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Spearman's hypothesis (SH) is a phrase coined by Arthur Jensen, which posits that the size of

Black–White mean differences across a group of diverse mental tests is a positive function of each

test's loading onto the general intelligence (g) factor. Initially, a correlated vector (CV) approach

was used to examine SH, where the results typically confirmed that the magnitude of g loadings

were positively correlatedwith the size ofmean group differences in the observed test scores. The

CV approach has been heavily criticized by scholars who have argued that a more precise method

for examining SH can be better investigated using a multi-group confirmatory factor analysis

(MG-CFA). Studies of SH using MG-CFA have been much more equivocal, with results not clearly

confirming nor disconfirming SH.

In the current study, we argue that a better method for extracting g in both the CV and MG-CFA

approaches is to use a bi-factor model. Because non-g factors extracted from a bi-factor approach

are independent of g, the bi-factor model allows for a robust examination of the influence of g and

non-g factors on group differences on mental test scores. Using co-normed standardization data

from the Wechsler Adult Intelligence Scale-Fourth Edition and the Wechsler Memory Scale-

Fourth Edition, we examined SHusing both CV andMG-CFA procedures.We found support for the

weak form of SH in both methods, which suggests that both g and non-g factors were involved in

the observed mean score differences between Black and White adults.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Differences between racial, ethnic, and socioeconomic

groups in mean scores on general cognitive ability tests are

well-established (Gottfredson, 2005; Rushton & Jensen, 2005).

The magnitude of these differences, however, varies as a

function of the type of cognitive skills being measured, with

tests that more strongly related to general intelligence (g)

exhibiting larger group differences (Jensen, 1998). Efforts to

explain these patterns in the magnitude of group performance

differences range from non-empirical speculations to those

grounded in theory and appropriate empirical procedures for

testing hypotheses.

1.1. Speculative Explanations

Speculative explanations simply proffer plausible, but ad

hoc, rationales for why a particular group obtains lower mean

scores than another group. These explanations are not tied to a

coherent, data-based theory. As one example, “cultural differ-

ences” is often evoked as a global, all-purpose explanation for

differing performance patterns among population subgroups.

This global explanation typically takes two forms. Some may
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argue that some subgroups, partly due to economic and social

disadvantages/differences from the more affluent mainstream,

are simply not exposed to certain academic stimuli as is the

casewithmore advantaged subgroups (Eells, 1951; Lupi & Ting

Woo, 1989;White, 1984), and thereby lower scores are due to a

presumed lack of exposure to tasks such as those found on

cognitive tests (see specificity doctrine; Jensen, 1984). Others

may argue that examinees from different racial/cultural groups

display different “culturally idiosyncratic” psychological and/or

stylistic patterns for interacting with test material, thereby

depressing scores (see Helms, 1992, 1997).

Speculative explanations suffer from two major flaws. First

and fundamentally, findings are explained only after they are

observed. Testable hypotheses are not stated first before any

data has been collected, which would allow for a rejection of

the hypotheses based on patterns shown by the data. Second,

these ad hoc explanations are infinitely malleable, adapting

indiscriminately to the idiosyncratic characteristics of test

items. As examples, Helms (1997) hypothesized that Black

examineesmay fail theWechsler Intelligence Scales Arithmetic

items because of substandard training in school, may fail

Comprehension itemsdue to “exposure to racism”, andmay fail

Digit Symbol items because they are “uncomfortable with

pencils as a tool” (p. 522).

1.2. Theory-based explanations: Spearman's hypothesis

Charles Spearman (1927) initially observed that race

differences should be “most marked in just those [tests]

which are known to be saturated with g [general intelligence]”

(p. 379). Jensen (1980) later named this Spearman's hypothesis

(SH). There are three levels of SH that Jensen (1998, 2001)

called the strong form, weak form, and the contra hypothesis.

The strong form posits that any observed race differences in

test's mean scores are solely a function of g. The weak form

posits thatwhile race differences in test scoremeans aremainly

a function of g, lower-order factors or subtest specificities also

contribute to the difference. The contra hypothesis holds that

observed mean score differences are independent of g, being

solely a function of lower-order factors or test specificity.

Support for SH has been borne out from numerous

independent studies based on large child and adult samples

(e.g., Jensen, 1985, 1998) and comprising many different

psychometric tests, such as the Armed Forces Qualification

Test (Nyborg & Jensen, 2000), the Kaufman Assessment Battery

for Children (Naglieri & Jensen, 1987), the Wechsler Intelli-

gence Scale for Children-Revised (Jensen & Reynolds, 1982;

Naglieri & Jensen, 1987; Rushton & Jensen, 2003), and tests for

college/graduate school admissions, job selection, and the

military (Roth, Bevier, Bobko, Switzer, & Tyler, 2001).

There has been some disagreement about interpreting the

SH literature. Schönemann (1997) interpreted the literature as

being supportive of the weak form of SH. In contrast, Rushton

(2003) concluded that most studies supported the strong form

of SH.1 Summarizing his own work from 17 independent data

sets that included scores from 149 different tests obtained on

samples of 45,000 Black and 245,000 White examinees, Jensen

(2001) found that the correlation between Black–White

differences and g was between .57 and .62. More recently,

Dragt (2010) performed a meta-analysis of SH studies and

found an average correlation of .85 between g and mean group

test score differences between Black and White respondents.

1.2.1. Interpretation of Spearman's hypothesis using tests ofmemory

While Jensen's (Jensen & Figueroa, 1975; Jensen & Osborne,

1979) initial interest in SH began with tests of memory, little

work has been done examining Black–White differences in

memory measures. What has been done is mostly incidental

(i.e., one or two memory subtests in an intelligence test

battery), but it tends to indicate both that memory tasks have

smaller g loadings than other tasks on multi-test cognitive

batteries and that Black–White differences in mean scores are

either considerably reduced on such tests (Jensen, 1980, 1985)

or that average score for the Black sample is higher than the

average for the White sample (Jensen & Reynolds, 1982). For

example, in one of the few studies that examined Black–White

differences in a battery ofmemory tests, Mayfield and Reynolds

(1997) found a consistent factor structure across both groups.

The Black sample scored higher than theWhite sample onmost

of the memory tests, although the difference was small.

1.3. Empirical challenges to interpretations of Spearman's

hypothesis (SH)

Helms-Lorenz, Van de Vijver, and Poortinga (2003) have

argued that the constructs of cognitive complexity and verbal/

cultural loading are confounded in attempts to properly interpret

results from tests of SH. They administered two intelligence

batteries and a computer-assisted elementary cognitive test

battery to a large group of Dutch and second-generationmigrant

6–12 year old children living in the Netherlands. In addition to

using factor analysis to compute the subtests' g loadings, they

gave all subtests two ordinal ratings of “cognitive complexity.”

One cognitive complexity rating was based on both Carroll's

(1993) cognitive abilitiesmodelwhile the other corresponded to

the minimal developmental level needed for successful accom-

plishment (Fischer, 1980). The cultural loadingof subtest content

was rated on an ordinal scale by psychology students, and

another rating of each subtest's verbal loading was operational-

ized as the number of words in the subtest. The authors found

that the size of group differences on the intelligence tests was

better predicted by the “cultural” variables than by the cognitive

complexity variables.

Although Helms-Lorenz et al. (2003) used an intriguing

methodology for investigating the relationship between factor-

analytically derived subtest g loadings and human ratings of

subtest task characteristics, there are a number of unresolved

issues that challenge their conclusions. The first problem

concerns confusion in what Jensen (1998) called the “vehicles

of g” versus the g construct itself (Jensen, 1998, p. 309). For

example, cultural differenceswould not explainwhy a Forward

Digit Span Task and a Backward Digit Span Task would show

widely discrepant g loadings, despite similarities in the surface

characteristics of these tests (particularly in their nonverbal

content). In addition, the composition of the comparison

1 Rushton (1998) proposed that the term Jensen Effect be used whenever

there is a substantial correlation between g loadings and any other variable.
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groups that Helms-Lorenz et al. used may play a role in their

findings. Jensen (1998) wrote:

Each test score reflects both the level of g and the properties

of the vehicle of g (the latter being largely unrelated to g).

One would predict, for example, that the g factor, which is

highly and equally loaded in batteries of verbal and

nonverbal tests when given tomonolingual children, would

have much smaller g loadings on the verbal tests (given in

English) than on the nonverbal tests when that battery is

given to bilingual children. For the bilingual group the

verbal tests would reflect the degree of second-language

acquisition more than they would reflect g (p. 310).

Although the groups studied in the Helms-Lorenz et al.

(2003) research are reported to have been exposed to the same

number of (age appropriate) years of Dutch education, they

also state “there is evidence that substantial differences in

knowledge of the Dutch lexicon between the majority-group

pupils and migrant pupils remain throughout the primary

school period, even for second-generation children” (pp. 14–

15). In the majority of studies that have evaluated SH, the

comparison groups are comprised of native-born participants

(e.g., American blacks and whites). In these studies, the

comparison groups are more “culturally homogeneous” than

those in the Helms-Lorenz et al. (2003) study where the

migrant students' parents were born in at least five different

countries.

1.4. Methods used to test for Spearman's hypothesis

There are two common methods currently employed to

assess SH: correlated vector (CV) analysis, and multi-group

confirmatory factor analysis (MG-CFA).

