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Due to its importance for assignment and classification in the U.S. Air Force, the Air
Force Officer Qualifying Test (AFOQT) has received a substantial amount of research.
Recently, the AFOQT was revised to reduce administrative burden and test-taker fa-
tigue. However, the new version, the AFOQT Form S, was implemented without ex-
plicitly examining the latent structure of the exam. The current study examined the fac-
tor structure of Form S as well as its measurement equivalence across race- and
sex-based groups. Results indicated that a bifactor model with a general intelligence
factor and five content-specific factors fit the best. The measurement equivalence of
the AFOQT across gender and racial/ethnic groups was also supported.

The Air Force Officer Qualifying Test (AFOQT) is the latest in a line of aptitude
and achievement tests that traces its beginnings to the World War Il Army Avia-
tion Psychology Program (AAPP; Davis, 1947; Flanagan, 1948). Beginning in the
early 1940s, many graduate students were offered commissions! to serve in the
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IFrederick B. Davis told the story to my (Ree) class of graduate students in 1972 of how he was of-
fered a commission or if he did not accept he could take his chances with the draft. He was commis-
sioned in the U.S. Army shortly thereafter and participated in the AAPP first in Santa Anna, California,
and then in San Antonio, Texas.
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Army and conduct research on military- and aviation-related topics. The topics
covered many aspects of assessment and classification into military specialties.
The history of the program and its research is documented in a series of books pub-
lished by the Government Printing Office in the late 1940s. The list of contributors
reads like a Who’s Who of psychometrics for the next 4 decades. Included are John
Flanagan, Robert Thorndike, Lloyd Humphreys, Arthur Melton, Frederick B. Da-
vis, and Philip DuBois (Flanagan, 1948).

Based on the AAPP results, the Army Air Corps and later the Air Force insti-
tuted apparatus-based tests such as the multidimensional pursuit test, drift correc-
tion test, stick and rudder manipulation, and complex coordination (Melton,
1947). There was a single centralized testing site where all apparatuses were main-
tained in careful calibration. When apparatus testing was decentralized to many
sites it became nearly impossible to maintain administration consistency and the
standards of calibration. The system became unworkable and was discontinued. It
was proposed that paper-and-pencil tests replace the apparatus tests.

The immediate operational precursor of the AFOQT was the Aviation Cadet
Qualifying Test (ACQT), which consisted of 13 subtests with a total of 300 items.
Some of the content was expectable, such as general mathematics and mechanical
principles. Some was unexpected, such as current affairs and biographical data
heavily weighted to hunting and outdoor activities. The first AFOQT, Form A,
was implemented in 1953 (Rogers, Roach, & Short, 1986; Valentine & Creager,
1961). Over the years, the test has gone through many versions and numerous
modifications to its content. AFOQT Form A was issued with 665 items in 15
subtests. AFOQT Form B is notable because it was used for selection of the first
class of the newly completed U.S. Air Force Academy in Colorado Springs, Colo-
rado. This form had 835 items in 17 subtests. Unique subtests included “Interests”
and “Aerial Landmarks.” Form C was reduced to 645 items and Form D marked
the apogee, with 855 items with separate pilot and officer biographical inventories
in 1957. Through Form G the AFOQT had close to 800 items. During the 1960s
and 1970s there were small changes in the battery content and nomenclature and
forms were called AFOQT-64, AFOQT-66, and AFOQT-68. Then there was a
marked decline in the number of items on Forms H through N. In 1978, Form N
had 606 items in 18 subtests. With the implementation of Form O, four subtests
(Background for Current Events, Tools, Aerial Landmarks, and Pilot Biographic
and Attitude Scale) were removed from its immediate predecessor, Form N, and 2
new subtests were added (Aviation Information and Hidden Figures). AFOQT
Forms O, P, Q, and R had 16 subtests with 380 items. Form R was never imple-
mented but was eventually revised and published in 2005 as Form S with 250 items
in 11 subtests.

