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Abstract. Psychometric g is the largest, most general, and most predictive factor
underlying individual differences across cognitive tasks included in intelligence
tests. Given that the overall score from intelligence tests is interpreted as an index
of psychometric g, we examined the correlations between general factors ex-
tracted from individually administered intelligence tests using data from five
samples of children and adolescents (n � 83 to n � 200) who completed at least
two of six intelligence tests. We found strong correlations between the general
factors indicating that these intelligence tests measure the same construct, psy-
chometric g. A total of three general-factor correlations exceeded .95, but two
other correlations were somewhat lower (.89 and .92). In addition, specific ability
factors correlated highly across tests in most (but not all) cases. School psychol-
ogists and other professionals should know that psychometric g and several
specific abilities are measured in remarkably similar ways across a wide array of
intelligence tests.

The term positive manifold refers to the
pattern of universally positive correlations be-

tween cognitive task scores (i.e., scores from
tasks on which performance results from dif-
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ferences in mental processing and not sensory
acuity or motor skill; Jensen, 1998). This ubiq-
uitous pattern seems to indicate that a general
mental ability underlies individual differences
on every kind of cognitive task. Spearman
(1927) referred to this general mental ability
as simply g, but it is often referred to as
psychometric g. On the most widely used in-
telligence tests, the largest independent source
of variance across persons is psychometric g.
In addition, the predictive validity of intelli-
gence tests is largely a function of psychomet-
ric g (Jensen, 1998; Neisser et al., 1996). The
more closely a cognitive task measures psy-
chometric g, the better it is at predicting a wide
range of important social outcomes, such as suc-
cess in school and work (Gottfredson, 2008).

At the current time, Carroll’s (1993)
three-stratum theory is arguably the most
widely accepted taxonomy of human cognitive
abilities. From patterns evident across the re-
sults of hierarchical factor analysis of more
than 460 data sets from a variety of cognitive
tasks, Carroll (1993) identified three levels of
cognitive abilities representing varying de-
grees of generality: (a) Stratum I abilities that
are narrow and highly specialized, (b) Stratum
II abilities that are broader in nature, and (c)
one very broad Stratum III ability, or psycho-
metric g. Three-stratum theory posits that cog-
nitive abilities can be arranged from specific to
general and that psychometric g is best repre-
sented as a higher order variable correlated
with all factors and test scores beneath it. For
reference, the term order refers to the level of
the latent variable in a factor analysis. First-
order factors, for example, represent the latent
variables underlying a matrix of correlations
between scores, and second-order factors rep-
resent the latent variables underlying first-order
factor correlations. In contrast, the term stratum
refers to the degree of generality indicated by
a factor, regardless of the order at which it
appears in the analysis (Carroll, 1993).

Psychometric g in the Practice of
Psychology

In schools, federal special education law
(Individuals with Disabilities Education Im-

provement Act, 2004) mandates the assess-
ment of intelligence for the identification of
intellectual disability. The use of intelligence
tests is allowed, but no longer required, for the
identification of specific learning disability.
Finally, intelligence tests are used in most
states to identify students for intellectually
gifted and talented programs (McLain &
Pfeiffer, 2012). In other applied settings, di-
agnostic criteria (e.g., American Psychiatric
Association, 2000) require that intelligence
tests be administered. In particular, the Amer-
ican Association on Intellectual and Develop-
mental Disabilities (2010) explicitly links its
diagnostic criteria for intellectual disability to
psychometric g. In all these instances, the
overall score on intelligence tests (i.e., IQs),
which is interpreted as an estimate of psycho-
metric g, is most often used. Because intelli-
gence tests (and IQs) are an integral aspect of
applied psychology, it is important to deter-
mine the degree to which they converge in
measuring the construct they intend to mea-
sure, psychometric g. It would be problematic
if the psychometric g extracted from intelli-
gence tests available to practitioners were
vastly different.

Comparing General Factors Across
Intelligence Tests

A criticism of psychometric g is that it is
based on the specific battery of cognitive tasks
from which it is derived. For example, Jensen
(1998) stated, “There is no method of factor
analysis that can yield exactly the same g
when different tests are included in the bat-
tery. . . . The g is always influenced, more or
less, by both the nature and the variety of tests
from which it is extracted” (p. 85). Jensen
(1998) described this effect as stemming from
psychometric sampling error; he used this
term to refer to imperfection in the measure-
ment of psychometric g owing to inadequate
sampling across a range of cognitive tasks.
Psychometric sampling error is most evident
when extracting a first-order general factor (as
in nonhierarchical exploratory factor analysis)
and cognitive tasks measuring the same Stratum
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I or Stratum II ability are overrepresented in a
factor analysis and others are underrepresented.

Breadth of psychometric sampling is
particularly important for intelligence testing
in practical settings, where the number of cog-
nitive tasks (e.g., intelligence test subtests)
that can be administered is quite limited, es-
pecially with children. Consequently, test de-
velopers must select a rather small number of
cognitive tasks—typically, no more than
10—to measure the targeted Stratum II abili-
ties in addition to psychometric g. Further,
these cognitive tasks tend to differ across in-
telligence tests in the processes required (e.g.,
reasoning and memory) and in content (e.g.,
verbal and spatial). Because psychometric
sampling produces varying batteries of cogni-
tive tasks across intelligence tests, the general
factor extracted from one battery may differ
from that extracted from another.

Is the general factor the same when ex-
tracted from subtest scores from varying intel-
ligence tests? This question addresses invari-
ance under differential selection of variables
(Thurstone, 1947; Mulaik, 2010). Two types
of studies have been used to examine the in-
variance of general factors across intelligence
tests. The first examines the consistency of the
correlations between general factors and sub-
test scores, called g loadings, when the sub-
tests used to identify the general factors vary.
For example, these studies could determine if
a subtest from the Wechsler Intelligence Scale
for Children, Fourth Edition (WISC-IV;
Wechsler, 2003) has the same g loading when
it is factor analyzed with other WISC-IV sub-
tests as it does when it is factor analyzed with
the Kaufman Assessment Battery for Chil-
dren, Second Edition (KABC-II; A. S. Kauf-
man & N. L. Kaufman, 2004a) subtests. Be-
cause a subtest’s g loading is expected to be
relatively constant, the comparability of general
factors would be seriously questioned if a g
loading fluctuated widely across the general fac-
tors derived from different intelligence tests.