1.4.1. Correlated vector method

A correlated vector (CV) analysis attempts to explain

variability in the magnitude of group differences on various

tests (or subtests) by correlating the g loading of the tests with

the size of group differences inmean scores on the same tests. A

CV analysis typically involves the following steps: (a) conduct

an exploratory factor analysis (EFA) of the tests in representa-

tive samples of the different comparison groups, separately;

(b) estimate the similarity (i.e., congruence) of the factor

loadings between groups; (c) if the factors are similar, then

conduct the EFA in the combined sample; (d) correct each test's

g loading for unreliability; (e) standardize the differences in

mean scores between the groups; (f) correct each standardized

group difference for unreliability; and (g) calculate the

correlation (either Pearson or Spearman) between the

corrected standardized group differences and the corrected g

loadings (Jensen, 1985, 1992, 1998). A positive correlation

indicates that tests with higher g loadings have larger group

differences in mean test scores. There is no agreed-upon

correlation value that differentiates the strong and weak

forms of SH, however, hence support for g's role in determining

group differences can vary greatly between studies (Dolan,

Roorda, & Wicherts, 2004).

1.4.1.1. Criticisms of the correlated vector method. Scholars have

leveled a number of criticisms against the use of a CV analysis to

investigate SH (Ashton & Lee, 2005;Mulaik, 1992; Schönemann,

1997). For example, Colom and Lynn (2004) argued that subtest

g loadings are heavily influenced by the nature of the other

subtests included in the battery (see Jensen & Weng, 1994),

hence comparing CV studies that have used different instru-

ments to evaluate g may be problematic. Dolan and Hamaker

(2001) argued that the CV procedure does not adequately assess

model fit, thus the factor model used to obtain g loadings may

not be the best way to explain the tests' covariances. Dolan

(2000) opined that making a persuasive argument for g as the

main contributor to any group differences requires comparing

competing models, with the models ascribing a central role to g

fitting the data better than themodels that do not ascribe such a

role to g.

From a somewhat different perspective, Dolan and col-

leagues (Dolan, 2000; Dolan & Hamaker, 2001; Dolan & Lubke,

2001; Lubke, Dolan, & Kelderman, 2001) argued that the

correlations obtained in a CV analysis are difficult to interpret

with any degree of specificity, as the method assumes that the

tests are at least strongly invariant across the comparison

groups. Strong invariance signifies that any observed group

differences in mean test scores are due to group differences in

the constructs that the tests are measuring, not differences in

how the test measures the construct across groups (i.e., test

bias). Thus, if the invariance assumption cannot be established,

then between-group differences may be attributable, at least in

part, to differences in how the tests measure their intended

constructs. Even if invariance holds across groups, when the

tests measure multiple factors (e.g., Wechsler scales), CV

analysis could mask group differences in lower-order/

domain-specific latent variables by implying that the differ-

ences are only due to g.

1.4.2. Multi-group confirmatory factor analysis method

The multi-group confirmatory factor analysis (MG-CFA)

procedure for assessing group differences involves conducting a

confirmatory factor analyses (CFAs) simultaneously on separate

data from two or more comparison groups (Harrington, 2009).

MG-CFA is a well established method for investigating group

differences in the latent means and (co)variances estimated

from a latent variablemodel (Millsap, 2011). Moreover, MG-CFA

has a number of advantages over a CV analysis for testing SH

(Dolan, 2000; Gustafsson, 1992; Horn, 1997; Millsap, 1997).

First, MG-CFA allows for a more integrated and elegant

investigation of the various steps involved in the CV analysis.

Specifically, MG-CFA requires fitting a single latent variable

model in all groups simultaneously using the group-specific

data. Then, in a systematic fashion the model parameters are

constrained to be the same across groups, starting with the

factor structure (configural invariance), then the loadings (weak

invariance), and then the intercepts (strong invariance). Some

(e.g., Lubke, Dolan, Kelderman, & Mellenbergh, 2003) have

advocated a need for assessing the equality of the residual

variances, too (strict invariance), but there is no universal

agreement on this (Little, Card, Slegers, & Ledford, 2007). If the

loadings and intercepts (i.e., the predicted mean of the

observed test for a given level of the latent variable) are the

same across groups, then the between-group differences on the

measured test scores are only due to between-group differ-

ences in the latent means, as opposed to measurement bias

playing a role in the observed differences. If the residual
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variances are invariant as well, then the reliability with which

the test scores measure the latent variables is the same across

groups (Raykov, 2004).

Second, the hypothesis of strong factorial invariance—a

necessity formeaningful interpretation of group differences—is

tested explicitly in MG-CFA. The CV method assumes strong

invariance, but only assesses for weak invariance via loading

congruence; moreover, this assessment is done in an ad hoc

fashion.

Third, MG-CFA can compare models that have different

constraints on the model parameter between groups and then

use measures to compare how the models fit the data. In the

context of SH, this can be advantageous for testingmodels that

include g in a central role in explaining group differences

against competing models in which g does not play a central

role in explaining group differences.

1.5. Using multi-group confirmatory factor analysis to examine

Spearman's hypothesis

Some investigations of SH have usedMG-CFA. Dolan (2000)

applied MG-CFA to standardization data for the Wechsler

Intelligence Scale for Children-Revised (WISC-R), which Jensen

and Reynolds (1982) previously analyzed using the CV

approach. Dolan found support for strict invariance between

Black andWhite groups, lending support to the notion that the

WISC-R's subtest scores reflected unbiasedmeasurement. They

were equivocal about the prominence of g causing the group

differences, however, because the first- and higher-order factor

models that they used to represent the different forms of SH fit

the data similarly.

Dolan and Hamaker (2001) used MG-CFA to re-analyze

Naglieri and Jensen's (1987)WISC-R and Kaufman Assessment

Battery for Children (K-ABC) data. Like Dolan (2000), they

found support for strict factorial invariance between Black and

White groups. Also like Dolan, they fit multiple first- and

higher-order factor models to represent the different forms of

SH and could not determine what one fit the data best. Thus,

they were equivocal about g's influence on the observed group

differences in the test scores. Although Naglieri and Jensen

found a CV-based correlation of .75 between g and the

magnitude of Black–White differences, Dolan and Hamaker

concluded that the “repeated demonstration of a positive and

large Spearman correlation is a necessary, but not a sufficient

condition for inferring the correctness of Spearman's hypoth-

esis” (p. 33).

Not all MG-CFA studies of SH have found support for

invariance. For example, Dolan et al. (2004) reanalyzed data

from two SH studies (Lynn & Owen, 1994; te Nijenhuis & van

der Flier, 1997) that used the CV approach. For both datasets,

Dolan et al. did not find evidence for strong invariance and

concluded that no form of SH could be inferred from either

dataset.

Despite the advantages of theMG-CFAmethod, thismethod

also has critics. For example, Woodley, te Nijenhuis, Must, and

Must (2014) argued that MG-CFA requires large datasets, so

studies of SH that used small datasets “simply cannot be

analyzed, hence the information contained in them is lost for

the purposes of accumulation” (p. 30). Second, MG-CFA cannot

be used for a meta-analysis of SH because most studies do not

report sufficient information (i.e., within-group means,

correlations, and standard deviations). Consequently, they

argue that the CV approach is better for examining SH—at

least when meta-analytically combing data from multiple

studies.

1.6. Factor models used to test Spearman's hypothesis

Studies that have examined SH fall into two groups: those

that use a MG-CFA approach and those that use a CV approach.

The MG-CFA studies all used a higher-order factor model to

represent g. Studies that used CV measured g in a variety of

ways, ranging from the first component of a principal

components analysis, to the first unrotated factor from an

EFA, to the general factor extracted from Schmid and Leiman's

(1957) orthogonal transformation. We contend that none of

these are the optimal way tomodel g for an investigation of SH.

1.6.1. Higher-order factor models

To explain factor models, we use Carroll's (1993, 1996)

strata terminology and conceptualization. At Stratum I are

narrow factors, which influence a homogenous group of

intellectual tasks. There are many factors at Stratum I, some

examples of which are Inductive Reasoning, Lexical Knowl-

edge, and Working Memory. At Stratum II are approximately

10 broad factors, which influence a wider range of intellectual

tasks than Stratum I factors. Some examples of Stratum II

factors are Fluid Reasoning and Comprehension Knowledge. At

Stratum III is the single g factor, which influences a greater

range and diversity of intellectual tasks than any other factor.

The difference between the strata is breadth of content. This

is because the presence of factors at a given strata depends on

the data being analyzed. If the variables are sufficiently diverse,

then gwill likely be present; with datasets containing variables

with homogenous content (e.g., alternate forms of a single

test), typically only Stratum I factors are present. For the

current study, we only focus on Stratum II and Stratum III

because factors derived from individually-administered tests of

cognitive ability can typically be classified at one of those strata

(Carroll, 1995).

To date, the studies that have examined SHusing theMG-CFA

approach have all used a higher-order factor (HOF) model

(Dolan, 2000; Dolan & Hamaker, 2001; Dolan et al., 2004; Lubke

et al., 2001). HOF models of cognitive ability define g as a single

Stratum III (second-order) factor that explains all the common

variance among the Stratum II (first-order) factors (see Fig. 1a).

The observed test scores have three direct influences: Stratum II

factors, test-specific factors, and measurement error. The test-

specific factors typically cannot be distinguished from measure-

ment error, so they are amalgamated into a single residual term

that is uncorrelated with all other factors.

In HOF models, g directly influences all the Stratum II factors.

To the extent that g is highly correlated with a Stratum II factor,

higher levels of g produce higher levels of the Stratum II factor. g

does not directly influence the observed test scores. Instead, g's

influence on the tests is mediated by the Stratum II factors.

Stratum II factors can be decomposed into two components

in HOFmodels: the part due to g and the part independent of g.

