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Research Article

One of the most important, but contentious, topics of the 
nature-nurture debate is the source of individual differ-
ences in intelligence (Galton, 1869; Jensen, 1969). 
Historically, the debate pits a hereditarian perspective, 
which views individual differences in intelligence as pri-
marily genetic, against a sociological perspective, which 
views such differences as primarily rooted in environmen-
tal experience. Reports of recovery from IQ deficits among 
children rescued from severely adverse circumstances 
(e.g., Nelson et al., 2007) support a role for environmental 
experience on intellectual development. Yet these findings 
are seemingly undermined by ubiquitous reports that heri-
tability estimates from twin and pedigree studies of intel-
ligence are large (Bouchard & McGue, 1981) and increase 
with age (Briley & Tucker-Drob, 2013), findings generally 
supported by heritability estimates from genome-wide 
data on unrelated individuals (Davies et al., 2011; Plomin 
et  al., 2013). Understanding this apparent paradox is a 
central goal in research on cognitive development. One 
hypothesis that has been offered as a rapprochement 
between hereditarian and sociological views is that natural 
potentials for adaptive functioning are more fully ex-
pressed in the context of more nourishing environmental 

experiences (Bronfenbrenner & Ceci, 1994). Known as the 
Scarr-Rowe hypothesis of Gene × Socio economic Status 
(SES) interaction (Turkheimer, Harden, D’Onofrio, & 
Gottesman, 2009), it was originally described by Scarr-
Salapatek (1971) as follows: “IQ scores within advantaged 
groups will show larger proportions of genetic variance 
and smaller proportions of environmental variance than 
IQ scores for disadvantaged groups. Envi ronmental disad-
vantage is predicated [sic] to reduce the genotype-pheno-
type correlation in lower-class groups” (p. 1286).

The Scarr-Rowe hypothesis thus predicts that the heri-
tability of intelligence will be lower among individuals 
raised under conditions of greater childhood socioeco-
nomic disadvantage. The first support for this hypothesis 
came from a small sample of school-age Philadelphia, 
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Abstract
A core hypothesis in developmental theory predicts that genetic influences on intelligence and academic achievement 
are suppressed under conditions of socioeconomic privation and more fully realized under conditions of socioeconomic 
advantage: a Gene × Childhood Socioeconomic Status (SES) interaction. Tests of this hypothesis have produced 
apparently inconsistent results. We performed a meta-analysis of tests of Gene × SES interaction on intelligence and 
academic-achievement test scores, allowing for stratification by nation (United States vs. non–United States), and 
we conducted rigorous tests for publication bias and between-studies heterogeneity. In U.S. studies, we found clear 
support for moderately sized Gene × SES effects. In studies from Western Europe and Australia, where social policies 
ensure more uniform access to high-quality education and health care, Gene × SES effects were zero or reversed.
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Pennsylvania, twins, for whom data on sex but not zygos-
ity were available and for whom only census-level SES, 
not family-level SES, was available (Scarr-Salapatek, 
1971). These findings were sharply criticized for method-
ological flaws, with Eaves and Jinks (1972) concluding 
that “evidence previously analysed is insufficient to sup-
port the conclusions drawn” (p. 84). After a 28-year 
period of virtually no new research on the topic, Rowe, 
Jacobson, and Van den Oord (1999) reported higher heri-
tability of vocabulary IQ at higher levels of parental edu-
cation among a population-based American sample of 
adolescent twin and sibling pairs. Some subsequent U.S. 
research has replicated the interaction (Bates, Lewis, & 
Weiss, 2013; Harden, Turkheimer, & Loehlin, 2007; 
Tucker-Drob, Rhemtulla, Harden, Turkheimer, & Fask, 
2011; Turkheimer, Haley, Waldron, D’Onofrio, & 
Gottesman, 2003). Other studies, however, have failed to 
replicate the finding (Bartels, van Beijsterveldt, & 
Boomsma, 2009; Kremen et  al., 2005; Soden-Hensler, 
2012; van der Sluis, Willemsen, de Geus, Boomsma, & 
Posthuma, 2008), including a study using the largest sam-
ple to date (Hanscombe et al., 2012).

A number of factors might explain the inconsistencies 
among findings. First, reports of Gene × SES interaction 
on IQ might be false positives resulting from poorly pow-
ered studies conducted against a backdrop of bias toward 
publishing and citing positive findings. Alternatively, Gene 
× SES interactions might be true effects, but researchers 
could fail to replicate them because of low power or poor 
methodology. Finally, multiple authors have suggested 
that Gene × SES interactions may differ in strength across 
different populations or societies (Bates, Hansell, Martin, 
& Wright, 2015; Bates et al., 2013; Hanscombe et al., 2012; 
Tucker-Drob, Briley, & Harden, 2013; Turkheimer & Horn, 
2014). Those supporting this type of explanation have 
pointed to higher social stratification in access to educa-
tion (Hauser, 1970) and relatively modest social health 
(Adler & Newman, 2002) and social-welfare support 
(DeNavas-Walt & Proctor, 2014) in the United States com-
pared with Australia and Western Europe.