Researchers have used data from sizable
samples of adults and exploratory factor ana-
lytic techniques to demonstrate that subtest g
loadings do not vary substantially across gen-
eral factors based on the characteristics and

number of subtests used to identify them
(Thorndike, 1987; Floyd, Shands, Rafael,
Bergeron, & McGrew, 2009; Major, Johnson,
& Bouchard, 2011). In particular, Floyd et al.
(2009) and Major et al. (2011) showed strong
consistency in the magnitude of subtest g load-
ings across analyses even when evaluating the
effects of various targeted and error-related
sources of variance. Across these studies,
some evidence of psychometric sampling error
affecting the measurement of psychometric g
has been apparent, but variations in g loadings
have neither been too great nor too consistent
to weaken the construct validity of the general
factor representing psychometric g.

The second type of study used to exam-
ine the invariance of psychometric g examines
the correlations between general factors de-
rived from factor analysis across intelligence
tests. These studies provide a more direct test
of the relations between factors representing
psychometric g than those examining the con-
sistency of subtest g loadings. In studies of
this second type, participants complete two or
more intelligence tests. A general factor is
modeled within each intelligence test using
confirmatory factor analysis. The correlation
between the general factors modeled for each
test is then estimated. Large correlations be-
tween the general factors indicate that the rank
ordering of individuals on the general factor is
consistent across the intelligence tests. One
advantage of modeling these relations within a
confirmatory factor-analytic framework is that
the general factor for each intelligence test
may be modeled as a higher order factor. A
higher order factor should control for overrep-
resentation and underrepresentation of mea-
sures of the same Stratum I or Stratum II
ability that may contribute to psychometric
sampling error (Jensen, 1998).

Johnson, Bouchard, Krueger, McGue,
and Gottesman (2004) used a confirmatory
factor-analytic framework to examine the cor-
relations of general factors using data from
three intelligence tests yielded by more than
400 adult twins. Models for two of the tests
included five first-order factors, and the model
for the third test included three first-order fac-
tors; all test models included a second-order
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general factor. Correlations between second-
order general factors were .99, .99, and 1.0,
which were near-perfect and perfect correla-
tions. Johnson, te Nijenhuis, and Bouchard
(2008) replicated the Johnson et al. (2004)
study and examined correlations between gen-
eral factors across five intelligence tests com-
pleted by Dutch seamen. Models for four in-
telligence tests included three or four first-
order factors and a second-order g factor. The
model for one four-subtest intelligence test
was the exception; it included one general
factor because it was narrow in scope. Corre-
lations between the general factors ranged
from .77 and 1.0, but when the uniquely spec-
ified general factor from the test that was
narrow in scope was omitted, general factor
correlations across second-order factors
were .95 or higher in every case.

Although all of the studies described
thus far have used adult samples to examine
the relations between general factors, two
studies of note have examined these relations
using data obtained from individually admin-
istered intelligence tests completed by chil-
dren and adolescents. First, Keith, Kranzler,
and Flanagan (2001) examined the correla-
tions of general factors across two tests, the
Woodcock–Johnson III Tests of Cognitive
Abilities (WJ III; Woodcock, McGrew, &
Mather, 2001) and the Cognitive Assessment
System (CAS; Naglieri & Das, 1997). Keith
and colleagues (2001) constructed models
based on the Cattell–Horn–Carroll (CHC) the-
ory (Schneider & McGrew, 2012), which is
closely related to Carroll’s three-stratum the-
ory, using confirmatory factor analysis. Their
test-specific models included either four or
seven first-order factors and a second-order
general factor. The correlation between the
second-order general factors for the WJ III and
the CAS was .98; this correlation was not
statistically significantly different from one,
indicating that the general factors were statis-
tically indistinguishable.

Floyd, Bergeron, Hamilton, and Parra
(2010) also examined the correlations of gen-
eral factors across two tests, the WJ III
(Woodcock et al., 2001) and the Delis–Kaplan
Executive Function System (DKEFS; Delis,

Kaplan, & Kramer, 2001). Floyd and col-
leagues constructed models based on CHC
theory using confirmatory factor analysis. The
correlation between a second-order general
factor for the WJ III and a first-order general
factor for the DKEFS was .99. Further, when
the DKEFS model was altered to include first-
order Verbal and Nonverbal factors and a sec-
ond-order factor, the correlation between the
two general factors across tests was 1.0. As
evident in these studies, the near-perfect and
perfect factor correlations for all appropriately
identified general factors indicate that the
same psychometric g is present across them.

Purpose of the Study

The purpose of this study is to extend
research in this area by examining the rela-
tions between general factors derived from
multidimensional intelligence tests adminis-
tered to children and adolescents. Most of the
prior research has focused on data from intel-
ligence tests administered to adults, and only
two peer-reviewed journal articles have re-
ported results from analysis of data obtained
from children and adolescents. Studies includ-
ing children and adolescents are important to
ensure that the findings generalize across age
groups and tests designed for these popula-
tions. In addition, prior studies with children
and adolescents have derived results from the
WJ III and another test with a strong founda-
tion in neuropsychological models (i.e., Delis
et al., 2001; Naglieri & Das, 1997). However,
no studies have examined the relations be-
tween general factors from pairs of the most
frequently used intelligence tests for children
and adolescents. From a practical perspective,
school psychologists should know if the psy-
chometric g measured by these intelligence
tests is essentially the same or whether (and to
what degree) it differs across tests. To address
these issues, we identified five archival data
sets from children and adolescents who com-
pleted at least two intelligence tests measuring
a variety of ability domains. We hypothesized
that all general factor correlations will be
higher than .95.
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Method

Data Sources and Participants

This study reports the results of analysis
of data sets from five samples drawn during
development of the Differential Ability
Scales, Second Edition (DAS-II; Elliot, 2007),
the KABC-II (A. S. Kaufman & N. L. Kauf-
man, 2004a), and the WJ III (Woodcock et al.,
2001).

Sample 1. As described by Elliot
(2007), the first sample consisted of 200 chil-
dren and adolescents ages 6–17. Of those
sampled, 100 were girls (50%) and 100 were
boys (50%). A total of 70 were White
(35%), 54 were Hispanic (27%), 50 were Af-
rican American (25%), 13 were Asian (6.5%),
and 13 were listed as Other (6.5%). Children
completed the DAS-II and the WISC-IV, with
the DAS-II completed first in all instances
(Elliot, 2007).

Sample 2. As described by McGrew
and Woodcock (2001), Phelps, McGrew,
Knopik, and Ford (2005), Floyd, Bergeron,
McCormack, Anderson, and Hargrove-Owens
(2005), and Floyd, Clark, and Shadish (2008),
the second sample consisted of 150 children
ages 8–12 who were randomly selected from
three public elementary schools. Of those
sampled, 66 were girls (44%), and 84 were
boys (56%). A total of 148 (98.7%) were
White, and 2 (1.3%) were African American.
They completed the Wechsler Intelligence
Scale for Children, Third Edition (WISC-III;
Wechsler, 1991) and the WJ III in counterbal-
anced order (McGrew & Woodcock, 2001;
Phelps, McGrew, Knopik, & Ford, 2005).