The part that is independent of g is the Stratum II-specific

factor, which explains individual differences in the ability that

the Stratum II factor represents beyondwhat g can explain. Like

the test-specific factors, the Stratum II-specific factors are
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(a) Higher-order factor model. a is a second-order (Stratum III) factor loading; b, c, and d are first-
order (Stratum II) factor loadings; and e is Fluid Reasoning's Stratum II-specific variance.

(b) Bi-factor model.

Fig. 1. Intelligence factor models. Test-specific/error variances are not shown for space considerations.While themeaning of the Stratum II factors changes fromModel

1a to Model 1b, we have kept the names the same to aid in comparing the two models.
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residuals and are typically uncorrelatedwith all other variables.

The total variance of a Stratum II factor, then, is an amalgam of

the variance attributable to g and that attributable to Stratum

II-specific factors.

1.6.1.1. Problematic issues associated with higher-order factor

models. There are multiple drawbacks of HOF factor models

when studying a multidimensional trait such as intelligence

(Chen, Hayes, Carver, Laurenceau, & Zhang, 2012; Gignac,

2007). In these models, g does not directly influence the test

scores. Thus, its influence on the test scores is limited by how

well the test scores measure the Stratum II factors. Fig. 1a

illustrates this principle. The relationship between g and V1 can

be calculated using the tracing rules for a path model (Loehlin,

2004). Specifically, the relationship is calculated bymultiplying

V1's loading on Fluid Reasoning by Fluid Reasoning's loading on

g (i.e., b × a). If b = .30 and a = .50, then the magnitude of g's

relationship toV1 is .30× .50= .15. If b increases to .65, then g's

relationship with V1 increases to .65 × .50 = .33.

Another drawback of HOF models is that they impose

proportionality constraints (Yung, Thissen, & McLeod, 1999).

Specifically, for a given set of tests influenced by the same

Stratum II factor, the ratio of the test scores' variance due to the

Stratum II factor to the variance attributable to g is constrained

to be the same.

Proportionality constraints can be a challenge to under-

stand clearly, so we follow Beaujean, Parkin, and Parker's

(2014) explanation using Fig. 1a. We previously showed how

to calculate the relationship between g and V1 using tracing

rules. We can use the same tracing rules to compute the

influence of Fluid Reasoning's Stratum II-specific factor on V1.

Specifically, multiply V1's loading on Fluid Reasoning by the

standard deviation of Fluid Reasoning's Stratum II-specific

factor (e.g., b�
ffiffiffi

e
p

). The ratio of g's indirect influence on V1 to

the influence of Fluid Reasoning's Stratum II-specific factor on

V1 is exactly the same for the other observed test scores that

Fluid Reasoning influences: V2, and V3. Specifically,

b� a

b�
ffiffiffi

e
p ¼ c� a

c�
ffiffiffi

e
p ¼ d� a

d�
ffiffiffi

e
p

These forced proportional loading patterns can be prob-

lematic. First, the constraints cause multicollinearity problems

when using both g and Stratum II factors as predictor variables

(Beaujean et al., 2014). Second, it is unlikely that such

constraints occur in a population (Schmiedek & Li, 2004).

Although some have empirically assessed the tenability of

proportionality constraints and not found them problematic

(e.g., Dolan & Hamaker, 2001), Mulaik and Quartetti (1997)

argued that the sample sizes needed for such investigations are

much larger than what is typically used in SH investigations.

Third, proportionality constraints confound g and Stratum II

factors in HOF models because the second-order factor

structure is just a re-expression of the Stratum II factors

correlations (Reise, 2012). A combination of the last two issues

could possibly explain why previous SH studies found

equivalent fit between HOF models and oblique first-order

models, and, subsequently, could not determine if group

differences were due to g or Stratum II factors.

These criticisms apply just as well to any transformation of

HOF model such as the one developed by Schmid and Leiman

(1957). While the Schmid–Leiman transformation can aid in

the interpretation of higher-order model's Stratum II factors, it

does not release the proportionality constraints. It is only

through a bi-factor model that the Stratum II factors' con-

straints on g are released.

1.6.2. Schmid–Leiman transformation (SLT)

Schmid and Leiman (1957) developed a matrix transfor-

mation that some use with higher-ordermodels to calculate all

the direct and indirect influences on the indicator variables

simultaneously (Reynolds & Keith, 2013). Another use of the

Schmid–Leiman transformation (SLT) is to combine the results

from an EFA on observed test scores (i.e., first-order EFA) that

have oblique (correlated) factors and an EFA of the correlated

factors (i.e., second-order EFA; Gorsuch, 1983). In either case,

the SLT produces g loadings for the observed test scores via the

technique discussed in Section 1.6.1.1.

In the SLT, the common variance among all the test scores is

represented as a general factor, while narrower domains are

represented as residual Stratum II factors. Consequently, the

Stratum II factors are orthogonal to each other as well as to the

general factor. Thus, Stratum II factors from a SLT do not have

the same interpretation as those from a Stratum II EFA with an

oblique rotation. In the oblique rotation, the Stratum II factors

reflect variance from both g and the Stratum II factors, whereas

in the SLT the Stratum II factors only reflect variance at the

Stratum II factor level that is unexplained by g (Reise, 2012).

Despite the differences in factor construction, the convention

has been to call Stratum II factors by the same name regardless

of how they were formed (e.g., Carroll, 1996).

1.6.2.1. Problems with the Schmid–Leiman transformation. There

are two major problems with the SLT. First, the direct factor

loadings produced by the SLT are merely a re-expression of the

correlations among the Stratum II factors. Thus, the factor

loadings of an EFA with correlated Stratum II factors and a SLT

of the EFA's factor loading are equivalent (Schmid, 1957); the

same can also be said for the loadings from a higher-order CFA

and a SLT of those loadings (Yung et al., 1999). Consequently, the

SLT does not do away with the proportionality constraints in a

HOF model and imposes the constraints on the second-order

EFA.

A second major problem of the SLT occurs when there are

cross-loadings (i.e., some of the observed tests load onto more

than one Stratum II factor), which are not uncommon with

individually-administered intelligence tests (Weiss, Keith, Zhu,

& Chen, 2013a, 2013b). In such situations, the SLT will

overestimate the g loadings and underestimate the Stratum II

factor loadings (Reise, Moore, & Haviland, 2010). Larger

Stratum II cross-loadings produce larger amounts of the over-

or underestimation (Reise, 2012).

1.6.3. Bi-factor models

The bi-factor model (Holzinger & Swineford, 1937), some-

times called a direct hierarchical or nested-factorsmodel, offers

an alternative to both theHOF in theMG-CFA approach and the

second-order EFA in the CV approach.2

2 Technically, the bi-factor model is a generalization of the HOF model

(Gignac, 2008; Yung et al., 1999), but we consider them as two distinctmodels.
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1.6.3.1. Bi-factor model for confirmatory factor analysis. An

example of a bi-factor (BF) model is shown in Fig. 1b. In this

model, all factors have a direct influence on the tests.

Consequently, higher levels of g and higher levels of the

Stratum II factors are both directly associated with higher

scores on all the tests (assuming positive loadings). The

difference between g and Stratum II factors is that while g is

thought to influence every test, the Stratum II factors only

influence a subset of the tests. Test-specific factors and

measurement error also influence the tests in the BF model.

As with the HOF model, the test-specific factors' influence is

typically indistinguishable from influence due tomeasurement

error so they are represented as a single residual term that is

uncorrelated with any other factor.

BF models have advantages over the HOF (Chen, West, &

Sousa, 2006). First, unlike the HOF, the BF model forms the

Stratum II factors from the covariance remaining after

accounting for g, making the Stratum II factors independent

of g (i.e., are all uncorrelated). Thus, the BF model produces a

direct estimation of the relationship between the observed

tests scores and Stratum II-specific factors. Second, the BF

model allows the tests' factor loadings on both g and the

Stratum II factors to be estimated without any proportionality

constraints.

A third advantage of the BF model is that is allows for direct

assessment of measurement invariance in both g and the

Stratum II factors. InHOFmodels, non-invariance of a Stratum II

factor would automatically produce non-invariance in g.

Fourth, the BG model allows for a direct comparison of mean

differences between groups on Stratum II factors independent

of g. These last two advantages are particularly salient when

examining SH. If there is at least strong invariance in g and the

Stratum II factors, then the BF model allows for a simultaneous

investigation of the strong, weak, and contra forms of SH.

Specifically, support for the strong form of SH would come

from there being no differences in the latent mean of the

Stratum II factors, but there being a difference in the latent

mean of g. Conversely, support for the contra hypothesis would

come from there being differences in the latent mean of the

Stratum II factors but no difference in the latent mean of g. If

there were differences in the latent means of both g and the

Stratum II factors, then this would provide evidence of the

weak form of SH.

1.6.3.2. Bi-factor rotations for exploratory factor analysis. Recent-

ly, two bi-factor methods have been developed for EFA. The

first is bi-factor target rotations (Reise, Moore, & Maydeu-

Olivares, 2011). The basic idea is to extract factors as usual in an

EFA, specify a factor pattern matrix to use for factor rotation,

and then rotate the factors to minimize the difference between

the estimated factor loadings and the specified elements of the

target factor loadings. For more information on target rotation,

see Browne (2001).

The second BF method for EFA is an analytic rotation

(Jennrich & Bentler, 2011, 2012). Here EFA is done as usual,

only the factors are rotated such that all the tests load on the

first factor and the remaining factors are rotated in such a way

to encourage perfect cluster structure (i.e., the tests have

substantial loadings on only one factor). The first factor is the

general factor and is uncorrelated with the other factors. The

remaining factors can either be correlated or uncorrelatedwith

each other.