In this meta-analysis, we sought robust and reliable 
answers to three questions. First, does the range of stud-
ies from the United States support a positive estimate of 
Gene × SES interaction on achieved IQ? Second, do stud-
ies on participants outside the United States show a simi-
lar greater-than-zero Gene × SES effect? Third, can a 
single estimate adequately account for all of the observed 
effect sizes, or are separate estimates necessary to repre-
sent effect sizes from the United States and from Western 
Europe and Australia? To answer these questions, we col-
lected the world’s literature on Gene × SES effects on IQ, 
undertaking or commissioning from the original authors 
a number of reanalyses of the data and uncovering previ-
ously unpublished studies.

Method

We conducted a meta-analysis of the world’s literature on 
Gene × SES interaction effects on cognitive ability, seek-
ing to (a) determine the true effect size, (b) examine bias 
in reporting effects, and (c) examine moderators of effect 
size, including age of subjects, nation (United States vs. 
non–United States), test type (achievement or knowledge 
test score vs. intelligence test score), SES assessment 
(education, income, wealth, and occupational status), 
and year of publication. We used sophisticated methods 
for estimating random-effects meta-regressions in nested 
data (i.e., in a meta-analytic data set that contained mul-
tiple effect sizes per study). Because this methodology 
required that all effect sizes and standard errors be calcu-
lated using a consistent modeling approach, we typically 
(a) obtained the raw data and reanalyzed it ourselves,  
(b) were provided with parameter estimates from reanal-
yses by the original study authors (all authors contacted 
complied with our request), or (c) reanalyzed the pub-
lished subgroup covariance matrices (see Table 1).

Study identification

We identified published studies of Gene × SES interaction 
on objective measures of intelligence and academic 
achievement by searching databases, reviewing citations 
to and in identified studies and citations from narrative 
reviews, and consulting with colleagues. We used Google 
Scholar to search for studies using combinations of the 
following search terms: twin, gene, socioeconomic status, 
education, income, achievement, intelligence, cognition, 
and interaction. Previous narrative reviews of this litera-
ture that we consulted were articles by Turkheimer and 
Horn (2014), Turkheimer et  al. (2009), Nisbett et  al. 
(2012), and Tucker-Drob et al. (2013). We also consulted 
a table of previous studies included in Hanscombe et al. 
(2012).

Through consulting with colleagues, as well as review-
ing recent abstracts from the meetings of the Behavior 
Genetics Association and the International Society for 
Intelligence Research, we additionally identified a num-
ber of unpublished findings. K. C. Jacobson (a coauthor 
of an article by Rowe et al., 1999) conducted a Gene × 
SES analysis of a later wave of the National Longitudinal 
Study of Adolescent Health ( Jacobson & Vasilopoulos, 
2012). E. M. Tucker-Drob (an author of articles by Tucker-
Drob et al., 2011, and Rhemtulla & Tucker-Drob, 2012) 
conducted a Gene × SES analysis of a later wave of the 
Early Childhood Longitudinal Study-Birth Cohort 
(ECLS-B) data. Soden-Hensler (2012) reported Gene × 
SES results in an unpublished dissertation that we identi-
fied in our electronic literature search. T. C. Bates pro-
vided results from a manuscript submitted for publication 
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Table 1. Studies of Gene × Socioeconomic Status Interaction Included in the Meta-Analysis

Study Original report Twin pairs
Effect 
sizes Country Phase of life

Data acquisition 
and analysis

Brisbane Adolescent 
Twin Study (BATS)

Bates, Hansel, Martin 
& Wright (2015)

1,176 1 Australia Adolescence Raw data were 
analyzed by 
current authors

Cognitive Ability, 
Self-Perceived 
Motivation, and 
School Achievement 
(CoSMoS)

Spengler, Gottschling, 
& Spinath (2011)

542 1 Germany Adolescence Data were 
reanalyzed by 
original authors

Early Childhood 
Longitudinal 
Study-Birth Cohort 
(ECLS-B)

Rhemtulla & Tucker-
Drob (2012); Tucker-
Drob, Rhemtulla, 
Harden, Turkheimer, 
& Fask (2011)

750 6 United States Early childhood Raw data were 
analyzed by 
current authors

Florida State Twin 
Registry (FSTR)

Soden-Hensler (2012) 466 1 United States Middle childhood Results were 
reported in 
original article

Midlife in the United 
States (MIDUS)

Bates, Lewis, & Weiss 
(2013)

851 1 United States Adulthood Raw data were 
analyzed by 
current authors

Minnesota Twin 
Family Study (MTFS)

Kirkpatrick, McGue, & 
Iacono (2015)

2,494 1 United States Adolescence Data were 
reanalyzed by 
original authors

National Collaborative 
Perinatal Project 
(NCPP)

Turkheimer, Haley, 
Waldron, D’Onofrio, 
& Gottesman (2003)

319 3 United States Early childhood Raw data were 
analyzed by 
current authors

National Longitudinal 
Study of Adolescent 
Health (Add Health)

Jacobson & 
Vasilopoulos, 2012; 
Rowe, Jacobson, & 
Van den Oord (1999)

1,909 2 United States Adolescence and 
early adulthood

Data were 
reanalyzed by 
original authors

National Merit Twin 
Study

Harden, Turkheimer, 
& Loehlin (2007)

839 2 United States Adolescence Raw data were 
analyzed by 
current authors

Netherlands Twin 
Register–Adult 
(NTR-A)

van der Sluis, 
Willemsen, de 
Geus, Boomsma, & 
Posthuma (2008)