The Air Force Officer Qualifying Test is used to award U.S. Air Force (USAF)
Reserve Officer Training Corps (ROTC) scholarships and to qualify applicants for
officer commissioning through the ROTC and Officer Training School (OTS) pro-
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grams. The AFOQT also is used to qualify applicants for aircrew training as pilots,
combat system operators (formerly navigators), and air battle managers if they
pass other educational, fitness, medical, moral, and physical requirements. For op-
erational use, the subtests are combined into five overlapping composites (see Ta-
ble 1). The Verbal, Quantitative, and Academic Aptitude composites are used to
qualify applicants for ROTC and OTS officer commissioning programs. The Pilot
and Navigator—Technical composites are used to qualify applicants for aircrew
training. The AFOQT has been validated against officer training performance
(Roberts & Skinner, 1996); several aircrew training performance criteria including
passing—failing training, training grades, and class rank (Carretta, 2008; Carretta
& Ree, 2003; Olea & Ree, 1994); and several non-aviation officer jobs (Arth,
1986; Arth & Skinner, 1986; Finegold & Rogers, 1985; Hartke & Short, 1988).
From 1980 through 2005, the AFOQT (Forms O, P, and Q) consisted of the
same 16 subtests and each form was equated to the Form N score metric, which al-
lowed use of the Form N normative sample as the reference group. Planned imple-
mentation of Form R was suspended as AFOQT program managers initiated a
study to evaluate methods to reduce test administration time without adversely af-
fecting its effectiveness. The goal was to determine the minimum test length or
composition that maintained the current AFOQT psychometric characteristics.
Successful achievement of these psychometric objectives would reduce the ad-
ministration burden and examinee fatigue and possibly make time available for
new subtests with new content. Analyses indicated that five subtests could be re-
moved while maintaining cognitive—knowledge content areas, reliability, and pre-

TABLE 1
Composition of AFOQT Form S Aptitude Composites

Composite
Academic Navigator—

Subtest Verbal Quantitative Aptitude Pilot Technical
Verbal Analogies (VA) X X X
Arithmetic Reasoning (AR) X X X X
Word Knowledge (WK) X X
Math Knowledge (MK) X X X X
Instrument Comprehension (IC) X
Block Counting (BC) X
Table Reading (TR) X X
Aviation Information (AI) X
Rotated Blocks (RB)
General Science (GS) X

Hidden Figures (HF)

Note. Although RB and HF were retained in AFOQT Form S, they do not contribute to any of the
operational composite scores.
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dictive validity and avoiding an increase in adverse impact. Form R was revised
and implemented as Form S in 2005. The administration time had been reduced
from 4.5 to 3 hours with the removal of five subtests: Reading Comprehen-
sion, Data Interpretation, Mechanical Comprehension, Electrical Maze, and Scale
Reading.

Form S was implemented without an empirical evaluation of its factor structure
in a sample of applicants. Due to the substantial changes from earlier 16 subtest
forms, the purpose of this study was to examine the latent factor structure of the 11
subtest AFOQT Form S and compare it to that of previous forms. In addition, the
measurement equivalence of Form S was compared across gender and racial/eth-
nic groups. Measurement equivalence is increasingly important as the Air Force
becomes more diverse.

LATENT STRUCTURE OF EARLIER AFOQT FORMS
AND COMPARISON TO FORM S

Carretta and Ree (1996) analyzed data from a sample of 3,000 applicants for Air
Force commissions who had taken the 16-subtest AFOQT. Model 1 in their study
corresponded to the operational composites in use at that time (but excluded Aca-
demic Aptitude because it was linearly dependent on the Verbal and Quantitative
composites). This model was found to have a relatively poor fit to the data.
Carretta and Ree’s model 2 was based on Skinner and Ree’s (1987) exploratory
factor analysis, which found verbal, quantitative, spatial, aircrew, and perceptual
speed factors. This model, with factors constrained to be orthogonal, also had a
poor fit.

Carretta and Ree’s (1996) model 5 consisted of model 2 augmented by a gen-
eral factor, psychometric g, which enabled the model to account for correlations of
subtests loading on different first-order factors. This model provided an excellent
fit to the data, with a root mean square error of approximation (RMSEA) of .071, a
comparative fit index (CFI) of .957, and an average absolute standardized residual
of .027. Because a model with several orthogonal content factors (i.e., verbal,
quantitative, etc.) and a single general factor is a nested submodel of a first-order
factor model with correlated factors (Yung, Thissen, & McLeod, 1999), Skinner
and Ree’s (1987) five factors (model 2) would be expected to provide a good de-
scription of the AFOQT data if they were allowed to be oblique.