1.7. Purpose of the current study

The purpose of the current investigation is to test SH using

BFmodels and both CV andMG-CFA approaches. To do this, we

used Black and White adults' scores from the co-normed

Wechsler Adult Intelligence Scale-Fourth Edition (Wechsler,

2008a) andWechsler Memory Scale-Fourth Edition (Wechsler,

2009) standardization data.

Based on our review of the SH literature, we expect to find

support for the weak form of SH in this dataset. The reason is

that the dataset contains tests that have both high and low g

loadings and oversamples tests of memory. Thus, group

differences in the test scores are likely due to group differences

in both g and Stratum II factors. If our hypothesis is correct, the

CV analysis will produce a moderately sized positive correla-

tion between the tests' g loadings and the size of Black–White

test score differences. In the MG-CFA analysis, support for the

weak form of SH would come from mean differences in g

favoring theWhite sample, but small or no group differences in

non-memory Stratum II factors. Mean differences on any

memory factors should either show no Black–White difference

or, if a difference exists, favoring the Black sample (as

suggested from previous research).

2. Method

2.1. Materials

2.1.1. Wechsler Adult Intelligence Scale-Fourth Edition

The Wechsler Adult Intelligence Scale-Fourth Edition

(WAIS-IV; Wechsler, 2008a) is an individually administered

battery designed to assess cognitive ability in individuals

between the ages of 16–90 years. The WAIS-IV consists of 10

primary subtests (Vocabulary, Information, Similarities, Digit

Span, Arithmetic, Block Design, Matrix Reasoning, Visual

Puzzles, Coding, and Symbol Search). The primary subtests

yield four Index scores (Verbal Comprehension, Perceptual

Reasoning, Working Memory, and Processing Speed) and an

overall Full-Scale IQ. The average internal consistency reliabil-

ity of WAIS-IV subtests ranged from .78 for to .94 (Wechsler,

2008b).

2.1.2. Wechsler Memory Scale-Fourth Edition

The Wechsler Memory Scale-Fourth Edition (WMS-IV;

Wechsler, 2009) is an individually administered battery

designed to assess a variety of memory abilities, such as

working memory, learning, immediate and delayed recall, and

recognition of information. There are both verbal and visual

tasks are presented in verbal and visual modalities, and was

standardized on individuals between the ages of 16–90 years.

Not counting the Brief Cognitive Status Exam, the subtests

include LogicalMemory (recall for a short story); Verbal Paired

Associates (recall for related and unrelated word pairs);

Designs (recall of spatial locations and visual details); Visual

Reproduction (recall of geometric designs); Spatial Addition

(ability to manipulate visual–spatial information in working

memory); and Symbol Span (ability to manipulate designs in

working memory). The average internal consistency reliability
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of these subtests ranged from .82 to .97 (Wechsler, Holdnack, &

Drozdick, 2009).

2.2. Participants

Participants were members the WAIS-IV and WMS-IV co-

normative sample, which is made up of adults aged 16 through

90 years. The sample closely matched the 2005 census on

gender, age, race/ethnicity, parent education level, and geo-

graphic region. For more information about the sample, see

Wechsler et al. (2009). There were 1250 total respondents,

1015 of whom identified as either Black (n = 180) or White

(n = 835). Only the Black and White respondents were used

for this study. Descriptive statistics for the subtest scores are

given in Table 1.

2.2.1. Missing data

There were 737 respondents with no missing data on

any of the WAIS-IV subtests, 1 respondent missing a score

on the Picture Completion subtest, 1 respondent missing a

score on the Cancellation subtest, and 276 respondents

missing data on the Figure Weights, Letter-Number

Sequencing, and Cancellation subtests, almost all of whom

were age 70 or above. There were 700 respondents with no

missing data on any of the WMS-IV subtests and 315

missing data on the Designs and Spatial Addition subtests,

all age 70 or above.

There were 699 respondents with no missing data on the

WAIS-IV or WMS-IV subtests, 1 respondent missing only the

score on the Cancellation subtest, 38 respondents missing data

on only the Designs and Spatial Addition subtests, and 1

respondents missing data on the Picture Completion, Designs,

and Spatial Addition subtests. In addition, there were 276

respondents missing data on Figure Weights, Letter-Number

Sequencing, Cancellation, Designs, and Spatial Addition sub-

tests, all age 70 or above.

The majority of the missing data are missing due to the

design of the data collection (e.g., planned missingness;

McArdle, 1994). That is, respondents above the age of

70 years were not administered the Figure Weights, Letter-

Number Sequencing, Cancellation, Designs, and Spatial Addi-

tion subtests. While deleting respondents with missing values

on these variables (i.e., only keeping respondents younger than

70 years) would likely not bias the results, we instead chose to

handle the missing data using full information maximum

likelihood (FIML) estimation (Enders & Bandalos, 2001). Unlike

traditional ML estimation, FIML makes use of all the data

available from each respondent so respondents do not have to

be removed from the dataset because they were missing

values.

2.3. Data analysis

We tested SH using two methods, the CV approach

(Method 1) and a MG-CFA approach (Method 2).

2.3.1. Method 1: correlated vector analysis

We followed the steps outlined in Section 1.4.1, with some

modifications. First, we group centered the variables

(i.e., created mean deviation scores separately for the Black

andWhite groups) before conducting the EFA in the combined

group. Second, as thereweremissing values in the data,we first

created FIML-based correlationmatrices of all theWAIS-IV and

WMS-IV subtests for the Black, White, and combined groups.

Table 1

Descriptive statistics for Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) and Wechsler Memory Scale-Fourth Edition (WMS-IV) subtests.

Battery Subtest n Mean SD Skew Kurtosis

WAIS-IV Block Design 1015 10.22 2.98 0.02 −0.35

WAIS-IV Matrix Reasoning 1015 10.30 3.02 −0.01 −0.50

WAIS-IV Figure Weights 739 10.40 3.02 0.01 −0.30

WAIS-IV Picture Completion 1014 10.14 3.03 −0.22 −0.39

WAIS-IV Symbol Search 1015 10.14 2.91 0.09 0.05

WAIS-IV Coding 1015 10.17 2.92 −0.03 −0.12

WAIS-IV Cancellation 738 9.99 2.89 0.38 0.20

WAIS-IV Vocabulary 1015 10.30 2.92 0.13 −0.14

WAIS-IV Information 1015 10.06 3.05 0.06 −0.50

WAIS-IV Comprehension 1015 10.49 3.07 −0.04 −0.22

WAIS-IV Similarities 1015 10.28 2.85 −0.15 0.01

WAIS-IV Arithmetic 1015 10.24 2.85 0.10 −0.42

WAIS-IV Digit Span 1015 10.26 2.80 0.19 −0.02

WAIS-IV Letter-Number Sequencing 739 10.39 3.00 0.82 1.47

WAIS-IV Visual Puzzles 1015 10.19 3.05 0.38 −0.46

WMS-IV Logical Memory I 1015 10.10 3.02 −0.26 −0.24

WMS-IV Logical Memory II 1015 9.95 2.94 −0.18 0.01

WMS-IV Visual Reproduction I 1015 10.12 3.09 −0.32 0.12

WMS-IV Visual Reproduction II 1015 10.02 3.12 0.13 0.24

WMS-IV Verbal Paired Associates I 1015 9.91 2.98 0.06 −0.24

WMS-IV Verbal Paired Associates II 1015 9.88 3.00 −0.41 −0.19

WMS-IV Designs I 700 10.11 3.01 −0.06 −0.24

WMS-IV Designs II 700 10.01 3.04 −0.07 0.06

WMS-IV Spatial Addition 700 10.07 3.07 −0.26 −0.43

WMS-IV Symbol Span 1015 10.07 3.00 −0.03 −0.35
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Weused these correlationmatrices for the EFAs. To calculate g-

loadings, we used the analytic bi-factor rotation. To assess

factor similarity between the Black and White groups, we

estimated the congruence coefficients (Lorenzo-Seva & ten

Berge, 2006), with values ≥ .95 indicating sufficient similarity

for g and values ≥ .85 indicating sufficient similarity for the

other factors (te Nijenhuis & van der Flier, 2003).

We measured the Black–White standardized difference by

calculating Hedges (1981) effect size (ES) measure, which

expresses the mean difference between groups in standard

deviation units. We used Hedges' ES as it corrects for the slight

bias in the more commonly used d effect measure (Borenstein,

2009). The ES formula is given in Eq. (1).

ES ¼ 1−
3

4 dfð Þ−1

� �

xW−xB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nw−1ð Þs2W þ nB−1ð Þs2B
df

s ð1Þ

where, xB and xW are the mean scaled scores of the Black and

White groups, respectively, sB
2 and sW

2 are the respective

variances for the Black and White groups, and df are the

degrees of freedom calculated as nW + nB − 2, where ni is the

ith group's sample size.

We conducted the CV analyses using two versions of the

WAIS-IV/WMS-IV data. In the first version, we used all subtests

within both the WAIS-IV and WMS-IV batteries. Due to

statistical problems experienced by previous researchers

using both immediate and delayed versions of the WMS-IV

subtests (see Section 2.3.2), in the second analysis we omitted

the WMS-IV immediate subtests. This second analysis was

conducted in order to compare the results from the CVandMG-

CFA analyses.