Sample 3. As described by McGrew
and Woodcock (2001), Floyd et al. (2005),
Sanders, McIntosh, Dunham, Rothlisberg, and
Finch (2007), and Floyd et al. (2008), the third
sample consisted of 135 children and adoles-
cents ages 8–13 randomly selected from pub-
lic and private elementary schools. Of those
sampled, 69 were girls (51.9%), and 64 were
boys (48.1%). A total of 127 were White
(95.5%), and 6 were African American

(4.5%). They completed the DAS (Elliott,
1990) and the WJ III in counterbalanced order
(McGrew & Woodcock, 2001).

Sample 4. Sample 4 and Sample 5 are
treated as distinct in this study, but there is
considerable overlap in participants across
these samples. Participants were selected to
represent the general child population and
completed the KABC-II, the WISC-III, and
the WJ III in counterbalanced order (A. S.
Kaufman & N. L. Kaufman, 2004a). As de-
scribed by A. S. Kaufman and N. L. Kaufman
(2004a), Floyd et al. (2005), and Floyd et al.
(2008), the fourth sample consisted of 116
children and adolescents ages 8–13. Of those
sampled, 63 were girls (54.3%), and 53 were
boys (45.7%). A total of 71 were White
(61.2%), 18 were Hispanic (15.5%), 9 were
African American (7.8%), 9 were Asian
(7.8%), 1 was Native American (0.9%), 3
were listed as Other (2.6%), and 5 did not
report race/ethnicity (4.3%).

Sample 5. As described by A. S. Kauf-
man and N. L. Kaufman (2004a), Floyd et al.
(2005), and Floyd et al. (2008), the fifth sam-
ple consisted of 83 children and adolescents
ages 8–13. Of those sampled, 37 were girls
(44.6%), and 46 were boys (55.4%). A total
of 50 were White (60.2%), 16 were Hispanic
(19.3%), 8 were Asian (9.6%), 5 were African
American (6.0%), 1 was Native American
(1.2%), and 3 were listed as Other (3.6%).

Measures

Differential Ability Scales. The study
included data from eight DAS subtests: Ma-
trices, Pattern Construction, Recall of De-
signs, Recall of Objects-Immediate, Sequen-
tial and Qualitative Reasoning, Similarities,
Speed of Information Processing, and Word
Definitions. Subtest scores had median reli-
ability coefficients above .75 across ages 8–12
in the norming sample. Please note that we
refer to reliability coefficients in general in
this article, but recognize that there was vari-
ation in how these coefficients were obtained
(e.g., split-half reliability and test–retest reli-
ability methods).
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Differential Ability Scales, Second
Edition. The study included data from 10
DAS-II subtests: Matrices, Pattern Construc-
tion, Recall of Designs, Rapid Naming, Recall
of Digits Backward, Recall of Sequential Or-
der, Sequential and Quantitative Reasoning,
Speed of Information Processing, Verbal Sim-
ilarities, and Word Definitions. Subtest scores
had median reliability coefficients above .75
across ages 6–17 in the norming sample.

Kaufman Assessment Battery for
Children, Second Edition. The study in-
cluded data from 14 KABC-II subtests: Atlan-
tis, Atlantis Delayed, Block Counting, Expres-
sive Vocabulary, Number Recall, Pattern Rea-
soning, Rebus, Rebus Delayed, Riddles,
Rover, Story Completion, Triangles, Verbal
Knowledge, and Word Order. Subtests had
median reliability coefficients above .75
across ages 7–12 years in the norming sample.

Wechsler Intelligence Scale for Chil-
dren, Fourth Edition. The study included
data from 14 WISC-IV subtests: Arithmetic,
Block Design, Cancellation, Coding, Compre-
hension, Digit Span, Information, Letter-
Number Sequencing, Matrix Reasoning, Pic-
ture Completion, Picture Concepts, Similari-
ties, Symbol Search, and Vocabulary. Subtests
had median reliability coefficients above .75
across ages 6–16 in the norming sample.

Wechsler Intelligence Scale for Chil-
dren, Third Edition. The study included data
from 12 WISC-III subtests: Arithmetic, Block
Design, Coding, Comprehension, Digit Span,
Information, Object Assembly, Picture Ar-
rangement, Picture Completion, Similarities,
Symbol Search, and Vocabulary. All subtests,
excluding Object Assembly (.68) and Picture
Arrangement (.72), had median reliability co-
efficients above .75 across ages 8–13 in the
norming sample.

Woodcock–Johnson III Test of Cog-
nitive Abilities. The study included data
from 16 WJ III subtests: Analysis-Synthesis,
Auditory Attention, Auditory Working Mem-
ory, Concept Formation, Decision Speed, In-
complete Words, Memory for Words, Num-

bers Reversed, Picture Recognition, Rapid
Picture Naming, Retrieval Fluency, Sound
Blending, Spatial Relations, Verbal Compre-
hension, Visual–Auditory Learning, and Vi-
sual Matching. All subtests, excluding Picture
Recognition (.70), had median reliability co-
efficients above .75 across ages 8–13 in the
norming sample.

Analysis

Models and model comparisons.
Analyses were conducted using Mplus Ver-
sion 6.11 (L. K. Muthén & B. O. Muthén,
1998–2011). Age-based standardized subtest
scores were used as input in each analysis.
Multiple stand-alone indicators of model fit
were used, including �2, the comparative fit
index (CFI), the Tucker-Lewis index (TLI),
the root mean square error of approximation
(RMSEA), and the standardized root mean
square residual (SRMR). CFI and TLI values
greater than .95 indicate adequate fit, whereas
values approaching .97 indicate excellent fit.
For the RMSEA and SRMR, values of .05 or
below indicate excellent fit, whereas the
RMSEA may be as high as .08 and the
SRMR may be as high as .10 for adequate fit
(Schermelleh-Engel, Moosbrugger, & Müller,
2003). Nested models were compared using
the likelihood ratio (��2) test, and non-nested
models were compared using the Akaike In-
formation Criterion (AIC). Lower AIC values
indicate better fitting models.

