individual differences and the evolution of cog-
nitive abilities over time. First, we want to map the areas/networks
that are activated when people perform various cognitive skills;
then we will want to observe differences in those areas/networks
that rank people’s performance for each cognitive skill. In principle,
brain physiology should also illuminate cognitive trends from one
generation to another. It is a plausible hypothesis that as people
began to drivemotorcars, moremapping exercise enlarged the hip-
pocampus between 1900 and today, and that the introduction of
automatic guidance systems will erode the size of the hippocampus
in the future. We must wait for data about the future but could
project back into the past by studying drivers versus nondrivers—
or ethnic groups that do not drive cars (the Amish).

Integration of All Areas

We want an adequate theory of intelligence in the area of brain
physiology. However much we may succeed, we will have to resist
the temptation of reductionism. Physiology cannot replace psy-
chology and sociology in the sense that we will still need causal

explanations in all three areas of the study of human intelligence.
Physiology may be able to predict exactly who will be the best bas-
ketball player, but we still need to know why someone is doing
something as trivial as running around a court to try to throw a
ball through a hoop, and why basketball became more popular
after WorldWar II, so that greater participation rose and triggered
a huge rise in standards of performance.

Kovacs and Conway’s primary contribution is in the area of
individual differences. At times, they say that the emergence of
a positive manifold is a function of the psychological processes
of individuals solving problems. I see no reason to assume that
this implies that scholars can neglect the fact that individuals
are the product of different social circumstances, and that this
affects how they solve problems. Which is to say it does not
assume we can neglect the sociology of intelligence. Nonethe-
less, I want to emphasize that a comprehensive understand of
intelligence must integrate all three areas. What we think we
know about individual differences will always be qualified by
what is true about both the brain and society.
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A g Theorist on Why Kovacs and Conway’s Process Overlap Theory Amplifies, Not
Opposes, g Theory

Linda S. Gottfredson

School of Education, University of Delaware, Newark, Delaware

Kristof Kovacs and Andrew Conway (this issue) raise a question
that g theorists have sought to answer since Spearman (1904)
statistically demonstrated the existence of the general intelli-
gence factor, g, more than a century ago. Namely, what in the
particulars of brains and biology could generate such a domain-
general (content-independent) cognitive tool in everyday life?
Like the great pioneers in g theory—Charles Spearman (1863–
1945), Hans Eysenck (1916–1997), and Arthur Jensen (1923–
2012)—Kovacs and Conway seek to understand the underpin-
nings of g’s domain generality by looking into the more elemen-
tal processes by which brains process information. I am pleased
that these talented cognitive scientists are joining the effort.

They argue that their theory is superior to prior explanations,
with special attention to g theory. They dispute a series of crucial
claims that they associate with g theory, showing how the evidence
is more consistent with their own theory. But the g theory they por-
tray is not the one to which g theorists actually subscribe. The good
news is that process overlap theory amplifies g theory exactly where
its pioneers searched hardest for answers—in how the mind and
brain process information to learn and solve problems.

My commentary explains why their contributions to under-
standing intelligence are concordant with, not contrary to, g theory.
I do so by summarizing the contrasts they draw between their over-
lap theory and g theory, and how the seeming discordance is
resolved by distinguishing between different levels of analysis in
the full body of evidence on what g is and is not. I also suggest a
strategy for simultaneously advancing the two theories, specifically,
by exploiting a key “trait” of tests and tasks—their relative com-
plexity—that activates the domain-general processes and abilities
of keen interest to both. I draw on my work as a g theorist
(Gottfredson, 1985, 1986, 1997a, 1997c, 2002a, 2002b, 2004, 2007,
2011). Although trained in sociology, my inquiries into the roots of
social inequality and job aptitude demands led me inexorably to g
(Gottfredson, in press).

Process Overlap Theory Offers an Alternative to g
Theory for Explaining Psychometric g

The authors propose a new explanation—process overlap the-
ory—for the “most replicated result in the field of intelligence”
(p. 151). As Spearman discovered long ago, all cognitive tests
correlate positively with each other, regardless of their manifest

content (verbal, figural, etc.) or format (written, aural, individu-
ally or group administered, etc.). In technical jargon, mental tests
exhibit positive manifold. In practical terms, individuals who
perform well on one mental test tend to perform well on all
others. In theoretical terms, g represents the most generic mental
capacity possible: an all-purpose cognitive tool that enhances
performance on all tasks requiring any mental manipulation of
information. Spearman developed a statistical technique, factor
analysis, to quantify the shared overlap (covariation) among
mental tests, extract their common factor (g) for study as a phe-
nomenon in itself, determine how well each test measures it (the
test’s g loading), and calculate test takers’ relative standing (g
scores) on this latent trait. He did so not to develop tests of intel-
ligence but to understand this most astonishing phenomenon.

Kovacs and Conway, however, depart sharply from this con-
ception of g because they do not regard g as a phenomenon in
its own right. In their view, the general factor exists only as “a
necessary algebraic consequence” of the positive manifold
among tests. Under process overlap theory, “what is discarded is
‘psychological g’: the interpretation of psychometric g as a psy-
chological construct” (p. 241). In other words, the g factor is not
an indicator of “general intelligence,” as g theory holds, but
merely a description of the positive manifold among tests’ scores
when quantified by factor analysis. The authors’ aim, therefore,
is to explain the positive manifold, not the algebraic representa-
tion of it as a unitary general factor.

To do so, they propose that many discrete cognitive and neural
processes interleave—“overlap”—for individuals to answer test
items correctly. Only mental processes that are globally useful
(domain general) will contribute consistently to the positive mani-
fold observed among tests of diverse content. Their overlap theory
thus draws on information-processing constructs of this sort from
cognitive psychology (working memory, executive function, atten-
tion, inhibition), cognitive neuroscience (the connectome, small
world networks), and intelligence research (fluid g, reasoning).
Conversely, tests of domain general constructs exhibit what
Spearman (1927, p. 197–198) called “indifference of the indicator,”
meaning they line up individuals in basically the same order
regardless of the tests’ intent or appearance. To illustrate, tests of
verbal ability and mathematical reasoning are for many purposes
functionally equivalent because both measure mostly differences in
g. That is why both are almost as good in predicting performance
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in the other’s content domain as their own. As Kovacs and Conway
(this issue) point out, what “a test a purports tomeasure” is not nec-
essarily what it actually doesmeasure (p. 165).

They argue the superiority of their theory by contrasting it with
other explanations of this functional overlap among mental tests.
They briefly describe several theories that likewise eschew a general
factor, the best known being Thomson’s (1916) sampling theory.
They focus their contrasts, however, on the theory that gives the g
factor a starring role in intelligence—g theory. To explain their
departure from g theory more clearly, they refer to Carroll’s (1993)
three-stratum model, which organizes humans’ many cognitive
abilities according to their relatedness and scope of application.
Figure 1 illustrates how his hierarchicalmodel arrays cognitive abil-
ities from the most general (Stratum III) to relatively narrow
(Stratum I) based on his massive reanalysis of prior factor analytic
studies.

Psychometric g sits alone at the apex, Stratum III, of Carroll’s
(1993, p. 627) empirically derived model. In Stratum II are arrayed
eight factors that are less general but still quite broad in scope,
includingGeneralMemory and Learning, BroadVisual Perception,
and Processing Speed. In Stratum I aremany specific abilities of rel-
atively narrow scope, such as Reading Decoding, Free Recall Mem-
ory, and Ideational Fluency. This pattern of overlap or relatedness
of distinct abilities, from broad to narrow, can be said to represent
“intelligence” (cf. Carroll, 1993, p. 627). When referring specifically
to the general factor atop the hierarchy, many of us refer to g as
“general intelligence.”

The broad abilities in Stratum II reflect patterns of covariation
among the many specific abilities populating Stratum I. The pat-
tern is that Stratum I abilities correlate more strongly when in the
same content domain (verbal, quantitative, spatial, etc.).This indi-
cates that the tests in a cluster measure something in common, in
addition to g, which is content related (domain specific).When fac-
tor analyzed, they yield the broad but domain-specific abilities at
Stratum II. These broad abilities also covary, but more tightly than
do those at Stratum I. The most general, Stratum III abilities are
extracted from the positive manifold (correlations among test

results) at Stratum II. Carroll found evidence for only one highly
general ability, g. He also showed howmodels that stopped short of
extracting a Stratum III g, such as Cattell’s (1971) model of crystal-
lized and fluid intelligence, could be integrated into his three-
stratum model. Carroll determined that fluid g and crystallized g
are Stratum II factors, so Carroll’smodel is now commonly referred
to as the Carroll–Horn–Cattell model.

Fluid g is often found to be isomorphic with g, and Jensen (1998)
considered them to be “one and the same” (p. 106). This makes the-
oretical sense because both manifest as a domain general capacity
for reasoning and solving novel problems. It also accords with
Spearman’s earlier conceptualization of g as a facility for the “educa-
tion of relations and correlates”—in effect, fluid g. Crystallized g rep-
resents broad cultural knowledge and skills (e.g., language) acquired
from “investing” fluid g. Individual differences in crystallized g track
changes in fluid g until the two trajectories diverge in early middle-
age. Crystallized g begins to level off, but fluid g tends to decline in
tandem with the aging of body and brain. As the two trajectories
increasingly diverge, crystallized g becomes an increasingly mislead-
ing indicator of the individual’s capacity for learning and reasoning
effectively (fluid g). For these reasons I conceptualize g in terms of
fluid gwhen speaking of Stratum III’s general factor, g.

Kovacs and Conway also report that Stratum III’s g and Stratum
II’s fluid g “correlate perfectly or almost perfectly” but argue that
they “are conceptually different”: “Gf represents individual differ-
ences in fluid reasoning while g does not represent any psychologi-
cal process” (p. 166). They accept the existence and validity of trait
constructs only at Strata I and II in Carroll’s hierarchical model.
“Therefore, for the stratum (or strata) below g, process overlap the-
ory is compatible with a standard oblique model” (p. 161).1 They
then describe why they like Cattell’s oblique model, which does not
extract a higher order g. “A particular appeal of the Gf/Gc model is
that the group factors are relatively easy to interpret as within

Figure 1. Carroll’s (1993) three-stratum model of human cognitive abilities.

1Presumably oblique models like Thurstone’s Primary Abilities and Cattell’s Gf-Gc
theory.
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individual abilities [i.e., processes], which can account for correla-
tions at lower levels of the hierarchy. For example, Gf is interpreted
as fluid reasoning, a thoroughly studied cognitive ability, the neural
correlates of which are also identified” (p. 155). Moreover, “the rea-
son why tests of fluid intelligence are particularly successful at mea-
suring the processes responsible for the across-domain correlations
betweenmental tests is that they are more or less free from particu-
lar domains” (p. 166).

Now, group (Stratum II) factors might seemmore interpretable
on their face because their scope is defined by particular content
domains (verbal reasoning, mathematical reasoning, etc.), yet the
high g loadings of all group factors indicate that they all tap mostly
general processes (reasoning) that cross all domains (reasoning
with language, reasoning about mathematical operations), hence
the tests’ positive manifold. To illustrate the greater interpretability
of group factors than g, they single out fluid g, which they interpret
as fluid reasoning, that is, reasoning “more or less free from partic-
ular [content] domains” (p. 166). This sounds to me just like
Stratum III g—domain-independent reasoning—which g theorists
like Jensen and me have concluded is “one and the same” as fluid g
and which, as the authors report, are “perfectly or almost perfectly
correlated” (p. 166). Another similarity is that tests of fluid g pro-
duce the same type of scores as does any g factor derived from a
battery of tests: They reflect only between-individual differences in
cognitive ability, not “within-individual processes” (cf. Jensen,
as quoted approvingly by the authors on p. 153). The authors
nonetheless reject g but accept fluid g as a valid psychological
construct.

Contrasting Understandings of g Theory

In fact, Kovacs and Conway reject g theory’s most foundational
conclusions, namely, that Stratum III g is a trait (a real dimen-
sion of individual differences), that it is a unitary trait (neither
an amalgam of disparate abilities nor a “single” process;
pp. 158 on evidence that “fractionates” g), and that it generates
(causes) individual differences in performance on cognitive
tests intended to tap more specific abilities (verbal ability,
mathematical reasoning, spatial rotation, short-term memory,
working memory, processing speed, etc.).

g theory refers to intelligence research in the Galtonian tra-
dition. It was distinctive (and controversial) throughout the
20th century for positing that intelligence has a biological basis
and that a general intelligence factor dominates in the pantheon
of mental abilities. The tradition is also distinctive for its lead-
ers’ sophistication in conceptualizing and measuring human
traits, as well as their acumen in formulating and testing
hypotheses. Eysenck (1979), for instance, was well versed in
both psychometrics and the philosophy of science, and Jensen
(1998) was especially adept at making novel predictions and
designing incisive experiments that could falsify a favored
hypothesis, his or others’.

Kovacs and Conway correctly associate g theory with its key
developers—Spearman, Eysenck, and Jensen. But g theorists would
be puzzled by their characterization of g theory and its pioneers.
For example, the authors argue the superior merits of their theory
over g theory by sometimes disputing claims attributed to g theory
that g theorists themselves reject. For instance, Kovacs and Conway
protest that “There is no psychological process that corresponds to

psychometric g” (p. 171) and “it appears as if there is simply no
place in the brain for general intelligence” (p. 187). But no g theorist
has ever made that claim, to my knowledge. Even Spearman (1927,
Chaps. 15, 16) spoke of multiple cognitive processes involved in g,
including attention, memory, and mental span. Cognitive psychol-
ogist Hunt (2011, pp. 176, 190) concisely echoed the g theorists’
stance when he wrote that “The brain functions as a system….
There is no single hot spot in the brain associated with all aspects
of cognition.”

At other times the authors propose views that g theorists are
said to reject but have actually promulgated for decades. For
instance, Kovacs and Conway’s process overlap theory “pro-
poses that g is characterized as an emergent property, a result
of how processes overlap to produce cognitive activity required
by mental tests” (p. 171). Yet, far from rejecting this view,
Eysenck (1998) argued that g is an emergent property of a
highly complex system:

The brain acts like a unit, but this unit is made up of 10 billion cells,
interacting in complex ways through numerous structures, hor-
mones, neurotransmitters, neurological structures and physiology
mechanisms; supplied with glucose, oxygen and other necessary
foods that provide the energy to keep the engine going. … What
the IQ really measures is the total effectiveness of the brain. (p. 79)

Jensen likewise referred to g as a property of the brain, not an
ability per se.

The Seeming Contradictions Explained

How can this be, that the authors and the g theorists whom
they dispute actually agree on the very issues that Kovacs and
Conway say most distinguish them? To explain, I first provide
an overview of the full nomological network for g, which ranges
across the seven levels of analysis sketched in Figure 2. I use it
to illustrate how confusion can arise from conflating constructs
and evidence at different levels of analysis, in this case (a) test
takers’ behavioral responses to cognitive tests (Intelligence),
and (b) the cognitive processing system by which their brains
manipulate information to generate a response (Brain). Figure 2
also highlights the central importance of the external stimuli
that activate the cognitive abilities and processes we wish to
observe, in particular the complexity of the tasks to be per-
formed. Knowing the overall complexity of tasks also allows us
to predict g’s gradients of effect in everyday settings.

Different Levels of Analysis in Explaining Intelligence

Any theory of intelligence has to take account of replicated
findings at all levels of analysis. Figure 2 depicts the major
seven levels for g, ranging from the most molecular (genes) to
most macro (evolution). Psychometric g (“Intelligence” in
Figure 2) sits at the junction of the biological and social mani-
festations of g. Jensen referred to these, respectively, as the ver-
tical and horizontal aspects of g.

Kovacs and Conway (this issue) integrate evidence primarily
at two of the seven levels of analysis: people’s brains (Brain in
Figure 2) and their responses to cognitive tests and tasks (Intel-
ligence). Their aim is to explain the positive manifold among
test scores and hence g at the latter level of analysis (Intelli-
gence). They do so by providing evidence of process overlap at
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both levels of analysis. Tests of working memory and other
major constructs in cognitive psychology do not measure brain
processes directly but provide psychometric “analogs” of them
(Hunt, 2011). The authors provide considerable evidence of
“process overlap” at this level of analysis (Intelligence). They
also call upon research at the Brain level of analysis to support
their process overlap theory, including imaging studies of neu-
ral networks responding to particular experimental tasks.

Considering evidence at different levels of analysis, as they do, is
essential in building theory and testing hypotheses, but levels of
analyses must be distinguished, which they do not. A theory is
strengthened when data and conclusions are consistent and mesh
across levels of analysis, but theoretical coherence does not entail
identical conclusions at the different levels. For instance, g need not
be unitary in the brain if it is unitary at the psychometric level.
This, however, is what the authors imply when they criticize
unspecified g theorists for concluding that g exists as a unitary pro-
cess in the brain, presumably because g theorists claim that g is psy-
chometrically unitary. Only by conflating the two levels of analysis
can the g theorists’ claim that g is unitary at the psychometric level
be taken simultaneously as a claim that g is a unitary process in the
brain as well.

Conflating levels of analysis creates a related confusion. It con-
cerns the authors’ discussion of whether g is a cause rather than an
emergent result of the overlap observed among tests and processes
in the brain. AsKovacs andConway repeatedly and correctly stress,
psychometric g is an emergent property of interacting brain sys-
tems, so g is their singular result. g theorists agree, of course, but the
authors attribute the opposite belief to them: that g causes the over-
lap in brain processes. As described earlier, g theorists believe that
psychometric g is an emergent property of the brain but also that,
as the brain’s unitary product, g generates a cascade of effects in the
real world.

Ambiguities in the following passage illustrate how the con-
fusion arises. I illustrate the authors’ inadvertent conflation of
two levels of analysis in the following statement by adding
bracketed text to distinguish the two levels, tests and physical
brains.

The most important difference, then, from g-oriented accounts of
the positive manifold is that whereas reflective general factor theo-
ries propose a causal influence of a latent variable, g, on the positive
manifold [among psychometric tests and life outcomes], according
to process overlap theory the positive manifold [among tests] is an
emergent property [of the brain], the result of the specific patterns
in which item response processes [i.e., information processing sys-
tems in the brain] overlap. (p. 162)

With these insertions, the “important difference” disappears.
An emergent g produced by the brain can, in fact, cause the
positive correlations among responses to psychometric tests
and experimental tasks in information processing. These pat-
terns of overlap in scores can then be used, in bootstrap fash-
ion, to infer how the brain does and does not go about its work
(e.g., working memory) in a way that produces a unitary g,
which, in turn, produces its own cascade of effects as people go
about their lives.

The authors rightly conclude that g is not a unitary or single
process in the brain. Imaging research has demonstrated that the
processes and structures associated with higher intelligence are
widely distributed across the brain, whereas verbal and other broad
abilities call upon particular brain modules as well. Domain-gen-
eral processes are concentrated in the prefrontal lobes (e.g., execu-
tive function), as would be expected given their remarkable
expansion during human evolution. At the Gene level, molecular
genetic research is finding that intelligence is radically polygenic
and that individual alleles, or single nucleotide polymorphisms,
account for onlyminuscule proportions of variance in intelligence.

In contrast, decades of research in psychometrics, personnel
selection, and other behavioral sciences have established that g is a
psychometrically unitary (indivisible) dimension of human compe-
tence. It is unitary at the level of test behavior (Intelligence) and in
life outcomes, which are increasingly global and cumulative at
higher levels of analysis: Performance in school andwork, Life Out-
comes like level of education, occupation, and income, and Social
Structures such as education, employment practices, and the occu-
pational hierarchy. Psychometric g is indivisible, not “fractionated,”
at these levels because the brain (and person) responds as a unit,

Figure 2. Networks of evidence on g spanning different levels of analysis, 2016. Source: Figure 4 in Gottfredson (in press). © Elsevier. Reproduced by permission of Elsev-
ier. Permission to reuse must be obtained from the rightsholder.
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whether answering items on a test or calculating the tip for a meal
in real life.

More important, evidence converges from various disciplines at
these higher, “horizontal” levels of analysis to show that g is an
especially powerful force in human affairs, shaping even culture
itself, precisely because it is a unitary, domain general capacity for
learning, reasoning, and problem solving in any life domain (for
overviews, see Gottfredson, 1986, 1997b, 2011, in press; Lubinski,
2004). For instance, when broad batteries of ability and personality
tests are used to predict individual differences in performance in
school and work or in health and socioeconomic success, g always
“carries the freight of prediction.” Stratum II abilities add little or
nothing beyond g to predicting who will perform best in school,
jobs, guarding their health, avoiding premature death, and more.
Moreover, general intelligence tends to be the single best predictor
in the behavior scientist’s toolkit of variables, including social dis-
advantage, for predicting the level of education, occupation, and
income that adults attain. g is hardly the be-all and end-all of
human performance, but it has unrivaled power when life presents
individuals with the need to learn, connect the dots, and figure
things out. No specific ability, personality trait, social advantage, or
fund of experience has been identified that can compensate for
mental powers too weak to lift a task’s cognitive load.

How to Determine What g Is and Is Not

As Figure 2 illustrates, the nomological network for g has expanded
greatly since Spearman set out to explain his discovery. It now
reaches into all realms of human functioning, and thereby guides
and constrains our theorizing about what g is and is not. Some of
this hard-won knowledge is captured in the following description
of general intelligence (Gottfredson, 1997b). All descriptors are
content-free, domain-general manifestations of information proc-
essing that lay people also recognize as “intelligence.”

Intelligence is a very generalmental capability that, among other
things, involves the ability to reason, plan, solve problems, think
abstractly, comprehend complex ideas, learn quickly and learn
from experience. It is not merely book learning, a narrow academic
skill, or test-taking smarts. Rather, it reflects a broader and deeper
capability for comprehending our surroundings—“catching on,”
“making sense” of things, or “figuring out”what to do.

Factor analysis does not explain the factors it yields, as
Kovacs and Conway note. Nor did Spearman or any other any
g theorist of the Galtonian tradition believe that it could.
Indeed, when Hans Eysenck returned to the topic of intelli-
gence in the late 1960s,2 he argued (Eysenck, 1979) that factor
analysis had nothing more to contribute to understanding g.
He also complained that psychometrics had become focused on
the technology of testing and showed scant interest in the con-
structs tests actually measures.