314 4 The Netherlands Early and middle 
adulthood

Data were 
reanalyzed by 
original authors

Netherlands Twin 
Register–Child 
(NTR-C)

Bartels, van 
Beijsterveldt, & 
Boomsma (2009)

3,132 1 The Netherlands Middle childhood Data reported 
in article were 
reanalyzed by 
current authors

Swedish Twin Registry Fischbein (1980) 215 2 Sweden Middle childhood Data reported 
in article were 
reanalyzed by 
current authors

Twins Early 
Development Study 
(TEDS)

Asbury, Wachs, & 
Plomin (2005); 
Hanscombe et al. 
(2012)

8,716 16 England Childhood and 
adolescence

Data were 
reanalyzed by 
original authors

Vietnam Era Twin 
Registry (VET)

Grant et al. (2010); 
Kremen et al. (2005)

3,203 2 United States Early and middle 
adulthood

Data were 
reanalyzed by 
original authors

Note: The number of twin pairs for van der Sluis et al. (2008) was approximated by dividing the reported number of individual participants by 2. 
The number of pairs for the ECLS-B was rounded to the nearest 50 in accordance with data-security regulations.
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(Bates et al., 2015). M. Spengler shared an unpublished 
manuscript (Spengler, Gottschling, & Spinath, 2011), and 
updated her analyses with additional data for the pur-
poses of inclusion in the current meta-analysis.

Inclusion and exclusion criteria

Studies included in the final meta-analytic data set are 
listed in Table 1. To qualify for inclusion in our meta-
analysis, studies needed to meet the following five  
criteria. First, intelligence or achievement had to be con-
tinuously measured using an objective performance-
based test or tests. Second, inference of genetic influence 
had to be made using siblings (preferably twins) with 
varying degrees of genetic relatedness. Third, the degree 
of genetic relatedness had to be known to a high degree 
of certainty (for twins, this meant that zygosity was diag-
nosed through either physical similarity ratings or geno-
typing). Fourth, an ordered categorical or continuous 
measure of family SES during childhood (a single or com-
posite measure of parental education, family income, or 
parental job prestige) had to have been examined as a 
moderator of genetic variance in intelligence or achieve-
ment. Finally, participants could not have been specifi-
cally selected on the basis of their psychiatric or medical 
diagnoses, patient status, or (low or high) intelligence or 
achievement test scores. Thus, studies were excluded if 
(a) they used a categorical measure of intelligence or 
achievement; (b) the measure of intelligence or achieve-
ment was not derived from an objective test or tests;  
(c) only sex, but not genetic relatedness or zygosity infor-
mation, was available for the twin pairs; (d) only adult-
hood SES was measured; (e) SES was measured at the 
school or neighborhood level but not at the family level; 
or (f) participants were selected on the basis of their test 
scores, medical or psychiatric diagnoses, or patient sta-
tus. We did not exclude studies on the basis of the age at 
which intelligence or achievement was measured.

When the original studies reported separate effect 
sizes for each of multiple cognitive measures, we included 
the effect sizes for each measure. When studies reported 
effect sizes for multiple measures of SES, we used the 
effect sizes associated with the composite SES measure, if 
available. If a composite measure was not available, we 
used effect sizes associated with parental education (mid-
parent education was preferred to maternal or paternal 
education) or family income. If both parental education 
and family income were available, but a composite score 
was not, we used effect sizes from both. We made one 
exception for the Twins Early Development Study (TEDS) 
sample (Hanscombe et al., 2012), which used three dif-
ferent SES measures from three different waves of data 
collection (composite of parental education and occupa-
tion at 18 months and 7 years, and income at 9 years). 

Because each measure provided information about SES 
during a different period of childhood, we deemed it best 
to retain effect sizes from all three SES indices.

Excluded studies

Some notable examinations of Gene × SES interaction 
did not meet our inclusion criteria. Data from Scarr-
Salapatek (1971) were excluded because the study relied 
on data from participants for whom only sex but not 
zygosity was available and for whom only census-level 
SES, but not family-level SES, was available.

Using kinship data from the National Longitudinal 
Survey of Youth (NLSY), Van Den Oord and Rowe (1997) 
relied on full siblings, half siblings, and cousins to esti-
mate genetic effects on academic achievement at differ-
ent levels of a variety of measured environments, 
including parental education. A classification algorithm 
was used to determine sibling types from indirect parent-
age information. Genetic inference in this design rested 
on comparisons between sibling types that differed mark-
edly in some of the same variables that were hypothe-
sized to be moderators of heritability. For instance, A. K. 
Cheung, Harden, and Tucker-Drob (2014) report that, in 
the NLSY data set, full siblings, compared with half sib-
lings, were nearly twice as likely to be Caucasian and 
over twice as likely to have college-educated parents. We 
therefore decided that the NLSY kinship data were not 
appropriate for examining Gene × SES interaction.

Nagoshi and Johnson (2005) examined SES differences 
in familial resemblance for cognitive abilities in the 
Hawaii Family Study of Cognition. However, as these 
authors did not capitalize on data from relatives of differ-
ent degrees of genetic relatedness or from adoptees, their 
data could not be used to distinguish genetic from envi-
ronmental sources of familial variance.