Several steps in modeling, informed pri-
marily by prior research findings and CHC
theory (Schneider & McGrew, 2012), were
followed across samples. The first step was to
estimate baseline models for each data set. In
these models, the factor structure of each in-
telligence test was modeled independently
(i.e., all cross-test correlations were fixed to
zero) for each sample. These models were
expected to have poor fit because it was un-
likely that the general factor and correspond-
ing first-order factors were independent across
tests; they were expected to be substantially
correlated. In the steps that followed, the gen-
eral factor correlation was freed first, and cor-
relations between like first-order unique vari-

School Psychology Review, 2013, Volume 42, No. 4

388



ances were freed second. Because measure-
ment residuals (associated with subtests)
contain both measurement error and reliable
specific variance, it was likely that some mea-
surement residuals were not independent
across tests; correlated specific variances
likely represented Stratum I factors or com-
mon method variance, and in our models, they
were almost always highly predictable. There-
fore, some subtest residual correlations were
freed across tests primarily based on prior
research and theory (i.e., subtests apparently
measuring the same specific ability) and on
rare occasions, based on model-based modifi-
cation indexes above 10 (i.e., associated with
the p � .001 level of statistical significance).
We freed these additional correlations because
we did not want restrictions on variance
shared between tests at lower orders to inter-
fere with estimates of higher order factor cor-
relations. After each cross-test factor model
was deemed acceptable and model parameters
were within reasonable limits, the focus
shifted to interpretation of the factor correla-
tions between tests.

Intelligence research in general and re-
search with intelligence tests used in this study
(e.g., Reynolds & Keith, 2007) commonly
found that the first-order Fluid Reasoning fac-
tor was often statistically indistinguishable
from a second-order general factor (see
Gustafsson, 1984). That is, the Fluid Reason-
ing unique variance is frequently not statisti-
cally significantly different from zero. We ex-
pected that this pattern would be evident in our
models.

Missing data. There were few missing
data across samples. Missing data never ex-
ceeded 10% for any variable—with one ex-
ception. In Sample 4, 38 participants were
missing WISC-III Symbol Search subtest
scores. All of the available data were ana-
lyzed, and maximum likelihood estimation
was used under the assumption of data missing
at random (Baraldi & Enders, 2010).

Results

Descriptive statistics for all subtests are
presented in Tables 1 through 5 in the supple-

mental materials. Most subtest score means
were slightly higher than the population mean
(based on normative data from each test). Re-
striction of range in norm-referenced subtest
scores was frequently evident (as indicated by
standard deviation values that are smaller than
population values); expansion of range was
occasionally evident. All univariate skewness
values were less than an absolute value of 1.0,
and all but a small minority of kurtosis values
(11.5%) were also less than an absolute value
of 1.0. For those exceptions, kurtosis values
ranged from 1.02 to 4.28. Thus, skewness and
kurtosis values were well below values that
have been found to give rise to problems with
multivariate non-normality (skewness � 2.0
and kurtosis � 7.0; Curran, West, & Finch,
1996). Across all analyses, statistical signifi-
cance was defined as p � .05.

Sample 1: DAS-II and WISC-IV

An ideal cross-test factor model is
shown in Figure 1. In it, only corresponding
factors are correlated freely across intelligence
tests. Not shown in Figure 1 are correlations
among subtest residuals across batteries that
were previously described in the models and
model comparisons section. The DAS-II
model included five first-order factors with
two subtest indicators per factor (see the sup-
plemental materials for factor-to-indicator
specification), and those factors regressed on a
second-order general factor. Its first-order fac-
tors were Comprehension–Knowledge, Short-
Term Memory, Processing Speed, Visual Pro-
cessing, and Fluid Reasoning. The WISC-IV
model also included five first-order factors,
with two to five subtest indicators per first-
order factor. Those first-order factors re-
gressed on a second-order general factor. The
five WISC-IV first-order factors were the
same as those in the DAS-II model. For both
models, the general factor was scaled by fixing
the variance to one.

Model fit statistics for Sample 1 are pre-
sented in the top section of Table 1. The
baseline model included two test battery-spe-
cific, higher order models that were indepen-
dent of each other. Its fit was poor (Model 1).
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Figure 1. A cross-test factor model of the relations between second-order
general factors and first-order unique variances from the DAS-II and the
WISC-IV. Rectangles represent subtest scores, and large ovals represent the
general factor and first-order factors. Small ovals above the large ovals repre-
sent first-order factor unique variances (measuring specific abilities not from
the general factor or variance specific to subtests). Small circles represent
measurement residuals that contain specific variance and measurement error
associated with subtest scores. Curved arrows represent correlations between
like abilities across batteries. DAS-II � Differential Ability Scales, Second
Edition; WISC-IV � Wechsler Intelligence Scale for Children, Fourth Edition;
g � the general factor, Gc � Comprehension–Knowledge, Gsm � Short-Term
Memory, Gs � Processing Speed, Gv � Visual Processing, and Gf � Fluid
Reasoning.
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The Fluid Reasoning unique variances were
zero in both the DAS-II and WISC-IV models;
these unique variances represent Fluid Rea-
soning variance that is distinct from variance
because of the general factor and from mea-
surement error and subtest-specific reliable
variance. Here, the general factor variance ex-
plained all of the Fluid Reasoning unique vari-
ance (see also Keith, Fine, Reynolds, Taub, &
Kranzler, 2006). We fixed the Fluid Reasoning
unique variances to zero, rendering a perfect
correlation (i.e., loading) between Fluid Rea-
soning and the general factors.

There was not a statistically significant
degradation in model fit; the general and Fluid
Reasoning factors were statistically indistin-
guishable (Model 2). The correlation between
the second-order general factors was freed
next, improving model fit substantially (Model
3). Model fit, however, was inadequate. Thus,
correlations between the pairs of Comprehen-
sion–Knowledge, Short-Term Memory, Pro-
cessing Speed, and Visual Processing unique
variances across batteries were freed. There
was a statistically significant improvement in
model fit (Model 4), but the correlation be-
tween the Short-Term Memory unique vari-
ances was greater than one, and the correlation
between the Visual Processing unique vari-
ances was slightly greater than one. It is not
unlikely for these factors to be correlated per-
fectly because they are such pure representa-
tions of the Stratum II abilities. Like the Fluid
Reasoning unique variance, the Short-Term
Memory loading on the general factor in the
WISC-IV model approached one, and the
WISC-IV Short-Term Memory unique vari-
ance was not statistically significant from
zero. Therefore, the Short-Term Memory
unique variance correlation across tests was
deleted, the Short-Term Memory unique vari-
ance from the WISC-IV was fixed to zero, and
the specific correlations between the WISC-IV
Digit Span residual and both the residuals
from the DAS-II Short-Term Memory subtests
were freed (Model 5). Because the Visual Pro-
cessing unique variance correlation was
slightly greater than one (and not necessarily
significantly different from one), the correla-
tion between the WISC-IV Block Design sub-

test and DAS-II Pattern Construction subtest
residuals was freed because of similarities in
the design and response requirements of these
subtests. Although model fit did not improve
significantly (Model 6), it reduced the Visual
Processing correlation to less than one. All
parameter estimates were within reasonable
limits.