As the authors also illustrate, understanding intelligence is a
long investigative process, with many iterations in collecting
data and revising hypotheses. Intelligence is not “defined” but
described by laboriously creating a portrait of the phenomenon

as embedded in broader networks of human functioning—a
nomological network. g’s theoretical meaning is inferred from
replicated patterns gleaned from multiple, ever-evolving bodies
of evidence.

Eysenck approached intelligence as a biological phenome-
non, so his laboratory began noninvasive studies of elemental
processes in the brain. He used the only tool available at the
time, the EEG, to watch the brain in real time responding to
experimental stimuli. He also developed choice reaction time
tasks (e.g., the odd-man-out task) that better instantiated
Spearman’s (1927, p. 410–411) theoretical description of highly
g-loaded tests as requiring the “eduction of relations and corre-
lates.” EEG brain waves and reaction time on exceedingly sim-
ple tasks (e.g., touch a button when it lights up) were as close to
the brain as he could get.

Arthur Jensen, another pioneer in understanding g, wrote
often about the “g beyond factor analysis.” His review (Jensen,
1998) of the many biological and sociological correlates of g
helped demonstrate that g was no chimera of factor analysis,
Gould (1981) notwithstanding. It was especially important to
Jensen to determine whether g was a replicable phenomenon
across human populations. He and others therefore investi-
gated whether different populations and different test batteries
produce different g factors, or whether they all converge on the
same “true” g. Prominent psychologists such as Anne Anastasi
(1970, 1983) had been arguing that different cultures create dif-
ferent abilities and, later, would argue that the g dimension of
correlated individual differences is a product of Western educa-
tion. However, all derived gs turned out to converge on the
same “true” g, surely a biological fact in itself.

Kovacs and Conway (this issue) argue that “g is far from
being a constant” (p. 155), but they mean something different.
For them, it means that g (the positive manifold) does not
account for the same proportion of variance in a test battery’s
scores in all groups of people or batteries of tests, though
admittedly the lion’s share in all. It is theoretically intriguing
that g accounts for a smaller proportion of test score variance
among high-g than low-g individuals, but the construct validity
of a domain-general human capacity does not rest on its being
equally dominant among cognitive abilities in all circumstances
and populations.

The positive manifold that is g is similar in this respect to the
heritability of intelligence, which is just the proportion of phe-
notypic variation in a population that can be attributed to
genetic variation. The proportion of total variance accounted
for by the “general factor” in question (genetic variation, varia-
tion in g) can differ depending on age, statistical artifacts (e.g.,
measurement unreliability, restriction in range in test scores),
and conditions that allow versus block individuals from
expressing their potentials and proclivities (e.g., relaxed vs.
rigid rules for behavior; tests that are not too hard or too easy
vs. those that are). Not being “constant” in this narrow sense
does not contradict the universality of the g dimension in
human populations. The validity of g as a human universal rests
instead on whether the gs derived from different populations
and test batteries exhibit the same properties, such as showing
the same pattern of relations with other variables after correc-
tion for statistical artifacts. Stated another way, what matters is
evidence that cognitive differences in all populations align

2Eysenck’s (1939) first publication reconciled Spearman and Thurstone’s dueling
factor analytic models: Spearman posting only a general factor (g) and test speci-
ficity, and Thurstone positing a set of distinct primary abilities but no general
factor.
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themselves in the same relation to one another along the same
underlying continuum, or “true” g.3

Kovacs and Conway draw on various sorts of evidence,
including their own, to conclude that psychometric g is an
emergent property of the brain and to rule out notions of it
being a single process or place in the brain. So did Eysenck and
Jensen. As noted earlier, Eysenck argued that the brain acts as a
unit but its internal workings are exceedingly complex. He
started his inquiries into the brain by focusing on speed of
processing (e.g., latencies of particular brain waves in response
to a sound) but soon concluded that speed of processing
involved more than mere conduction speed. He and his
research team speculated that physiological properties such as
myelination of axons in the brain’s white matter might explain
differences in efficiency or error rates in neural transmission,
which would also slow speed of processing. In his last book,
Eysenck (1998) discussed the nascent body of research on
brain-wide efficiency in information processing, including the
first imaging study of normal intelligence (Haier et al., 1988),
which found that brighter brains use less glucose when solving
problems. He anticipated, but sadly did not live to see, the enor-
mous advances in tracing neural networks that Kovacs and
Conway (this issue) mention.

Jensen4 (2006) was particularly interested in reaction time
studies as a window into the brain, not because he thought
speed alone explained intelligence but because units of time
(e.g., milliseconds) provide ratio-level measurement of mental
processes. Standard cognitive tests do not. He considered
norm-referenced test scores (performance relative to some ref-
erence group’s mean) a major barrier to progress in under-
standing general intelligence. I should note that norm-
referenced measurement is far less a problem for understanding
g’s causal effects at the horizontal levels of analysis in intelli-
gence. The reason is that social life operates as a comparative,
competitive system of (being the more qualified job applicant,
“getting ahead”), as does evolution itself.

How Variations in Task Complexity Help Expose What g Is

and Does

Figure 2 places task complexity at the hub of all seven levels of
g-related phenomena. In my view, it is the key to explaining g,
from how it evolved to how it operates in the real world. Why?
Because cognitive abilities and processes manifest themselves,
become observable, and exert their causal power only when
activated by some stimulus. In fact, abilities are named and
classified by the range of tasks on which they enhance
performance.

As used to describe an attribute of individuals, ability refers to the
possible variation over individuals in the… levels of task difficulty
… at which, on any given occasion in which all conditions appear

favorable, individuals perform successfully on a defined class of
tasks. (Carroll, 1993, p. 9)

The question, then, is what features of a task or stimulus
evoke domain general processes and only domain general pro-
cesses, ones not limited in scope by any content boundaries,
which in turn generate the positive manifold among tests? The
literatures in many domains of human performance, from
ergonomics and academics to health and occupational advance-
ment, point to how the cognitive complexity of work performed
drives the magnitude of individual differences and effect sizes
in performance (e.g., variances, correlations, mean differences).
As sociologists documented in the 1970s, even the worldwide
occupational prestige hierarchy orders occupations by overall
complexity and thus cognitive demands and average IQ of
incumbents. These literatures discuss task complexity at differ-
ent levels of granularity: For example, a functional literacy item
might require the individual to use two rather than one bit of
information, and a job might routinely require workers to ana-
lyze information rather than just code it.

Psychometric tests are carefully contrived stimuli for evok-
ing information-processing behavior at increasing levels of dif-
ficulty. Spearman and Jensen both sought to understand what
made some items and tests more difficult and zeroed in on how
complexity increases item difficulty, for instance, abstractness
of the information to be processed. So have the developers of
the U.S. Department of Education’s adult literacy tests. They
(Kirsch, Jungblut, Jenkins, & Kolstad, 2002) traced item diffi-
culty on all their scales (Prose, Quantitative, Document) to the
same “processing complexity”: principally, abstractness of
information, amount of information, and distracting informa-
tion (the third requiring cognitive “inhibition” as described by
Kovacs and Conway). Daily life is suffused with such cognitive
complexity. The more novel and complicated a task, the more g
loaded it will be. Patterns in the complexity (g loading) of tests
and life tasks allow one to predict g’s gradients of effect in any
performance domain or life arena because they are so regular.

I was therefore delighted to see Kovacs and Conway (this
issue) describe how experimental tasks in cognitive psychology
that are more complex show larger effect sizes. Indeed, the
authors highlight complexity as one of four important features
of the positive manifold among tests that their theory explains
(p. 155): “more complex tests load higher on g than less com-
plex tests (Jensen, 1981).” They provide numerous examples
when discussing research on working memory (pp. 156–158),
which they repeatedly illustrate throughout their article. “Of
course, the characteristics of the task determine the nature of
the processes involved at arriving at a correct solution” (p. 164).

Yet they argue that this feature is theoretically uninforma-
tive: “However, ‘complexity’ is not an explanatory concept
that can help our understanding of g” (p. 155). Their reasons
are that experts do not agree about (a) “how complex a test
is” or (b) “how complexity differs from difficulty (Mackin-
tosh, 1998)” and because (c) “there are certainly different
‘complexities’ … that probably invoke rather different
cognitive processes” (pp. 155). They suggest that understand-
ing the g-complexity relation requires first understanding “the
cognitive processes involved in more ‘complex’ tests” (p. 156).
However, it would seem more useful to reverse the order and

3Jensen always cautioned that precision in measurement and conceptualization
was essential for theoretical purposes. Degree of error must be taken into
account to avoid misinterpreting research results, for example, by not realizing
that mean differences or correlations have been artificially lowered by common
statistical artifacts.

4Jensen began his career as what we would now call a cognitive psychologist, for
instance, conducting experiments with the Stroop test to understand general
principles in learning.
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use the elements of a task’s complexity to identify the pro-
cesses they call forth.

If I understand their argument correctly,5 their first and sec-
ond rationales for rejecting a theoretical link between g and com-
plexity—experts cannot agree on what complexity is or how it
differs from difficulty—would (if valid) seem to apply to process
overlap theory as well. However, consensus is not a criterion for
demonstrating validity or utility, and Jensen (1998, p. 94)
explained the difference between a test’s complexity (g loading)
and its difficulty (% passing), as well as how tasks can be difficult
without being complex (memorize 100 telephone numbers in 10
min). Complexity is an attribute of cognitive tasks and refers to
differences in the cognitive load they impose for successful per-
formance (e.g., bits of information to integrate, inferences
required, abstractness of concepts, irrelevancies to ignore). In
contrast, difficulty refers to the proportion of test items that are
failed in a specified population, meaning difficulty depends not
only on the intensity of the test’s cognitive demands but also on
the ability level of the individuals tested. Less able populations
pass fewer items, so the same test earns a higher difficulty rating
when administered to lower-g than higher-g populations. Com-
plexity is an attribute of tests that can be ascertained indepen-
dent of whoever might take them, if anyone. In contrast, a test’s
difficulty and its g-loading are population dependent because
they derive from the scores of people who took the test.

Their third reason (“there are certainly different complexi-
ties”) is more to the point, but precisely because understanding
what makes tasks more versus less cognitively complex is abso-
lutely crucial for understanding the nature, origins, and conse-
quences of human variation in a capacity that transcends the
particulars of time, place, form, and content of information. If
we better understood the various task attributes that call for
additional sorts of information processing, we might be in a
better position to understand the nature, number, and relations
among the processes themselves.

Kovacs and Conway are correct that there is no consensus
on the meaning of complexity, at any level of analysis, despite
researchers’ frequent appeal to the concept. However, the
authors are ideally qualified to resolve that matter. As they say,
“Of course, the characteristics of the task determine the nature
of the processes involved at arriving at a correct solution”
(p. 164). It would be an enormous contribution, both to
research and theory on intelligence, for them to spell this out. I
have searched in vain for a system that allows one to systemati-
cally identify and catalog the elements of a cognitive task that
ratchet up its complexity. Such a system would have practical
applications as well: for example, to chart and reduce the heavy
cognitive demands in health self-care today that generate high
rates of patient error and nonadherence to treatment, which
mightily frustrate health care providers and endanger patients.
When critical self-care tasks are too difficult for patients, the
tasks can be restructured but patients’ brains cannot.

How Task Complexity Links Experimental and Differential

Research on Intelligence (Within- vs. Between-Individual

Differences)

Systematic attention to the elements of task complexity would
have another important benefit, namely, directly joining the
experimental and differential approaches to intelligence. The
authors refer to them, respectively, as the within-individual ver-
sus between-individual approaches because that is the partition
of variance in mental performance that each tries to explain.
Cronbach (1957) referred to them as the “two worlds of scien-
tific psychology” because it was as if they inhabited different
planets. Even today, they still speak different dialects, pursue
different goals using different methods, convene separately,
publish in different journals, and trace different lineages. It is
no surprise that they sometimes misunderstand one another. I
describe one such misunderstanding reflected in the authors’
article so that I can better explain the second way they could
exploit task complexity to great benefit.

Kovacs and Conway (this issue) offer a “critique of the inter-
pretation of g as a within-individual construct” (p. 153). Their
concern is that “the concept of general intelligence interprets g
as a within-individual mental ability” (p. 153). Their concern is
misplaced, however, if by “concept of general intelligence …
interprets” they mean g theory, and if by “within-individual
mental ability” they are referring to how brains typically pro-
cess information rather than how some brains work better than
others. They themselves (p. 153) quote Jensen (although to sup-
port a different point) clarifying how studies of individual dif-
ferences in intelligence do not capture thought processes
measurable only by studying what goes on within the minds of
individuals. Once again, the apparent contradiction between
process overlap theory and g theory dissolves into agreement.

All traits are by definition accounts of differences between peo-
ple, and virtually all if not all measures of psychological traits report
scores on a norm-referenced scale (distance from the average) such
as IQ, z, T, and stanine scores, rather than on an absolute scale
such asminutes, inches, pounds. Intelligence, extraversion, neuroti-
cism, self-esteem, and such refer to continua along which individu-
als differ, but ones not anchored to any meaningful zero point
(total absence). We scientists foster confusion among nonscientists
by not prefacing trait names with “differences in” because non-
scientists often wrongly assume we are referring to absolute meas-
ures like height and weight (e.g., “Casey is 40% smarter than
Meredith”). That shorthand for traits is why g is sometimes mis-
taken as “awithin-individual construct,” to whichKovacs andCon-
way rightly object.

Although not directly illuminating how brains process infor-
mation, differential studies are nonetheless valuable for generat-
ing and testing hypotheses about how they do so. Haier et al.’s
finding of differential glucose uptake by intelligence level is an
early example. A decade earlier, in 1973, cognitive psychologist
Earl Hunt and his colleagues (Hunt, 2011, p. 143) published a
series of studies on the information-processing correlates of
verbal and mathematical reasoning. It stimulated a “blizzard”
of such studies. As Kovacs and Conway’s review of evidence
illustrates, cognitive psychologists today often turn to differen-
tial studies to further their experimental work on information-
processing constructs, such as working memory and executive

5 I cannot be sure because Kovacs and Conway (this issue) refer to complexity
sometimes as an attribute of cognitive processes (“This implies that g is related
to the complexity of cognitive activity,” p. 155), sometimes as an attribute of
experimental tasks that evoke them (“how complex a test is,” p. 155), and at
other times as the extent to which one particular class of processes is used in
solving problems (“the overlap is caused by executive functions,” p. 171).
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function. In like manner, brain imaging neuroscientists are sup-
plementing their correlational studies of intelligence and brain
action with experimental studies.

Both the experimental (“within”) and differential
(“between”) approaches require the administration of cogni-
tive tasks, and they often use the same or similar ones. Both
approaches have discovered that domain processes (“within”)
and general abilities (“between”) are activated by the
domain-general demands of a task, referred to generically as
its “complexity” as distinct from its content. The key differ-
ence is that first approach would compare two tasks per-
formed by the same individual, whereas the second would
compare two individuals performing the same task (within
vs. between individuals variation). Either approach can pro-
vide clues for the other—how do minds operate, and how do
minds differ?

Being able to characterize tasks according the attributes
generating their complexity, and by how much, would pro-
vide a common metric for integrating results from the two
types of research. For instance, if both administered three
timed tasks of increasing complexity, an experimental study
would look at how given increases in task complexity (DX)
change individuals’ successive responses (DY), perhaps by
slowing them down as more cognitive processes are recruited
to answer the more complex task correctly. A differentialist
study would look at how much the same increments in task
complexity (DX) expand the differences in how quickly indi-
viduals respond (Dsy

2) and tighten the correlation (Drxy)
between response times and intelligence level. A metric for
task complexity would also allow placing findings from both
approaches into a common, quantitative frame of reference.
In effect, to reunite the two partitions of variance.

Conclusion

Kovacs and Conway have provided a critique of g theory to jus-
tify proposing a new theory, process overlap, for explaining an
old but still remarkable discovery about human intelligence. I
have explained various ways in which their critique is mis-
placed. But my main point is that the critique was unnecessary.
Not because the two theories actually align, not collide, but
because the authors’ illumination of how cognitive processes
themselves align stands on its own. They need no theory to fall
for theirs to stand. More than that, I believe they could make
major contributions in understanding how the confluence of
domain-general reasoning processes is evoked by external
demands and opportunities to solve problems effectively and
efficiently. To that end, I encourage them to parse the complex-
ity of the stimuli that instigate cognitive action. Success in
quantifying the cognitive load of different experimental tasks
would also help bridge the “two worlds” of intelligence
research.
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The Psychometric Brain

Richard J. Haiera and Rex E. Jungb

aSchool of Medicine, University of California, Irvine, Irvine, California; bDepartment of Neurosurgery, University of New Mexico, Albuquerque, New
Mexico

When neuroimaging first became available to study intelli-
gence, one of the most exciting possibilities was the ability to
test competing psychometric models against quantifiable
brain characteristics (Haier, 1990). For example, Maxwell
and colleagues had predicted inverse correlations between
brain function and cognitive test scores based on IQ test fac-
tor loading differences in children between good and poor
readers (Maxwell, Fenwick, Fenton, & Dollimor, 1974). Sub-
sequently, we found inverse correlations between scores on
the Raven’s Advanced Progressive Matrices Test and glucose
metabolic rate assessed with Positron Emission Tomography
(Haier et al., 1988). At the time we were unaware of Max-
well’s prediction, but we interpreted the finding as evidence
that brain efficiency was related to intelligence: Higher scores
were achieved at a lower energetic cost. Understanding the
relationship between brain efficiency and intelligence factors
is still a matter of empirical research interest (Haier, 2016, in
press).

The thoughtful and wide-ranging model proposed by Kristof
Kovacs and Andrew Conway (this issue) once again invigorates
the concept of using neuroimaging to test psychometric models
the way animal models were once used. For example, a study of
systematic brain lesions after rats learned multiple tasks indi-
cated that lesions in some areas adversely effected performance
on certain specific tasks but lesions in other areas impaired per-
formance on many tasks (Thompson, Crinella, & Yu, 1990).
According to the authors, the former lesions were assumed to
identify brain areas associated with “psychometric” intelligence
(like the subtests of an IQ test), and the latter regions were
related to “biological” intelligence necessary for survival. Early
Positron Emission Tomography study results in humans did
not map very strongly onto the rat brain areas enumerated for
each kind of intelligence (Haier, Siegel, Crinella, & Buchsbaum,
1993), but the concept of matching brain areas to intelligence
factors has evolved into human neuroimaging studies. Sophisti-
cated neuroimaging can be applied to test the ideas and the
hypotheses suggested by the process overlap theory. As Kovacs
and Conway (this issue) note, recent imaging studies in human
lesion patients are a major step in this direction (Barbey,
Colom, Paul, & Grafman, 2014; Glascher et al., 2010; Glascher
et al., 2009; Barbey et al., 2012).

Overall, in our view, the neuroimaging research cited to
support the process overlap theory is still simmering, and not
quite ready to serve for drawing firm conclusions. One aspect

of neuroimaging research, however, that seems to have a
compelling weight of evidence is that the frontal lobes are not
the sole “locus” of intelligence—fluid, g, or otherwise concep-
tualized. Our parieto-frontal integration theory (P-FIT) drew
attention to the distributed nature of intelligence based on
neuroimaging measures of brain structure, biochemistry,
and/or function (Jung & Haier, 2007). When neuropsycho-
logical and lesion study results were added to imaging studies,
it was evident that the distributed view was not an artifact of a
bias toward measures of crystallized intelligence. Some of the
earliest studies used the Raven’s, a good estimate of fluid g,
and found, for example, that lesions by missile wounds (fron-
tal lobe or otherwise) result in no significant decline in scores
(e.g., Newcombe, 1969). Other neuroimaging studies also
used fluid measures like Cattell’s Culture Fair Test (Duncan
et al., 2000) but studiously avoided discussing significant acti-
vation regions that lay outside of the frontal lobes (Colom,
Jung, & Haier, 2006). The P-FIT put the parietal lobe (and
some other areas) back into the discussion. A number of sub-
sequent studies have supported the P-FIT (Basten, Hilger, &
Fiebach, 2015; Pineda-Pardo, Martinez, Roman, & Colom,
2016; Shehzad et al., 2014). Most researchers no longer hold a
frontal lobe locus view for intelligence, whatever the role of
frontal lobe areas may be for aspects of working memory
related to intelligence. We now have compelling brain net-
work parameters that are related to the psychometrics of this
important human capacity, and we would remark upon the
striking overlap between the P-FIT and the so-called cogni-
tive (or “executive”) control network (Niendam et al., 2012),
which Kovacs and Conway (this issue) touch upon but do not
fully engage.

It takes time to establish a compelling weight of evidence,
and there are inconsistencies in the imaging literature, as
shown in the commentary by Colom et al. in this issue (see
also Haier, in press, for detailed analyses of current imaging/
intelligence studies). Nonetheless, the process overlap theory
is a thoughtful consideration of current g-related issues and a
road map for neuroimaging studies that might succeed in test-
ing the respective validities of competing psychometric models
where purely statistical evaluations cannot. No one would
have been more excited and enthusiastic about the
predictions made by the process overlap theory than Arthur
Jensen, and he surely would have congratulated Kovacs and
Conway for their important contribution. So do we.
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Kristof Kovacs and Andrew Conway (this issue) offer a new
theory for the positive manifold of intelligence (PM) and thus
for the presence of a statistical general factor of intelligence.
This aim is highly ambitious and deserves praise, especially if
the new theory—process overlap theory (POT)—turns out to
be true. If so, Kovacs and Conway argue, the general factor of
intelligence needs to be regarded as a summary (formally, a
constructivist or formative variable) rather than a realistic
underlying source of individual differences in cognitive perfor-
mance (a reflective variable), even in cases where a reflective
measurement model is statistically tenable. In this sense, POT
contrasts strongly with mainstream theories of intelligence
(e.g., Cattell, 1963; Jensen, 1998; Spearman, 1904, 1924) in
which the general factor of intelligence is conceptualized as rep-
resenting a hypothetical yet realistic variable, dubbed g. If g-the-
ory would be true, meaning a realistic g indeed exists, then
reflective modeling is not only possible but also appropriate.