To compare the latent structure of the new Form S to earlier forms, two types of
correlated factor models were fitted to the data. First, we fit models corresponding
to the current AFOQT composites. This provides information about the degree to
which the composites are aligned with the latent factors underlying the test battery.
Second, we fit models based on Skinner and Ree’s (1987) substantive factors. Be-
cause Carretta and Ree (1996) found these factors (with a general factor) to pro-
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vide the best description of the 16-subtest AFOQT, we expected models based on
this framework to fit well.

We also fit bifactor models to the AFOQT subtests. Although Carretta and Ree
(1996) cited Schmid and Leiman (1957), their model 5 is more closely related to a
bifactor model than a Schmid-Leiman higher-order factor model. A bifactor model
allows observed variables to load directly on a single general factor and a specific
factor. For example, the Arithmetic Reasoning subtest would be expected to load
on the general factor, a mathematical reasoning specific factor, and an error factor.
Carretta and Ree’s model 5 has a bifactor structure with a few additional cross-
loadings (e.g., the Block Counting subtest loaded on spatial and perceptual speed
factors in addition to the general factor). A Schmid-Leiman higher-order model, in
contrast, is more restrictive than the bifactor model because it has additional pro-
portionality constraints on factor loadings (see Yung et al., 1999, p. 115).

Form S of the AFOQT presents a challenge to confirmatory factor analysis be-
cause two of its composites and two of its factors are expected to have nonzero
loadings for only two subtests. It is well known that statistical estimation of factor
loadings requires at least three nonzero loadings. In this situation, a trick is some-
times used: one factor loading is fixed at a nonzero constant (e.g., one), one factor
loading is estimated, and then the variance of that factor is treated as a free parame-
ter to be estimated. It turns out that this approach does not actually estimate the fac-
tor loadings; it only estimates the ratio of the second loading to the first.

To better understand the latent structure of Form S, we also analyzed multi-item
composites. We took this approach because the large number of items precluded
an item-level factor analysis. Thus, for each subtest, mutually exclusive and ex-
haustive sets of items were used to form multi-item composites (called item par-
cels by Dorans & Lawrence, 1987) and then the composites were factor analyzed.
For example, five composites were formed for the Verbal Analogies subtest and
four composites were used for the Instrument Comprehension subtest. Because
there were five parcels for the Arithmetic Reasoning and Math Knowledge
subtests, factor loadings for 10 observed variables could be estimated for the math-
ematical reasoning factor and, hence, factor loadings were statistically identified.
Moreover, the sampling distribution of parcels more closely approximates the dis-
tribution assumed by linear factor analysis models (i.e., multivariate normality)
than the sampling distribution of individual items.

MEASUREMENT EQUIVALENCE

The question addressed by measurement equivalence analyses is whether individ-
uals with equal standings on the underlying trait assessed by a test, but sampled
from different groups, have equal expected observed test scores (Drasgow, 1984).
For example, do individuals with equal quantitative ability, but sampled from dif-
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ferent groups, have equal expected scores on the Arithmetic Reasoning subtest?
To examine measurement equivalence, mean and covariance structure (MACS;
Sorbom, 1974) analysis was used. Here, the traditional factor analysis model

x =AE+9,
is augmented to
x=T+ A+ 9,

where x is the vector of observed variables, A is the matrix of factor loadings, & is
the vector of factor scores, and ¢ is a vector of errors. The difference between these
two equations is the vector T. Ordinarily, a correlation or covariance matrix is input
to factor analysis; to this, MACS adds a vector of means of the observed variables
and the vector 7 contains the intercepts of the linear regressions of the observed
variables x on the latent variables .

To study measurement invariance across groups, the MACS model is written as

x@ =1@® + A(g)é(g) + 0,

where the superscript g is used to indicate the group, g = 1, ..., G. Discussions of
measurement invariance in the context of factor analysis (e.g., Ployhart & Oswald,
2004; Vandenberg & Lance, 2000) frequently mention configural, metric, and sca-
lar invariance. Configural invariance is obtained when the pattern of fixed (at zero)
and estimated factor loadings is identical across groups. Here the factor loadings
may vary across groups, but each observed variable loads on the same factor(s) for
all groups.