The correlations between the first-order
factor unique variances were Comprehension–
Knowledge � .81, Visual Processing � .94,
and Processing Speed � .90. The correlation
between the general factors was .97. An addi-
tional model was estimated in which the cor-
relation between the general factors was fixed
to one; the fit of this model was compared with
the previous model. The likelihood ratio test
was then used to test whether the correlation
between the general factors was statistically
significantly different from one. Fixing the
correlation between the general factors to one
resulted in a degradation in model fit with a p
value of .049 (Model 7); thus, the correlation
between the general factors was statistically
significantly different from 1.0 using a p value
of �.05. The WISC-IV Arithmetic subtest
may cross-load on the Fluid Reasoning factor
in addition to the Short-Term Memory factor.
We estimated models with this cross-loading.
Although the model fit did not improve, the
Arithmetic’s factor loading on the Fluid Rea-
soning factor was indeed stronger than its
loading on the Short-Term Memory factor.
The Short-Term Memory factor did not col-
lapse as a result, and the Short-Term Memory
factors were strongly correlated. The magni-
tude of the general factor correlation was un-
altered in this model, but the p value for the
test of a perfect correlation was .024. Thus, the
general factor correlation was not statistically
significant from one.

Sample 2: WISC-III and WJ III

Results for Sample 2 are presented in the
second section of Table 1. The WISC-III
model included four first-order factors with
two or four indicators per factor and with the
first-order factors regressed on a second-order
general factor. Its first-order factors were
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Table 1
Fit Statistics and Indexes for All Models Across Samples

Sample 1: WISC-IV and DAS-II

Fit Statistics

Models �2 df ��2 �df p CFI TLI
RMSEA
(90% CI) AIC SRMR

1 Baseline 820.89 265 .739 .705 .102
(.095, .110)

27320.0 .232

2 Gf unique variance � 0 822.09 267 1.20 2 .550 .740 .708 .102
(.094, .110)

27317.2 .232

3 Correlation between general
factors

562.21 266 259.88 1 �.001 .864 .846 .074
(.066, .083)

27341.5 .066

4 Correlations between
corresponding first-order
factor unique variances

406.45 262 155.77 4 �.001 .932 .922 .053
(.042, .062)

26911.6 .056

5 Gsm unique variance � 0;
correlations between Digit
Span residual and both Recall
of Sequential Order and
Recall of Digits-Backward
residuals

387.06 262 .941 .933 .049
(.038, .059)

26892.2 .052

6 Correlation between Block
Design residual and Pattern
Construction residual

385.01 261 2.06 1 .151 .942 .933 .049
(.038, .059)

26892.1 .052

7 Perfect g-to-g correlation 388.89 262 3.88 1 .049 .941 .931 .049
(.039, .059)

26894.0 .052

Sample 2: WJ III and WISC-III

Model �2 df ��2 �df p CFI TLI
RMSEA
(90% CI) AIC SRMR

1 Baseline, WJ III Glr unique
variance � 0

694.22 341 .722 .692 .083
(.074, .092)

27192.1 .174

2 Gf unique variance � 0 694.34 342 0.10 1 .742 .722 .693 .083
(.074, .092)

27190.2 .174

3 Correlation between general
factors

545.47 341 148.86 1 �.001 .839 .821 .063
(.053, .073)

27043.3 .077

4 Correlations between
corresponding first-order
factor unique variances and
correlation between Gc unique
variance and Verbal
Comprehension residual

450.32 337 95.15 4 �.001 .911 .900 .047
(.035, .058)

26956.2 .069

5 Correlations between Digit
Span residual and Numbers
Reversed residual and between
Retrieval Fluency and Rapid
Picture Naming residual

427.25 335 23.07 2 �.001 .927 .918 .043
(.029, .055)

26937.1 .066

6 Perfect g-to-g correlation 430.66 336 3.42 1 .064 .925 .914 .043
(.030, .055)

26938.5 .066

(Table 1 continues)
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Table 1 Continued

Sample 3: WJ III and DAS

Model �2 df ��2 �df p CFI TLI
RMSEA
(90% CI) AIC SRMR

1 Baseline 486.59 182 .642 .587 .108
(.097, .119)

21408.2 .204

2 Correlation between general
factors

323.13 181 163.46 1 �.001 .833 .806 .076
(.063, .090)

21246.8 .078

3 Correlations between
corresponding first-order
factor unique variances and
similar residual variance

268.79 175 54.34 6 �.001 .890 .868 .063
(.048, .078)

21204.5 .072

4 Correlations between Memory
for Words residual and Recall
of Designs residual

235.12 174 33.67 1 �.001 .928 .913 .051
(.033, .067)

21172.8 .070

5 Perfect g-to-g correlation 235.14 175 0.02 1 .888 .929 .915 .050
(.032, .066)

21170.8 .069

Sample 4: KABC-2 and WISC-III

Model �2 df ��2 �df p CFI TLI
RMSEA
(90% CI) AIC SRMR

1 Baseline 600.04 288 .792 .710 .097
(.086, .108)

13809.2 .232

2 Correlation between general
factors

472.00 287 128.04 1 �.001 .877 .860 .075
(.062, .086)

13683.2 .075

3 Correlations between
corresponding first-order
factor unique variances

388.98 284 83.02 3 �.001 .930 .920 .074
(.066, .083)

13606.1 .066

4 Gc subtest residuals correlated 378.20 278 10.78 6 .095 .931 .920 .056
(.041, .070)

13607.4 .074

5 Additional subtest residuals
correlated

370.44 275 7.76 3 .051 .936 .925 .055
(.039, .069)

13605.6 .072

6 Perfect g-to-g correlation 388.94 276 18.51 1 �.001 .925 .911 .059
(.045, .073)

13622.1 .073

Sample 5: KABC-2 and WJ III

Model �2 df ��2 �df p CFI TLI
RMSEA
(90% CI) AIC SRMR

1 Baseline 547.20 311 .792 .766 .096
(.082, .109)

13870.1 .244

2 Gf unique variance � 0 547.42 312 0.23 1 .635 .793 .767 .095
(.082, .108)

13868.3 .244

3 Correlation between general
factors

444.91 311 102.51 1 �.001 .882 .867 .072
(.056, .087)

13767.8 .068

4 Correlations between
corresponding first-order
factor unique variances and
subtest residuals

394.89 307 50.03 4 �.001 .923 .912 .059
(.040, .075)

13725.8 .064

5 Additional subtest residuals
correlated

374.21 303 20.67 4 �.001 .937 .927 .053
(.032, .070)