Despite differences in interpretation of the statistical general
factor of intelligence, there are also strong commonalities
between POT and g-theory. For example, in both theories the
subtests’ (or items’) factor loadings on a general factor of intel-
ligence is a simple function of task complexity: The more com-
plex a task, the higher its loading on the general factor, the
better it indicates intelligence. Another example is that in both
POT and g-theory the factors general and fluid intelligence are
strongly related. Given such communalities, one may wonder if
the interpretation of the general factor as being a realist or a
constructivist variable is important, or if the reflective versus
formative measurement approach matters; prediction of
work success, health, and other important life outcomes (Gott-
fredson, 1997) will not change, for instance. In our view the
distinction between formative and reflective perspectives does
matter, and increasingly so given new insights from various
fields.

Due to the influence of scientific reductionism, modern
studies of intelligence focus increasingly on the neuronal or
genetic “basis of intelligence.” If the general factor of intelli-
gence is nothing beyond a constructivist variable, the search
for a simple neuronal instantiation of g (“neuro-g”; Haier
et al., 2009) will not prove fruitful (e.g., Kievit et al., 2012). In
addition, in the quest to detect “genes for general intelligence,”
lack of power will become an even bigger issue than it already
is (e.g., van der Sluis, Kan, & Dolan, 2010). In other words, if

a constructivist conceptualization of the higher order factor is
most appropriate, this informs and constrains our search for
neural and genetic antecedents: The most fruitful path in such
cases would be to focus on those lower order variables that do
allow for a realist, causal interpretation.

Comparing the plausibility and merit of scientific theories is
a complex challenge, requiring balancing many desiderata
including parsimony, explanatory power, internal consistency,
falsifiability, and coherence across a range of settings. This is
especially challenging in situations where multiple competing
theories predict similar or even identical outcomes, like in the
preceding examples, which has historically often been the case
in the intelligence literature. We here focus on what we see as
two possibly outstanding challenges of POT: first, internal con-
sistency, and second, how we may go about testing (and there-
fore supporting or refuting) the model.

In examining the consistency of POT across representations
of the theory, we follow the authors and make a distinction
between the theory as stated verbally (POT-V) and the theory
as stated more formally, first as a structural relations model of
the interindividual variance–covariance structure among intel-
ligence test scores (POT-Structural Model [POT-S]) and sec-
ond as a test theoretical model (a multidimensional item
response model) in the form of Kovacs and Conway’s equation
(POT-Item Response Theory [POT-I]). We maintain the fol-
lowing position: If POT is a valid theory, POT-V, POT-S, and
POT-I should align and should all explain the PM, hence the
existence of a statistical general factor, together as well as indi-
vidually. In addition, inconsistencies or contradictions between
POT-V, POT-S, and POT-I will provide a threat to the validity
of POT as a whole, or at least require further investigation
regarding what representation of POT should be considered
the correct conceptualization.

We agree with the authors that a strong theory of intelli-
gence should account for more major findings than simply the
positive manifold. Kovacs and Conway (this issue) identify four
such findings: (a) the fact that higher order general factor of
intelligence and the factor fluid intelligence are strongly corre-
lated (e.g., Detterman & Daniel, 1989; Gustafsson, 1984; Kan,
Kievit, Dolan, & van der Maas, 2011; Kvist & Gustafsson,
2008); (b) the finding that the positive manifold is stronger at
lower levels intelligence than at higher levels of intelligence
(Detterman & Daniel, 1989; Molenaar, Dolan, Wicherts, & van
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der Maas, 2010); (c) compared to noncomplex cognitive proc-
essing tests, complex cognitive processing tests load relatively
highly on the general factor of intelligence (Jensen, 1998); and
(d) variability in item performance in certain cognitive domains
(e.g., reaction time) relates more strongly to general intelligence
than mean item performance (Jensen, 1998; Larson & Alderton,
1990).

At least as important are findings that are thought to dif-
ferentiate between theories of intelligence. Consider, for
instance, the finding that the general factor is more herita-
ble than specific factors, such that subtests’ factor loadings
on the general factor and heritability coefficients are posi-
tively correlated (Jensen, 1998). This correlation, dubbed
the Jensen-effect for heritability (Rushton, 1998), or simply
the Jensen-effect, is often taken as in support of g-theory
(Rushton & Jensen, 2010), because the correlation would
follow naturally if g would indeed be the most heritable var-
iable that influences IQ. Conversely, this correlation does
not naturally follow from theories in which general intelli-
gence is merely a formative variable. However, recent work
has shown how additional hypotheses allows formative
accounts of intelligence that also account for the Jensen-
effect (which has been accomplished sucessfully; see, e.g.,
Dickens, 2008; van der Maas et al., 2006; van der Maas,
Kan, Hofman, & Raijmakers, 2014). On the other hand, a
number of developmental effects, most notably the growth
of cognitive performance, do not follow automatically from
mainstream g-factor models (unless additional assumptions
are made), whereas they follow naturally in reciprocal
interaction models of intelligence. Ideally, a new theory of
intelligence would account for both the Jensen-effect and
developmental effects.

We welcome the approach taken by Kovacs and Conway in
bringing together various strands of evidence, but we argue
that certain aspects deserves critical examination. We end our
comment by providing challenges and questions to be
answered, in order to help integrating and converging insights
from genetics, developmental psychology, and (cognitive) neu-
roscience. We propose some possible inroads for future
extensions.

Pot as Stated Verbally (POT-V)

In a nutshell, Kovacs and Conway’s POT-V can be regarded as
a particular instance or concretization of Thomson’s (1946)
sampling theory of intelligence, which in turn was inspired on
Thorndike’s idea of positive associations between cognitive test
score as a result of “overlapping bonds” (see Bartholomew,
Deary, & Lawn, 2009; Jensen, 1998, for treatments). Although
Thomson and Thorndike speculated about the nature of these
bonds, this nature was never specified concretely within their
models. This lack of specification is still present in recent var-
iants of sampling theories, such as the model of Bartholomew
et al. (2009). In the end the “bonds” in sampling theories must
be regarded as no further defined as representing “the variables
that underlie individual differences in cognitive performance.”
In mainstream theories of intelligence, which are inspired on
(higher order) factor analytic models of intelligence, the hypo-
thetical underlying variables are generally considered to be

limited in number and positively correlated due to their com-
mon dependence on g, whereas in sampling theory these under-
lying variables (x) are many (n) and considered statistically
independent. These characteristics are crucial distinctions
between the two theories.

In sampling theory in its simplest form (see Bartholomew
et al., 2009, for an overview and more elaborated models), the
score of individual i on subtest (or item) j can be expressed as:

yij D

Xn

kD 1

bjkxik;

where bjk is either 1 (xk is being tapped by subtest j) or 0 (xk is
not being tapped by subtest j). As the intelligence subtests will
draw from the same set of n variables and draws will thus show
overlap, any two subtest scores will tend to correlate positively.
Moreover, the more variables a subtest draws from the popula-
tion of variables (i.e., the more complex a test is), the stronger
the correlations between the subtests scores (if two subtests
would both draw all variables, their correlation would be 1,
after correction for measurement error).

As acknowledged by Kovacs and Conway (this issue), “pro-
cess overlap theory can be considered a modern sampling the-
ory” (p. 169). New in POT, and a big step forward, the nature
of the cognitive variables (the bonds) is specified more con-
cretely. Based on Baddeley’s model of working memory (Bad-
deley, 1992, 2000; Baddeley & Hitch, 1974), which consists of
multiple, functionally independent components, including the
Central Executive, the Phonological Loop, and the Visuospatial
Sketchpad, a distinction is made between (a) individual differ-
ences in capacities that limit domain general executive func-
tioning and (b) capacities that limit domain specific (verbal
and visuospatial) processing. In addition, it is hypothesized
that during intelligence testing the demand on executive proc-
essing is relatively high as compared to the demand on domain
specific processes, so that individual differences in cognitive
performance reflect to a relatively large extent individual differ-
ences in the domain general capacities that limit executive
functioning.

Ideally, a theory described verbally is accompanied by for-
mal modeling, that is, as a system of mathematical equations.
One may think of sampling models, such as described earlier in
this commentary, but also of dynamical system models or tradi-
tional psychometric models, such as structural equation models
or item response theoretical (IRT) models.

Structural Model (POT-S)

Rather than in mathematical equations, Kovacs and Conway’s
(this issue) structural model (POT-S) is only presented path
diagrammatically (in their Figure 8). Unfortunately, this makes
POT-S ambiguous in several key aspects. For instance, the dia-
gram does not show unambiguously whether executive func-
tioning capacities (the black dots) should be conceived of as
overlapping (partly shared) among verbal, fluid reasoning, and
visuospatial tasks. Yet they must do so, as in the absence of
such overlap the verbal factor, fluid factor, and visuospatial fac-
tor would not correlate. This in turn would mean that POT-S
leaves open the explanation of the positive manifold and thus
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the existence of a general factor. We assume therefore that the
black dots represent executive functioning capacities that are
partly shared across subtests. However, we would recommend
the structural model to be made explicit somehow in order to
avoid ambiguity, because as we illustrate next, POT-S may be
formalized such that the general factor has the status of a reflec-
tive variable.

A mathematical sampling model that would be in line with
both POT-V and POT-S could be, for instance,

fluidi D

Xne

kD 1

bkEik

verbali D

Xnv

lD 1

blVil C

Xne

kD 1

ckEik

visuospatiali D

Xns

mD 1

bmSim C

Xne

kD 1

dkEik;

where ne is the number of capacities (E) that limit executive
functioning, and nv and ns are the number of capacities (V and
S) that limit verbal and visuospatial processing, respectively.
The parameters b, c, and d are constants that take values of
either 0 or 1. (Note: For reasons of simplicity, we sometimes
drop the index for test in the equations, but they should be
thought of as being present.) Subsequently, one can include the
assumption that the variables Ek, Vl, and Sm are multivariate
normally and independently distributed.

In this POT-sampling model, differences on intelligence test
j would all indicate individual differences in the sum of execu-
tive functioning capacities. Verbal and visuospatial tests would
both provide biased estimates, toward the sum of the phonolog-
ical loop capacities and visuospatial sketchpad capacities
respectively, whereas executive functioning tests (fluid tests)

would not show such a bias. It is for this reason that the three
indices of cognitive functioning will not correlate perfectly with
one another.

To verify that our formalization of the POT sampling model
indeed results in a statistical model consistent with POT-S, we
carried out a series of simulations (code available on http://
sites.google.com/site/keesjankan/intelligence) and created per-
formance scores on (three) fluid intelligence tests, (three) verbal
tests, and (three) visuospatial tests. The number of capacities
was set at 500 each (so 500 executive-functioning capacities,
500 verbal-processing capacities, 500 visuospatial-processing
capacities). Individual values were drawn from a (1,500) multi-
variate standard normal distribution. The 1,500 variables were
assumed all statistically independent. The sample size was set
at 250, which is a typical sample size in intelligence research
(not small, not large). Following POT-V, the probability that a
test samples a capacity was set relatively low for domain-spe-
cific capacities (p_bl D 1 D p_bm D 1 D .35) and relatively high
for executive-functioning capacities (p_ck D 1 D p_dk D 1 D .50;
p_bk D 1 D .60).

The results of the simulation indeed provided support of the
factor structure as presented by Kovacs and Conway. Figure 1
gives a typical outcome. In most cases a three (correlated) fac-
tors model (with the same fit as a hierarchical model) was tena-
ble, although sometimes a bifactor model (Gignac & Watkins,
2013; Hood, 2008) fitted better (especially when sample size
was increased). The correlation between the fluid intelligence
factor and general intelligence (modeled as reflective) was gen-
erally very high, so much so that in the translation to a higher
order model the relation between the two often needed to be
fixed at 1 in order to avoid Heywood cases (negative residual
variance in Gf).

Whereas Kovacs and Conway (this issue) claim that POT
“challenges the idea that the across-domain correlations
between diverse mental tests are caused by an underlying fac-
tor” and that according to this theory “the positive manifold is

.29 
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.65 
.64 

.74 .78 
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.76 .47 
.47 

.59 
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Verbal 
Visuo- 

spa�al 
Fluid 

.58 .59 .39 .50 .78 .78 .45 .42 .65 

.70 .51 

Figure 1. Showing a typical outcome of a simulation with a model that is in line with process overlap theory as stated verbally and as presented as structural model: The
latent variable g (the sum of all fluid processing capacities) predicts the latent variables Verbal, Fluid, and Visuospatial Intelligence.

222 COMMENTARIES

D
o
w

n
lo

ad
ed

 b
y
 [

M
rc

 C
o
g
n
it

io
n
 B

ra
in

 S
ci

 U
n
it

] 
at

 0
8
:1

1
 0

3
 A

u
g
u

st
 2

0
1
6
 



an emergent property” and “translates to a formative model
with regard to the general factor” (p. 162), we argue that POT
does not necessarily do so. From the simulations with the sam-
pling model just cited, which is completely consistent with
POV-V and POS-S, we can conclude that the general factor is
not so much a variable constructed out of the verbal, visuospa-
tial, and fluid factor but rather is the fluid factor, which Kovacs
and Conway consider to be reflective. In the structural model
as just depicted, the factors fluid and general intelligence both
represent an (unbiased estimate of the) sum of the executive
functioning capacities: any imperfect relation between the two
is (literally) due to sampling error. The more complex items or
subtests are, the more bonds will be sampled, the smaller the
sampling error, the more evidence the fluid and general factor
are one and the same variable (the total of the executive func-
tioning capacities). Moreover, because the effects of the individ-
ual executive-functioning capacities are purely additive, the
underlying factor that explains across-domain correlations
between diverse mental tests can simply be interpreted as “total
executive functioning capacity.”

We conclude that a key element from POT, the bottle-
neck, (somehow) needs to be incorporated in POT-S,
because according to path diagrammatical conventions, the
performance on the task would be estimated as a weighted
sum of the underlying variables. Other than viewing these
variables from different levels of analyses, there would not
be much difference between POT-S and g-theory. In the
former, the analysis is on the level of the many individual
capacities, which add up to a small number of total capac-
ities, whereas in the former the analysis is on the level of
the relatively small number of total capacities, which are
all composed of a large number of smaller capacities. Yet
one may then distinguish between different types of g-the-
ories: In the one g-theory, g may indeed be a sum of mul-
tiple capacities that may act as whole or as a fraction
thereof (like the force that a pound of marbles or a frac-
tion of these marbles can exert), whereas in the other, g
consists of these multiple capacities and always acts as a
whole (like the force that a single marble weighing pound
can exert).1

We acknowledge of course that POT can be formalized dif-
ferently, but our contention is that POT needs to be precise
and formalized in such a way that the key phenomena can be
derived, for example, by simulation or analytical proof. What-
ever form it will take, it should make the crucial distinction
with g-theory (of the first kind). In our view, the most promis-
ing candidate of POV is therefore the proposed IRT model
(POT-I). To be able to fully separate POT from g-theory, POT-
I should show that the appropriate interpretation of the general
factor is (a) a variable distinct from the fluid factor and (b) of
the formative kind.

Multidimensional IRT Model (POT-I)

The interpretation of g as a summary variable stems from argu-
ments given by proponents of sampling models. Following
these arguments, not only g but also the verbal, visuospatial,
and fluid factor should be regarded as summary variables (for-
mative). However, as Kovacs and Conway (this issue) consider
those latter three as reflective (see POT-S in their Figure 8), the
reflective interpretation of g may also still be defensible, at least
in certain specifications. Kovacs and Conway did not provide
their readers with simulations that could further illustrate the
claim that g must indeed be regarded as a formative in POT-I,
or specify precisely how the general and fluid factor are differ-
ent. Hence, we conclude that the authors still need to provide
more formal evidence for this aspect of POT. Note that we do
not mean to say the new theory is invalid but merely that cer-
tain assumptions of POT-I may have crucial consequences for
the interpretation of the model. For instance, a novel feature of
POT-I is the choice to let general executive-processing capaci-
ties be noncompensatory (multiplicative in the equation).
According to the authors, this property leads to the crucial bot-
tleneck feature of POT-I. Yet this leaves open the choice for the
nature of the domain-specific processes capacities. Why are
these, in contrast to the general executive-processing capacities,
compensatory (additive in the equation)? In addition, although
the choice of general processes capacities as being noncompen-
satory was based on empirical findings that are in favor of this
choice, it is in principle possible to adduce evidence that argues
for the idea that it is general processes capacities are compensa-
tory. It may even be possible to argue for the opposite assump-
tion, namely that the domain-specific capacities should be
taken as multiplicative and domain-general processes as
additive.

First note that POT-I pertains only to domain-specific tasks,
in which both domain-specific and domain-general capacities
are important, and not to purely fluid tasks, as in the latter
domain-specific processes play no role. Second, domain-spe-
cific tasks are often crystallized tasks, meaning that they rely on
acquired knowledge and abilities that are essential to solve the
task. If one does not know certain facts (the capital of Spain) or
certain words (“curriculum”) when answering items of a
knowledge or vocabulary test, this cannot be compensated with
domain-general processes or other domain-specific processes
(such as arithmetic knowledge). This also true for “real-life”
crystalized tasks. We take chess as an example. If one does not
know the rules of chess, one can simply not play chess. In addi-
tion, whereas differences in general intelligence explain some
part of the variance in chess playing, more variance is explained
by differences in chess expertise, such as differences in hours of
serious practice (Grabner, Stern, & Neubauer, 2007).

Of course, without any working memory and other
domain-general processes we probably are unable to do
arithmetic, play chess, or take a vocabulary test. But this
case is less realistic within the normal population. In addi-
tion, some experts are able to display amazing levels of per-
formance in spite of lack of access to domain-general
processes. To stay with chess, think of blitz chess, blind-
folded chess, or more prosaic of a very drunk chess grand-
master who easily beats amateur chess players while

1This is an important distinction, because only the latter kind of g-theory would
provide an explanation of the Jensen-effect (the relation between g-loading and
heritability), for instance. In the former kind, the heritability of the observed
scores is the average of the heritability of the sampled capacities. In principle, g-
loading and heritability are then unrelated. The POT-sampling model as just for-
mulated would fall within this category and will thus not provide an account for
the Jensen-effect, unless perhaps additional assumptions are included.
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discussing politics with the public as a double task in a
crowded, noisy chess cafe.

We thus call for an investigation of the (possibly competing)
properties and predictions of alternative POT-IRT models.

POT and Major Findings

According to Kovacs and Conway (this issue), the integrated
theory explains several major findings, including ability differ-
entiation and the law of worst performance (not evaluated
here). However, it leaves open how other important findings
that are considered to differentiate between theories of intelli-
gence should be explained. Although it is not necessarily a criti-
cism of their model that it cannot explain every empirical fact
(to the best of our knowledge, no model can), it is still worth
considering these findings in detail. Ultimately, they should be
captured in a comprehensive model of cognitive abilities. Our
discussion that follows can therefore be seen as much as a criti-
cism of Kovacs and Conway as of virtually all other models,
and as such is best seen as an appeal to expand POT (or any
other theory) to accommodate outstanding challenges.

First and foremost, the notable omission of the subscript t in
a model of intelligence means that at least three important phe-
nomena cannot (yet) be accounted for: (a) Cognitive perfor-
mance increases early on in life and declines in old age, and in
different paces for different cognitive abilities (e.g., Baltes &
Lindenberger, 1997; Horn & Cattell, 1967; Swagerman et al.,
2016); (b) the (possibly related) effects called age differentiation
and integration (for a review, see Tucker-Drob, 2009), which
denote the varying proportion of variance explained by the gen-
eral factor of intelligence across age (rather than across level of
ability); and (c) the increase of the heritability of intelligence
throughout development (Haworth et al., 2010; Trzaskowski,
Yang, Visscher, & Plomin, 2014). In the literature, one can find
hypotheses that can account for those effects. We propose these
can be incorporated in POT.

POT-PLUS

POT already does an admirable job in bringing together various
strands of evidence and is undoubtedly a considerable step for-
ward in the challenge of developing an integrated model of gen-
eral cognitive abilities. However, there are also several central
outstanding questions that remain for POT or any successor.
Inspired by POT, we next describe what we consider main
remaining challenges for any comprehensive theory of intelli-
gence. They may provide an initial outline toward how these
may be tackled by (versions of) POT or new models.

Test Sampling

Kovacs and Conway (this issue) borrow Baddeley’s architecture
of a multicomponent working memory and the idea that these
components are each limited by their own (total) capacity,
thereby causing individual differences in cognitive-processing
performance. We would agree with the idea that tests may sam-
ple from multiple of those capacities. That is, we believe in the
possibility that any two tests or test items may tap from differ-
ent cognitive processes. We denote this idea test sampling.

However, we also believe that psychometricians aim to con-
struct psychometric tests such that the overlap is as small as
possible. In the end, test sampling in additive models should
reveal itself through the presence of cross-loadings in factor
models of intelligence. A good psychometric instrument will
minimize these cross-loadings, such that a correlated first-order
factor model or hierarchical model is tenable. Because of the
simplicity of a hierarchical factor, this model may be preferred
over the bifactor model, in which it is nested by imposing pro-
portionality constraints; in the realist interpretation of the hier-
archical model this is due to mediating roles of the lower order
factors (for discussion, see, e.g., Gignac & Watkins, 2013;
Hood, 2008). However, the larger the sample size, the more
power to detect imperfections, hence the more likely the hierar-
chical will be rejected and the bifactor is the preferred model,
statistically speaking. A challenge for POT-I, as it is not an
additive sampling model, is to show if or in what situations
POT-I predicts good fit for the hierarchical model and in what
situations for the bifactor model.

As POT explains the positive manifold and the factorial
structure of intelligence as resulting from test sampling, it
would follow naturally that changes in the positive manifold
and factor structure would reflect changes in test sampling.
However, due to the omission of subscript t, this actually
remains an open question. Age integration, differentiation and
de-differentiation effects (Deary et al., 1996, 2004; Juan-Espi-
nosa et al., 2002; Tucker-Drob, 2009) are thus left unexplained.
One might argue that the empirical evidence for such effect is
mixed, and thus inconclusive or difficult to interpret (Tucker-
Drob, 2009), yet the subject must be taken seriously, as they
may relate to the Flynn-effect, for which Kovacs and Conway
(this issue) do aim to provide an account in terms of differenti-
ation. This account boils down to a second way of sampling
(which also is not clear from POT-S). Apart from the idea that
subtests or items sample, Kovacs and Conway implement the
idea of individual differences in the sampling procedure, which
we may denote as individual sampling.