Metric invariance is a more restrictive condition than configural invariance. It
imposes the constraint that the factor loading matrix, A(®), is identical across all the
groups. Provided that configural invariance holds, metric invariance can be exam-
ined by the change in chi square across configural and metric models: the metric
invariance model is a nested submodel of the configural invariance model. Rather
than a statistical test of the change in chi square, ordinarily researchers examine
the change in goodness of fit measures such as the RMSEA and the CFI.

Finally, scalar invariance is even more restrictive than metric invariance. Scalar
invariance can be examined provided that metric invariance holds. Here, the con-
straint of invariant thresholds t¢) is added to invariant factor loadings A®). Again,
goodness-of-fit statistics should be examined to assess the extent to which adding
this constraint degrades fit.

When scalar invariance is obtained, individuals with the same standings on the
latent traits &(¢) but sampled from different groups have the same expected ob-
served score. In the language of item response theory (IRT), there is no differential
item or test functioning. This is a very important property because it means that no
group is disadvantaged by the test: one’s underlying abilities & are transformed to
observed scores in the same way for all groups.
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It is important to note the distinction between measurement invariance and im-
pact. In a MACS model, measurement invariance holds when (&) and A® are in-
variant across groups. However, it is possible for groups to differ in their mean
level of ability. For example, one group may have higher or lower means on the la-
tent traits. We use the vector k@ to denote the factor means, k& = E(§®), for
group g. Thus, k(&) can vary across groups because, without random assignment of
people to groups, there is no reason to expect groups to be equally skilled in the
characteristics assessed by the subtests. Then invariant T(® and A(®) mean that ob-
served differences E(x(®)) faithfully reflect the underlying differences on the
factors.

In sum, we fit a variety of factor models to the AFOQT subtests and to
multi-item composites formed from the subtests to examine the latent structure of
this test battery. Then we examined measurement invariance across male—female
and White/African American/Hispanic/Other groups to assess whether there was
any evidence of differential item or subtest functioning.

METHOD

Sample

The data consisted of the responses of 12,511 applicants for USAF officer com-
missioning who were administered Form S1 of the AFOQT between 2005 and
2007. Mean age at time of testing was 22.4 years. The sample included 9,424 men
(75%) and 2,978 women, 66% were White, and more than 99% had completed at
least a high school degree. In addition to qualification on the AFOQT, officer com-
missioning and aircrew training applicants met various academic (e.g., college de-
gree), fitness (e.g., physical fitness test), moral (e.g., legal issues), medical (e.g.,
physical exam), and physical (e.g., weight) standards.

To assess equivalence across race and ethnicity, the sample was divided into four
groups: White, African American, Hispanic, and other. Because respondents were
asked to indicate all of the races that applied to them, individuals marking more than
one race were excluded from the analyses.2 This exclusion criterion resulted in sam-
ples of 8,296 Whites, 1,181 African Americans, 738 Hispanics, and 728 others.

Measures

AFOQT Form S consists of 11 cognitive subtests that are combined into five com-
posites. Personnel decisions including qualification for officer commissioning
programs and aircrew training are made, in part, on the basis of the composites.

2At the suggestion of a reviewer, we reanalyzed the data with individuals marking more than one
race/ethnicity as a fifth group. The results were virtually identical to those reported in Table 5.
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Brief descriptions of the AFOQT subtests grouped by content are presented
below.

Verbal subtests. Verbal Analogies (VA) provides a measure of the ability
to reason and determine relationships between words. Word Knowledge (WK) as-
sesses verbal comprehension involving the ability to understand written language
through the use of synonyms.

Quantitative subtests. Arithmetic Reasoning (AR) measures the ability to
understand arithmetic relations expressed as word problems. Math Knowledge
(MK) provides a measure of the ability to use mathematical terms, formulas, and
relations.

Spatial subtests. Block Counting (BC) measures spatial ability through the
analysis of three-dimensional representations of a set of blocks. Rotated Blocks
(RB) assesses the ability to visualize and mentally manipulate objects. Hidden Fig-
ures (HF) measures the ability to see a simple figure embedded in a complex
drawing.