13713.1 .063

6 Perfect g-to-g correlation 409.35 304 35.14 1 �.001 .907 .893 .065
(.047, .080)

13746.3 .114

Note. WISC-IV � Wechsler Intelligence Scale for Children, Fourth Edition; DAS-II � Differential Ability Scales, Second
Edition; WJ III � Woodcock–Johnson III Tests of Cognitive Abilities; KABC-2 � Kaufman Assessment Battery for Children,
Second Edition; CFI � comparative fit index; TLI � Tucker Lewis index; RMSEA � root mean square error of approximation;
AIC � Akaike information criterion; SRMR � standardized root mean square residual; Gf � Fluid Reasoning; g � the general
factor; Glr � Long-Term Storage and Retrieval; Gsm � Short-Term Memory; Gc � Comprehension–Knowledge. All nested
comparisons of model fit (as evidenced in the ��2 and �df columns) are made with the model immediately prior for each sample.
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Comprehension–Knowledge, Visual Process-
ing, Processing Speed, and Short-Term Mem-
ory. The WJ III model included six first-order
factors, with two or three indicators per first-
order factor. Its first-order factors were Visual
Processing, Processing Speed, Fluid Reason-
ing, Short-Term Memory, Long-Term Storage
and Retrieval, and Auditory Processing. First-
order factors and the Verbal Comprehension
subtest were regressed on a second-order gen-
eral factor. (Technically, a first-order factor
was created for the Verbal Comprehension
subtest, but its variance was fixed to 0. No
other subtest targeting the Stratum II ability
Comprehension–Knowledge was available in
the data set. Thus, a Comprehension–Knowl-
edge factor could not be modeled.) The model
would not converge because of the WJ III
Long-Term Storage and Retrieval factor. The
Long-Term Storage and Retrieval factor
unique variance was fixed to zero, and the
model converged. The fit of the baseline
model, with independent factor models for
each test, was poor (Model 1). Consistent with
the previous models in Sample 1, the first-
order WJ III Fluid Reasoning factor unique
variance was fixed to zero; it correlated per-
fectly with the general factor (Model 2).
Model fit did not degrade.

The correlation between the general fac-
tors was freed, which resulted in a substantial
and statistically significant improvement in
model fit (Model 3). Model fit, however, was
not acceptable. The correlation between the
WISC-III Comprehension–Knowledge unique
variance and the Verbal Comprehension resid-
ual was freed. In addition, the correlations
between the Visual Processing, Short-Term
Memory, and Processing Speed unique vari-
ances between tests were freed. Fit improved
substantially (Model 4). The Short-Term
Memory unique variance correlation across
tests was greater than one. The correlation
between the WISC-III Digit Span subtest and
WJ III Numbers Reversed residuals were freed
because they are very similar tasks. The mod-
ification indexes indicated that, if the residuals
of the WJ III Rapid Picture Naming and the
WJ III Retrieval Fluency subtests were free to
correlate, model fit would improve. Both of

these tests require rapid verbal responses, and
other research has found that these two sub-
tests either load on the same factor or have
correlated residuals (e.g., S. B. Kaufman,
Reynolds, Liu, A. S. Kaufman, & McGrew,
2012). These additional parameters were
freed, and the resulting model fit was accept-
able. All parameter estimates were with rea-
sonable limits.

The correlations between the first-order
factor unique variances varied substantially:
Visual Processing � .34, Short-Term Mem-
ory � .84, and Processing Speed � .97. The
correlation between the general factors was
.95. The likelihood ratio test indicated that the
correlation between the general factors was
not statistically significantly different from
one (Model 6).

Sample 3: WJ III and DAS

Results for Sample 3 are presented in the
third section of Table 1. The DAS model in-
cluded three first-order factors with two indi-
cators per factor, and each regressed on a
second-order general factor. Its first-order fac-
tors were Comprehension–Knowledge, Visual
Processing, and Fluid Reasoning. Two sub-
tests, Recall of Objects and Speed of Informa-
tion Processing, were also regressed directly
on the general factor because no other subtests
targeting the same Stratum II ability were
available in the data set. The WJ III model
included four first-order factors with two to
three indicators per factor, and each regressed
on a second-order general factor. Its first-order
factors were Visual Processing, Fluid Reason-
ing, Short-Term Memory, and Auditory Pro-
cessing. Three subtests, Verbal Comprehen-
sion, Visual–Auditory Learning, and Decision
Speed were regressed directly on the general
factor because no other subtests targeting the
same Stratum II ability were available in the
data set. The initial model fit poorly (Model
1).

The correlation between the general fac-
tors was freed. Model fit improved substan-
tially; however, overall model fit was not ac-
ceptable (Model 2). Several expected correla-
tions were freed in the next model, including
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the correlation between the Fluid Reasoning
unique variances, the Visual Processing
unique variances, the DAS Word Definition
residual and WJ III Verbal Comprehension
residual, the DAS Speed of Information Pro-
cessing residual and the WJ III Decision
Speed residual, and the DAS Object Recall
residual and (a) the WJ III Picture Recognition
residual and (b) the WJ III Visual–Auditory
Learning residual. There was a statistically
significant improvement in model fit (Model
3). Overall model fit, however, was not opti-
mal. Examination of the modification indexes
suggested that the WJ III Memory for Words
residual and the DAS Recall of Designs resid-
ual should be correlated. Both subtests target
memory abilities. The result was a statistically
significant improvement in model fit (Model
4); model fit was considered adequate.

The correlation between Fluid Reason-
ing unique variances was .94. The correlation
between Visual Processing unique variances
was not statistically significantly different
from zero. The correlation between the gen-
eral factors was 1.00. The likelihood ratio test
indicated that the correlation between the gen-
eral factors was not statistically significantly
different from one (Model 5).

Sample 4: KABC-2 and WISC-III

Results for Sample 4 are presented in the
fourth section of Table 1. The KABC-II model
included five first-order factors with two to
four indicators per factor, and each first-order
factor regressed on a second-order general
factor. Its first-order factors included Compre-
hension–Knowledge, Visual Processing, Short-
Term Memory, Long-Term Storage and Re-
trieval, and Fluid Reasoning. The residuals for
the Atlantis subtest and the Rebus Learning
subtest were correlated with their correspond-
ing Delayed subtest residuals. The WISC-III
model included four first-order factors with
two to four indicators per factor, and each
first-order factor regressed on a second-order
general factor. The first-order factors were
Comprehension–Knowledge, Visual Process-
ing, Short-Term Memory, and Processing
Speed. The baseline model fit poorly (Model

1). Model fit improved when the general-fac-
tor correlation was freed (Model 2).