Friend, DeFries, and Olson (2008) and Friend et  al. 
(2009) tested for differences in the heritability of categori-
cal outcomes: reading disability and high reading ability, 
respectively. The samples employed in these studies were 
also specifically selected on the basis of the outcome 
under study, that is, at least one twin meeting criteria for 
proband status, and were thus excluded from our 
meta-analysis.

Finally, in a poster presented at the 2014 Behavior 
Genetics Association meeting, Prescott, McArdle, Achorn, 
Kaiser, and Lapham (2014) estimated biometric models of 
Gene × SES interaction using archival twin and sibling 
data from Project Talent of 1960. However, we excluded 
their findings because, as in Scarr-Salapatek (1971), only 
sex, not zygosity, was available from participants, and 
genetic inference required reliance on differences in 
intraclass correlations across same-sex twins, opposite-
sex twins, and nontwin siblings.
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Obtaining effect-size estimates

Because our analysis plan required that the results from 
each study be estimated from the same model, we often 
either reanalyzed data to which we had access or obtained 
reanalyzed data from the original study authors. For each 
study, we obtained a full set of parameter estimates and 
associated standard errors for an untrimmed version of 
Purcell’s (2002) biometric model of latent Gene × Measured 
Shared Environment interaction, where the measured 
shared environment is the SES index, and the phenotype is 
the index of intelligence or achievement. This model, dis-
played in Figure S1 in the Supplemental Material available 
online, is an extension of the standard ACE model, which 
decomposes phenotypic variation into additive genetic 
effects (A), shared environmental effects (C), and non-
shared environmental effects (E). The parameters produced 
are the main effects of A, C, E, and SES, along with A × SES, 
C × SES, and E × SES interactions. These parameters are 
termed a, c, e, s, and a′, c′, and e′, respectively. Of central 
interest is the A × SES interaction, labeled a′. To ensure that 
effect sizes were placed on a metric that was comparable 
across studies, we z-transformed phenotypes and continu-
ous SES measures (using the mean and standard deviation 
from data pooled across all twins and siblings of all related-
ness types) prior to fitting the Purcell model.

For studies that provided separate mean and covari-
ance matrices for each level of an ordered categorical SES 
variable, we used parametric cross-group constraints to 
obtain estimates of a, c, e, s, a′, c′, and e′ that were 
directly comparable with those obtained from the Purcell 
(2002) model applied to continuous SES data. To do this, 
we determined the SES z score for each discrete group by 
using the proportion of participants in each category to 
calculate normal distribution thresholds for group mem-
bership, and then computing the mean z score between 
the calculated thresholds following the assumption of a 
continuous normal underlying SES distribution. This 
assumption was reasonable because the studies that did 
employ continuous measures of SES typically trans-
formed their SES measure to normality if it was not 
already approximately normally distributed.

Conducting a meta-analysis of  
effect sizes

After compiling a meta-analytic database of study- 
specific effect sizes, we fit random-effects meta-regres-
sion models in Mplus (Muthén & Muthén, 2012) using 
the general procedure described by M. W. L. Cheung 
(2008), separately for each parameter of interest (a, c, e, 
s, a′, c′, and e′). Random-effects models do not require 
the traditional assumption that all effect sizes were 
derived from the same population with a single true 

effect size. Rather, they allow for population variation in 
the true effect size above and beyond variation attribut-
able to sampling error. In practice, this means that stan-
dard errors and significance levels for meta-analytic 
parameters for random-effects models are more conser-
vative than they would be for fixed-effects models. We 
included multiple effect sizes per sample (e.g., for differ-
ent intelligence measures, different waves, or different 
measures of SES), weighted meta-regression models by 
the reciprocal number of effect sizes included for the 
corresponding sample and by the inverse of each param-
eter’s sampling variance, and implemented a sandwich 
estimator that corrects standard errors for nonindepen-
dence of data points derived from the same sample.

Results

Summary of meta-analytic data set

As displayed in Table 1, our meta-analytic data set con-
sisted of 43 effect sizes from a total of 24,926 pairs of 
twins and siblings (approximately 50,000 individuals) par-
ticipating in 14 independent studies. Data were relatively 
evenly split across U.S. (18 effect sizes, 8 studies, 10,831 
twin or sibling pairs) and non-U.S. (Western Europe and 
Australia; 25 effect sizes, 6 studies, 14,095 twin or sibling 
pairs) samples. Because all variables were placed on a z 
scale, the magnitude of the Gene × SES interaction param-
eter (a′) represents the expected difference in the regres-
sion effect of the additive genetic factor on intelligence for 
each standard-deviation difference in SES.