2.3.2. Method 2: multi-group confirmatory factor analysis

Independent factor analytic studies of the WAIS-IV

(e.g., Benson, Beaujean, & Taub, in press; Benson, Hulac, &

Kranzler, 2010; Gignac & Watkins, 2013; Nelson, Canivez, &

Watkins, 2013; Niileksela, Reynolds, & Kaufman, 2013; Ward,

Bergman, & Hebert, 2012; Wechsler, 2008b) have shown the

scale to reflect four or five latent variables, mapping onto either

the four WAIS-IV index scores (Verbal Comprehension,

Perceptual Reasoning, Working Memory, Processing Speed)

or the Cattell–Horn–Carroll (Schneider & McGrew, 2012)

theory (Comprehension Knowledge, Visual Processing, Fluid

Reasoning, Short Term Memory, and Processing Speed)

respectively. The difference in factor models between studies

likely comes from whether the model allowed the subtests to

have cross-loadings. Weiss et al. (2013a) argued that the four-

and five-factor models were both sufficient for demonstrating

model fit and full factorial invariance between clinical and

nonclinical samples.

There have been some difficulties in forming CFA models

with WMS data (Wechsler et al., 2009, p. 6). In the WMS-IV,

some subtests require examinees to recall stimuli immedi-

ately after presentation (subtests comprising the Immediate

Index), while other subtests ask examinees to recall this

stimuli after a delayed period of time after which interven-

ing and nonrelated subtests have been administered previ-

ously (subtests comprising the Delayed Index). The difficulty

including both Immediate and Delayed WMS-IV subtests is

that it produces specification errors and inadmissible

parameter estimates (Millis, Malina, Bowers, & Ricker,

1999; Price, Tulsky, Millis, & Weiss, 2002). Thus, most factor

analyses of theWMS-IV data (e.g., Holdnack, Zhou, Larrabee,

Millis, & Salthouse, 2011; Miller, Davidson, Schindler, &

Messier, 2013; Salthouse, 2009), including those in the

WMS-IV technical and interpretive manual (Wechsler et al.,

2009, p. 60), only include one version of these subtests

(usually the delayed) along with the two visual working

memory measures (Spatial Addition and Spatial Span).

There have been a few studies examining the factor

structure of the WAIS-IV and WMS-IV subtests concurrently.

Holdnack et al. (2011) completed the most thorough study,

examining thirteen different models in the 900 participants

from the co-norming sample between the ages of 16–69 years.

They found two models fit the data relatively well. The first

model included seven Stratum II factors (Verbal Comprehen-

sion, Perceptual Reasoning, Processing Speed, Auditory Work-

ing Memory, Visual Working Memory, Auditory Memory, and

Visual Memory) without a g factor. The second model

contained five Stratum II factors (Verbal Comprehension,

Perceptual Reasoning, Processing Speed, Working Memory,

and Long-Term Retrieval) and a higher-order g factor.

Miller et al. (2013) analyzed WAIS-IV/WMS-IV data and

found a model similar to Holdnack et al.'s (2011) five-factor

model. Specifically, they found five Stratum II factors (Verbal

Comprehension, Perceptual Reasoning, Working Memory,

Processing Speed, and Delayed Memory) and a higher-order g

factor fit their data best. Salthouse's (2009) found that a model

with six Stratum II factors and a higher-order g factor fit the

WAIS-IV/WMS-IV analysis best. Four factors were the same as

those from Miller et al.'s and Holdnack et al.'s studies (Verbal

Comprehension, Fluid Reasoning, Working Memory, Process-

ing Speed). The difference is that Salthouse's model splits the

DelayedMemory/Long-Term Retrieval factor into two separate

factors: Verbal Memory, and Visual Memory. Likely, this

difference stems from Salthouse using the immediate version

of the WMS-IV subtests instead of the delayed.

For our MG-CFA study, we used all WAIS-IV subtests and

only the delayed and visual working memory subtests from

the WMS-IV. We chose the delayed subtests over the

immediate tests because those are the ones most commonly

used and are the ones used in the factor analyses reported in

the WMS-IV technical and interpretive manual (Wechsler

et al., 2009). Our investigation differs from previous

investigations in that we used a BF model to extract g and

tested for invariance between the Black and White groups

before evaluating SH.

2.3.2.1. Determining model fit. To determine model fit, we

examined multiple indices (McDonald & Ho, 2002) that

represent a variety of fit criteria (Marsh, Hau, & Grayson,

2005). Specifically,we examined (a) theχ2, (b) the comparative

fit index (CFI), (c) root mean square error of approximation

(RMSEA), (d) standardized root mean square residual (SRMR),

and (e) Mcdonald's non-centrality index (Mc). In addition,

following Boomsma's (2000) recommendationwe also reported

Akaike's information criterion (AIC) and Schwarz's Bayesian

information criterion (BIC). For all models, we looked for

patterns in the fit statistics, and judged acceptance/rejection of
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the specificmodel based on themajority of the indices.We used

the following criteria for overall model fit: (a) CFI ≥ .96 (Yu,

2002); (b) RMSEA ≤ .08 (Browne & Cudeck, 1993; Hu & Bentler,

1999); (c) SRMR ≤ .08, (Hu & Bentler, 1999; Sivo, Fan, Witta, &

Willse, 2006); (d)Mc N .90.While AIC and BICmeasure different

aspects of model fit, for both measures smaller values indicate

better approximations of the true model (Markon & Krueger,

2004). When specifically comparing models for invariance,

Meade, Johnson, and Braddy (2008) suggest that changes in CFI

values of .002 and changes in Mc values between .008–.009 are

useful cutoff points.

All analyses were conducted using the R statistical pro-

gramming language (R. Development Core Team, 2014), using

the psych (Revelle, 2012) and lavaan (Rosseel, 2012) packages.

To conduct the EFA, fit the latent variable models, and assess

invariance in R, we followed the steps outlined in Beaujean

(2014a, 2014b).

3. Results

3.1. Method 1: correlated vectors

3.1.1. All subtests

We conducted the first step of the CV analyses using all

subtests in the WAIS-IV and WMS-IV co-normed dataset.

Velicer's (1976) minimum average partial (MAP) criterion

suggested 2 factors, while Horn's (1965) parallel analysis

suggested 4–8 factors. We believe that the seven-factor

solution made the most interpretive sense (see Table 2). The

extracted factors consist of g, a Verbal Comprehension factor

(F1), a Logical Memory factor (F2), a Designs factor (F3), a

Verbal Paired Associates factor (F4), a Processing Speed factor

(F5), and a Short–Term Memory factor (F6).

We calculated the congruence coefficient (CC) from EFAs

applied to Black andWhite groups separately. The CC was 1.00

for g and had values ≥ .87 for all the other factors. Since the CCs

were sufficiently high, we combined Black and White samples

and extracted the g loadings from an analytic BF rotation. The

subtest data we used for the correlated vectors (CV) analysis

are given in Table 3. The Pearson correlation between the

corrected g loadings and the corrected Black-White standard-

ized differences was 0.58 (95% CI: 0.53–0.62), while the

Spearman correlation was .62 (95% CI: .58–.66).

3.1.2. All subtests except WMS-IV immediate

We performed this analysis to mirror the multi-group CFA

we conducted. MAP criterion suggested 2 factors, while parallel

analysis suggested 2–5 factors. We believe that the five-factor

solution made the most interpretive sense (see Table 4). It is

comprised of g, a Comprehension Knowledge factor (F1), a

Processing Speed factor (F2), a Working Memory factor (F3),

and a Visual Spatial Factor (F4).

The CC for gwas 1.00, andwas ≥ .89 for all the others factors.

Since the CCs were sufficiently high, we combined Black and

White samples and extracted the g loadings from an analytic BF

rotation. The subtest data we used for the CV analysis are given

in Table 5. The Pearson correlation between the corrected g

loadings and the corrected standardized Black–White differ-

ences is 0.57 (95% CI: 0.53–0.61), while the Spearman

correlation is .65 (95% CI: .61–0.68).

3.2. Method 2: multi-group confirmatory factor analysis

3.2.1. Testing assumptions

A major assumption of SEM is that the manifest variables

are multivariate normal (Kline, 2012). All WAIS-IV and WMS-

Table 2

Results from exploratory factor analysis of all subtests extracting seven factors using the combined sample (n = 1015).

Factor pattern coefficients

Battery Test g F1 F2 F3 F4 F5 F6

WAIS-IV Figure Weights 0.71 0.11 −0.12 −0.03 −0.05 −0.02 0.05

WMS-IV Visual Reproduction I 0.68 −0.06 −0.11 0.11 −0.02 0.04 −0.21

WAIS-IV Visual Puzzles 0.67 −0.06 −0.20 0.00 −0.15 −0.02 −0.14

WAIS-IV Matrix Reasoning 0.66 0.04 −0.15 0.04 −0.07 0.04 0.00

WMS-IV Symbol Span 0.66 0.00 −0.03 0.18 0.02 0.05 0.03

WAIS-IV Block Design 0.65 −0.02 −0.21 0.04 −0.18 0.02 −0.13

WAIS-IV Arithmetic 0.65 0.19 −0.04 −0.04 −0.07 −0.01 0.21

WAIS-IV Digit Span 0.62 0.05 −0.04 0.00 −0.04 0.08 0.55

WAIS-IV Similarities 0.61 0.48 0.03 −0.08 −0.04 −0.06 0.01

WMS-IV Spatial Addition 0.61 0.02 −0.14 0.12 −0.08 0.10 0.07

WAIS-IV Vocabulary 0.59 0.66 0.05 −0.03 0.04 0.00 0.05

WMS-IV Visual Reproduction II 0.59 −0.12 −0.05 0.15 0.03 0.00 −0.20

WAIS-IV Comprehension 0.59 0.52 0.05 −0.02 −0.03 −0.03 0.02

WAIS-IV Information 0.59 0.50 −0.02 −0.06 −0.07 −0.04 −0.05

WMS-IV Verbal Paired Associates I 0.58 −0.02 0.08 0.04 0.68 −0.01 0.01

WMS-IV Logical Memory I 0.58 0.03 0.69 −0.03 0.03 −0.03 0.02

WAIS-IV Letter–Number Sequencing 0.58 0.03 −0.09 −0.02 −0.03 0.03 0.46

WAIS-IV Picture Completion 0.58 0.00 −0.01 0.00 −0.09 0.09 −0.08

WMS-IV Verbal Paired Associates II 0.55 −0.01 0.07 0.03 0.74 −0.03 −0.03

WMS-IV Logical Memory II 0.54 0.02 0.76 −0.03 0.09 −0.01 −0.05

WAIS-IV Coding 0.52 0.00 0.00 0.02 −0.03 0.57 0.08

WAIS-IV Symbol Search 0.51 −0.04 −0.04 0.01 −0.04 0.65 −0.01

WMS-IV Designs I 0.50 −0.04 −0.03 0.74 0.01 0.05 −0.03

WMS-IV Designs II 0.44 −0.04 −0.02 0.69 0.07 −0.03 0.03

WAIS-IV Cancellation 0.38 −0.10 −0.04 0.11 −0.03 0.37 0.07

Note. Factors were rotated using analytic bi-factor rotation. Subtests are presented in descending order of their g loadings.