In the additive POT-sampling model we just specified, one
could implement the idea of individual sampling by introduc-
ing a subscript for the individual concerning the chances the
underlying capacities are samples, so that the model would read

fluidi D

Xne

kD 1

bikEik

verbali D

Xnv

lD 1

bilVil C

Xne

kD 1

cikEik

visuospatiali D

Xns

mD 1

bimSim C

Xne

kD 1

dikEik:

This different way of sampling may also be interesting in the
light of research into the relation between fluid intelligence and
working memory capacity. Strong relations between the two
constructs have been found (e.g., Ackerman, Beier, & Boyle,
2005), but overall findings are mixed again and inconclusive in
order to provide a definitive answer to the question of whether
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the two constructs are the same. The work of Chuderski (2013),
however, may provide a reason for these mixed results; when
individuals are under pressuring circumstances, the two con-
structs become identical, while under less demanding circum-
stances they are not. As individual sampling suggests that
individuals with low levels of intelligence have lower levels of
any of the total capacities and need to recruit more of their
capacities in order to solve a problem, one might hypothesize
that, especially under time pressure, individuals with a low total
central executive capacity need to recruit more of central execu-
tive capacities as compared to individuals with a high total cen-
tral executive capacity; under less demanding circumstances
these sampling differences may be smaller. Again in additive
sampling models like the aforementioned, differences between
the constructs can be explained relatively easily, namely, as the
result of “sampling error”: The variables both represent an esti-
mate of total of executive functioning capacity, but relatively
small samples of bonds yield relatively small overlap and thus
lower correlations. A challenge for Kovacs and Conway would
be to show if this identity also occurs in their IRT model.

Genetics

POT does not make any claims regarding the heritability of the
cognitive abilities, their underlying capacities, hence general
intelligence. One simple explanation is that as each of the
underlying variables are to some extent heritable, their sum is
also heritable. However, in itself this will not provide an
account for the relation between factor loading and heritability,
thus for the way the Jensen-effect arises. We encourage propo-
nents of sampling theory to develop such hypotheses. We
believe this should be possible, as the genetic literature also cap-
tures the idea of sampling, which is central to POT. One can
distinguish again between theories that assume genetic deter-
minants (genetic variants or genetic mutations) cognitive proc-
essing have general effects (“generalist genes”; Kovas & Plomin,
2006) and theories that assume what we may call genetic sam-
pling, by which we mean that any two cognitive-processing
capacities always share some of their genetic determinants but
that there are no determinants that influence all cognitive pro-
cesses (Anderson, 2001; Cannon & Keller, 2006; Penke, Denis-
sen, & Miller, 2007). Both mechanisms will lead to genetic
correlations between the underlying capacities, whereas in the
original POT theory these are unrelated. The question becomes
what implications such genetic correlations may have for POT.
Does POT need to assume the absence of any shared genetic
effects, that is, the absence of pleiotropy for which there is
ample empirical evidence (Trzaskowski, Shakeshaft, & Plomin,
2013)?

Other behavioral genetic challenges for POT are to explain
why heritability of intelligence is higher in adults than in chil-
dren (Haworth et al, 2010), why genetic stability increases
(Deary et al., 2012), why over development genetic variance
can be described by a single latent factor (Deary et al., 2012),
and why genetic correlations among the various abilities appear
to increase (Hoekstra, Bartels, & Boomsma, 2007). Of these
findings, the first may be the easiest to account for: In standard
genetic models, genotype–environment correlation contributes
to heritability, so increase in genotype–environment

correlation, as proposed by Scarr and McCartney (1983), will
therefore result in an increase of estimated heritability. In the
model proposed by Dickens (2008), such relation between
genotype and environment will result in increasing genetic sta-
bility and genetic correlations among the different cognitive
abilities. To disentangle such explanations, it would be crucial
to determine whether POT assumes the absence of any shared
genetic effects, as implied by the assumption that the underly-
ing capacities are independent.

Development

There is increasing empirical evidence for the presence of
mutual beneficial interactions between cognitive abilities dur-
ing their development. One question needs to be answered: Are
such interactions also present in POT’s architecture, for
instance, among the multiple components in Baddeley’s work-
ing memory model? If such interactions exist, they will result in
stronger correlations between measures of cognitive perfor-
mance as compared to the correlations between their underly-
ing limiting capacities (van der Maas et al., 2006). Similarly,
cognitive abilities have mutual beneficial relationships with
educational attainment. As educational institutions provide
training in many cognitive skills simultaneously, educational
attainment also increases positive correlations among these
skills.

The missing role of education reveals other challenges for
POT. POT, as well as many other theories of intelligence,
explains individual differences in cognitive-processing capaci-
ties but not how these may lead to individual differences in
their outcomes, namely, knowledge and skills (often denoted
“crystallized intelligence”). Cattell’s investment theory of fluid
and crystallized intelligence might be considered an important
exception, yet this theory clearly falls within the g-theoretical
framework. In those theories, as well as POT, g-loadings of fluid
tests are a function of complexity (the more complex a test, the
more g-loaded). Yet crystallized knowledge tests, which are
themselves noncomplex, demonstrate high g-loadings as well
(and often the highest, e.g., Kan, Wicherts, Dolan, & van der
Maas, 2013). The relation between complexity and g-loading is
thus not one-to-one. The relation between g-loading and test
content may be better characterized as being a function of cul-
tural load (indicating the subtests’ dependency on individual
differences in prior knowledge). That is, the more individual
differences in successful task completion depend on individual
differences in cultural dependent knowledge, the higher the
tasks’ loading on the general factor of intelligence. The finding
becomes even more puzzling because the larger the role of cul-
turally dependent knowledge, the higher the heritability of indi-
vidual differences in performance. Ideally, a new theory of
intelligence, hence POT, should also account for this (rather
paradoxical) finding.

Neuroscience

A final open question is how to reconcile converging insights
from (cognitive) neuroscience with POT. In terms of existing
evidence, it is clear that POT represents a considerable step for-
ward in this regard compared to traditional g theories as a
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single neural property or dimension is likely not fruitful. The
empirical evidence is rapidly converging on the conclusion that
intelligence is best seen as determined by the (weighted) sum of
many neural properties, rather than as some underlying
“neuro g” (Haier et al., 2009). This conclusion has been sup-
ported across multiple cohorts and neuroimaging metrics,
showing how gray and white matter play complementary roles
in supporting (fluid) intelligence (Kievit et al., 2014; Kievit
et al., 2012) and how cortical, subcortical, and even different
metrics of white matter determine fluid intelligence in old age
(Ritchie, Booth, et al., 2015). This neuroimaging evidence fur-
ther supports the hypothesis central to POT that g is best seen
as a (formative) summary of lower levels, both cognitive and
neural, rather than a single underlying entity. In short, POT
naturally accommodates the emerging consensus in neuroim-
aging that higher cognition depends on a broad and partially
complementary set of low-level determinants.

However, other findings may be more challenging to recon-
cile. First, emerging work suggests that the canonical role of the
dorsolateral prefrontal cortex—(dl)PFC)—that of actively
maintaining representations by means of continuous (spiking)
activity, is likely an oversimplification: Working memory repre-
sentations can, in principle, be maintained even in the absence
of continuous activity (Stokes, 2015). More worryingly, the
canonical explanation of the role of the (dl)PFC is likely incom-
plete: A recent study of a nine patients with considerable (dl)
PFC lesions (Mackey, Devinsky, Doyle, Meager, & Curtis,
2016) showed a surprising lack of cognitive sequelae, both in
terms of spatial working memory and general cognitive func-
tion (both were largely preserved). Although neither of these
are direct threats to POT, it does suggest that our ability to
translate our psychometric, structural representations into pre-
cise underlying neural mechanisms is still limited. It seems
likely that executive processes that are at the heart of POT com-
prise a complex set of cognitive processes, including but not
limited to maintenance of interim representations, metacogni-
tion, inhibition, and set-shifting, all of which are likely operat-
ing partially simultaneously and dependent on overlapping
neural systems.

To truly get at the heart of the neural processes underlying
executive processes and their relation to general intelligence,
we reiterate the importance of the subscript t; in both the short
term (intraindividual task-related processing) and long term
(developmental timescales). One of the strengths of the POT
model compared to g-theory is that it simultaneously bears
upon interindividual differences as well as intraindividual pro-
cesses. In one way, POT can be seen as a process model for dif-
ferent contributions of executive and low-level abilities when
performing a given task. It should be possible, in principle, to
separate these contributions in time (response duration and
activation across a trial) and space (across the cortex). By
decomposing trial-level activity across the cortex, neuroimag-
ing techniques offer the promise of testing process level, intra-
individual theories of cognition. Recent work provides a proof
of principle in terms of spatial activity, using an IRT showing
how intraindividual processes differ even when conditioned on
interindividual difference in fluid intelligence (Kievit, Scholte,
Waldorp, & Borsboom, 2016), illustrating how neuroimaging
can be used to go beyond well-fitting behavioral models.

Moreover, if POT is true, we would expect that it may be possi-
ble to selectively disrupt or even temporarily improve cognitive
abilities that form POT. Initial evidence suggests this may be
possible, with TMS-based disruption of prefrontal activity dis-
rupting visual-spatial memory (Costa et al., 2013), whereas pre-
frontal stimulation (g-tACS) shows task and frequency-specific
improvement of fluid reasoning tasks (Santarnecchi et al.,
2013). Although these findings are far from settled, they show
how we may, in principle, be able to utilize neuroscience to test
specific aspects of POT and related theories and separate the
hypothesized interactions between executive, visuospatial, and
verbal processes over time during task performance in such a
way that it can be predicted or derived from the model.

Arguably the biggest challenge remaining for both
behavior only and neuroscientific inquiry is developmental
change. An influential study showed that cohort differen-
ces in cognitive abilities (low, middle, high IQ) were asso-
ciated with distinct patterns of neural maturation or rates
of change (Shaw et al., 2006), further illustrating the fact
that one-slice cross-sectional samples likely omit the key
features that underlie the phenomenon of interest. Most
promising in this regard are longitudinal psychometric
investigations of concurrent changes in cognition and
brain structure. These allow one to investigate whether
changes in cortical structure precede changes in cognitive
ability (compatible with a causal view of brain structure),
whether changes in neural structure are the consequence
of improving cognition (a plasticity-based view), and
whether both are dependent on some other (e.g., genetic)
cause or uncorrelated. Recent work in older adults shows
the promise of these approaches, with studies showing
greater white matter health predicts less decline in proc-
essing speed in older adults (Ritchie, Bastin, et al., 2015),
whereas another sample suggested greater baseline gray
matter volumes were associated with greater gains in fluid
intelligence (Persson et al., 2016).

Conclusion

POT represents an ambitious step forward in our understand-
ing of, and thinking about, the structure of general cognitive
abilities. Like all other theories of intelligence, key empirical
phenomena cannot yet be captured. By further formalizing and
extending POT, it may very well be possible to do so in the
future. This endeavor is increasingly feasible with the advent of
large, multimodal, publically available data sets. Ultimately, our
hope is that the intelligence field moves toward the integration
of formalized models of inter- and intraindividual differences,
such as POT and the Q diffusion model (van der Maas, Mole-
naar, Maris, Kievit, & Borsboom, 2011), together with genetic
and neuroimaging data over developmental timescales. Only
then will we be able to tease apart the interplay between inter-
and intraindividual processes and make further steps in unrav-
eling “the well-aged puzzle of g.”
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Commentary on Kovacs and Conway, Process Overlap Theory: A Unified Account of
the General Factor of Intelligence

Scott Barry Kaufman

The Imagination Institute and Positive Psychology Center, University of Pennsylvania, Philadelphia, Pennsylvania

I appreciate the opportunity to respond to Kristof Kovacs and
Andrew Conway’s (this issue) target article. As they note, some
aspects of their theory are not new. For instance, the strong
connection between general cognitive ability and working
memory has a lot of support in the literature and is well known
by this point. Indeed both researchers have contributed signifi-
cantly to this literature. However, I’d like to focus on a more
novel aspect of their theory, and point out some practical
implications.

As they point out, the positivemanifold is a well-replicated find-
ing. What still lacks consensus, however, is the explanation for this
positive manifold. Their idea that g is an emergent property (not
the cause) of multiple domain-general executive functions is a
novel way of looking at the g factor. But to me, the most interesting
puzzles they’ve helped to shed light on are (a) the law of diminish-
ing returns, and (b) the finding that the worst performance on a
cognitive test battery is a better predictor of the g factor than the
best performance. The cause of these two findings has never been
satisfactorily explained. Their solution is reasonable: Individual dif-
ferences in executive processes can serve as a bottleneck for cogni-
tive functioning across a wide range of tasks.

Practically speaking, this solution suggests that it may be
more difficult for individuals with executive functioning deficits
to showcase their intellectual capabilities. Chuderski (2013)
reviewed 26 studies that administered a measure of working
memory and a measure of fluid reasoning and found that the
studies that increased the time pressure of the fluid reasoning
task significantly increased the correlation between working
memory and fluid reasoning. In a follow-up experiment, Chu-
derski found that when participants were required to complete
a test of fluid reasoning in 20 min, working memory explained
all of the variation in fluid reasoning, whereas when partici-
pants were given 60 min to complete a measure of fluid reason-
ing, working memory accounted for only 38% of the variation
in fluid reasoning. This is a big difference! These findings are
consistent with other research showing that the processes
involved in fast and slow responses can be differentiated
(Partchev & De Boeck, 2012). Future iterations of the process
overlap theory should address the importance of changes in
test administration (e.g., timing) on their theory.

Chuderski also found that a measure of relational learning—
that assessed the ability to learn from prior relations to increase
efficiency of future processing of relations—predicted variation

in fluid reasoning above and beyond the effects of working
memory. Taken together, the implication is that tests that relax
the demands on executive functioning may give those with
executive functioning difficulties more of a chance to bring to
bear other cognitive processes—such as relational learning or
associative learning (see Kaufman, DeYoung, Gray, Brown, &
Mackintosh, 2009)—that may allow them a chance to perform
well on complex tests of cognitive ability.

This is a real issue in the learning disability literature. Vari-
ous learning disabilities, such as dyslexia and attention deficit
hyperactivity disorder (ADHD), are accompanied by deficits in
executive functioning. For instance, people who exhibit
ADHD-like symptoms tend to score lower on tests of working
memory (see Kolger, Rapport, Bolden, Sarver, & Raiker, 2010).
However, in one recent study, Fugate, Zentall, and Gentry
(2013) studied a sample of academically advanced students
who either scored in the 90th percentile or above on a stan-
dardized test or had a grade point average of 3.5 or greater in a
specific academic domain. Students with ADHD characteristics
such as “inattention” scored lower in working memory than
the students who did not display ADHD characteristics, even
though the groups did not differ in fluid reasoning ability. How
would the process overlap model explain these findings? I think
if the model is going to be comprehensive, it needs to explain
how it is possible for those with executive functioning difficul-
ties to still be highly intelligent.

The explanation has important implications for how we recog-
nize intelligence in students with extreme scatter in their cognitive
profiles. Due to their area of disability, students with learning dis-
abilities tend to score much higher in one cognitive area compared
to others. Various researchers are attempting to develop methods
for eliminating the attenuating influences of cognitive-processing
deficits on an estimate of a child’s general cognitive ability (Flana-
gan, Ortiz, &Alfonso, 2013). It would be great if the process overlap
model could help inform real selection decisions that influence the
course of a child’s future education.

There are also implications for students on the higher end of
the IQ spectrum. Multiple studies support the idea that intellec-
tually precocious youth show “multipotentiality”—they tend to
show more extreme discrepancies in their cognitive profiles
compared to students with average cognitive ability (Achter,
Benbow, & Lubinski, 1997; Lohman, Gambrell, & Lakin, 2008).
This result suggests that for those with high general cognitive
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ability, their g factor scores may mask their particular specific
cognitive strengths. I’d like to see future iterations of the pro-
cess overlap theory further explain the meaning of the general
cognitive ability factor among those on the highest end of the
spectrum. What’s the difference in the cognitive mechanisms
that give rise to general cognitive ability among those with an
IQ greater than 160 compared to an IQ of 130, for instance?

Finally, it would be great to see how the process overlap theory
relates to creativity. Fugate et al. (2013) found that the lower the
working memory scores among their population of high-achieving
students, the higher their creativity. Clearly, creative cognition is a
form of intelligence. But it’s a form of intelligence that doesn’t nec-
essarily always benefit from domain-general executive functions.
An interesting future line of research would be to investigate inter-
actions between the executive control network and other networks
in the brain. One recent study found that communication between
the executive network and the default network contributed to idea
generation (Beaty et al., 2015). However, the time course of the task
also mattered. The executive network was much more important
for later stage processing than early stage processing.

I look forward to seeing how process overlap theory develops
and how it makes connections with other areas of psychology, such
as educational psychology and creativity research. There is a lot of
potential for integration.
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Parameters, Not Processes, Explain General Intelligence

Klaus Oberauer

Department of Psychology–Cognitive Psychology Unit, University of Zurich, Zurich, Switzerland

Kovacs and Conway make a compelling argument for process
overlap theory as an explanation of the positive manifold
among cognitive tests. They make a strong case for their theory
to be considered as a viable alternative to the dominant view of
g. The general idea of explaining g as an emerging phenomenon
rather than a common cause of performance is probably on the
right track. At the same time, I am skeptical about some of the
more specific assumptions. I will discuss two concerns that, so
far, let me hesitate to fully endorse process overlap theory, and
finish with an alternative version of the idea of g as a
formative factor.

Are There General Processes?

The core assumption of process overlap theory is that every
response to a cognitive test reflects a sample from a set of
cognitive processes. Performance in two cognitive tests is posi-
tively correlated to the degree that their samples of processes
overlap. Some processes are more general than others, so that
they are sampled by a larger and more heterogeneous set of
tests; these processes are primarily responsible for positive
correlations even among very different kinds of tests.

What is a process? Literally, it is the transition between two
states. In the context of process overlap theory, it is better
defined as the skill or ability to produce a particular kind of
transition between two states reliably. For instance, a person
who has mastered arithmetic can reliably produce the transi-
tion between a representation of “2 C 3 D ?” to “2 C 3 D 5.” In
production system architectures of the mind, this concept of a
process is embodied in productions: representations of condi-
tion–action links that, when the conditions are given (i.e., per-
ceived or held in working memory), reliably produce the action
linked to them (Anderson & Lebiere, 1998).

For process overlap theory to work, processes must have at
least some degree of generality so that they are used in more
than one specific trial of a cognitive test. For some processes,
the case for generality can be made. The most compelling
examples come from language processing. For instance, a
speaker who can understand “Peter loves Mary” is likely to also
understand “Jane loves John” and “Peter hates Mary.” Observa-
tions of this kind have been summarized as demonstrating the
systematicity of language and interpreted as showing the opera-
tion of abstract rules that incorporate our linguistic knowledge
(Fodor & Pylyshyn, 1988). In this case, we can assume that

competent speakers of English have at their disposal a process
of parsing (at least) simple subject–verb–object constructions
that generalizes across all sentences of that form.

However, outside the domain of language, examples for
systematicity are much harder to come by. For instance, mas-
tery of elementary arithmetic relies only to a small degree on
rules that generalize across all numbers, and much more on
knowledge of individual addition, subtraction, and multiplica-
tion facts (Ashcraft, 1992; Zbrodoff, 1995). A person who has
acquired the fact “2 C 3 D 5” does not necessarily know that “5
C 7 D 12.” Can we assume that the processes of generating the
result to the first and to the second problem are the same? In
both cases, a skilled person arrives at the correct result by
retrieving the relevant arithmetic fact from long-term memory.
Therefore, one could argue that the same process—retrieval of
arithmetic facts—underlies solution of all elementary arithme-
tic problems. We need to recognize, however, that conceptual-
izing all these processes as “retrieval of arithmetic facts” reflects
an arbitrary choice of abstraction on our side. The same
processes could equally be conceptualized on a more concrete
level as “retrieval of 2 C 3 D 5” and “retrieval of 5 C 7 D 12,”
which would make them look like different processes. Of
course, we could also conceptualize them on an even more
abstract level by regarding them as “fact retrieval,” which would
suggest that retrieval of “2 C 3 D 5” and of “Paris is the capital
of France” are instances of the same process.

The brain, I presume, does not care about the level of
abstraction we choose to conceptualize its processes. Process
overlap theory, therefore, must be formulated in a way that
does not depend on them. We need a way to decide—at least
conceptually—whether two processes are the same, in the sense
that is relevant for process overlap theory, such that the deci-
sion is independent of how we choose to classify them. A rea-
sonable criterion would be to call two processes the same if
(and only if) their chances of success are necessarily highly cor-
related, such that if a person is able to reliably carry out one
process, that person is able to reliably carry out the other. By
necessarily highly correlated I mean that the success probabili-
ties are not correlated for merely accidental reasons, such as the
fact that they tend to be practiced together. Rather, whenever
one process is improved (e.g., by practice) or impaired (e.g., by
brain damage), the other always follows suit. This is the empiri-
cal criterion for systematicity that is met by some aspects of
language processing but is less prevalent in other domains. I
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call it the correlation criterion of process identity. The correla-
tion criterion is reasonable because it matches exactly what is
needed in process overlap theory: If, and only if, the success
probabilities of two processes, 1 and 2, are highly correlated,
then it is the case that when solving Test Task A requires Pro-
cess 1, and Test Task B requires Process 2, the solution chances
of Tests A and B are positively correlated. Hence, by regarding
Processes 1 and 2 “the same” according to the correlation
criterion, the core assumption of process overlap theory holds:
Tasks A and B correlate because they use the same process.

The critical question for process overlap theory therefore is,
Is there a sufficient number of cognitive processes that are rea-
sonably general according to the correlation criterion? This is
where I have doubts. Studies of skill acquisition have shown
again and again that skills acquired through practice have a
very narrow scope of generalization. Even within a narrow
domain such as elementary arithmetic, practice with individual
arithmetic facts improves selectively retrieval of those facts
(Zbrodoff, 1995). More generally, skill acquisition has been
shown to depend strongly on the acquisition of highly specific
episodes, facts, and procedures (Rosenbaum, Carlson, & Gil-
more, 2001), and there is little transfer from one domain of
expertise to another.