Aircrew subtests. Instrument Comprehension (IC) assesses the ability to
determine the attitude of an aircraft from illustrations of flight instruments. Avia-
tion Information (AI) measures knowledge of general aviation terms, concepts,
and principles. General Science (GS) provides a measure of knowledge and under-
standing of scientific, terms, concepts, instruments, and principles.

Perceptual speed subtest. Table Reading (TR) assesses the ability to quickly
and accurately extract information from tables.

Procedures

Our starting model was based on a confirmatory model of the previous 16-subtest
version of the AFOQT (Carretta & Ree, 1996). This model consisted of a factor
representing general cognitive ability (g) and five specific cognitive factors of ver-
bal, quantitative, spatial, aircrew knowledge, and perceptual speed.

Analyses

Several goodness-of-fit statistics were considered. Our choice of fit indices was
guided in part by Hu and Bentler (1998, 1999), who recommend using both an in-
cremental fit index and an absolute fit index to examine model fit. We chose the in-
cremental fit indices of the goodness-of-fit index (GFI; Tanaka & Huba, 1985), the
adjusted goodness-of-fit index (AGFI; Joreskog & Sorbom, 1989), the compara-
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tive fit index (CFI; Bentler, 1990, 1995), and the nonnormed fit index (NNFI;
Bentler & Bonnett, 1980). The absolute fit indices we examined were the standard-
ized root mean square residual (SRMR; Hu & Bentler, 1999) and the root mean
square error of approximation (RMSEA; Browne & Cudeck, 1993). Hu and
Bentler (1999) recommended the following cutoff values as indicators of good
model fit: NNFI and CFI of .95 or higher, SRMR of .08 or less, and RMSEA of .06
or less. In addition, previous research has suggested that a GFI of .95 (Marsh &
Grayson, 1995) and an AGFI of .90 (Schermelleh-Engel, Moosbrugger, & Muller,
2003) reflect acceptable model fit.

After estimating the CFA, eigenvalue and eigenvector analyses were conducted
to compare the Form S Pilot and Navigator-Technical composites with the same-
named composites from a previous AFOQT form with 16 subtests. AFOQT Forms
O, P, and Q had the same 16 subtests and were equated to Form N. The goal was to
assess the first factor saturation of each composite and to identify the relative con-
tribution of constructs to the composites. Form O data were used because previous
CFAs of the 16 subtest AFOQT were accomplished using Form O data (Carretta &
Ree, 1996).

RESULTS

Table 2 shows the correlation matrix for the 11 subtests on Form S1 (the correla-
tion matrix for the item parcel matrix is available from the first author). All corre-
lations in Table 2 are positive. The correlations range from .182 (WK and TR) to
.706 (AR and MK) with a mean of .413. These values are similar to those reported
for the 16-subtest version where the correlations ranged from .17 (WK and EM) to
.77 (RC and WK) with a mean of .436 (Carretta & Ree, 1996). An eigenvalue anal-

TABLE 2
AFOQT Form S Subtest Correlation Matrix

Subtest VA AR WK MK ICc BC TR Al GS RB  HF

VA 1.000

AR 0.514  1.000

WK 0.691 0.446 1.000

MK 0.422 0.706 0.358 1.000

IC 0376 0.456 0.310 0.400 1.000

BC 0.350 0484 0.271 0.410 0.508 1.000

TR 0.249 0.389 0.182 0309 0.332 0485 1.000

Al 0371 0.349 0363 0.282 0.612 0.357 0.250 1.000

GS 0.561 0.530 0.548 0.566 0471 0361 0.210 0.485 1.000

RB 0.353 0478 0.284 0423 0563 0.507 0.306 0.418 0.443 1.000

HF 0.348 0422 0270 0396 0485 0492 0335 0333 0377 0.543 1.000




AFOQT FACTOR STRUCTURE 77

ysis of the adjusted correlation matrix (principal axis factoring) showed general
cognitive ability, g, accounted for 47% of the variance. This was estimated from
the first unrotated principal factor as discussed by Ree and Earles (1991).