Gene × SES effects in U.S. and  
non-U.S. samples

In an unconditional meta-analytic model, the meta- 
analytic mean for the Gene × SES interaction was non-
significant (a′ = .029, SE = .019, p = .136), but there was 
substantial heterogeneity in the effect (the standard devi-
ation of the random effect was .048; SE = .019, p = .011). 
When a dummy-coded nation variable (0 = non–United 
States, 1 = United States) was added to the metaregres-
sion model, there was a significant difference between 
Gene × SES effect sizes from the United States compared 
with those from Western Europe and Australia (b = 0.101, 
SE = 0.032, p = .001). There was a significant Gene × SES 
effect for U.S. studies (a′ = .074, SE = .020, p < .0005) but 
a trivial and nonsignificant Gene × SES effect for non-
U.S. studies (a′ = −.027, SE = .022, p = .223). In this 
model, the standard deviation of the random effect was 
.029 (SE = .012, p = .022), which indicates residual het-
erogeneity in the Gene × SES effect. Estimates from this 
model, as applied to all seven parameters, are presented 
in Table 2.
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The source of residual heterogeneity in a′ primarily 
stemmed from the non-U.S. studies (τ = .033, SE = .017, 
p = .047). Among U.S. studies, heterogeneity was not sig-
nificant (τ = .014, SE = .040, p = .735). Post hoc analysis 
revealed that, exclusive of effect sizes from The 
Netherlands, residual heterogeneity was nil in the non-
U.S. group (τ = .005, SE = .517, p = .993), and there con-
tinued to be a significant difference between Gene × SES 
effect sizes from the United States compared with those 
from Western Europe and Australia (b = 0.069, SE = 0.012, 
p < .0005). The model excluding studies from The 
Netherlands still indicated that there was a significant 
Gene × SES effect for U.S. studies (a′ = .068, SE = .021, 
p = .001) but no Gene × SES effect for non-U.S. studies 
(a′ = −.001, SE = .033, p = .979).

Figure 1 presents genetic and environmental variance 
components as a function of SES, as implied by the 
meta-analytic parameter estimates for the United States. 
Genetic variance in intelligence increases from .24 at 2 
standard deviations below the mean SES to .61 at 2 stan-
dard deviations above the mean SES. As instantaneous 
proportions of variance, these correspond to heritability 
estimates of 26% at 2 standard deviations below the 
mean SES and 61% at 2 standard deviations above the 
mean SES. There is also some indication that the shared 
and nonshared environmental variance components 
decrease with SES, although these interactions were not 
statistically significant.

Additional moderator analyses

We next tested additional moderators of the a′ effect size. 
In our first moderation model, we compared effect-size 
estimates for studies that measured cognition in adult-
hood (ages > 20 years; 7 effect sizes) to those that mea-
sured cognition in childhood (ages < 20 years; 36 effect 
sizes). Because there were a small number of studies of 
adult cognition, we restricted the remaining moderator 
analyses to the childhood subsample. We examined each 
of the following study characteristics as moderators of 
the a′ effect size in turn, each time controlling for whether 
or not effect sizes came from U.S. samples: childhood 

age, single versus composite measure of SES, achieve-
ment or knowledge test score versus intelligence test 
score, and single measure of cognitive ability versus com-
posite cognitive measure. None of these moderators was 
statistically significant. Results are presented in Table 3.

Finally, we examined whether there were childhood 
age differences in the a parameter, which represents the 
main effect of genes. Consistent with previous meta- 
analyses of Gene × Age interactions (e.g., Briley & 
Tucker-Drob, 2013; Haworth et al., 2009), there was sig-
nificant support for age differences in the a and c param-
eters, which indicates that genetic variance increases and 
shared environmental variance decreases with age (Fig. 
S2 in the Supplemental Material). This finding, which 
replicates previously documented age trends in genetic 
and environmental variance components, indicates that 
studies in the current meta-analysis are representative of 
the wider literature.

Table 2. Meta-Analytic Results: Estimates From Meta-Regression Models for all Structural Equation Model Parameters

Meta-regression parameter s a a′ c c′ e e′

United States .300 (.027) .636 (.044) .074 (.020) .548 (.070) –.046 (.032) .479 (.033) –.025 (.016)
Europe .280 (.022) .672 (.045) –.027 (.022) .507 (.052) –.029 (.012) .471 (.034) .063 (.065)
 Difference .020 (.033) –.036 (.065) .101 (.032) .042 (.086) –.017 (.028) .008 (.047) –.088 (.068)
τ .073 (.016) .097 (.013) .029 (.012) .158 (.018) .007 (.195) .115 (.018) .137 (.069)

Note: The bottom row (τ) shows the standard deviations of the random effects, which represent residual heterogeneity in effect sizes. Standard 
errors are given in parentheses.

Socioeconomic Status (standard-deviation units)
–2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0 1.5 2.0

Va
ria

nc
e

.0

.1

.2

.3

.4

.5

.6

.7
Genes (A )
Shared Environment (C )
Nonshared Environment (E )

Fig. 1. Variance in cognitive-test performance for the U.S. sample 
accounted for by genetic and environmental factors, graphed as a func-
tion of socioeconomic status (SES). Cognitive test scores were standard-
ized to a z scale within each data set prior to model fitting. This plot 
is very close to (but not identical with) a plot in which the y-axis rep-
resents the instantaneous proportion of variance for each level of SES.
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Probing for publication bias

Funnel asymmetry. Figure 2 presents diagnostic fun-
nel plots of Gene × SES interaction effect sizes, separately 
for U.S. studies and for European and Australian studies. 
This type of figure is named a funnel plot because when 
there is no (within-group) heterogeneity in population 
effect sizes, 95% of the meta-analytic effect sizes should 
fall within the inverted triangle-shaped region, with 
greater horizontal spread around estimates with higher 
standard errors. Biased reporting is indicated when data 
points are scattered asymmetrically around the point esti-
mate; commonly, effects with large standard errors (i.e., 
studies with low power) will be conspicuously absent 
from the region of the funnel nearer to the null. Evidence 
for bias was lacking. The only conspicuously empty area 
of the U.S. funnel is toward the apex, which indicates an 
absence of effect sizes from U.S. studies with small stan-
dard errors. An alternative version of this funnel plot, 
with data points replaced by study acronyms, can be 
found in Fig. S3 in the Supplemental Material.