The stubbornly narrow scope of transfer of practice poses a
challenge for the assumption in process overlap theory that
there are domain-general processes—in particular, executive
processes—that are enrolled in a multitude of tasks across dif-
ferent content domains. Kovacs and Conway (this issue)
assume that these processes play an important part in generat-
ing the positive manifold because their use in many different
cognitive activities is responsible for positive correlations
among the success rates of these activities. What is the evidence
that such domain-general processes exist, and that they are crit-
ical for performance?

If domain-general processes of major importance for perfor-
mance exist, we should expect them to benefit from practice.
This notion underlies the optimistic perspective on cognitive
training (Jaeggi, Buschkuehl, Jonides, & Perrig, 2008): The idea
is that we can improve general intelligence through training of
transferable cognitive processes. Repeated waves of optimism
regarding this possibility have been met regularly with a sober-
ing lack of robust and reproducible transfer of training on
measures of general intelligence (Au et al., 2015; Melby-Lerva

�

g
& Hulme, 2016; Spitz, 1986; von Bastian & Oberauer, 2014). If
people improve massively through training on a task with
strong demands on executive functions, should we not expect
strong transfer of training effects to other tasks also making
heavy demands on executive functions?

There are two possible explanations for the weakness of gen-
eral training benefits within process overlap theory. One is that
we all, by using our general executive processes day in and day
out, have practiced them to a near-asymptotic level that leaves
very little room for improvement. This assumption begs the
question why there are still large individual differences in the
effectiveness of these processes. Perhaps people with low IQ
have lower asymptotes? That raises the question of why some
individuals have lower asymptotic efficiency of executive pro-
cesses than others—whatever is responsible for individual
differences in these asymptotes would be the root cause of

individual differences in general intelligence, and hence, of g.
Such an explanation, I believe, would undercut the thrust of
process overlap theory. The other possible explanation is that
executive processes cannot be improved by practice. The train-
ing gains on trained tasks might be due entirely to increased
efficiency in the more specific processes involved in these tasks.
I have no strong objection to this possibility, but I note that it
introduces a qualitative difference between specific processes,
which are highly malleable through practice, and general pro-
cess, which for some reason are impervious to practice.

Domain-General Executive Processes?

Kovacs and Conway (this issue) identify the family of executive
processes as the domain-general processes that are primarily
responsible for the positive manifold. This assumption is not
necessary for process overlap theory, and I am skeptical about
it.

The term of executive functions is used with a variety of
meanings, with frustratingly little agreement among research-
ers. Some define it as the set of all cognitive mechanisms and
processes that enable goal-directed behavior (Diamond, 2013;
Welsh, Pennington, & Groisser, 1991). This broad definition
comes down to saying that executive functions are all those
mechanisms and processes that enable intelligent behavior.
Others offer a list of more specific cognitive functions as a
definition, which begs the question of what they have in com-
mon (Baddeley, 1996). Some working-memory researchers
define executive processes in contrast to storage, implying that
every process that transforms representations in working mem-
ory is an executive process (Smith & Jonides, 1999). Perhaps
the best approximation to a useful definition is to identify exec-
utive processes with the set of processes involved in cognitive
control, that is, processes that control other processes. My
understanding is that Kovacs and Conway use the term in this
sense.

The lack of a clear definition of executive processes renders
the assumption that they underlie the positive manifold virtu-
ally untestable. In principle, this assumption could be tested by
Jensen’s method of correlated vectors: The g-loading across
many test tasks should be positively correlated with their degree
of dependence on executive processes. But how can we deter-
mine to what degree a task depends on executive processes if
the definition of executive processes is exceedingly vague? This
vagueness invites circular reasoning: We infer how strongly a
task depends on executive processes from its correlation with
g. I perceive instances of such circular reasoning when Kovacs
and Conway (this issue) argue that all varieties of working-
memory tasks that have shown high correlations with g place
strong demands on executive functions. For instance, in visual
change-detection tasks, participants briefly see an array of sim-
ple visual stimuli (e.g., colored squares) and about 1 s later see
another array, and decide whether one element has been
changed. I cannot imagine why this task should place particu-
larly high demands on executive functions, whereas a digit
span task does not.

One way to test the hypothesis of a close link between execu-
tive processes and g is to use task paradigms for which there is
broad agreement that they involve executive processes and to
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isolate the contribution of these processes to performance.
There are many experimental paradigms that have been pro-
posed for studying cognitive control, and many efforts have
been made to isolate the contribution of cognitive control
through difference scores between a condition with high and a
condition with lower control demand. Positive correlations of
such difference scores—such as the size of the Stroop effect or
the flanker effect—with working memory capacity and fluid
intelligence constitute the main evidence that Kovacs and Con-
way (this issue) cite in favor of the central role of executive pro-
cesses. However, these correlations have mostly been very
modest in size, and often zero, despite good reliability of the
difference scores (Keye, Wilhelm, Oberauer, & van Ravenz-
waaij, 2009; Oberauer, S€uß, Wilhelm, & Sander, 2007; Wilhelm,
Hildebrandt, & Oberauer, 2013).

Of the three executive-function factors that Miyake et al.
(2000) identified, only one—updating of working memory—
contributed unique variance in a regression model predicting
fluid intelligence (Friedman et al., 2006). In this study (as in
many others), updating of working memory was measured sim-
ply through the accuracy in a working-memory task involving
updating. When the updating process is isolated from other
factors contributing to success in a working-memory task, the
updating component was found not to correlate at all with
working-memory capacity (Ecker, Lewandowsky, Oberauer, &
Chee, 2010). Kovacs and Conway (this issue) dismiss the idea
that general mental speed explains g on the grounds that meas-
ures of speed account for only about 10% of the variance in g.
My reading of the literature on the correlation between meas-
ures of executive functions and g (or working-memory capac-
ity) is that they explain no more, and probably less, than 10%
of the variance. Moreover, the shared variance between execu-
tive-process measures and intelligence is shared not with g or
Gf but with lower level factors: A recent reanalysis of studies
relating the three Miyake-Friedman factors of executive
functions to measures of intelligence found that in most cases
the executive-function factors could be identified with group-
level factors of the Cattell-Horn-Carroll model, primarily the
speed factor Gs (Jewsbury, Bowden, & Strauss, 2016).

If executive processes are to fill the explanatory role that
Kovacs and Conway assign them, they need to be general, that
is, they need to be enrolled by many tasks across different
content domains. Why should we believe that executive pro-
cesses are more general than other processes? In production-
system architectures such as ACT-R, cognitive control is not
exerted by a set of general productions for control. Rather, it
emerges from the interaction of task-specific productions and
task-specific declarative representations, in particular represen-
tations of goals (Anderson et al., 2004; Salvucci & Taatgen,
2008). In conflict-monitoring and control theory (Botvinick,
Braver, Barch, Carter, & Cohen, 2001), an influential computa-
tional model of cognitive control, representations of the current
task, or the currently relevant feature dimension to attend to,
exert control by biasing the processing of stimuli such that
task-relevant stimuli or stimulus features are processed more
strongly than others. Arguably, these task representations are
task specific. According to an alternative model aiming to
explain the same phenomena, cognitive control arises from
Hebbian learning of connections between stimuli, responses,

and task representations. These connections are specific not
only to a task but even to individual stimuli and responses
within that task (Verguts & Notebaert, 2008).

No computational model of cognition, or of cognitive con-
trol, includes general executive processes. This is probably not
an accident: It is very hard to write a job description for a gen-
eral executive process, because what an executive control pro-
cess needs to do to ensure goal-oriented behavior differs for
each task and situation. Consider, for instance, different
versions of the Stroop task. In the classic version the person
needs to suppress processing of the word meaning while proc-
essing the print color instead. In the numerical Stroop task,
people need to suppress processing the digit’s meaning and
process their number instead. We could conceptualize the
control processes in both cases as “inhibition of irrelevant
information” or even more specifically “inhibition of processing
the symbol’s meaning,” but that does not make them the same
process. In fact, measures of Stroop interference from different
versions of the Stroop task have often found to correlate weakly
with each other (Hull, Martin, Beier, Lane, & Hamilton, 2008;
Salthouse & Meinz, 1995; Shilling, Chetwynd, & Rabbitt, 2002),
casting doubt on the assumption that they measure the same
domain-general control process.

An Alternative: Parameter Overlap Theory

I find it plausible that g is a formative rather than a reflective
factor, but I don’t think that its constituents are best described
as processes. As an alternative I want to propose that the for-
mative constituents are parameters of the cognitive system.
This hypothesis is motivated by efforts to build a computational
model of working memory (Anderson, Reder, & Lebiere, 1996;
Oberauer & Kliegl, 2006; Oberauer, Lewandowsky, Farrell, Jar-
rold, & Greaves, 2012; Oberauer, Souza, Druey, & Gade, 2013).
In every computational model there are parameters that influ-
ence performance measures, such as reaction time or accuracy,
and that can reasonably be assumed to vary between individu-
als. These parameters describe general features of the mecha-
nisms that the model assumes to produce behavior. Candidate
parameters include the amount of source activation in a spread-
ing-activation network (Anderson et al., 1996; Lovett, Reder, &
Lebiere, 1999), distinctiveness of representations (Farrell, 2012;
Oberauer et al., 2012), the noisiness of evidence accumulation
in response selection (Healey & Kahana, 2015; Schmiedek,
Oberauer, Wilhelm, S€uß, & Wittmann, 2007), and the
efficiency of removing irrelevant information from working
memory (Oberauer et al., 2012).

Computational modeling of working memory is in its
infancy, and there is no converging evidence yet favoring one
or a set of parameters as explanations of individual differences
in (fluid) intelligence. I suspect that the set of relevant parame-
ters will include more than one. If that is the case, then the pos-
itive manifold could be explained in a way very similar to
process overlap theory: The performance of the cognitive
system depends on the values of a set of N parameters. These
parameters might be uncorrelated across individuals. Perfor-
mance on each cognitive task j depends on a large subset nj of
those N parameters. Because the subsets are large, they overlap
substantially across tasks. The correlation between two tasks, j
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and k, depends on the proportion of shared parameters in their
subsets nj and nk. This overlap is rarely, if ever, zero so that
most pairs of tasks are positively correlated.

The difference between process overlap and parameter over-
lap is that parameters, by definition, are variables characterizing
the general mechanisms of the cognitive system. In neural
terms, they correspond to features of the entire brain—or at
least of large networks—such as the number of neurons (which
arguably influences the precision, and thereby the distinc-
tiveness, of neural population codes); the degree of myelination
of neuronal connections, which influences the noisiness of
information processing (Miller, 1994); or the gain parameter of
neurons, which also influences the signal-to-noise ratio (Cohen
& Servan-Schreiber, 1992).

The distinction between processes and parameters helps to
explain why training with working-memory tasks is very effec-
tive in improving performance on the trained tasks but yields
little, if any, transfer to fluid intelligence: Training makes the
processes involved in the trained task more efficient, but it does
not change the parameters of the system.

To conclude, I think that the general idea of explaining g as a
formative factor holds much promise. The positive manifold
could be explained as emerging from the fact that performance
on all cognitive tasks is dependent on sets of overlapping units.
Processes, however, are unlikely to be these units because they
are not general enough. Parameters that characterize features
of the cognitive system as a whole are better candidates.
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Groundhog Day: Is the Field of Human Intelligence Caught in a Time Warp? A
Comment on Kovacs and Conway

Robert J. Sternberg

Department of Human Development, Cornell University, Ithaca, New York

Kovacs and Conway (this issue) present a well thought through
“unified account of the general factor of intelligence.” The
account integrates cognitive, psychometric, and neuropsycho-
logical evidence. The account is plausible and well integrates
the various sources of evidence. It is a compelling article. It is
one of the most well-developed and thoughtful models of g cur-
rently to be found.

If many of my comments on the article in this essay are in
the form of critique, it is because the goal of an interchange
such as this one is largely to stimulate exchange of different
ideas rather than simple to agree with what is said. I will argue
in this article that at times, the field of intelligence seems to be
stuck in a time warp, but first let’s consider some other issues.

Problems of Scholarship

Let’s start with a minor but nevertheless vexing issue—quality
of scholarship. I need to start with this issue because it will be
central to the main thesis of this article regarding the field of
intelligence being stuck in a time warp. In their article, Kristof
Kovacs and Andrew R. A. Conway (this issue) say they “pro-
pose a novel solution to this well-aged puzzle which we refer to
as process overlap theory” (p. 152). The puzzle to which they
refer is the nature of g. But is their solution to the puzzle
“novel”?

The authors understandably if not quite correctly cite God-
frey Thomson (1916) as the founding father of what they call
“process overlap” theory. Thomson’s theory of bonds is argu-
ably the original basis for the idea that g is not just one thing.
Equally arguably, at least from an information-processing
standpoint, the idea goes even further back to Edward Thorn-
dike (1911), who is not cited. Thorndike believed that associa-
tions and their overlaps underlay intelligence. Thorndike, an
avid experimentalist, later became heavily involved in the men-
tal-testing movement during World War I and was instrumen-
tal in creating the Army Alpha (verbal) and Beta
(performance) intelligence tests.

That said, the real father of the overlapping-process theory is
not really either Thomson or Thorndike, but rather Charles
Spearman, who formulated the theory of g (Spearman, 1904,
1927). Spearman’s truly novel theory of overlapping processes
was not presented in his papers and books on g, but rather in a
separate work (Spearman, 1923), which is not cited by Kovacs

and Conway (this issue). Spearman believed that apprehension
of experience (what I later called “encoding”; R. J. Sternberg,
1977), eduction of relations (what I later called “inference”),
and eduction of correlates as used in analogical reasoning
(what I later called “application”) are the basic overlapping
information processes of intelligence. My later work on analogy
(R. J. Sternberg, 1977) was merely an elaboration on Spearman,
as is the work of Kovacs and Conway. According to Spearman
(1923), apprehension of experience, eduction of relations, and
eduction of correlates occur in overlapping fashion in many
diverse intellectual tasks, epitomized by the analogy. It is an
interesting historical note that two of the great psychometri-
cians of all time, Spearman (1904) and Carroll (1993), were
also astute cognitive psychologists (Carroll, 1976; Spearman,
1923).

Spearman (1923) was not the only early famed psychometri-
cian who constructed a cognitive theory of intelligence. Thur-
stone (1924), in a little remembered work that preceded his
psychometric contributions, argued that intelligence is the abil-
ity to inhibit an instinctive response. This is one of the key
components of working memory, as noted in Kovacs and Con-
way and elsewhere (Miyake et al., 2000). Thurstone’s cognitive
contribution, like Spearman’s, was prescient, and is not cited by
Kovacs and Conway.

With regard to more recent literature, Kovacs and Conway
do cite Detterman (1994), whose ideas about process overlap
are quite similar to theirs. Inexplicably, however, they do not
cite three investigators whose earlier research makes any claim
for this theory being a “novel solution” seem a bit stretched.
The investigators are John B. Carroll, Earl Hunt, and me, and
the relevant citations are Carroll (1976); Hunt, Frost, and Lun-
neborg (1973); Hunt, Lunneborg, and Lewis (1975); and R. J.
Sternberg (1977, 1980, 1984b, 1985). Oddly, Kovacs and Con-
way also do not cite Howard Gardner (e.g., Gardner, 1983),
who, like me, has viewed g as a much narrower construct than
have most scholars. Gardner has amassed evidence that he, at
least, interprets as suggesting that intelligence is modular rather
than unified. Authors obviously do not have to cite every publi-
cation ever written on a topic, but the Kovacs and Conway’s
failure to cite key scholarly works relevant to their own is puz-
zling, to say the least.

Carroll, Hunt, and I proposed ideas quite similar to those in
the Kovacs and Conway article. Hunt suggested that the
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information processes found in traditional cognitive tasks, such
as the S. Sternberg (1966) high-speed memory-scanning task,
underlie general intelligence. Carroll and I proposed as well
that overlapping information processes are the place to look,
but we instead suggested looking at the processes involved in
tasks similar or identical to those found on tests of intelligence.
In my own case, I proposed that metacomponents, or executive
processes, and to some extent performance components (e.g.,
inference, application) and knowledge-acquisition components
(e.g., selective encoding) overlap among virtually all cognitive
tasks and that they underlie what we have come to call g (R. J.
Sternberg, 1977, 1984b; R. J. Sternberg & Gardner, 1982).

These theoretical accounts are not identical to those of
Kovacs and Conway. Kovacs and Conway, writing more
recently, elaborate on the role of working memory and of
the brain in the theory of process overlap. Their account is
up-to-date, elegant, and well researched. But it is somewhat
astonishing that none of this earlier work was cited as ante-
cedent to the authors’ own, as the work collectively formed
much of the basis for the cognitive-correlates (Hunt) and
cognitive-components (Sternberg) work that later formed
the basis for one of several dominant paradigms in the
study of intelligence (see R. J. Sternberg, 1990).

Is the Theory Explanatory or Descriptive?

In their article, Kovacs and Conway state that “similar forma-
tive latent variables are socioeconomic status and general
health, which each tap common variance between measures
but do not explain it; according to process overlap theory, g is
no different” (p. 162). I agree. If one were to do a factor analysis
of tests of health or tests of wealth, one likely would end up
with a g factor for each, but the g factor would not explain
socioeconomic status (SES) or general health.

For SES, one could do a factor analysis on parental educa-
tion, family income, number of books in the house, amount of
money invested, and so on. The g for SES would reflect overlap-
ping processes in getting a good education, buying books for
the household, investing money wisely, and so forth. If you
have enough of these factors at high-enough values, you would
score well on the SES general factor.

General health, measuring levels of good cholesterol, bad
cholesterol (weighted negatively), blood pressure (weighted
negatively), blood sugar (weighted negatively), and similar indi-
ces, also could yield a g factor. Likely there are overlapping pro-
cesses responsible for these, some of which are inherited (as
with intellectual g) but others over which the individual has
some control, such as diet, refraining from dangerous drugs,
and exercise. People who have good general health are people
who have a number of the good-health factors weighing in their
favor. The g for general health is not one thing but a set of over-
lapping processes.

Through our overlapping-process theories of the gs of SES
and good health, we have created … what? Do we have an
explanatory theory of what causes high SES or good general
health? Are lots of books in the house, high levels of education,
and enough money to live comfortably causes of high SES, or
are they in turn secondary variables that reflect deeper underly-
ing causes? What might some of the deeper underlying causes

be? One would be familial inheritance—the individual inherited
his or her SES. Happens all the time. Another deeper cause
could be a high level of intrinsic motivation—someone who is
extremely motivated to do whatever it takes to raise her or his
SES. But then, these deeper causes could have still deeper
causes, for example, that the parent from whom the child
inherited her or his SES was extremely highly motivated to
succeed.

Of course, the same logic applies to good health. Blood pres-
sure and cholesterol numbers are certain overlapping in terms
of being responsible for good health, but they in turn can be
traced back to earlier antecedents, such as lucky inheritance,
good diet, good exercise habits, or whatever. Those elements in
turn could be traced further back, for example, to early parental
or peer pressure to eat well or exercise regularly.

We end up in the same place, I believe, with the process-
overlap theory of intelligence. Our models of SES and general-
health g, like Kovacs and Conway’s model of intellectual g, is
largely descriptive rather than deeply explanatory.

Lest it sound as if I am quick to dish out criticism to Kovacs
and Conway, I should add that the same critique applies to my
own theory of intelligence. When I have spoken of the overlap-
ping processes that are responsible for the general factor (R. J.
Sternberg & Gardner, 1982—36 years before the Kovacs &
Conway article), I realized that the model was basically descrip-
tive. What I call “metacomponents”—recognizing the existence
of a problem, defining what the problem is, choosing compo-
nent processes to solve the problem, creating or selecting a
strategy for problem solving, constructing a mental representa-
tion upon which the strategy will act, monitoring problem solv-
ing, and evaluating problem solving—are descriptive and can
be further broken down, and then the chances are that what-
ever they are broken down into can be broken down still
further.

Some theorists, including Kovacs and Conway, try to
finesse this problem in part by identifying neuropsychologi-
cal correlates of overlapping processes. But that is exactly
what they are—correlates. As Satel and Lilienfeld (2015) and
many others have pointed out, most of the neuropsychologi-
cal models we have today are at best correlational and some-
times the methodology used in identifying parts of the brain
involved in cognitive processing is suspect. When theorists
try to give their work the cloak of causal modeling by evok-
ing the brain, they really are doing something not entirely
different from what factor analysts have done for many
years—taking descriptive entities (as Vernon, 1950, realized
with regard to factors) and viewing them as causal. Van der
Maas et al. (2006) argued that it is not worth looking for g
in the brain, because there is no entity of g, only a set of
mutually beneficial interactions among cognitive processes
(which, yes, constitutes yet another overlapping-processes
model). With this introduction, we now can turn to the
main point of the present critique.

Groundhog Day

In the movie Groundhog Day (Ramis, 1993), a weatherman
named Phil (Bill Murray) gets stuck in some kind of time warp
and keeps living the same day over and over again. Try as he
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might, he can’t get past that day (until, of course, the romantic
end of the movie). Research on g seems to have gotten stuck in
a similar time warp. Spearman (1904) probably had no idea of
how his theory could get so stuck. The construct of g was a
major finding, but it happened well over a century ago. Why
haven’t we, as a field, moved on?

One could argue that we haven’t moved on because we are
still trying to understand g. But what’s there to understand? As
early as 1923, Spearman proposed overlapping processes
underlying g, and it seems we are still at it, with the theory of
the day being presented as “novel” exactly one century after the
publication of Thomson’s (1916) overlapping bonds theory and
almost a century after the publication of Spearman’s (1923)
overlapping-process theory. The language has gotten more
sophisticated, and there is a larger experimental literature to
draw on, but theorists keep dressing the same mannequin in
new clothes.

Hunt (Hunt, Frost, & Lunneborg, 1973) and I (R. J.
Sternberg, 1977) tried to go beyond redressing the same
mannequin and reliving the same Groundhog Day by creat-
ing theories of intelligence that were not based on individual
differences. Theories based on individual differences have
been the major custom since Spearman’s (1904) article, with
the early exception of developmental researchers such as
Piaget (1952, 1972), Luria (1976), and Vygotsky (1978). Lee
Cronbach (1957) was prescient in arguing for an integration
of psychometric and experimental methods. Even his com-
ments were adumbrated by another great psychologist, Louis
Thurstone (1938). Thurstone suggested that differential
methods eventually would be supplemented or replaced by
experimental ones. Hunt and I thought ours was a step for-
ward—we were not basing our theories on individual differ-
ences—but apparently the step was tentative.