88 C.L. Frisby, A.A. Beaujean / Intelligence 51 (2015) 79–97



IV univariate subtest skewness values were b 2 and all kurtosis

values were b 7, so were in acceptable limits (West, Finch, &

Curran, 1995). While Mardia (1980) tests of multivariate skew

and kurtosis were larger than expected (b1,p = 30.81, b2,p =

687.85, n = 738, p = 21), a Q–Q plot of the multivariate

distribution does not lookmarkedly different from data plotted

from a knownmultivariate normal distributions with the same

n, number of variables, and correlation matrix (Andersen,

2012). Consequently, we believe that the data approximate a

multivariate normal distribution.

3.2.1.1. Confirmatory factor analysis. Based on our EFA, we

initially fit a bi-factormodel with four Stratum II factors (Verbal

Comprehension, Processing Speed, Visual Processing, and

Working Memory). The values for the fit statistics for this

model (B0) are shown in Table 6. The fit measures meet the

Table 3

Data used in correlated vectors analysis of all subtests.

Battery Test ES nW nB Corrected ES g Loading Corrected g Loading

WAIS-IV Figure Weights 0.81 590 149 0.86 0.71 0.75

WMS-IV Visual Reproduction I 0.66 835 180 0.69 0.68 0.71

WAIS-IV Visual Puzzles 0.85 835 180 0.91 0.67 0.71

WAIS-IV Matrix Reasoning 0.79 835 180 0.84 0.66 0.70

WMS-IV Symbol Span 0.62 835 180 0.66 0.66 0.70

WAIS-IV Block Design 1.19 835 180 1.27 0.65 0.70

WAIS-IV Arithmetic 0.74 835 180 0.79 0.65 0.69

WAIS-IV Digit Span 0.62 835 180 0.64 0.62 0.64

WAIS-IV Similarities 0.80 835 180 0.85 0.61 0.66

WMS-IV Spatial Addition 0.78 560 140 0.81 0.61 0.64

WAIS-IV Comprehension 0.84 835 180 0.90 0.59 0.63

WAIS-IV Vocabulary 0.80 835 180 0.82 0.59 0.61

WAIS-IV Information 0.78 835 180 0.81 0.59 0.61

WMS-IV Visual Reproduction II 0.49 835 180 0.49 0.59 0.60

WMS-IV Logical Memory I 0.62 835 180 0.68 0.58 0.64

WAIS-IV Picture Completion 0.95 835 179 1.03 0.58 0.63

WAIS-IV Letter–Number Sequencing 0.60 590 149 0.64 0.58 0.61

WMS-IV Verbal Paired Associates I 0.47 835 180 0.49 0.58 0.60

WMS-IV Verbal Paired Associates II 0.46 835 180 0.50 0.55 0.60

WMS-IV Logical Memory II 0.60 835 180 0.65 0.54 0.58

WAIS-IV Coding 0.74 835 180 0.80 0.52 0.56

WAIS-IV Symbol Search 0.72 835 180 0.80 0.51 0.56

WMS-IV Designs I 0.56 560 140 0.61 0.50 0.55

WMS-IV Designs II 0.43 560 140 0.46 0.44 0.47

WAIS-IV Cancellation 0.38 589 149 0.43 0.38 0.43

Note. ES: Hedges' effect size. NW: White sample size. NB: Black sample size. Corrected: corrected for unreliability. Subtests presented in descending order of their g

loading. Scores from the Black participants were subtracted from the White participants, so a positive ES indicates that the average score from the White group was

higher.

Table 4

Results from exploratory factor analysis of all subtests except the WMS-IV immediate subtests, extracting five factors using the combined sample (n = 1015).

Factor pattern coefficients

Battery Test g F1 F2 F3 F4

WAIS-IV Figure Weights 0.70 0.09 −0.03 0.11 0.15

WMS-IV Symbol Span 0.68 −0.09 0.02 0.06 −0.05

WAIS-IV Matrix Reasoning 0.66 0.01 0.04 0.05 0.16

WAIS-IV Visual Puzzles 0.66 −0.07 −0.01 −0.06 0.32

WAIS-IV Block Design 0.65 −0.02 0.02 −0.04 0.36

WAIS-IV Arithmetic 0.63 0.17 −0.02 0.25 0.10

WAIS-IV Vocabulary 0.63 0.60 0.02 0.02 −0.06

WAIS-IV Similarities 0.63 0.48 −0.03 0.01 0.02

WMS-IV Visual Reproduction II 0.61 −0.19 −0.01 −0.12 −0.06

WAIS-IV Comprehension 0.61 0.50 −0.01 0.00 −0.03

WMS-IV Spatial Addition 0.61 −0.03 0.08 0.11 0.13

WAIS-IV Information 0.61 0.49 −0.01 −0.04 0.09

WAIS-IV Digit Span 0.58 0.00 0.01 0.63 −0.02

WAIS-IV Picture Completion 0.56 0.03 0.11 −0.03 0.11

WAIS-IV Letter–Number Sequencing 0.54 −0.02 −0.02 0.50 0.03

WMS-IV Verbal Paired Associates II 0.54 −0.08 −0.05 −0.02 −0.38

WAIS-IV Coding 0.51 0.03 0.59 0.04 −0.02

WAIS-IV Symbol Search 0.51 −0.01 0.64 −0.04 0.02

WMS-IV Designs II 0.50 −0.23 −0.07 0.03 −0.11

WMS-IV Logical Memory II 0.48 0.10 0.05 −0.05 −0.36

WAIS-IV Cancellation 0.39 −0.13 0.34 0.07 −0.01

Note. Factors were rotated using analytic bi-factor rotation. Subtests presented in descending order of their g loading.
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RMSEA and SRMR criteria, but do notmeet theMc criterion and

are at the threshold of the CFI criterion. Examining the residual

correlations and modification indices indicated that we should

include a fifth, Long-Term Retrieval factor, making the model

similar to that used by Holdnack et al. (2011) and Miller et al.

(2013). In addition, we allowed the residuals between the

WAIS-IV Figure Weights and Arithmetic subtests and the

residuals between the WMS-IV Logical Memory and Verbal

Paired Associates subtests to covary. This new model (B1) fit

the data better than the model with four factors, so we used it

for our baselinemodel. A path diagramof themodel is shown in

Fig. 2. In Model B1, not all subtests loaded on Stratum II factors,

indicating that g explained all the covariance between those

subtests and the other subtests in the dataset.

Next, we fit model B1 to the Black and White groups,

separately (B1.B and B1.W, respectively). The model fit slightly

better in theWhite group than in the Black group, although the

fit is equivalent in most respects. We then assessed for

invariance using the steps listed in Section 1.4.2. The con-

straints involved in the configural model (M1), weak model

(M2), and strong invariancemodel (M3) did not depreciate the

model fit. In fact, the AIC and BIC that showed the model with

more constraints fit slightly better than the models without

them. Thus, it appears that the factors are comparable across

groups.

To examine strict invariance, we added constraints in two

parts, one for the residual variances and once for the residual

covariances. After constraining the residual variances (M4a),

Table 5

Data used in correlated vectors analysis of all subtests except the WMS-IV immediate subtest scores.

Battery Test ES nW nB Corrected

ES

g Loading Corrected

g loading

WAIS-IV Figure Weights 0.81 590 149 0.86 0.70 0.74

WMS-IV Symbol Span 0.62 835 180 0.66 0.68 0.73

WAIS-IV Matrix Reasoning 0.79 835 180 0.84 0.66 0.70

WAIS-IV Visual Puzzles 0.85 835 180 0.91 0.66 0.70

WAIS-IV Block Design 1.19 835 180 1.27 0.65 0.69

WAIS-IV Arithmetic 0.74 835 180 0.79 0.63 0.67

WAIS-IV Similarities 0.80 835 180 0.85 0.63 0.67

WAIS-IV Vocabulary 0.80 835 180 0.82 0.63 0.65

WAIS-IV Comprehension 0.84 835 180 0.90 0.61 0.66

WMS-IV Spatial Addition 0.78 560 140 0.81 0.61 0.64

WAIS-IV Information 0.78 835 180 0.81 0.61 0.63

WMS-IV Visual Reproduction II 0.49 835 180 0.49 0.61 0.62

WAIS-IV Digit Span 0.62 835 180 0.64 0.58 0.60

WAIS-IV Picture Completion 0.95 835 179 1.03 0.56 0.61

WMS-IV Verbal Paired Associates II 0.46 835 180 0.50 0.54 0.59

WAIS-IV Letter–Number Sequencing 0.60 590 149 0.64 0.54 0.58

WAIS-IV Symbol Search 0.72 835 180 0.80 0.51 0.56

WAIS-IV Coding 0.74 835 180 0.80 0.51 0.55

WMS-IV Designs II 0.43 560 140 0.46 0.50 0.55

WMS-IV Logical Memory II 0.60 835 180 0.65 0.48 0.52

WAIS-IV Cancellation 0.38 589 149 0.43 0.39 0.44

Note. ES: Hedges' effect size. nW: White sample size. nB: Black sample size. Corrected: Corrected for unreliability. Subtests presented in descending order of their g

loading. Scores from the Black participants were subtracted from the White participants, so a positive ES indicates that the average score from the White group was

higher.