Confirmatory Factor Analysis

The fit statistics for the models we examined are shown in Table 3. As shown, the
single-factor model fit the data poorly: analysis of the 11 subtests produced an
RMSEA of .17 and analysis of multi-item composites (i.e., parcels) yielded an
RMSEA of .15. Both of these RMSEAs are well above the range that would be con-
sidered a good fit (Hu & Bentler, 1999). Although the four-factor model correspond-
ing to the operational composites fit reasonably well, the bifactor solution with five
specific factors fit better. Specifically, the model with five correlated content factors
(verbal, quantitative, spatial, aircrew, and perceptual speed) had an RMSEA of
.059, an NNFI of .97, a CFI of .97, and an SRMR of .044 when analyzing the par-
cels. Interestingly, the GFI and AGFI indices were noticeably lower for all of the
models involving parcels, even when all of the other fit statistics indicated an ex-
cellent fit. Our experience is that GFI and AGFI are sensitive to model complexity:
They tend to be lower in models with more manifest variables. Thus, we believe
that the observed values of GFI and AGFI indicate satisfactory fits for the five-fac-
tor model with correlated factors and the bifactor model with five specific factors.
In sum, similar to Carretta and Ree’s (1996) model 5, our results indicate that the
data are best represented by a general intelligence factor and five content-specific
factors (verbal, quantitative, spatial, aircrew, and perceptual speed).

TABLE 3
Fit Statistics for Confirmatory Factor Analysis Models

Model RMSEA  NNFI ~ CFI  SRMR  GFI  AGFI
Single-factor model—parcels 0.150 0.89 0.89 0.10 0.49 0.45
Single-factor model—subtests 0.170 0.85 0.88 0.082 0.80 0.71
Four-factor (composites) model—parcels 0.075 0.96 0.96 0.062  0.79 0.77
Four-factor model—parcels (phi = id) 0.086 0.94 0.94 0.24 0.74 0.71
Bifactor with composite-specific 0.065 0.97 0.97 0.05 0.84 0.82

factors—parcels
Five-factor (V, M, Sp, AC, PS) model— 0.078 0.97 0.98 0.033 0.97 0.93

subtests
Five-factor (V, M, Sp, AC, PS)—parcels 0.059 0.97 0.97 0.044 0.86 0.84
Five-factor model—parcels (phi = id) 0.072 0.96 0.96 0.22 0.80 0.79
Bifactor with five content factors— 0.053 0.98 0.98 0.057 0.88 0.87

parcels

Note. Phi = id indicates that the factor correlation matrix ® was restricted to an identity matrix;
i.e., factors were orthogonal.
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The parameter estimates of the bifactor model are also informative. Although
all indicators had substantial loadings on both the general and their specific fac-
tors, the majority had their strongest loading on a specific dimension. Notable ex-
ceptions included the Block Counting, Rotated Blocks, and Hidden Figures sub-
tests, which had their highest loadings on the general factor. This suggests that a
large portion of the variance in the general factor is accounted for by spatial ability.
Nonetheless, most indicators still had substantial loadings on the general factor
with estimates ranging from .28 (WK2) to .70 (BC3).

We analyzed the data with bifactor models where each observed variable
loaded on the general factor and one content factor and, to enhance the compara-
bility of our results to those of Carretta and Ree (1996), we obtained solutions
where the Block Counting subtest was allowed to load on the general, spatial, and
perceptual speed factors and the General Science subtest was allowed to load on
the general, verbal, and aircrew factors. Results were very similar for these two
types of models and, consequently, the last model in Table 3 presents fit statistics
for the analyses parallel to Carretta and Ree.

When we allowed cross-loadings, the Block Counting subtest had negative
loadings on the spatial dimension and positive loadings on the perceptual speed di-
mension. The negative loadings may be a result of the magnitude of this subtest’s
relationship with the general factor. Factor loadings for this model are shown in
Table 4.

Measurement Invariance

Carretta and Ree (1995) investigated the invariance of factor loadings for an ear-
lier form of the 16 subtest AFOQT using a sample of 269,968 applicants for U.S.
Air Force commissions that were tested between 1981 and 1993. They compared
males (N = 219,887) and females (N = 50,081) and also compared Black (N =
32,798), Hispanic (N = 12,647), Asian American (N = 9,460), and Native Ameri-
can (N =2,551) groups to Whites (N = 212,238). Given these very large sample
sizes, it is not surprising that they found statistically significant differences in fac-
tor loadings. More importantly, however, they found that the differences in factor
loadings were very small in size (generally less than .05), indicating that the tests
functioned equivalently across groups.