In their article, Kovacs and Conway state that

latent variables are differential constructs that do not directly trans-
late to within-individual processes or mechanisms … and without
variation in mental abilities there would be no latent variables—the
last survivor of a meteor collision with Earth would still have cogni-
tive abilities and mental limitations but would not have g. (p. 153)

If so, it is unclear why almost the whole Kovacs and Conway
article is devoted to a within-subjects account of overlapping
processes within an individual of a between-subjects construct,
g (as per the title of their article). Why, after more than a cen-
tury, do investigators persist in starting with a construct based
on individual differences—despite the work of Spearman
(1923); Thurstone (1938); Hunt, Frost, and Lunneborg (1973);
R. J. Sternberg (1977); and the developmental theorists. Perhaps
those who do not learn from history are doomed to repeat it,
which may explain why this article is reminiscent of the movie
Groundhog Day. Even more reminiscent of Groundhog Day are
the investigators who persist in finding more and more and
more correlates of g, over a century after Spearman (1904)
pointed out that g correlates with pretty much everything that
has a mental-ability component.

Or does it? As Kovacs and Conway point out, correlations
are dependent on the context of the measurement situation
from which they are calculated. If there were no individual dif-
ferences, there would be no g, and if there were only weak

individual differences, there would be only a weak g. But the
ways in which mental abilities develop all depend on the inter-
action of genetics with environment, and g as we know it
assumes in large part an environment in which the mental abil-
ities measured by conventional ability tests are mutually devel-
oped and rewarded (R. J. Sternberg, 1984a, 2004).

Instead, imagine an environment in which this mutual
development and reward is not the case. Then will g look differ-
ent, given that it its existence depends on patterns of individual
differences? Kovacs and Conway acknowledge this possibility
when they state that “the average correlation between diverse
tests and thus the domain-generality of the positive manifold
varies across time and ability level, and g is only informative of
the extent of domain-general variance in a given population at
a given time” (p. 155). Thus, as they say, “the positive manifold
is an emergent property” (p. 162).

Some evidence suggests that g is indeed much more fickle
than some investigators have thought, and that Kovacs and
Conway should have added “place” to “time” as a constraint on
how gmanifests itself.

My colleagues and I found that g, as we traditionally think of
it, has only a minor role in some cultures’ conceptions of intelli-
gence (see R. J. Sternberg, 2004). But does g also have a different
role in actual adaptive value in different cultures (R. J. Stern-
berg, 2014a)? Our work in Kenya suggests it does. A group of
us (Grigorenko et al., 2001) found that g, as we usually think of
it, plays only a minor role in rural Kenyans’ conceptions of
intelligence. But is their conception of intelligence divorced
from their reality, or does it faithfully reflect the demands of
their environment? Our research suggests the latter.

Prince et al. (2001) investigated adaptive behavior in rural
Kenya, seeking out what it actually meant to be intelligent in
their environment. These investigators found that a key ele-
ment of adaptive intelligence is the learning of natural herbal
medicines to combat parasitic illnesses, such as malaria, hook-
worm, whipworm, schistosomiasis, and related illnesses. R. J.
Sternberg et al. (2001), in turn, measured village children’s
knowledge and of and ability to use these natural herbal medi-
cines. The kind of test we employed would yield only chance
scores among Western children, as none of them (or any of the
adults) would have any knowledge of these medicines. When
we correlated scores on our adaptive-functioning tests with
scores on tests of intelligence, the correlations were negative,
that is, children whose academic knowledge and skills were bet-
ter did worse on the real-world adaptive tests. Why?

In the rural Kenyan villages we studied, schooling and its
concomitant acquisition of academic knowledge and skills were
viewed as a proposition for losers. Schooling did not lead to a
job. What led to a job was an apprenticeship, and master crafts-
men were interested only in taking on children who showed
ability for their trades. Thus, in terms of the village conception
of intelligence, the “intelligent” children left school early to
learn a trade; the not-so-intelligent ones stayed in school
because no one wanted to teach them a trade. Learning aca-
demic knowledge, beyond a certain point, was viewed as a sign
of failure. This view is not limited to Kenya.

In much of Silicon Valley today, the college and business-
school dropouts (like my son Seth!) manage the PhDs, not the
other way around. Funders generally are not interested in

238 COMMENTARIES

D
o
w

n
lo

ad
ed

 b
y
 [

M
rc

 C
o
g
n
it

io
n
 B

ra
in

 S
ci

 U
n
it

] 
at

 0
8
:1

1
 0

3
 A

u
g
u

st
 2

0
1
6
 



funding potential entrepreneurs while they are in still in school,
so the students drop out. The top rewards go to the dropouts,
not to the most educated, among whom are some of those high-
est in g (e.g., the software engineers).

In a more recent and as-yet-unpublished study, my wife,
Karin Sternberg, and I found that a test of scientific reason-
ing administered to Cornell students correlated zero to neg-
atively with tests of fluid intelligence. In earlier work on
practical intelligence, we found only very weak positive cor-
relations between tests of g and tests of practical intelli-
gence, although both kinds of tests independently predicted
job performance (R. J. Sternberg et al., 2000). Of course,
the correlations in all instances were among a restricted
range of cognitive abilities. But that is the point. How g
functions will depend on when, where, and with whom the
testing is done.

A Future for Research

Is there a future for research in this area that enables research-
ers to escape the Groundhog Day phenomenon whereby
researchers keep doing the same things over and over again? I
believe there is. But to escape from Groundhog Day, research-
ers have to want to escape, and the biggest problem so far in
the field is not inability to escape but lack of desire to stop
doing the same things over and over again—changing the
clothing, changing the makeup, but leaving the mannequins
the same. What else could researchers in the 21st century do
besides what researchers did at the turn of the 20th century—
constructing theories and finding correlates of g, over and over
and over again? Here are just a few examples.

What Are the Roles of Various Cognitive and Noncognitive

Processes in Intelligence?

We know that working memory is important to intelligence;
and attention is important to intelligence; and inductive rea-
soning is important to intelligence. And we know that working
memory, attention, and inductive reasoning are all related to
each other. So, are working memory, attention, and inductive
reasoning separate processes, or are there more basic processes
underlying these and other labeled processes related to
intelligence? If there are more basic (orthogonal) processes,
what are they? And how do noncognitive processes play a role
in intelligence, for example, motivation? Several theorists
(Dweck, 2007; Hayes, 1962) have suggested that motivational
differences are key to individual differences in intelligent
performance.

Enculturation and Socialization

The authors allude to the effects of enculturation and socializa-
tion, but rather obliquely. They never deal with any of the
effects and do not cite any of the relevant literature. They are
right—how g manifests itself depends on people, time, and also
place. Investigators such as Flynn (2012) have shown how levels
of g (and of its correlate, IQ) change over time, and other inves-
tigators (e.g., Rindermann, 2007) have shown how they differ
across space. So that’s the easy part—showing the differences.

We need to understand why the differences occurs, what they
mean, and how they can be mitigated.

Value of g-Related Skills

We tend to assume that g-related skills are important or even
crucial to have. But are they? Our previously mentioned research
among Kenyans, as well as research we have done among Yup’ik
Eskimos (Grigorenko et al., 2004), suggests that in some socio-
cultural settings g counts for a lot and in others such settings it
is not so important. For example, among the Eskimos, ice-fishing
and hunting skills were far more important—and are not well
predicted by g. Kanazawa (2012) suggested that people with
higher levels of g-based skills often perform more poorly, on
average, on evolutionarily significant tasks than do people with
lower g-based skills. I have suggested (R. J. Sternberg, 1988)
something related—that children high in g-based skills are so
rewarded for these skills in school and at home that they often
fail to develop other skills that will be as important or more
important in life, such as creative and practical skills. They may
even be lower in wisdom (R. J. Sternberg, 2002) because they fail
to realize that their high level of g does not protect them from
acting foolishly. In any case, when and where is g helpful, and
where and when is it indifferent or even harmful?

Intelligence As Trait and State

We tend to view intelligence largely as a trait. But intelligence,
like anxiety, has statelike properties as well as traitlike ones
(R. J. Sternberg, 2014b). Intelligence can rise and fall with var-
ious variables, such as level of anxiety, drug intake, and level
of wakefulness. How much of our intelligence as manifested
in everyday life is more traitlike and how much is more
statelike?

These problems are just a pitifully small sample of the prob-
lems intelligence researchers might address. I intend them only
to illustrate that we don’t have to be locked forever into more
and more studies of the bases and correlates of g. But inertia is
a powerful force, and perhaps 10, 20, or 30 years from now, the
field still will not have broken out of Groundhog Day. Then,
maybe it will have. Only time will tell.
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Introduction

There is no way to express how amazed and impressed we are
by the commentaries received to our target article. We are par-
ticularly humbled by the simulations and other studies con-
ducted to test predictions or clarify proposals of the theory.
Such a diverse range of topics and commentaries like the ones
we received makes it impossible to adequately respond to every
issue raised, and with regret we had to select the most impor-
tant and/or recurring points to address. First we deal with
issues related to the novelty of the theory and the correspond-
ing model. This is followed by a discussion of evidence for the
theory. We turn to its predictions next and respond to each
simulation or other study that tests them. Finally, we elaborate
on the concept of a formative general factor and the value of
prediction in evaluating the relevance of such a concept.

Old Wine in New Bottles?

“Discovery consists of seeing what everybody has seen, and
thinking what nobody has thought,” said physiologist Albert
Szent-Gy€orgyi, winner of the Nobel Prize in 1937 (quoted in
Good, 1962). As it is likely the most replicated result in psy-
chology, virtually everybody has seen the positive manifold. As
it is a necessary algebraic consequence of the positive manifold,
everybody has seen the general factor, too. But has anybody
thought of the same explanation as the one provided in the tar-
get article?

Several commentators have accused us of selling old wine in
new bottles. At the same time, some are certain that we are
rebottling an Australian Chardonnay, whereas others clearly
recognize that excellent 2008 Pinot Noir from Chile. That is, it
has been argued by different commentators that our theory
only slightly differs from what Thomson, Spearman, Carroll,
Hunt, Sternberg, Eysenck, Jensen, or Anderson said and that
we shamelessly borrow ideas from uncited pioneers. This is
most pronounced in Sternberg’s (this issue) commentary: “It is
somewhat astonishing that none of this earlier work was cited
as antecedent to the authors’ own” (p. 237).

As we did explicitly admit, process overlap theory (POT) is
“not the first cognitive approach to human intelligence”
(p. 161). Yet it is the first cognitive theory that also provides a
latent variable model and an item response model. POT is a
whole with these three constituents, as highlighted by Kan,

Kievit, and van der Maas (this issue). As well, it draws from the
study of neural networks and the neural correlates of cognitive
abilities. In fact, as a fourth leg of the theory, it provides a test-
able account of the neural mechanisms underlying the pro-
posed overlap of psychological processes.

The target article was already testing the length limits of the
journal, as well as the patience of the reader. Hence it was not
possible to adequately discuss all the great previous research
that employed a cognitive approach to intelligence. We chose
to cite only those whose work is inherently linked to the main
argument or whose solution to the same problem we dealt with
was judged similar enough to justify a direct comparison. We
could have, of course, simply provided a long list of references
after our sentence that we just quoted, but we decided against
it. In retrospect, and especially reading Sternberg’s commen-
tary, this might have been a mistake, but in no way did we
mean to be disrespectful to the giants on whose shoulders we
are standing. We agree with Sternberg that this list would have
included Spearman’s seminal book on the laws of cognition—
and many others he did not cite. We also admire the work car-
ried out under the cognitive correlates (Hunt) and cognitive
components (Sternberg) approach; in particular, Sternberg’s
work on metacomponents has greatly influenced how we think
about human intelligence in general.

Gottfredson (this issue) also suggests that we fail to
acknowledge the tradition to which our work belongs, but she
adopts a very different perspective than Sternberg. To our
utmost surprise, Gottfredson judges that POT is perfectly com-
patible with g-theory and argues that we are following the same
tradition as Eysenck and Jensen in our efforts to explain the
positive manifold. Yet, according to Gottfredson, we misinter-
pret g-theory, and this results in our false impression that we
are contradicting it. In particular, Gottfredon argues that we
confuse different levels of explanation—the psychological
(intelligence) and the biological (the brain)—but if we over-
come this confusion, then we are saying the same things that g-
theorists have always said: General intelligence (g) is a unitary
trait at the psychological level but is an emergent property of
the brain.

To make this point, Gottfredson (this issue) quotes a rele-
vant section of the target article and adds bracketed text to
highlight where we purportedly fail to distinguish between the
psychological and the biological. We repeat this section, as we
find it very indicative of our differences:
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I illustrate the authors’ inadvertent conflation of two levels of analy-
sis in the following statement by adding bracketed text to distin-
guish the two levels, tests and physical brains.

The most important difference, then, from g-oriented accounts
of the positive manifold is that whereas reflective general factor
theories propose a causal influence of a latent variable, g, on
the positive manifold [among psychometric tests and life
outcomes], according to process overlap theory the positive
manifold [among tests] is an emergent property [of the brain],
the result of the specific patterns in which item response pro-
cesses [i.e., information processing systems in the brain] over-
lap. (p. 162)

With these insertions, the “important difference” disappears.
(Gottfredson, this issue, p. 213)

Indeed, this extended statement does render POT to be a
version of g-theory, and we would have to reconsider our criti-
cism, if only we agreed with the additions, which we do not.

Gottfredson (this issue) also interprets POT as follows:

As Kovacs and Conway repeatedly and correctly stress, psychomet-
ric g is an emergent property of interacting brain systems, so g is
their singular result. g theorists agree, of course, but the authors
attribute the opposite belief to them: that g causes the overlap in
brain processes. (p. 213)

This interpretation and extension is not in accordance with
our point. We never said that, according to g-theorists, g causes
an overlap in brain processes. Nor did we propose that g is the
“singular result” of “interacting brain systems.” Contrary to
Gottfredson’s assertions, POT not only says that “psychometric
g is an emergent property of the brain” and not only does it
“rule out notions of it being a single process or place in the
brain,” it also proposes that g is an emergent property at the
psychological level, that is, at the level of tests. Proximally, g
emerges because of an overlap of psychological processes
tapped by cognitive tests. Ultimately, this indeed can be traced
to an overlap of brain activity behind such processes—as we
did argue in the target article. But POT definitely does not pro-
pose that g is an emergent property of the brain that results in a
unitary (reflective, causal) trait or ability.

Therefore, POT is in complete disagreement with how Gott-
fredson (this issue) conceptualizes g according to the tenets of
g-theory: In short “domain-independent reasoning,” a “unitary
trait,” that “generates (causes) individual differences in perfor-
mance on cognitive tests intended to tap more specific abilities”
(p. 210). Also, “in theoretical terms, g represents the most
generic mental capacity possible: an all-purpose cognitive tool
that enhances performance on all tasks requiring any mental
manipulation of information” (p. 210). Finally, Gottfredson
repeats the definition of intelligence that originally appeared in
the manifesto published in theWall Street Journal: “Intelligence
is a very general mental capability that, among other things,
involves the ability to reason, plan, solve problems, think
abstractly, comprehend complex ideas, learn quickly and learn
from experience” (p. 214). POT is incompatible with this
definition.

Gottfredson somehow interprets POT as a theory that
claims that g, a unitary trait, is an emergent property of the
brain and that we only thought that it contradicts g-theory
because we incorrectly assumed that g-theorists insist on find-
ing a single source of g in the brain. Therefore, in her view POT

is an extension or elaboration of g-theory rather than a new
theory that contradicts it, as we claim. Why did she get the
impression that when we propose an overlap of processes that
result in the emergence of g we in fact restrict this explanation
to the level of the brain, leaving a unitary, singular psychologi-
cal g intact?

In our opinion, the answer is in the approach to so-called
elementary cognitive tasks (and therefore to “elementary” psy-
chological processes) in the tradition established primarily by
Eysenck and Jensen and to which Gottfredson explicitly sub-
scribes. This approach assumes that such tasks and processes
are somehow more “biological” than mental test scores; that is,
they reflect brain functioning more directly. This line of reason-
ing is exemplified in Gottfredson’s (this issue) statement on
working memory: “Tests of working memory and other major
constructs in cognitive psychology do not measure brain pro-
cesses directly but provide psychometric ‘analogs’ of them”

(p. 213). As Gottfredson acknowledges, this approach is histori-
cally intertwined with the methodology of the day: “EEG brain
waves and reaction time on exceedingly simple tasks (e.g.,
touch a button when it lights up) were as close to the brain as
[Eysenck] could get” (p. 213).

Yet, even though most intelligence tests are complex and
thus probably tap a large number of cognitive processes, we dis-
agree with the assumption that cognitive tasks that purportedly
tap more “elementary” processes are more biological. In our
view, they are just as psychological as mental tests. In general,
the distinction should be made between (a) functions (elemen-
tary and otherwise) and (b) their anatomical substrate or physi-
ology, rather than assuming that a psychological response is in
itself a—more or less—direct measure of the underlying neural
mechanisms. There is evidence, for instance, that performance
on simple reaction time tasks depends on much more than
processing speed (e.g., Conway, Kane, & Engle, 1999). As well,
with regard to measures of executive functions, the concept of
dysexecutive syndrome was invented exactly to separate anat-
omy and function and to differentiate certain symptoms from
the anatomy-based diagnosis of prefrontal syndrome (Baddeley
& Wilson, 1988).

A broader discussion of levels of analysis must eventually
lead to the larger issue of reductionism in psychology: whether
psychological phenomena in general can be explained by bio-
logical phenomena. However, regardless of one’s position,
“process measures” and “ability measures” are, in our view, on
the same level of explanation. That is, either both the Raven’s
matrices and operation span are “biological” or both of them
are “psychological.”

Let us turn now to the influences we did cite and to whose
work we did compare to POT. We explicitly claimed that POT
is a modern sampling theory. Deary, Cox, and Ritchie (this
issue) correctly point out that our influence has been Thom-
son’s early criticism of Spearman’s g rather than his late theo-
rizing. They write that “we should remind readers that
[Thomson] did not think that g was incorrect, only that it was,
he judged, one among other possible explanations for the posi-
tive correlations among mental tests” (p. 193). This is exactly
what we argued for: g (or, to be more precise, reflective g or psy-
chological g) is a sufficient but not necessary cause of the posi-
tive manifold—and, following Thomson’s pioneering idea, it
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can also be explained with an overlap of processes. Provided
that g does not seem to have a within-individual interpretation,
one should reasonably look for sampling as a viable alternative
option. Admittedly, we have much less been influenced by
Thomson’s (and Thorndike’s) bonds theory, for reasons
already outlined in the target article. Hence we adopted Thom-
son’s general line of explanation relying on a functional overlap
rather than his actual theory of what overlaps and how.

Yet POT differs even from (early) Thomson’s general idea of
sampling/overlap, and because there are commentators who
seem to have misunderstood our model, it is imperative to
explain how. Oberauer (this issue), for instance, summarizes
the main idea of POT as “Performance in two cognitive tests is
positively correlated to the degree that their samples of pro-
cesses overlap” (p. 231). This is a correct description of Thom-
son’s ideas, as expressed by his dice-throwing experiment, but
not of POT. As we wrote in the target article,

Process overlap theory proposes a nonadditive overlap of psycho-
logical processes. In particular, the executive/attentional processes
that typically overlap with domain-specific ones function as a bot-
tleneck: Failure to pass the executive demands of a test renders indi-
vidual differences in specific processes unimportant for overall
performance. As a consequence, the correlation between tests is not
simply the function of the sheer number of overlapping processes in
relation to the total number of activated processes, as in Thomson’s
account [emphasis added]. (p. 170)

So, unlike Thomson, we do not propose a linear relationship
between the extent of process overlap and the size of correla-
tions, and this is a crucial difference. This aspect of POT is
expressed in the M-IRT model, and we return to this point later
when discussing that model.

Parts of POT have also been interpreted by Deary et al. (this
issue, p. 192) as “a re-statement of Anderson’s (1992) theory of
intelligence differences.” We disagree. Anderson’s theory of
minimal cognitive architecture is practically a marriage of the
mental speed hypothesis of g and the theory of massive modu-
larity of cognitive architecture (originally invented by Fodor,
1993, but heavily criticized by Fodor, 2000, himself later on).
Unfortunately, we do not subscribe to either. The evidence
leans against informational “encapsulatedness,” which is a pri-
mary characteristic of Fodor (1993) and thus Anderson’s mod-
ules. Instead of massive modularity, a cognitive architecture of
component processes incorporating both modules and central
systems (see Moscovitch, 1992, as an example for memory)
seems more plausible—and admittedly more in line with our
theorizing of individual differences in cognition. Obviously,
contrary to Anderson, we do not subscribe to the mental speed
theory of the general factor either. So in short: We believe that
POT and minimal cognitive architecture provide drastically dif-
ferent cognitive explanations to the problem of the positive
manifold.

Even though the systems theory by Detterman is one that we
clearly referred to in the target article as a major influence, and
consequently we have not been accused of not citing it, we grab
the opportunity to mention it again here. In fact, even though
POT has been labeled as a modern sampling theory, it could
have also been reasonably labeled as a centralized system the-
ory. Therefore, we read the simulation in the commentary by
Detterman, Petersen, and Frey (this issue) with particular

interest. We are delighted that their results are in agreement
with POT. Even more so because—as a natural extension of the
target article—we have also started working on our own simu-
lations. The main difference between their simulation and ours
is that theirs has a different take on the bottleneck effect: They
simulate a number of process scores and the worst score func-
tions as the total limit for all the others. Our simulation, on the
other hand, is based on our M-IRT model and thus employs a
probabilistic rather than deterministic approach, which is argu-
ably more appropriate. Also, to simulate the neural basis of
overlapping processes, we employ a network-based approach to
selecting the components that interact to create the total proba-
bility of passing an item.