Formal tests of funnel asymmetry also revealed no evi-
dence of publication bias. In the U.S. studies, neither the 
standard error nor the square standard error was related 
to a′ effect sizes, both when estimated with ordinary least 
squares (ps = .368 and .578, respectively) or weighted 
least squares (ps = .123 and .211, respectively, with the 
weighting based on the reciprocal sampling variance). 
Similarly, in the non-U.S. studies, neither the standard 
error nor the square standard error was related to a′ 
effect sizes, both when estimated with ordinary least 

squares (ps = .291 and .505, respectively) or weighted 
least squares (ps = .232 and .560, respectively, with the 
weighting based on the reciprocal sampling variance). In 
the entire meta-analytic data set, controlling for a dummy-
coded variable representing U.S. versus non-U.S. studies, 
we found that neither the standard error nor the square 
standard error was related to a′ effect sizes, both when 
estimated with ordinary least squares (ps = .595 and .651, 
respectively) or weighted least squares (ps = .951 and 
.998, respectively, with the weighting based on the recip-
rocal sampling variance).

p-curve analysis. We submitted the a′ effect sizes to a 
p-curve analysis (Simonsohn, Nelson, & Simmons, 2014) 
using the online p-checker app (Schönbrodt, 2014), which 
tests whether the distribution of statistically significant  
p values is right skewed, as would be expected if the data 
reflect a true nonnull effect. In the absence of a right-
skewed distribution (i.e., when the distribution of signifi-
cant p values is either uniformly distributed or left skewed), 
one cannot rule out the null hypothesis of no true effect.

When only U.S. studies were entered into the p-curve 
analysis, p-checker indicated that the p curve was, in fact, 
right skewed, which indicates that these studies contain 
evidential value (z = −3.427, p < .001). It also indicated 
that the p curve was not flatter than one would expect if 
studies were powered at 33% (z = 1.253, p = .895). If 
significant, this would have indicated that results had no 
evidential value. Finally, there was no evidence of left 
skew (z = 3.427, p = 1.000), which would have indicated 
p-hacking or selective reporting.

Table 3. Results From the Additional Moderation Tests of the Gene × Socioeconomic Status (SES) Interaction (a′ Effect 
Size)

Meta-regression parameter

Moderation 
Model 1 

(full sample)

Childhood subsample (age < 20 years)

Baseline 
model

Moderation 
Model 2

Moderation 
Model 3

Moderation 
Model 4

Moderation 
Model 5

United States .076 (.021) .078 (.022) .123 (.034) .092 (.026) .085 (.038) .060 (.025)
Europe –.026 (.022) –.026 (.023) .008 (.024) –.009 (.017) –.023 (.017) –.028 (.023)
 Difference .102 (.032) .104 (.035) .114 (.034) .101 (.034) .108 (.043) .087 (.037)
Older than 20 years –.011 (.016) — — — — —
Childhood age — — –.003 (.002) — — —
SES: single indicator (1) vs. 

composite (0)
— — — –.031 (.031) — —

Test scores: Achievement 
or knowledge test (1) vs. 
intelligence test (0)

— — — — –.015 (.045) —

Measure of cognitive ability: 
single (1) vs. composite (0)

— — — — — .046 (.033)

τ .029 (.012) .033 (.013) .030 (.013) .031 (.012) .032 (.012) .027 (.016)

Note: The bottom row (τ) shows the standard deviations of the random effects, which represent residual heterogeneity in effect sizes. 
Standard errors are given in parentheses.
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In contrast, when only non-U.S. studies were entered 
into p-curve analysis, p-checker did not indicate signifi-
cant right skew (z = −1.264, p = .103), which indicates 
that there was no evidence for a nonnull a′ effect outside 
of the United States. It also indicated that the p curve is 
not flatter than one would expect if studies were pow-
ered at 33% (z = .122, p = .548), and that there was no 
evidence of left skew (z = 1.264, p = .897).

Robustness checks

We conducted a series of further analyses to verify the 
robustness of our results. First, we ensured that the results 
persisted after removing effects sizes from the TEDS and 
the Minnesota Twin Family Study (MTFS; Kirkpatrick, 
McGue, & Iacono, 2015) from analyses. The TEDS, which 
uses a UK sample, was the largest sample in the meta-
analysis and reported a null Gene × SES effect. The MTFS, 
which reported a significant Gene × SES result, was the 

second largest study from the U.S. studies included in the 
meta-analysis and reported the smallest standard error 
for the Gene × SES effect of all the U.S. studies. Thus, it 
was possible that the difference between results for 
Western Europe and Australia and results for the United 
States was simply driven by a difference between TEDS 
results and the U.S. results, or a difference between TEDS 
and MTFS results more specifically. We ruled these pos-
sibilities out. A model that excluded all effect sizes from 
TEDS still yielded a null Gene × SES effect in non-U.S. 
samples (a′ = −.052, SE = .035, p = .133), a significant 
Gene × SES effect in the U.S. sample (a′ = .076, SE = .019, 
p < .0005), and a significant difference between U.S. and 
non-U.S. studies for the Gene × SES effect (difference = 
.128, SE = .040, p = .002). A model that excluded all effect 
sizes from both TEDS and MTFS yielded a null Gene × 
SES effect in non-U.S. samples (a′ = −.052, SE = .034, p = 
.127), a significant Gene × SES effect in the U.S. sample 
(a′ = .083, SE = .023, p < .0005), and a significant differ-
ence between U.S. and non-U.S. studies (difference = 
.135, SE = .042, p = .001).