Table 6

Model fit for combined WAIS-IV and WMS-IV multi-group confirmatory factor models.

Model Description χ
2 df p CFI RMSEA SRMR Mc AIC BIC

B0 Baseline: 4 Stratum II factors, all respondents 552.662 173 .00 .961 .05 .035 .829 90344 90733

B1 Baseline: 5 Stratum II factors, all respondents 362.938 166 .00 .980 .03 .028 .908 90168 90592

B1.B Baseline: Model B1, Black respondents 207.926 166 .02 .980 .04 .040 .890 16010 16285

B1.W Baseline: Model B1, White respondents 320.091 166 .00 .976 .03 .032 .912 73958 74364

M1 Configural Invariance 528.017 332 .00 .977 .03 .033 .908 89968 90815

M2 Weak Invariance 563.259 368 .00 .977 .03 .038 .908 89931 90601

M3 Strong Invariance 591.135 383 .00 .976 .03 .040 .903 89929 90525

M4a Strict invariance (variances) 657.701 404 .00 .970 .04 .042 .883 89954 90446

M4b Strict invariance (variances, except Designs II) 633.463 403 .00 .973 .03 .041 .893 89931 90429

M4c Strict invariance (covariances) 634.47 405 .00 .973 .03 .041 .893 89928 90416

M5 Latent variances 649.64 411 .00 .972 .03 .054 .889 89932 90389

M6 Latent mean differences of all factors 875.523 417 .00 .946 .05 .126 .798 90145 90573

M6a Latent mean differences of Working Memory and Processing Speed

constrained to be zero

653.614 413 .00 .972 .03 .055 .888 89932 90380

M7 Latent mean differences of Working Memory, Processing Speed, and g

constrained to be zero

802.278 414 .00 .954 .04 .103 .823 90078 90521

Note. CFI: comparative fit index; RMSEA: root mean square error of approximation; SRMR: standardized root mean square residual, Mc: McDonald's non-centrality

index, AIC: Akaike's information criterion, BIC: Bayesian information criterion. nBlack = 180, nWhite = 835.
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the model showed some depreciation in fit. Consequently, we

examined the modification indices, which indicated that the

residuals for the Designs II subtests should be freed between

groups. The resulting model (M4b) fit the data better than

model M4a, and only slightly worse than model M3. We then

constrained the residual covariances (M4c), which did not

Fig. 2. Bi-factor model of the WAIS-IV and WMS-IV subtests. Subtest specific/error variance terms not shown for space considerations.
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worsen the model fit. Thus, it appears that the construct

reliabilities for Verbal Comprehension, Visual Processing,

Working Memory, and Processing Speed factors are the same

across groups, and almost the same for g and Long-Term

Memory.

Next, we constrained the latent variables' variances by

fixing all of them to be 1.0 (model M5). While this step is not

required for assessingmeasurement invariance, it is required to

examine if the groups used equivalent ranges of the latent

variables to respond to the tests. This did not appear to worsen

model fit. The factor loadings from this final model (M5) are

given in Table 7.

Last, we examined the differences in the latent variable's

means. First, we constrained all means to be the same

(i.e., zero) across groups (M6). This model showed an

appreciable depreciation in model fit. Subsequently, we

examined the latent means from model M5 to see if there

were any factors with minimal group differences. The latent

mean differences in the Working Memory and Processing

Speed factors seemed likely due to sampling error as their the

95% CIs contained zero. Consequently, we set these factors'

latent means to be zero for both groups (M6a). This model fits

as well as model M5. We show the latent mean differences for

the factors based on model M6a in Table 8.

As the latent variables do not have an inherentmean, we set

themeanof the Black group to zero and estimated themeans in

the White group. Thus, the values in Table 8 show how much

higher (positive value) or lower (negative value) the latent

mean for the White group is from the latent mean of the Black

group. As the variance of the latent variables in both groups is

Table 7

Factor loadings for final model (Model M5) of WAIS-IV/WMS-IV data.

Factor Subtest Unstandardized estimate SE Standardized estimate

g

Similarities 1.63 0.08 0.60

Vocabulary 1.63 0.08 0.59

Information 1.69 0.09 0.58

Comprehension 1.70 0.09 0.58

Block Design 1.73 0.08 0.64

Visual Puzzles 1.79 0.08 0.63

Picture Completion 1.69 0.09 0.58

Matrix Reasoning 2.03 0.08 0.71

Figure Weights 2.11 0.09 0.73

Digit Span 1.65 0.08 0.61

Arithmetic 1.75 0.08 0.64

Letter–Number Sequencing 1.70 0.09 0.58

Symbol Search 1.53 0.08 0.54

Coding 1.60 0.08 0.56

Cancellation 1.13 0.10 0.40

Logical Memory II 1.18 0.09 0.41

Visual Reproduction II 1.52 0.10 0.50

Verbal Paired

Associates II 1.33 0.09 0.45

Designs II 1.36 0.10 0.56

Symbol Span 1.90 0.08 0.65

Spatial Addition 1.94 0.10 0.65

Verbal Comprehension

Similarities 1.38 0.08 0.51

Vocabulary 1.81 0.07 0.65

Information 1.47 0.08 0.50

Comprehension 1.61 0.08 0.55

Arithmetic 0.49 0.08 0.18

Logical Memory II 0.62 0.10 0.21

Visual Processing

Block Design 1.43 0.17 0.52

Visual Puzzles 0.89 0.13 0.31

Picture Completion 0.45 0.12 0.15

Visual Reproduction II 0.48 0.14 0.16

Working Memory

Digit Span 2.11 0.36 0.78

Arithmetic 0.45 0.11 0.17

Letter–Number Sequencing 1.03 0.20 0.35

Processing Speed

Symbol Search 1.77 0.13 0.63

Coding 1.51 0.12 0.53

Cancellation 1.06 0.12 0.37

Long-Term Retrieval

Logical Memory II 0.64 0.14 0.22

Visual Reproduction II 1.33 0.17 0.44

Verbal Paired Associates II 0.96 0.14 0.32

Designs II 1.07 0.16 0.44

Symbol Span 0.69 0.12 0.24

Note. For all analyses, we used full information maximum likelihood estimation to account for missing data.
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one, these mean differences are given in standard deviation

units. The White group is approximately 1.16 SDs higher on g,

0.80 SDs higher on Visual Processing, and .23 SDs higher on

Verbal Comprehension than the Black group. Conversely, the

Black group was 0.35 SDs higher on the Long-Term Retrieval

factor.

Model M6a supports theweak form of SH, so to rule out the

contra hypothesis version of SH, we fit amodel that allowed for

mean differences only in Stratum II factors. Here, we estimated

the latent means differences for Verbal Comprehension, Visual

Spatial Reasoning, and Long-Term Retrieval, but constrained

the latent mean differences for g, Working Memory, and

Processing Speed to be zero (model M7). The model fit is

worse than that for model M6a, indicating that subtest

differences are not due to latent mean differences in Stratum

II factors alone.

4. Discussion

Interpretations of the meaning of subgroup differences in

average score performance on cognitive tests have been

plagued by ad hoc “armchair” explanations that have sowed

confusion rather than clarity among practitioners and re-

searchers (e.g., Helms, 1997). The correlated vector (CV)

methodwas amajor step forward in establishing an empirically

based method to both posit and test a coherent, parsimonious

theory—called the Spearman hypothesis (SH)—that explains

these differences (Jensen, 1985). Themulti-group confirmatory

factor analysis (MG-CFA) method represents a second step

forward in providing a technique to assess measurement

invariance across comparison groups, as well as provide a

simultaneous test for the strong, weak and contra hypotheses

associated with SH. Studies using MG-CFA have often yielded

equivocal results, which we contend are primarily due to

shortcomings in theway g has beenmodeled. In this article, we

described how the bi-factor model (BF; Holzinger & Swineford,

1937; Jennrich & Bentler, 2011, 2012) can offer advantages to

both the CV and MG-CFA approaches of examining SH.

We demonstrated the use of the BF model to examine SH in

a large co-normed standardization dataset of scores from the

Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV)

and Wechsler Memory Scale-Fourth Edition (WMS-IV). This

data has the advantage of including a wide variety of mental

tests as well as containing an overrepresentation of memory

tests, which tend to either show minimal race differences or

favor Black respondents (Jensen & Reynolds, 1982; Mayfield &

Reynolds, 1997). Consequently, we expected to find support for

the weak form of SH in this dataset.

Our CV analysis revealed the correlation between Black–

White score differences and g loadings to be approximately .60,

with the Pearson correlation being slightly lower and the

Spearman correlation being slightly higher. As there is no

agreed-upon value that differentiates the strong and weak

forms of SH, we are unsure if this supports the weak or strong

version of SH. It is likely that these findings favor the weak

version of SH because more than half the variance in the score

differences are not accounted for by g.

The results from theMG-CFA also support the weak form of

SH. While there were large mean differences in g, there were

also substantial mean differences in the Visual Processing

factor as well. In addition, there were moderate differences in

the Verbal Comprehension and Long-Term Retrieval factors,

with the latter favoring the Black sample. Thus, while g does

play a part in the score differences between Black and White

participants, it is not the only construct contributing to these

differences.