Correlations between the Comprehen-
sion–Knowledge, Visual Processing, and
Short-Term Memory unique variances were
freed, and there was a statistically significant
improvement in fit (Model 3). Nevertheless,
the correlation between the Comprehension–
Knowledge unique variances was greater than
one. An additional model was estimated with
the residuals of subtests used as indicators of
the Comprehension–Knowledge factor corre-
lated across tests (e.g., residuals for WISC-III
Vocabulary and KABC-II Expressive Vocab-
ulary subtests, which target word knowledge).
Model fit improved (Model 4), and the corre-
lation between Comprehension–Knowledge
unique variances was reduced to .93. All of the
correlated residuals were statistically signifi-
cant except for two. Because the Visual Pro-
cessing unique variance correlation was also
greater than one, an additional model was es-
timated. In this model, correlations between
the residuals for (a) the KABC-II Triangles
subtest and both the WISC-III Block Design
subtest and WISC-III Object Assembly sub-
test, and (b) the KABC-II Story Completion
subtest and the WISC-III Picture Arrangement
subtest, were freed based on prior research and
theory. All parameter estimates were within
reasonable limits, and model fit was adequate
(Model 5).

The correlations between the first-order
factor unique variances were Comprehension–
Knowledge � .94, Visual Processing � .94,
and Short-Term Memory � .85. The correla-
tion between the general factors was .89. The
likelihood ratio test indicated that the correla-
tion between the general factors was statisti-
cally significantly different from 1.0 (Model 6).

Sample 5: KABC-II and WJ III

Results for Sample 5 are presented in the
last section of Table 1. The KABC-II model
included five first-order factors, with two to
four indicators per factor, and each first-order
factor regressed on a second-order general fac-
tor. Its first-order factors were the same as
those for Sample 4, and the residuals for the
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Atlantis and Rebus Learning subtests were
correlated with their corresponding Delayed
subtest residuals as in Sample 4. The WJ III
model included six first-order factors, with
two or three indicators per first-order factor.
Its first-order factors were Comprehension–
Knowledge, Visual Processing, Processing
Speed, Fluid Reasoning, Short-Term Memory,
and Auditory Processing. Those first-order
factors and the Visual–Auditory Learning sub-
test were regressed on a second-order general
factor. No other subtests targeting the same
Stratum II ability as Visual–Auditory Learn-
ing subtest were available in the data set.

The fit of the baseline model indicated
poor fit (Model 1). The KABC-II Fluid Rea-
soning unique variance was zero, and it was
fixed to zero (Model 2). Model fit improved by
allowing for the correlation between the two
general factors to be estimated freely (Model
3). Correlations between the Comprehension–
Knowledge, Visual Processing, and Short-
Term Memory unique variances were freed. In
addition, the KABC-II Long-Term Storage
and Retrieval unique variance and the residual
from the WJ III Visual–Auditory Learning
subtest were correlated because they target
associative memory ability. Allowing for
these four correlations to be estimated freely
improved model fit (Model 4). The Compre-
hension–Knowledge unique variance correla-
tion was larger than one, so one additional
model was estimated with these correlations
freed: (a) the WJ III General Information re-
sidual and both the KABC-II Verbal Knowl-
edge subtest and KABC-II Expressive Vocab-
ulary residuals, (b) the WJ III Verbal Compre-
hension residual and the KABC-II Riddles
residual, and (c) the WJ III Concept Formation
residual and the KABC-II Pattern Reasoning
residual. These correlations improved model
fit (Model 5); parameter estimates were within
reasonable limits.

The correlations between the first-order
factor unique variances varied substantially:
Comprehension–Knowledge � .98, Visual
Processing � .43, and Short-Term Mem-
ory � .88. The correlation between the general
factors was .92. The likelihood ratio test indi-
cated that the correlation between the general

factors was statistically significantly different
from 1.0 (Model 6).

Discussion

School psychologists and others in-
volved in assessment should know if the latent
general ability measured by intelligence tests,
psychometric g, is essentially the same or
whether it differs across them. Thus, this study
investigated the relations between general fac-
tors from varying intelligence tests frequently
used to assess school-age children and
adolescents.

General Factor Relations

We hypothesized that all general-factor
correlations would be higher than .95, but this
hypothesis was not supported. The average
general-factor correlation across the five sam-
ples was .95, three correlations were .95 or
higher, and two correlations were not statisti-
cally significantly different than 1.0. Two
other general-factor correlations, however,
were .89 and .92. These last two correlations
were slightly lower in magnitude than ex-
pected based on previous research. Johnson et
al. (2004) reported general-factor correlations
from .99 or 1.0 across analyses, and Johnson
et al. (2008) reported them as being .95 or
higher with one exception. Keith et al. (2001)
reported a general-factor correlation of .98,
and Floyd et al. (2010) reported general-factor
correlations of .99 and 1.0. Although both of
the lowest correlations found in this study
involved the KABC-II, we have no substan-
tive explanation for these findings based on
our modeling results as well as prior research.
Sampling error associated with the two small-
est data sets (N values � 116 and 83), which
happened to involve the KABC-II, is one
explanation.

Collectively, these findings suggest that
the general factors yielded by the targeted
intelligence tests are nearly indistinguishable.
One of the reasons we found instances of
lower-than-expected general-factor correla-
tions is that we employed a slightly different
methodology than many other researchers. For
example, neither Johnson et al. (2004) nor
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Johnson et al. (2008) appear to have included
correlated first-order unique variances to rep-
resent shared Stratum II factors across their
test-specific models. Our modeling indicated
that failure to correlate these variances caused
the second-order general-factor model corre-
lations to be inflated.

Additional referencing of prior research
findings is necessary to interpret the general-
factor correlations. Recently, S. B. Kaufman et
al. (2012) employed similar methods as those
used in this study to examine the relations
between second-order general factors from the
KABC-II and WJ III and second-order factors
from their corresponding achievement tests
that target reading, mathematics, and writing
skills (A. S. Kaufman & N. L. Kaufman,
2004b; Woodcock et al. 2001). Correlations
ranged from .77 to .94 across age levels and
yielded a median correlation of .80. These
comparisons indicate that our methods do not
produce near-perfect correlations inherently,
and they make apparent that correlations be-
tween general factors targeting psychometric g
are notably higher than correlations between
these same general factors and general factors
of academic achievement.