At this point it is worth noting that, to our surprise, the M-
IRT model is an aspect of the target article that remained
largely unnoticed by the commentators. In fact, only Kan et al.
(this issue) seem to address the model directly. This is unfortu-
nate because the model is strongly linked to the main theme of
this section, whether POT is a new idea or not. In our opinion,
the really novel aspects of the theory are probably easiest to
grab in the M-IRT model, which provides a mathematical for-
mulation not only of the nature of functional overlap between
different cognitive domains but also of the bottleneck effect cre-
ated by the limitations of executive functions that is central to
the theory. As noted before, this aspect of the theory is the
most pronounced difference when compared to (early) Thom-
son’s ideas on sampling.

Moreover, we believe that, besides the actual model, linking
item response theory in general with a cognitive theory is
unusual in the field. Of course, this on its own does not make it
valuable. But we believe that there is reason to claim that item-
level modeling is the right approach to formulate theories of
mental test performance. In other words, it is at the level of
items that cognitive processes should be modeled. There have
been simulation-based studies of intelligence, but they usually
use total scores. An item-level approach is more appropriate
because, in fact, the behavior we are trying to explain is a per-
son providing either a correct or an incorrect answer to a test
item, and the processes we are trying to explain are the ones
responsible for this behavior. An IRT-based approach also
makes it possible to model differences between items appearing
in the same test, which increases its scope of explanation com-
pared to total score based models, and allows different pro-
cesses to contribute to success to a different extent on items
with different requirements and/or difficulty within the same
test.

Finally, we would like to comment on the mutualism model
once more. Even though it is not a direct precursor to POT, it
also questions the existence of psychological g, and is compati-
ble with an emergent approach and formative model of the
general factor of intelligence. Yet it is also very different,
because it assumes developmental interactions instead of a
functional overlap (which is mathematically formulated as a
nonlinear growth model rather than a multidimensional item
response model). Yet, despite this difference, the two can be
almost indistinguishable, because if one includes executive pro-
cesses in the mutualism model to have very high interaction
weights (M) with all other processes, the end result will be
almost identical to the one in POT.
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So why not simply use this solution instead of a new theory
and a new model? The answer lies in the ample evidence about
the very limited extent to which transfer occurs—as cited by
Oberauer (this issue) in relation to POT, to which we return in
the section discussing the predictions of POT. That is, in our
opinion mutualism is more easily interpreted as the causal fac-
tor behind the development of specific abilities than of the large
across-domain variance. Also, regardless of whether develop-
mental evidence backs up mutualism or not, functional overlap
between processes, as well as neural overlap between specific
networks, does seem to take place when people solve a mental
test item.

Empirical Evidence in Support of Process Overlap
Theory

Several commentators—in particular, Ackerman, Colom,
Chuderski, and Santarnecchi, and Oberauer—question the
strength of one or more empirical findings that we cited as
evidence in support of POT. In many instances we disagree
with the conclusions these authors have drawn based on exist-
ing data. In this section we therefore address three lines of
empirical evidence that were called into question by at least
one of the commentators: (a) the relationship between execu-
tive functions, g, and fluid intelligence (Gf); (b) the distinction
between simple span and complex span tasks; and (c) ability
differentiation.

Executive Function, g, and Gf

POT doesn’t make a specific prediction about the relationship
between executive function abilities and g, or Gf, other than
that they are all multicomponent systems with overlapping pro-
cesses. However, given the proposed central role of executive
attention in test performance and fluid reasoning, there should
be moderate to strong correlations between executive functions
and both g and Gf. According to Colom et al. (this issue) and
Oberauer (this issue), the evidence for this relationship is weak.
Colom et al., for example, claim that “studies addressing the
relationship between executive tasks and Gf are consistent with
the conclusion that it is weak and unstable” (p. 182). Oberauer
agrees: “My reading of the literature on the correlation between
measures of executive functions and g (or working-memory
capacity) is that they explain no more, and probably less, than
10 percent of the variance” (p. 233).

Colom et al. and Oberauer base these arguments on two
studies by Miyake, Friedman and colleagues (Friedman
et al., 2006; Miyake et al., 2000) and a series of studies by
Oberauer and colleagues (Keye, Wilhelm, Oberauer, &
Sturmer, 2013; Keye, Wilhelm, Oberauer, & van Ravenz-
waaij, 2009; Oberauer, S€uß, Wilhelm, & Wittmann, 2008;
Wilhelm, Hildebrandt, & Oberauer, 2013). In fact, only two
of these studies (Friedman et al., 2006 and Oberauer et al.,
2008) directly examined the relationship between executive
function and intelligence. Miyake et al. (2000) is a latent
variable study on the relationship between three types of
executive function: inhibition, updating, and shifting. The
Oberauer studies examined the relationship between execu-
tive function and working memory capacity, not

intelligence. So why are Colom and Oberauer so pessimistic
about the relationship between executive functions and
intelligence? First, Friedman et al. (2006), which is based on
Miyake et al., found that only updating was related to Gf
(r D .64). The relationship between inhibition and Gf was
not significant (r D .29), nor was the relationship between
shifting and Gf (r D .13). We agree that these latter two
correlations are inconsistent with POT. As well, Oberauer
and colleagues consistently fail to find significant correla-
tions between working memory capacity and executive
function as measured by conflict sensitive measures derived
from the Simon and Eriksen flanker paradigms. These
results, too, are difficult to reconcile with POT.

However, these results stand in stark contrast to a number of
positive findings with respect to the relationship between exec-
utive function and intelligence, as well as working memory
capacity. Colom et al. and Oberauer fail to cite several recent
studies that show a moderate to strong relationship between
attention control and fluid intelligence (Shipstead et al., 2014;
Unsworth et al., 2014; Unsworth & Spillers, 2010; Unsworth,
Spillers, & Brewer, 2010). In each of these studies multiple tasks
per construct were administered, and in each study the data
clearly demonstrate a strong link between latent variables for
attention control and Gf. In order of magnitude: Unsworth and
Spillers (2010), r D .45; Shipstead et al. (2014), r D .69; Uns-
worth et al. (2010), r D .70; Unsworth et al. (2014), r D .77. As
well, Unsworth et al. (2009) found strong and significant
correlations between Gf and various executive functions: flu-
ency (r D .58), response inhibition (r D .76), and vigilance
(r D .52). Finally, a latent variable study specifically designed to
investigate the relationship between executive function and
working memory capacity found the two constructs to be
nearly identical (r D .97; McCabe et al., 2010).

In addition, Miyake et al. (2001) found strong correlations
between executive function and various spatial reasoning tasks
that consistently reveal high g loadings in the intelligence litera-
ture. Moreover, they interpret their findings as consistent with
the importance of attentional factors for g.

Why do some studies find such weak evidence for the rela-
tionship between executive function and intelligence/working
memory capacity and others find a strong relationship? We
don’t claim to have the definitive answer here, but it seems that
one important factor pertains to the measurement model
adopted by different research teams. One approach, adopted by
Oberauer and colleagues, is to link specific executive functions
to individual tasks. The other approach is to administer multi-
ple tasks per executive function and derive a latent variable
from the covariance observed across task paradigms (for exam-
ples, see McCabe et al., 2010; Unsworth et al., 2014; but for an
exception, see Friedman et al., 2006).

It is also possible that executive functions are more strongly
related to one another, and to fluid intelligence/working mem-
ory capacity, at lower levels of ability, and especially in clinical
populations:

Although the current data do not speak directly to the relations
between EFs and intelligence in these populations, one possibility
suggested by Rabbitt et al. (2001) is that when frontal lobe function-
ing is generally compromised, multiple EFs may be affected, leading
to higher inter-EF correlations. These higher correlations could
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then result in generally higher EF-intelligence correlations. Indeed,
Salthouse et al. (2003), examining an aging sample, found substan-
tially higher inhibiting-updating (.71), inhibiting-Gf (.73), and
updating-Gf correlations (.93) than those found here. (Friedman
et al., 2006, p. 178)

This particular result is in complete agreement with the bot-
tleneck effect proposed by POT. As well, the fact that latent var-
iable approaches are generally more effective in establishing
such correlations than individual executive tasks is also in
agreement with how intelligence and executive functions are
conceptualized by POT as multicomponent systems.

Overall, our reading of the evidence is definitely not that
there is a lack of relationship between executive function and
intelligence. There seem to be contradictory results, with the
majority of studies demonstrating a substantial proportion of
shared variance, whereas others report null or minimal effects.
A more complete understanding of the nature of executive
functions along with the development of more reliable tools to
measure them should lead to a clarification of what moderates
the relationship between executive function and intelligence.
Provided that “the central executive in the original working
memory model is little more than a homunculus, a little man
who takes all the decisions that are beyond the capacity of the
slave systems” (Baddeley, 1998, p. 524), we have come a long
way to understanding this component of working memory and
the control processes of the mind in general. Undeniably, there
is still a long way ahead. But in our opinion, our current under-
standing of executive functions and their relation to intelligence
does provide the necessary foundation for POT.

Gottfredson (this issue) also discusses the relationship
between g and Gf, independently of executive functions. Fol-
lowing Jensen, she proposes that g and Gf are “one and the
same,” extending their statistical (almost)-unity to conceptual
identity: “This makes theoretical sense because both manifest
as a domain general capacity for reasoning and solving novel
problems” (p. 211). In our view, this is contradicted, among
other things, by exactly the distinction that Gottfredson makes:
“Crystallized g begins to level off but fluid g tends to decline in
tandem with the aging of body and brain” (p. 211). She argues,
“For these reasons I conceptualize g in terms of fluid g when
speaking of Stratum III’s general factor, g” (p. 211).

In our opinion, such a fractionation of g based on aging or
other reasons is a basis of not conceptualizing it as a singular,
unitary construct, rather than identifying it with one of its com-
ponents. Contrary to Gottfredson, POT conceptualizes Gf as a
trait reflecting novel problem solving but g as a formative trait
emerging from the interaction of overlapping component pro-
cesses. Their identity is thus restricted to the statistical level—a
phenomenon that POT does explain.

The Distinction Between Simple and Complex Span Tasks

In our target article we make the distinction between simple
span and complex span tasks. In a simple span task, also known
as immediate serial recall, the subject is presented with a list of
stimuli and is required to recall the list in serial order. The
number of items per list varies, typically from two to nine, and
the stimuli are presented fairly rapidly, for example, one per
second. The digit span task is a well-known example. In

contrast, complex span tasks involve both processing and stor-
age of information. For example, in the counting span task, the
subject is presented with an array of colored shapes (e.g., blue
and red circles and squares) and is instructed to count the
instances of a target (e.g., blue circles) and remember the total
for later recall. After a series of displays, the subject is required
to recall all the counts in serial order. It is important that the
storage and recall demands of simple and complex span tasks
are identical (i.e., serial recall of digits), but complex span has
an additional processing component (i.e., count the blue
circles).

Despite more than 30 years of research on the important
distinction between simple and complex span tasks (for a
review, see Unsworth & Engle, 2007), Colom et al. (this
issue) present their own review of the literature and conclude
that “complex span tasks cannot be clearly distinguished
from simple span tasks” (p. 183). This conclusion is difficult
to reconcile with several findings, including (a) different
serial position curves: the recency effect is small in simple
span and is exaggerated in complex span (Unsworth &
Engle, 2007); (b) different error patterns: transposition errors
are most common in simple span whereas omissions are
most common in complex span (Unsworth & Engle, 2007);
(c) different effects of phonological similarity: there is a
phonological similarity decrement in simple span and a pho-
nological similarity facilitation effect in complex span
(Chow, Macnamara, & Conway, 2016; Macnamara, Moore,
& Conway, 2011); (d) different neural correlates: both simple
and complex span tasks exhibit activity in lateral prefrontal,
anterior cingulate, and parietal cortices, but complex span
exhibits greater activity in the medial temporal lobes during
recall (Chein, Moore, & Conway, 2011); (e) different correla-
tions with tests of educational achievement (in fact, this was
the original reason for the interest in complex span, because
contrary to simple span they were able to predict Scholastic
Aptitude Test scores; see Daneman & Carpenter, 1980;
Turner & Engle, 1989); and (f) markedly different
correlations with tests of fluid intelligence—but less so for
crystallized intelligence or clerical speed; see Figure 6 in the
target article.

We agree with Colom et al. that the distinction between sim-
ple and complex span is not always observed but instead
depends on how simple span tasks are administered and scored.
When active maintenance, especially via articulatory rehearsal,
is encouraged, for example, by using short lists and a relatively
slow presentation time, then simple span tasks are not as pre-
dictive of higher order cognition as complex span tasks (for a
review, see Conway, Getz, Macnamara, & Engel de Abreau,
2011). However, when rehearsal is prevented, and/or when lon-
ger lists are used, and/or when performance from longer lists is
weighted more strongly by the scoring procedure, then simple
span tasks are just as predictive of higher order cognition as
complex span tasks (Colom et al., 2006; Unsworth & Engle,
2007).

The bottom line, to us, with respect to simple span and com-
plex span tasks is that the distinction is undeniable (on the face
of it, they are clearly different types of tasks), but both types of
tasks tap many of the same cognitive processes. On this point
we agree with Unsworth and Engle, who concluded that
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“simple and complex span largely measure the same basic pro-
cesses (e.g., rehearsal, maintenance, updating, controlled
search) but differ in the extent to which these processes operate
in a particular task” (Unsworth & Engle, 2007, p. 1039). Simi-
larly, as already noted in the target article, in light of the avail-
able experimental evidence, we subscribe to the view that
complex span tests “reflect primarily general executive pro-
cesses and secondarily, domain-specific rehearsal and storage
processes,” whereas simple span tests “reflect domain-specific
storage and rehearsal skills and strategies primarily and execu-
tive attention processes only secondarily” (M. J. Kane, Conway,
Miura, & Colflesh, 2007, p. 24).

Ability Differentiation

Ability differentiation refers to the finding that the correlations
among various tests tend to be larger at lower levels of ability
than at higher levels. It was originally discovered by Spearman
(1927), who referred to it as the “Law of Diminishing Returns,”
and has been replicated many times (Detterman & Daniel,
1989; H. D. Kane, Oakland, & Brand, 2006; Molenaar, Dolan,
Wicherts, & van der Maas, 2010; Tucker-Drobb, 2009).

Despite this evidence, Colom et al. (this issue) question the
strength of the case for ability differentiation. Colom et al. cite
seven articles on differentiation. Of these, one is not a direct
test of ability differentiation (Gignac & Weiss, 2015), four find
evidence for ability differentiation (Abad et al., 2003; Deary
et al., 1996; Detterman & Daniel, 1989; Lynn, 1992), and two
do not (Fogarty & Stankov, 1995; Kroczek, Ociepka, & Chuder-
ski, in press). Given that four of the six studies that they cite
find evidence for ability differentiation, we admit to being per-
plexed as to why this is being called into question. As well, one
study that did not find evidence for differentiation (Fogarty &
Stankov, 1995) used an extreme-group design, comparing a
high-ability group (n D 25) to a low-ability group (n D 20).
This approach has been shown to be inappropriate for testing
for differentiation (Molenaar et al., 2010; Tucker-Drobb, 2009),
and the sample size is clearly insufficient (N D 45).

A more optimal approach to studying this phenomenon is to
apply moderated factor analysis and either look for changes in
the factor loadings as a function of g or use a proxy for g or Gf
and look for external moderation. With this method, we have
found evidence for differentiation in intelligence (Molenaar,
Wicherts, & Kovacs, 2016) and working memory (Kovacs,
Molenaar, & Conway, 2016). As well, Molenaar et al. (2010)
and Tucker-Drobb (2009), using moderated factory analysis,
found evidence for differentiation in intelligence. Overall, the
available evidence clearly demonstrates that ability differentia-
tion does exist.

Finally, not only the existence but also the importance of
phenomena that POT heavily draws upon has been called into
question. According to Deary et al. (this issue), differentiation
and the worst performance rule are “relatively small-scale phe-
nomena that are not particularly important for a general theory
of intelligence to explain” (p. 193). We disagree, and we are
happy to see that so does Kaufman (this issue), as well as Det-
terman et al. (this issue).

But their importance is not even the real issue. Differentia-
tion highlights that g is a population-dependent phenomenon,

which is a very important result. With regard to the worst per-
formance rule, we agree with Detterman et al. (this issue):

When a person is performing at their worst, it is reasonable to
expect that it is because important elements within the system are
at their lowest levels. In other words, it provides the lower bound
for performance and indicates how badly central elements can per-
form. (p. 203)

Differentiation and the worst performance rule are not only
interesting phenomena in their own right (even though, as
Kaufman, this issue, points out, “the cause of these two findings
has never been satisfactorily explained” [p. 229]). Their real sig-
nificance, in our opinion, lies in canalizing the line of explana-
tion a theory of the positive manifold has to take. That is, such
a theory has to explain why the positive manifold is stronger in
certain populations rather than others and why a general factor
extracted from the positive manifold correlates with a certain
level of performance more than with others. Kaufman correctly
summarizes that, according to POT, both phenomena occur
because “individual differences in executive processes can serve
as a bottleneck for cognitive functioning across a wide range of
tasks” (p. 229). This might not be their only explanation, but
still both phenomena serve as guidelines for an appropriate the-
ory of the positive manifold.

Predictions, Consequences, and Implications of POT

Having discussed the foundations of POT, let us move to the
predictions or implications of the theory that several authors
have commented on. In the previous section we did our best to
sensibly group topics, but because we wish to adequately
respond to the honoring effort by many commentators who
have performed simulations and other analyses, or cited chal-
lenging evidence, here we have to deal with issues commentary
by commentary. At the same time, we still simply cannot
answer every issue mentioned, so we focus on new analyses,
new simulations, and the most central topics. We leave out the
simulation by Detterman et al. because we have already
addressed that in the previous section.

So we start with the simulation by Kan et al. (this issue).
This seems to be very much in line with our conception and
related assumptions. We are excited that their results are also
in agreement with the factor structure predicted by POT. Yet,
they also claim that (a) the general factor is not so much a vari-
able constructed out of the verbal, visuospatial, and fluid factor
but rather is the fluid factor, and (b) the results are also com-
patible with a bifactor model, as well as with the oblique model.

Indeed, in such an ideal case as the one depicted by the sim-
ulation, g and Gf might be completely identical, both reflecting
pure executive functioning. Real test batteries are probably less
balanced in terms of specific processes canceling out one
another, and the empirical results are less ideal. This is proba-
bly the answer to the second issue as well: In such an ideal case,
bifactor models with only Gf (instead of g) might fit, but such a
factor solution will be problematic with real-life—and
especially Gc-biased—batteries like the Wechsler scales.

Amazingly, Deary et al. (this issue) provide three small-scale
studies to test POT. In the first, they test whether elderly adults
with large frontal atrophy have more across-domain variance
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in test results than people with low atrophy. They found the
predicted difference (52.7% vs. 29.1%), even though it did not
reach significance. We concur that it is in agreement with POT.

In the second study they compared the neural correlates of g
and Gf within the same sample and found that the same areas
were associated with g and Gf, where “the magnitude of associ-
ations for all sub-regions for g and Gf were near-identical (vec-
tor correlation for surface area: r D .98, for volume: r D .99)”
(p. 197). They conclude that “these data provide clear evidence
that g and Gf are virtually identical in terms of bivariate associ-
ations, and also with respect to their cortical correlates”
(p. 197).

First of all, we must say that this result is quite unique and is
definitely not in accordance with the bulk of the evidence from
imaging studies, reviewed in the target article—even though, as
Deary et al. correctly point out, correlates of g and Gf were not
investigated in the same studies. Second, and related to this, it
is informative to take a look on how they measured the
constructs:

To construct g, we used WAIS-III Digit-Symbol Substitution, a test
of Choice Reaction Time, WMS-III Verbal Paired Associates, the
National Adult Reading Test, and Verbal Fluency. … To construct
Gf, we used Matrix Reasoning, Block Design, Letter-Number
Sequencing (from the WAIS-III) and Spatial Span (from the WMS-
III). (Deary et al., this issue, p. 198)

Apparently, their g factor is a mixture of Gc (with three
measures: WMS-III Verbal Paired Associates, the National
Adult Reading Test, and Verbal Fluency—with verbal fluency
probably tapping fluid abilities as well) and speed (Gs, with two
measures: WAIS-III Digit-Symbol Substitution and a test of
Choice Reaction Time). Gf, on the other hand, is measured
with a typical test of Gf (Matrix Reasoning), along with a test of
visuospatial ability (Gv, Block Design), a spatial working mem-
ory task (Spatial Span), and a transformational working mem-
ory task (Letter-Number Sequencing).

In our opinion, their conception of g and Gf is somewhat
unorthodox, which has important consequences for testing
POT’s predictions. It certainly does not falsify POT that what
Gc and Gs have in common, on one hand, and what Gf, Gv,
and working memory have in common, on the other, actually
have a lot in common—even at the level of neural correlates.
We might even say that this is actually predicted by POT.

Their third analysis, as Deary et al. (this issue) admit, “does
not directly test a prediction of process overlap theory”
(p. 198). In this fascinating study they fitted a model in which
formative biological elements produce a reflective g factor. This
approach to modeling g is an alternative to the structural model
offered for POT (POT-S, by Kan et al., this issue) and is more
in line with traditional, g-oriented approaches to brain func-
tioning (see Gottfredson’s commentary and our earlier reply).
But because Deary et al.’s actual model does not include a fluid
reasoning factor, it is not possible to directly compare the two.

Indeed, should further research on the brain basis of g pro-
vide a different picture than it does today, and should it be rea-
sonable for a psychological g to congruently and ubiquitously
reflect the same independent biological sources (which it does
not do, according to our current knowledge), this family of
models could be superior to POT-S.

Apart from performing new analyses to test POT, a number
of commentators pinpointed empirical phenomena that seem
to contradict what one could expect from POT. An objection
raised by Kan et al. (this issue) is that POT cannot explain the
Jensen-effect, “the finding that the general factor is more herita-
ble than specific factors, such that subtests’ factor loadings on
the general factor and heritability coefficients are positively cor-
related” (p. 221). In particular, they point out that

POT does not make any claims regarding the heritability of the cog-
nitive abilities, their underlying capacities, hence general intelli-
gence. One simple explanation is that as each of the underlying
variables are to some extent heritable, their sum is also heritable.
However, in itself this will not provide an account for the relation
between factor loading and heritability, thus for the way the Jensen-
effect arises. (p. 224)

Kan et al. are correct that POT does not make direct, specific
predictions about heritability. Yet it does make the indirect pre-
diction that the heritability of executive functions is central
with respect to the heritability of g. Moreover, it is exactly
because of this indirect prediction that we disagree with their
claim that total heritability as the sum of the heritability of
component processes will not provide an account of the Jen-
sen-effect. There is a very simple way to reconcile this kind of
additive heritability (which we in fact did not explicitly propose
in the target article) and the Jensen-effect: if the heritability of
executive functions is substantially higher than the heritability
of domain-specific abilities or processes. This would result,
according to POT, in a correlation between heritability and g-
loading even in the case of summed heritabilities of processes.