4.1. Integration with previous literature

Our finding of large Black–White differences in g (1.16 SDs)

and Visual Processing (0.80 SDs) is consistent with other SH

studies. In Jensen's (1998) summary of SH studies, he reported

the largest Black–White differences (favoring Whites) were

found on tests that load highly on both g and a Spatial

Visualization (i.e., Visual Processing) factor. More recently,

Dragt's (2010) meta-analysis of SH studies confirmed Jensen's

findings:

The fact that tests that are heavily loaded on either the

[Visual Processing] factor or [Short-Term Memory] factors

consistently cause small deviations from the result predict-

ed by the strong form of Spearman's hypothesis dictates

that this form must be rejected. The weak form of

Spearman's hypothesis, however, is strongly confirmed.

(p. 61).

At the other extreme, our finding of no Black–White

differences inWorkingMemory and a small difference favoring

the Black respondents in Long-Term Retrieval is consistent

with the SH literature as well (Dolan & Hamaker, 2001; Jensen

& Reynolds, 1982).

As have previous studies of SH (Dolan, 2000; Dolan &

Hamaker, 2001), the results from the MG-CFA indicated that

there was strict invariance for the majority of the WAIS-IV/

WMS-IV subtests. The only exceptionwas theWMS-IV Designs

II subtest, whose error variance was not the same between

groups. Unlike previous studies, however, we were able to

differentiate the effects of g on the group differences from the

effects of the Stratum II factors. Previous MG-CFA studies that

used HOF models were equivocal about whether it was

differences in g, differences in Stratum II factors, or both that

were causing the observed test score differences. Our use of a

bi-factor model enabled us to show that the observed test

scores were due to differences in g as well as differences in

Stratum II factors (Visual Processing, Verbal Comprehension,

Table 8

Black–White mean differences on latent variables.

95% CI

Factor Estimate SE Lower Upper

g 1.16 0.10 0.97 1.34

Verbal Comprehension 0.23 0.11 0.01 0.45

Visual Processing 0.80 0.15 0.51 1.08

Working Memory 0 – – –

Processing Speed 0 – – –

Long-Term Retrieval −0.35 0.16 −0.65 −0.04

Note. Estimates came from model M6a (see Table 6). Latent mean differences

for Working Memory and Processing Speed were constrained to zero. For all

latent variables, the variances were fixed at 1.0 and the means for the Black

group were fixed at 0.0. Thus, a positive difference indicates the average score

from the White group was higher, while a negative difference indicates the

average score from the Black group was higher.
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and Long-Term Retrieval). That is, our study confirmed the

weak form of SH, consistent with Jensen's (1998) interpreta-

tion of the SH data.

4.2. Final thoughts on comparing approaches to investigating SH

4.2.1. Comparison of results from the current study

Our study revealed noteworthy similarities between the CV

andMG-CFA approaches used to investigate the SHwhen using

a BF model to represent g. Both approaches showed that gwas

estimated invariantly in both the Black and White groups as

well as showed large Black–White differences on g. The CV

analysis yielded a correlation between Black–White differences

and g between 0.58 (Pearson) and 0.62 (Spearman), while the

MG-CFA analysis yielded difference in the latent mean of g of

1.16 SDs.

There were some noticeable differences between the CV

and MG-CFA approaches as well. First, the MG-CFA was able to

uncover more nuanced information than the CV analysis.

Specifically, the MG-CFA not only found differences in g, but

also found group differences in Visual Processing (0.80 SDs

favoring the White sample), Verbal Comprehension (0.23 SDs

favoring the White sample), and Long-Term Retrieval factors

(0.34 SDs favoring the Black sample). Second, the MG-CFA

found the construct reliability estimates to be very similar

between the groups for all the factors, an issue the CV method

does not even attempt to address. Third, while both the CV and

MG-CFA approaches showed large Black–White differences on

g, themagnitude of the difference is somewhat larger for the CV

analysis than the MG-CFA. Specifically, the d effect sizes that

correspond to the correlations from the CV approach are 1.42

(Pearson) and 1.58 (Spearman).

4.2.2. Preferred method for assessing Spearman's hypothesis

The results from our study are in agreement with those

from Dolan and his colleagues (Dolan, 2000; Dolan & Hamaker,

2001; Dolan et al., 2004; Lubke et al., 2001) showing that the

MG-CFA approach to testing SH is typically better than using

CV. First, the MG-CFA approach is better able to test the

assumptions inherent in SH than the CV approach. Second, by

using a BF approach to using a CFA model, the approach can

provide more information about the nature of the between-

group differences. For example, the BF MG-CFA approach

allows for an assessment of group differences in g and the

Stratum II factors simultaneously. Thus, it allows for a direct

investigation of the strong, weak, and contra forms of SH. Third,

although seldom discussed in the SH literature (however, see

Irwing, 2012), the BF MG-CFA approach allows for an

assessment of construct reliability differences between groups,

for both g and the Stratum II factors. The current study found

strict invariance for all the subtests (except Designs II) as well

as invariance in the latent variances. Thus, not only are the

between-group construct reliabilities nearly identical, but both

groups used equivalent ranges of the latent variables when

responding to the test questions. Where strict invariance not

found, however, thenwe could have followed theMG-CFAwith

an investigation of the reliability of the measured constructs

(Reise, Bonifay, & Haviland, 2013).

Despite the number of benefits the MG-CFA approach has

over the CV approach, the CV approach to assessing SH (or

differences between any groups) is still quite common.

Critiques of the CV method were issued over 15 years ago

(e.g., Ashton & Lee, 2005; Dolan, 2000; Millsap, 1997), yet the

method is still used. If the CVmethod is going to continue to be

used, further work needs to be done to determinewhat level of

the correlation between g and the differences in test scores is

required for support of the strong vs. weak vs. contra forms of

SH. The current lack of agreed-upon values has caused a variety

of correlation values to be interpreted as evidence supporting

g's role in determining group differences (Dolan et al., 2004). A

Monte Carlo study could be useful here. Specifically, after

simulating data from strong, weak, and contra forms of SH, the

magnitude of the correlations from a CV analysis of all the data

sets could be compared to give an idea about benchmarks for

support of each level of SH.

4.3. Bi-factor versus higher-order models for testing Spearman's

hypothesis

All prior studies that have compared the CV and MG-CFA

methods for evaluating the SH have used a higher-order factor

(HOF) model. In contrast, we used a BF model and, to our

knowledge, are the first to compare CV with a MG-CFA using a

BF model's representation of g and the Stratum II factors.

If g were the only concern in testing SH, then it might not

make much of a difference whether a BF or HOF model was

used (Jensen & Weng, 1994). SH does not focus solely on g,

however, because theweak and contra forms also considers the

influence of Stratum II factors. In the HOF model, Stratum II

factors are comprised of two independent components: the

part that is due to g and the part that is independent of g. In the

BF model, Stratum II factors are defined as constructs that

influence a set of observed tests scores independent of the

influence of g (Chen et al., 2006). Thus, Murray and Johnson

(2013, p. 420) concluded, “If ‘pure’measures of specific abilities

are required then bi-factor model factor scores should be

preferred to those from a higher-order model.”

4.3.1. A bi-factor model of intelligence

Some may question whether a BF model is an appropriate

representation of intelligence. HOF models have been used so

often in the field and some argue that they have a stronger

theoretical basis than BF models (e.g., Keith & Reynolds, 2012;

Murray & Johnson, 2013). Recently, Beaujean (submitted for

publication) argued that a BF theory of intelligence does

exist—the one that started with Spearman's conceptualizations

of g, group factors, and specific factors, and then evolved in

Carroll's three-stratum theory.

First, a BF model's representation of g is consistent with

Spearman's conceptualization because the BF model is just an

extension of Spearman's two-factor theory that allows for

Stratum II (group) factors (Holzinger & Swineford, 1939). This

is not surprising, given Holzinger's close association with

Spearman (Harman, 1954). Moreover, Spearman's conceptu-

alization of group factors is aligned with the BF model

(Spearman, 1933) and he accepted the g factor extracted

from a BF model to be the same as that from his two-factor

theory (Spearman, 1946).

Second, John Carroll's conceptualization of intelligence is

more consistent with a BF model than a HOF model. Carroll

(1997) argued that g should be extracted from a set of cognitive

ability measures first, and then the Stratum II factors should be
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formed from covariances residualized after extracting g. This is

the same idea Holzinger and Swineford (1937) used in

developing the BF model.

While Carroll (1996) often presented his three-stratum

theory as a higher-order model in figures, he warns against

taking the structure of his figures “too literally or precisely”

(p. 4) because he explicitly preferred the BF model to the HOF

model. This is most noticeable in the CFAs Carroll conducted in

order to verify his three-stratum model, as he consistently

chose to use BF models instead of HOF models (Carroll, 1997,

1995).

One may argue that a HOF model is more preferable to a BF

model because g is best thought of as an abstraction of Stratum

II factors, not a direct influence on tests. This argument not only

contradicts Carroll's (1996) conceptualization of g, but also is

contrary to Spearman's initial conceptualization of g as having

direct influences on the measured tests (Hart & Spearman,

1912).

5. Conclusion

The CVmethodwas amajor contribution to the study of SH.

The HOF MG-CFA method improved the CV method by

providing a technique to examine the assumptions underlying

the use of CV. We believe that the BF MG-CFA approach makes

an additional contribution to the field of studying SH because it

can provide a clearer picture of the contributions of g and

Stratum II factors to the differential size of group differences.
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