Floyd et al. (2008), using four of the
same data sets (Samples 2, 3, 4, and 5), re-
ported correlations between IQs across tests
that were notably lower than the general-factor
correlations found in this study. The IQ cor-
relations were .78 on average, which is in the
typical range (Jensen, 1998). When we calcu-
lated the correlations between the most global
IQs from each test yielded from each data set
(including Sample 1), the average correlation
was .76. A discrepancy between these average
correlations across methods (.76 to .78 for IQs
and .95 for general factors) is likely explained
by general factors (as latent variables) being
perfectly reliable. However, a discrepancy this
large (considering many IQs have internal
consistency reliability estimates of .95 or
higher) is surprising; in fact, when we cor-
rected our IQ correlations for attenuation, the
average correlation rose from .76 to .82
(range � .75 to .86). Although the general
factors in this study included some subtest
indicators that are not subtests that contribute

to the IQs in question, we surmise that over-
representation of some Stratum II ability mea-
sures and underrepresentation of others (i.e.,
psychometric sampling error) in the composi-
tion of the IQs leads to their lower correlations
with other IQs.

Specific Ability Relations and
Independence from Psychometric g

Although we did not plan to investigate
the relations between factors representing
Stratum II abilities (as represented by first-
order unique variances) across intelligence
tests, we found strong correlations between
them in most cases. For example, correlations
between Comprehension–Knowledge factors
ranged from .98 to .81, correlations between
Short-Term Memory factors ranged from .88
to .84, and correlations between Processing
Speed factors ranged from .97 to .90. One
model permitted a correlation between Fluid
Reasoning factors; this correlation was .94.
There was, in contrast, much variation across
the correlations between Visual Processing
factors; two were strong with correlations of
.94, but two others were weak to moderate
(with correlations of .43 and .34). A final
correlation between Visual Processing factors
was not statistically significant from zero. The
weaker correlations between these factors
were found in the three samples with the WJ-
III, suggesting Visual Processing may be mea-
sured differently by that test than by the other
three other tests we included. In general, the
variation in the size of the correlations be-
tween factors representing these Stratum II
abilities mirrors that evident across correla-
tions between composite scores representing
these same abilities (see Floyd et al., 2005).

In previous research, similarities be-
tween psychometric g and Fluid Reasoning
have been widely noted (see Gustafsson,
1988). In half of the eight test-specific models
in this study, the Fluid Reasoning factor was
statistically indistinguishable from the general
factor. In addition, two other factors, the
WISC-IV Short-Term Memory factor and the
WJ III Long-Term Retrieval factor, also were
statistically indistinguishable from the general
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factor, but these findings were evident in only
one of nine and one of three test-specific mod-
els, respectively. Such results suggest that
these abilities, independent of psychometric g,
may be inadequately measured by some intel-
ligence tests (see Carroll, 2003). However,
these perfect relations with the general factor
were evident in only a small minority of the
test-specific models in which these factors
were specified. Independent Stratum II abili-
ties have appeared repeatedly across factor-
analytic studies (see Keith & Reynolds, 2010);
the perfect relations noted here are likely from
sampling error and the inability to distinguish
the general factor from first-order factors be-
cause of low statistical power (see Matzke,
Dolan, & Molenaar, 2010). These findings of
perfect relations between Stratum II abilities
and the general factor are probably not
reliable.

Limitations, Caveats, and Directions for
Future Research

Two sets of limitations were present in
this study: those associated with our samples
and those associated with our modeling. First,
archival data were used in lieu of new data
collection. Thus, variations in data collection
that were not noted in previous publications
may have affected our results in unknown
ways. Similarly, although we relied on multi-
ple samples rather than a single sample and
considered patterns of findings across replica-
tions, our modest sample sizes limit our con-
fidence in interpretation and the power of our
statistical significance tests. Although we had
adequate power to find statistically significant
results in most of our analyses, our ability to
detect whether the general factor correlations
were significantly different from one may
have been affected by our modest sample
sizes. Larger samples are clearly needed to
understand the invariance of these latent abil-
ities (Reeve & Blacksmith, 2009). Second,
some decisions we made while modeling the
relations between factors appear to have af-
fected our results. For example, based on prior
research and theory, we correlated some sub-
test residuals—affecting the magnitude of the

correlations between first-order factors—and
some first-order factor unique variances—af-
fecting the general factor correlations. We be-
lieve that these steps were prudent, but they
are at odds with other models evident in recent
research (Johnson et al., 2004, 2008).

It is important to note that there are
alternative explanations provided for what
may give rise to positive manifold that does
not involve a single general factor (Thomson,
1951; van der Maas et al., 2006). Future re-
searchers should evaluate these alternate ex-
planations and the nature of psychometric g.
Finally, we targeted the measurement of psy-
chometric g and more specific abilities under-
lying intelligence tests, but we did not parti-
tion the ability-related variance associated
with any individual scores from these tests. To
extend this line of research, future investiga-
tors should determine how well the overall
scores from intelligence tests, the IQs, mea-
sure psychometric g.

Implications for Research and Practice

We see three implications for research
and practice stemming from our findings.
First, although most intelligence tests consist
of fairly small batteries of cognitive tasks, the
general factor derived from the intelligence
tests used in this study were consistently
highly correlated and sometimes perfectly cor-
related. Thus, intelligence tests are mature
technologies that measure psychometric g
with a high degree of fidelity (Kamphaus,
2009). Nevertheless, in some instances, these
correlations were lower than expected, indi-
cating that the psychometric g measured
across some intelligence tests was not exactly
the same. Second, correlations between the
factors representing Stratum II abilities indi-
cate that the most commonly used intelligence
tests also measure more specific abilities in
similar ways. In particular, Comprehension–
Knowledge, Short-Term Memory, Processing
Speed, and Fluid Reasoning are essentially the
same across intelligence tests. There are, how-
ever, potential construct validity problems
with Visual Processing factors that raise con-
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cerns about interpreting measures of this abil-
ity across batteries.

Third, school psychologists should con-
sider how Stratum III and Stratum II abilities
operate at the level of score interpretation. It is
well known that no score yielded by intelli-
gence tests (or any other measurement instru-
ment) is a pure measure of the construct it
targets. No matter the efforts taken to reduce
measurement error, it is a ubiquitous and un-
remitting source of score differences. All the
other reasons for score differences across in-
dividuals can typically be attributed to partic-
ular abilities (Carroll, 1993). The models
tested in this study make distinct this separa-
tion of the effect of the psychometric g and the
effects of specific abilities, but typical score
interpretation does not currently allow for ac-
curate distinctions to be made between them.
Every intelligence test score represents the
influence of these abilities as well as measure-
ment error and should be interpreted as such.
In light of the evidence of invariance across
almost all of the latent variables we targeted
across tests, we suggest that factor scores rep-
resenting psychometric g and more specific
abilities should be developed to accomplish
the elusive goal of measuring cognitive abili-
ties at varying strata in a relatively pure man-
ner (Carroll, 1993; Gustafsson & Snow,
1997).
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