Second, we ensured that results persisted in a model 
that excluded effect sizes from our own primary investi-
gations of Gene × SES interaction, specifically, those from 
the ECLS-B and the Midlife in the United States (Bates, 
Lewis, and Weiss, 2013) studies in the United States, 
which reported a positive Gene × SES effect, and those 
from the Brisbane Adolescent Twin Study (Bates et al., 
2015) in Australia, which reported a null Gene × SES 
effect. This model yielded a null Gene × SES effect in 
non-U.S. samples (a′ = −.033, SE = .028, p = .240), a sig-
nificant Gene × SES effect in the U.S. sample (a′ = .074, 
SE = .025, p = .003), and a significant difference between 
U.S. and non-U.S. samples (difference = .107, SE = .039,  
p = .006). A very similar pattern occurred when (rather 
than excluding our own primary investigations) we con-
trolled for a dummy-coded indicator of whether results 
came from our own primary investigations.

Third, we ensured that results persisted in a model 
that excluded all effect sizes from primary investigations 
of Gene × SES interaction authored by Turkheimer, 
whose 2003 article is the most highly cited and reports 
the largest Gene × SES effect of all articles included in 
the meta-analysis. A model that excluded these effect 
sizes (reported in Harden et  al., 2007; Tucker-Drob 
et al., 2011; Turkheimer et al., 2003) yielded a null Gene 
× SES effect in non-U.S. samples (a′ = −.027, SE = .022, 
p  = .220), a significant Gene × SES effect in the U.S. 
sample (a′ = .058, SE = .020, p = .003), and a significant 
difference between U.S. and non-U.S. samples (differ-
ence = .085, SE = .030, p = .005). A very similar pattern 
was obtained when (rather than excluding primary 
investigations by Turkheimer) we used a dummy-coded 
indicator to control for whether results came from 
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Fig. 2. Funnel plot of effect-size estimates for the Gene × Socioeco-
nomic Status interaction in the U.S. and non-U.S. samples. Each plotted 
point represents the standard error and effect-size estimate for a study 
included in the meta-analysis. The triangle-shaped regions indicate 
where 95% of the data points should lie if there is no (within-group) 
heterogeneity in population effect sizes. CI = confidence interval.

 at Monash University on December 16, 2015pss.sagepub.comDownloaded from 

http://pss.sagepub.com/


Interactive Effects of Genes and Socioeconomic Status on Intelligence 9

primary investigations by Turkheimer, and also when 
we controlled for a dummy-coded indicator of whether 
results came from primary investigations by Turkheimer, 
Bates, or Tucker-Drob.

In conclusion, all robustness checks indicated the 
presence of a significantly positive Gene × SES interac-
tion in the United States but not in Western Europe and 
Australia, with the difference between U.S. and non-U.S. 
studies being statistically significant. These results cannot 
be attributed to a few select studies with either dispro-
portionately large samples or disproportionately large (or 
small) effect sizes.

Cross-national differences in  
racial diversity

One possibility that we were unable to fully test in our 
meta-analytic data set is the extent to which the Gene × 
SES interactions detected in the United States were 
driven by the greater racial and ethnic diversity of  
the U.S. sample compared with the non-U.S. samples. 
Evidence from individual studies included in the meta-
analysis, however, suggests that this is not the case. For 
instance, Tucker-Drob et al. (2011) reported that Gene × 
SES effects persisted in a nationally representative sam-
ple of American children even when race, and its inter-
action with the biometric components, was controlled. 
Additionally, Harden et al. (2007) reported evidence for 
Gene × SES interaction in a positively selected sample of 
U.S. adolescents that contained very few racial minori-
ties. Kirkpatrick, McGue, and Iacono (2015) similarly 
report evidence for Gene × SES interaction in a sample 
containing very few Black and Hispanic participants.

Implications of meta-analytic effect-
size estimates for reproducibility

Our meta-analytic finding of a Gene × SES interaction in 
the United States was based on a total sample size of 
more than 10,000 pairs of U.S. twins and siblings. It is 
instructive to estimate the minimum sample size neces-
sary to achieve sufficient power to reproduce the Gene × 
SES interaction effect in the United States. We performed 
a simulation study in which we generated data using a 
model in which all effect sizes (s, a, c, e, a′, c′, and e′) 
were set to the meta-analytic estimates for the United 
States (reported in Table 2) and analyzed each data set 
with the unconstrained Gene × Environment model rep-
resented in our Figure S1 (Purcell, 2002). One-third of 
participants were assumed to be monozygotic, and two-
thirds were assumed to be dizygotic (as would be 
expected in an unselected sample of same-sex and  
opposite-sex twins). We increased the sample size in 
increments of 100 pairs, conducting 100 replications per 

sample size, until at least 80 of the 100 replications pro-
duced an a′ estimate that was significant at p < .05 (i.e., 
power was estimated at a minimum of 80%).