Actually, there is evidence that this happens to be the case. A
study compared the heritability of three brain networks
involved in different aspects of attention: an “orienting net-
work” (responsible for orienting to sensory events), an “alerting
network” (“developing and maintaining the alert state”), and a
“conflict network” (“executive control used in resolving conflict
between stimuli and responses”). Clearly, of these three net-
works, the last is the one strongly related to the executive func-
tions that, according to POT, are central to mental test
performance. The study found that the heritability of the ori-
enting, alerting, and conflict networks is .18, .00, and .71,
respectively (Fan, Wu, Fossella, & Posner, 2001).

Another study that directly measured the heritability of execu-
tive functions found it to be so high that it concluded that variation
in executive functions is almost entirely genetic in origin. In the
same study they found the heritability of overall IQ to be smaller,
with approximately 30% environmental effect (Friedman et al.,
2008). A third study (McClearn, 1997) found that the heritability
of specific abilities was generally lower than that of a general cogni-
tive ability index (with genetic variance being 55% for verbal ability,
32% for spatial ability, 62% for speed of processing, 52% for mem-
ory, and 62% for general cognitive ability). Overall, our reading of
the available evidence is that the Jensen-effect can be reconciled
with POT, because executive functions do seem to have higher her-
itability than other aspects of cognition.

Flynn (this issue) adds another item to the list of challenges
for POT. He cites Flynn, te Nijenhuis, and Metzen (2014), who
meta-analyzed “the Wechsler subtests scores of typical subjects
and those who suffered from iodine deficiency, prenatal cocaine
exposure, fetal alcohol syndrome, and traumatic brain injury”
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and found that even though “typical subjects were higher on
every subtest, the magnitude of their advantages by subtest had
zero correlation with the size of the subtest g loadings” (p. 207).
The challenge is:

If we substitute for g the three-factor concept of induction, working
memory capacity, and executive function, should there not be a cor-
relation between the extent to which this package is relevant to the
subtest and the score difference between normal and damaged sub-
jects? Unless these maladies collectively (and indeed virtually sin-
gly) damage the prefrontal lobes in a way that somehow cancels out
their differential contribution to the cognitive task set by the differ-
ent subtests, perhaps by reducing its contribution in all cases to a
minimum. This does not seem very plausible and the authors may
wish to comment. (Flynn, this issue, p. 207)

Our response here is very similar to the one Flynn provided
to Rushton to a similar challenge (Flynn, 1999). Rushton
(1999) claimed that IQ gains are not related either to g or to
inbreeding depression, whereas Black–White differences in IQ
are related to both. As evidence, Rushton cited a principal com-
ponents analysis, in which inbreeding depression, Black–White
differences, and g loadings of the Wechsler scales form a clus-
ter, whereas IQ gains appear on another cluster. This was sup-
posed to demonstrate that whereas IQ gains are environmental,
Black–White differences and g are genetic in origin.

Flynn replied:

You get Rushton’s clusters at all only because of a negative correla-
tion between g-loadings and IQ gains over time. And that negative
correlation is a product of two things: the WISC battery is biased
towards crystallised g; and crystallised g is biased against IQ gains.
(1999, p. 391–392)

Flynn also offered an alternative approach: To focus on Gf
instead of Gc, one has to look at the Raven’s correlations of
each subscale of the WISC. This way IQ gains correlate posi-
tively with g-loadings and we get a more valid measure of the
component of g that is the actual subject of IQ gain—which do
manifest themselves more strongly on tests of Gf than Gc.

We completely agree with both of Flynn’s claims. First, the
Wechsler scales are indeed biased toward Gc. Because Flynn
has clearly stated this in his writings, we are surprised as to
why in this issue he suggests that “we substitute for [Wechs-
ler!!] g the three-factor concept of induction, working memory
capacity, and executive function” (p. 207). Wechsler g is not
any more strongly linked to these constructs as to IQ gains,
and probably for the same reason.

Second, we believe a correlation of each subtest with the
Raven’s matrices is much more optimal as the basis for com-
parison here, too—in his reply to Rushton with inbreeding
depression and IQ gains, in our case with the magnitude of
advantage of healthy subjects. We have not carried out this
analysis, but if that would still find a zero (or negative) correla-
tion, that would be indeed problematic for POT—under the
condition that these four deficiencies univocally result in large
prefrontal/posterior parietal damage relative to other parts of
the brain.

Finally, Oberauer (this issue) cites a lack of transfer from
training studies as evidence against POT. First, he challenges
the existence of general processes based on training studies.
Before we evaluate this argument, let us point out that evidence
clearly points to the existence of general mechanisms of

cognition, and we need to emphasize the relevant results from
neuroscience (see the section on overlapping brain networks)
that we believe to be much more relevant than the issue of
transfer.

Moreover, we are unfortunately not sure that we completely
follow his reasoning. First, he says—claiming that it is an
implicit assumption of training studies—that “if domain-gen-
eral processes of major importance for performance exist, we
should expect them to benefit from practice” (Oberauer, this
issue, p. 232). We fail to comprehend this syllogism. Why
would the existence of domain-general processes imply that
they are malleable/trainable as a logical necessity?

But let us move on and assume that general processes just
have to be trainable. Yet, according to the evidence, there is no
transfer: “The stubbornly narrow scope of transfer of practice
poses a challenge for the assumption in process overlap theory
that there are domain-general processes—in particular execu-
tive processes—that are enrolled in a multitude of tasks across
different content domains” (Oberauer, this issue, p. 232). As we
pointed out before, we believe that a general lack of transfer is
more problematic for the assumptions of the mutualism model
than for POT.

There is a specific and relevant point, however, that Obera-
uer makes with regard to transfer: “If people improve massively
through training on a task with strong demands on executive
functions, should we not expect strong transfer of training
effects to other tasks also making heavy demands on executive
functions?” (p. 232). The short answer is: It depends. POT pro-
poses that executive functions serve as bottlenecks for diverse
cognitive performance. It also proposes that there are multiple
executive functions involved in different tasks in an overlap-
ping fashion.

So there are a number of conditions for the answer to
Oberauer’s question to be “yes.” Task on which transfer should
be experienced (a) has to tap the same executive functions, at
least in part, and (b) has to have executive demands high
enough so that the effect is substantial (remember: The M-IRT
model for POT implicates an asymptote for the role of
executive functioning in performance). Also, (c) the executive
functioning in the trained population should be at a level where
training improves the probability of a correct answer on the
other task (remember: The same asymptote is relevant for the
individual as well, because POT proposes an interaction
between the executive demands of the task and the executive
functioning of the individual).

In other words: Because the M-IRT model implies that the
executive and the domain-specific component of a single task
can be modeled as two subtasks in terms of the probability of
success, executive training should be effective only if it mean-
ingfully transfers to the other task (i.e., that other “executive
sub-task” has not been “solved” already, and the training
increases the chances of solving it).

Overall, a lack of trainability or a lack of transfer does
not necessarily imply a lack of general processes. We believe
that results of studies on transfer and training do not
directly contradict POT but the results of particular training
studies might pose a challenge. Alas, digging deep into the
literature of cognitive training, one gets the impression that
this whole matter poses a challenge for everyone.
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Future Directions: Escape From Groundhog Day

In his commentary, Sternberg compared us to the protagonist
of the movie Groundhog Day, who gets stuck in a time loop.
The analogy is supposed to demonstrate that our target article
is practically no different from all the myriad previous attempts
to explain g. We are puzzled, because we thought that POT
exactly breaks free from Groundhog Day. So far, the main-
stream conception of psychometric g interpreted it as a psycho-
logical mechanism, resulting in a reflective model, in which a
mysterious concept accounts for individual achievements on a
number of different ability tests as well as the covariance
between these tests. By explaining the positive manifold with-
out a psychological g, POT proposes a whole new conception
of intelligence.

It is unfortunate that, along with the M-IRT model (POT-I),
the formative g concept (POT-S) remained largely unnoticed
by many commentators, because it is probably the other really
“unorthodox” aspect of the theory (even though mutualism
also leads to the same kind of conceptualization for g; see van
der Maas, Kan, & Borsboom, 2014). Reconceptualizing g as a
formative construct is, in our opinion, exactly how we can
break free from Groundhog Day. Therefore, when Sternberg
(this issue) writes that “we don’t have to be locked forever into
more and more studies of the bases and correlates of g” (p. 239)
and when he juxtaposes his results on the lack of importance of
g in Kenya with POT, he breaks through two open doors at the
same time.

First, contrary to what Sternberg asserts, POT’s g is not sim-
ply another process-based explanation of reflective/psychologi-
cal g. It is a process-based explanation of the positive manifold
without proposing a causal g factor. Hence, POT does not
explain reflective/psychological g, it explains reflective/psycho-
logical g away. Under this framework one can, then, as Kan
et al. (this issue) point out, “focus on those lower order varia-
bles that do allow for a realist, causal interpretation” (p. 220).

Second, POT’s (formative) g can be characterized as an
index of cognitive abilities, as measured by mental ability tests
developed in Western, industrialized societies. This g is a valu-
able construct only insofar as it can predict important real-life
criteria from education to the workplace and beyond. If it does
a valuable job in doing so, for which there is evidence
(Gottfredson, 2007), then so far so good.

Gottfredson (this issue) argues that “the many biological and
sociological correlates of g helped demonstrate that g was no
chimera of factor analysis” (p. 214) and that “g-theorists believe
that psychometric g is an emergent property of the brain but
also that, as the brain’s unitary product, g generates a cascade
of effects in the real world” (p. 213). In our view, g is not a uni-
tary product of the brain, but no chimera either. According to
POT, the many sides of intelligence research depicted in Gott-
fredson’s figure reflect completely different phenomena and
not different aspects of the same thing. Yet, as a formative vari-
able, not reflecting any real trait and not being causal to the
positive manifold, g can still have many sociological correlates
and can predict a cascade of phenomena in the real world.

Yet if, as Sternberg argues, g is an insufficient predictor of
success in Kenya or for Australian aboriginals (see Flynn’s
commentary), then the measurement of other characteristics

becomes necessary for that particular cultural context. In gen-
eral, if it loses its value for prediction, formative g can be dis-
carded as a construct, without this having any relevance for
research on the causes of individual differences in cognition.

In fact, Gottfredson and Sternberg have been arguing about
the importance of g “in real life” for decades. POT does not
intervene in the content of this prolific debate; it only puts g in
a different context as it conceptualizes it is a consequence, not a
cause of the positive manifold. Regardless, as an index of men-
tal abilities, it may, or may not, be enormously useful in real
life, in the Western world and beyond. We leave it to research-
ers on the sociological side of intelligence to continue that
debate.

A thorough elaboration of the concept of formative g is
beyond the scope of the target article, let alone this commen-
tary. Actually, besides the M-IRT-based simulation, this is the
second line of extension of POT that is in progress at the writ-
ing of this response. g as an emergent property, characterized
by a formative latent variable, is the scaffolding for a “new era
for intelligence research” (Conway, 2014, p. 33). There are a
number of characteristics of this new approach, and even
though we cannot discuss all, two of them we must emphasize
here: the focus on specific abilities instead of “general intelli-
gence” and (b) a shift from explanation to prediction as a mea-
sure of validity for g.

Speaking of validity, we need to address the related criticism
from Ackerman, who asks, “How can an adequate theory be so
firmly disconnected from any considerations of external val-
idity?” He also claims that “until such a time when process
measures can even approach the validity of these intelligence
tests, it is not reasonable to say that one has developed an ade-
quate theory of the general intelligence factor” (p. 179).

First, we disagree about the importance of predictive validity
as an indicator of the value of POT as a scientific theory. POT
explains the positive manifold of cognitive abilities measured
by mental tests—tests that have been used extensively in educa-
tional and occupational contexts. It does not purport to estab-
lish the value of the tests themselves. On the other hand, as we
said, a formative g indeed has to have predictive validity, but it
is not directly related to the evaluation of POT as an explana-
tion of the positive manifold. (In other words: If one simply
removes the formative part of POT-S, the explanatory part is
still functional and translates to an oblique model without a
higher-order general factor.)

Having said that, we do wish to respond to Ackerman’s (this
issue) remarks regarding validity, because we find them to be
completely detached from the entire body of research on these
constructs. Ackerman claims that process measures, like tasks
tapping working memory, are detached from important real-
life criteria. That is not the impression we get from reading the
literature. Working memory capacity (WMC) has been demon-
strated to predict performance on the SAT (Daneman &
Carpenter, 1980; Turner & Engle, 1989), as well as educational
aptitude and achievement in general (Alloway & Passolunghi,
2011; Blankenship, O’Neill, Ross, & Bell, 2015; Foroughi,
Barrag�an, & Boehm-Davis, 2016). In particular, it has been
demonstrated that WMC in kindergarten is a better predictor
of school achievement than IQ (Alloway & Alloway, 2010), and
better WMC in kindergarten reduces the risk of high school
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dropout (Fitzpatrick, Archambault, Janosz, & Pagani, 2015).
Working memory predicts vocabulary learning (Daneman &
Green, 1986) as well as performance on a number of secondary
or long-term memory tasks (Unsworth, 2010; Unsworth,
Brewer, & Spillers, 2009). Moreover, tasks measuring WMC
can predict diverse real-life phenomena ranging from early
onset Alzheimer’s (even before standardized psychometric
tests, Rosen, Bergeson, Putnam, Harwell, & Sunderland, 2002),
through simultaneous language interpreting performance
(Macnamara & Conway, 2015) to skill in Texas Hold ‘Em poker
(Meinz et al., 2011).

Ackerman (this issue) also claims a lack of predictive validity
for tests of Gf in general and the Raven’s progressive matrices
in particular: “Those who followed Spearman in attempting to
measure g for application purposes were often substantially dis-
appointed by the lack of validity shown by Raven’s Progressive
Matrices for real-world criteria, such as job performance (e.g.,
see Vernon & Parry, 1949)” (p. 179).

In 2016 we find a claim like that with a 1949 reference
bizarre. An outstanding number of studies have demonstrated
the predictive validity of the Raven’s matrices, for both school
and the workplace. A supplement of the test’s manual has pages
of references to individual validity studies (Raven & Court,
1989). A relatively recent publication reviews the evidence for
the validity of the Raven’s matrices with an emphasis on occu-
pational performance (Raven, 2000). This publication also has
numerous references to support the predictive validity of these
tests for occupational (as well as educational) success. Most
interesting, it cites the same study as Ackerman as evidence for
validity:

Vernon and Parry (1949) summarised the results of testing 90,000
British naval recruits with a short, non-cyclical, version of the SPM
[Standard Progressive Matrices] during the Second World War.
There were systematic differences in the mean scores of men from
12 general classes of occupation: clerical, electrical workers, preci-
sion workers, woodworkers, sheet metal workers, machine opera-
tors, retail tradesmen, building workers, “mates,” drivers, farm
workers, and labourers. (p. 62)

Overall, it appears that there was a correlation between Gf
and the cognitive demands of different jobs, but according to
Ackerman there was no correlation with job performance. This
would mean that clerical or electrical workers had higher SPM
scores than building or farm workers, but within each profes-
sion SPM did not predict success. In our opinion it hardly
undermines the validity of the construct of fluid intelligence
that having more of it did not necessarily make one a better
farm worker in 1949.

And even if the 1949 study had indeed found a lack of valid-
ity and no studies with the opposite result had been carried out
since, would that result still be relevant? Unlikely. Enormous
changes in school curriculum—and in job demands—have
taken place since. In fact, as Flynn argued on several occasions
(e.g., Flynn, 2007), it is exactly such changes—that require
more and more abstract (“scientific”) thinking—that might be
responsible for the Flynn-effect in general and for the finding
in particular that IQ gains have been highest on tests of fluid
reasoning, whereas gains on crystallized knowledge have been
minimal.

Current discussions of the future of the job market also
emphasize that a large proportion of today’s schoolchildren
will eventually be employed in jobs that do not exist yet. Rapid
technological changes are transforming the world of work, and
arguably fluid intelligence that enables one to adapt to ever-
changing environments and solve problems in novel situations
is more important in jobs today than 67 years ago, and it will
be probably even more important 67 years from now. Probably
the opposite trend takes place with regard to task-specific
knowledge.

Besides a focus on prediction, another important feature of
a formative model, like the upper part of Figure 8 in the target
article, is the location of unexplained variance. In a reflective
model (like the lower part of the same figure) the latent vari-
able does not explain the entire variance in the measures;
hence there is individual variance in each (denoted with e). In
a formative model, on the other hand, the latent variable is a
common consequence rather than a common cause, and thus
does not explain variance in any of the measures (or lower
order factors). On the contrary, it is a consequence of variance
in the measures or factors, but in such a model it is the latent
variable that can have unexplained variance (denoted as z).

This, in less technical terms, means that according to POT-S
process overlap is probably not the sole causal force behind
across-domain variance, that is, for the positive manifold to
emerge. Indeed, it seems that there might be other, independent
sources, such as (a) white matter tract integrity (e.g., Penke
et al., 2011), (b) mutualism (van der Maas et al., 2006), (c) asso-
ciative learning (Kaufman et al., 2009), and (d) environmental
effects (Dickens & Flynn, 2001). Having said that, in our opin-
ion the functional overlap of processes is probably the primary
reason, and it is capable of explaining most of the across-
domain variance.

Approaching the limits of this reply, we wish to repeat our
gratitude to the commentators who have provided extensions
and new interpretations to the theory. We are particularly
grateful to Kan et al. for introducing the concepts of POT-S,
POT-V, and POT-I. As well, we are excited by their suggestion
to add a time dimension (the “subscript t”) to the model in
order to range its explanatory scope.

Oberauer’s suggestion that it is overlapping parameters
rather than overlapping processes that are responsible for an
emergent g is food for thought, especially because we have to
confess that we struggled with what to call these things that
overlap. At a given point of the development of the theory they
were called components, later on component processes, but
they ended up being just processes. Accordingly, we referred to
earlier versions of the theory as component process account
and multicomponent model, before settling for POT, which
emphasizes the actual causal factor behind the positive mani-
fold. The expression “parameter” at first reminded us of unitary
source models (like in the mental speed theory), but what
Oberauer advances is clearly different, as he proposes multiple,
independent parameters for cognition. We have to digest his
suggestion further, but we do not find this, at a first sight, to be
unreconcilable with our conception.

We are grateful to Cowan, Detterman et al., and Kaufman,
who paved the way for future directions of our theory that we
had not even thought of. In particular, Detterman et al. and
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Kaufman discuss the consequences of POT for mental diagno-
sis (Kaufman with a particular interest in twice exceptional
children and those at the highest part of the IQ-distribution).
Cowan suggests that new tests could be devised on the basis of
POT. Kaufman suggests that POT might have important conse-
quences for creativity research. These are all intriguing possibil-
ities that need to be further investigated (even though we are a
bit skeptical about creativity, as a recent study found that its
correlation with WMC is r D .04; M. J. Kane et al., in press).

We also agree with many commentators in that it is further
research on executive functions and the neuroscience of indi-
vidual differences in cognition that will really extend the
explanatory power of POT. Oberauer (this issue) judges that
“the term of executive functions is used with a variety of mean-
ings, with frustratingly little agreement among researchers”
(p. 232). Gottfredson (this issue) points out that the concept of
executive functions is not necessarily more consensual than the
concept of complexity. Sadly we must agree with both of them.
Indeed, identifying the individual processes responsible for the
positive manifold, but also the underlying brain mechanisms
(see commentaries by Detterman et al., Haier and Jung, and
Kan et al.) would be the most valuable extension of the theory.

As a final remark, it is worth reciting the aims of the target
article and examining what we have achieved—especially in the
light of some commentaries, which, with the best intentions,
request things of POT that it just might not be able to achieve.
What we tried to explain was the positive manifold: most likely
the most replicated result in psychology, of which, after more
than a century of its discovery, there is still no adequate expla-
nation. As we pointed out in the target article, from a cognitive
perspective the problem of the positive manifold translates to
this: Why does the variation between people in test performance
appear massively domain-general if the abilities they employ to
solve such tests are largely domain-specific?

On our journey to find an answer we had been strongly
influenced by Borsboom’s work on latent variables and their
relation to within-individual constructs. In particular, his coau-
thored paper on the ontological status of latent variables (Bors-
boom et al., 2003) has been a major influence, and it is
probably reasonable to say that what we tried to accomplish all
along was meeting this challenge:

A between-subjects latent variable must be parasitic on individual
processes, because these must be the source of between-subjects
variability. If it is shown that a given set of cognitive processes leads
to a particular latent variable structure, we could therefore say that
this set of processes realizes the latent variables in question. The rel-
evant research question for scientists should then be, which pro-
cesses generate which latent variable structures?” (Boorsboom et al.,
2003, pp. 215–216)

According to Sternberg, POT is descriptive, not explanatory,
because—to overly simplify his argument—it does not explain
why some people are smarter than others. In our view, POT is
an explanatory theory; explanatory of the positive manifold, an
important and well-replicated phenomenon. Explaining indi-
vidual differences in the actual abilities that are conceptualized
as reflective by POT (fluid reasoning, spatial ability, etc.) is
beyond the scope of the target article.

So does POT lock us forever in Groundhog Day, or does it
help us break free? We believe the answer is the latter. Provided

that the mainstream explanation of this phenomenon, reflec-
tive/psychological g theory leads to a completely different
research program, providing an alternative explanation that
leads to a different take on intelligence research is an important
addition to the field.

Our aim was not simply to explain existing phenomena but
also to inspire new research—research that, as a necessity of
science, will eventually lead to a new, better theory or at best an
improved version of POT. In the light of the commentaries, we
are very optimistic.
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