Results indicated that a minimum of 3,300 twin pairs 
is needed to achieve at least 80% power. In contrast, 
when the same procedure was implemented using 
parameter estimates for Full-Scale IQ scores from 
Turkheimer et al. (2003), an early and highly publicized 
study that reported a much larger Gene × SES interaction 
than was indicated by the current meta-analysis, results 
indicated that a minimum sample size of only 500 twin 
pairs is needed to achieve at least 80% power. It there-
fore appears that the inconsistency of previous U.S. stud-
ies to replicate Gene × SES effects on intelligence may 
have stemmed from low power associated with overly 
optimistic expectations regarding the magnitude of the 
true interaction effect.

Discussion

This meta-analysis of published and unpublished data 
provided clear answers to our three questions. First, stud-
ies from the United States supported a moderately sized 
Gene × SES interaction on intelligence and academic 
achievement (a′ = .074; Fig. 1). Second, in studies con-
ducted outside the United States (in Western Europe and 
Australia), the best estimate for Gene × SES magnitude 
was very slightly negative and not significantly different 
from zero. Third, the difference in the estimated magni-
tude of the Gene × SES effect between the U.S. and the 
non-U.S. studies was itself significant.

Beyond nation, we did not identify any other signifi-
cant moderators of Gene × SES effects. We examined 
whether test performance was measured in childhood or 
adulthood, childhood age of testing, whether the tests 
measured either achievement and knowledge or intelli-
gence, whether a single or composite indicator of SES 
was used, and whether the tests were of single ability or 
a composite cognitive measure. None of these additional 
moderators achieved statistical significance, and the 
cross-national difference in the Gene × SES effect 
remained when each of these possible moderators was 
entered into the meta-analytic model. Thus, the cross-
national difference identified does not appear to be an 
epiphenomenon of cross-national differences in the age 
ranges examined or the particular intelligence or achieve-
ment outcomes measured.

We did not find evidence of publication or reporting 
bias in our meta-analytic data set. Both visual and formal 
tests of funnel-plot asymmetry were not significant, both 
when applied to the overall meta-analytic data set and 
when separately applied to effect sizes from U.S. and 
non-U.S. samples. Moreover, p-curve analysis, which is 
based on the shape of the distribution of p values for 
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effect sizes surpassing the p < .05 significance threshold, 
indicated no evidence for p-hacking (i.e., questionable 
research practices). Consistent with the cross-national 
difference identified in our primary meta-analysis, p-curve 
analysis further showed evidential value for a nonzero 
Gene × SES effect in U.S. studies but did not reveal evi-
dence for a nonzero Gene × SES effect in non-U.S. stud-
ies. Robustness checks indicated that results were not 
driven by a small number of studies with either dispro-
portionately large samples or disproportionately large (or 
small) effect sizes. Variation in Gene × SES effect sizes in 
U.S. studies—ranging from near zero to extremely large—
was no greater than would be expected by sampling vari-
ability alone.1

We also replicated the well-established phenomenon 
that genetic influences on intelligence increase and 
shared environmental influences on intelligence decrease 
with childhood age (e.g., Briley & Tucker-Drob, 2013; 
Haworth et  al., 2009). This replication further demon-
strates that the studies that met inclusion criteria for our 
meta-analysis on Gene × SES effects are representative of 
the wider body of behavioral genetic research on intelli-
gence. Interestingly, as can be seen by comparing Figures 
2 and S2, these Gene × Age trends closely parallel the 
U.S. Gene × SES effect. Genes account for considerably 
more variation in intelligence both at higher ages and in 
higher U.S. socioeconomic contexts. Indeed, both phe-
nomena may reflect a process of increased and accumu-
lated effects of gene-environment transactions with the 
increased opportunity that comes with both social class 
and age (Tucker-Drob et al., 2013; Turkheimer & Horn, 
2014).

The results indicate that Gene × SES effects are not 
uniform but can rather take positive, zero, and even neg-
ative values depending on factors that differ at the 
national level. The finding that low SES was associated 
with attenuated genetic influences on intelligence in the 
United States resolves an important debate. The finding 
that this interaction is observed only in the United States, 
together with the indication that the effect may even 
reverse in sign (The Netherlands), suggests that further 
research on between-nations variability in the effects of 
family SES on cognitive development is particularly 
important. Candidate mechanisms that might underlie 
such variability include national differences in how con-
cepts of letter and number that underpin literacy and 
numeracy are imparted (Ramani & Siegler, 2008), educa-
tional quality more broadly (Taylor, Roehrig, Soden 
Hensler, Connor, & Schatschneider, 2010), medical and 
educational access (Bates et al., 2013; Tucker-Drob et al., 
2013), and macrosocietal characteristics, such as upward 
social mobility (Ritchie, Bates, & Plomin, 2014) and 
income support (Duncan, Morris, & Rodrigues, 2011). 
Our results suggest that large-scale genetically informed 

research that incorporates careful measurement and con-
sideration of both proximal and national social factors 
may provide a unique key to understanding the impact of 
specific policies on individual differences in intellectual 
development and academic achievement.
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Note

1. The results do, however, illustrate the discoverer’s curse: 
The earliest studies reported much larger effects than those 
estimated in the current meta-analysis for the United States, 
from .13 (Rowe et  al., 1999) to as high as .24 (Turkheimer 
et al., 2003) and .33 (Scarr-Salapatek, 1971; not included in the 
meta-analysis).
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