Following Carretta and Ree (1995), we examined the measurement equiva-
lence of the bifactor model with five content factors because it fit the best in the
total sample. We also tested the equivalence of the four-factor model because of its
operational use by the Air Force. Table 5 shows the results of the MACS analyses
using a factor pattern matrix based on the current operational composites with cor-
related factors and Table 6 gives the results for the bifactor structure with a general
factor and the five content factors described above. Similar to Carretta and Ree
(1996), the Block Counting and General Science subtests were allowed to cross-



TABLE 4
Completely Standardized Solution for the Bifactor Model With Five Specific Factors

Parcel General Verbal Quantitative Spatial Aircrew Perceptual Speed
VA1 .39 46 — — — —
VA2 31 48 — — — —
VA3 .33 .56 — — — —
VA 4 .33 31 — — — —
VAS .39 53 — — — —
AR 1 52 — 46 — — —
AR 2 52 — 49 — — —
AR 3 .50 — 51 — — —
AR 4 49 — 52 — — —
AR5 A7 — 46 — — —
WK 1 .29 .59 — — — —
WK 2 28 .61 — — — —
WK 3 .30 .67 — — — —
WK 4 31 .70 — — — —
WK 5 .33 .70 — — — —
MK 1 .39 — .60 — — —
MK 2 45 — .57 — — —
MK 3 40 — 52 — — —
MK 4 45 — 57 — — —
MK 5 A48 — .56 — — —
IC1 .59 — — — .58 —
IC2 .56 — — — 57 —
IC3 .62 — — — .58 —
IC4 .58 — — — .53 —
BC1 .69 — — -33 — .06
BC2 .66 — — -.28 — .09
BC3 .70 — — =31 — 1
BC4 .67 — — -29 — 12
TR 1 .37 — — — — .67
TR 2 .39 — — — — .65
TR 3 40 — — — — 72
TR 4 .38 — — — — .69
TR 5 .39 — — — — .66
TR 6 .34 — — — — .65
TR 7 .36 — — — — .70
TR 8 .36 — — — — 71
Al'l 42 — — — A7 —
Al 2 34 — — — 49 —
Al3 43 — — — A7 —
Al4 34 — — — A48 —
GS 1 41 32 — — .08 —
GS2 .33 .36 — — 13 —
GS3 45 .35 — — .19 —
GS 4 41 .30 — — 20 —
RB 1 .65 — — .09 — —
RB2 .61 — — .08 — —
RB3 57 — — .08 — —
HF 1 .66 — — 41 — —
HF 2 .68 — — 40 — —

HF 3 .67 — — 37 — —
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TABLE 5
Fit Statistics for the MACS Analyses of the Four-Factor Structure
SRMR
Model (Sex) RMSEA  NNFI  CFI Male Female
Configural invariance 0.074 0.95 096  0.068 0.056
Metric invariance 0.074 0.95 0.96  0.067 0.071
Scalar invariance 0.075 0.95 0.95 0.068 0.086
SRMR

African
Model (Race) RMSEA NNFI CFI White American Hispanic Other
Configural invariance 0.075 0.95 095  0.068 0.061 0.069 0.070
Metric invariance 0.073 0.95 095  0.068 0.076 0.08 0.077
Scalar invariance 0.074 0.95 0.95  0.066 0.086 0.086 0.081

TABLE 6
Fit Statistics for the MACS Analyses of the Bifactor Structure
SRMR
Model (Sex) RMSEA NNFI CFI Male Female
Configural invariance 0.052 0.98 0.98 0.061 0.053
Metric invariance 0.051 0.98 0.98 0.062 0.066
Scalar invariance 0.053 0.97 0.98 0.063 0.078
SRMR
African

Model (Race) RMSEA NNFI CFI White  American Hispanic Other
Configural invariance 0.052 0.97 0.97 0.059 0.054 0.062 0.068
Metric invariance 0.051 0.97 0.97 0.060 0.063 0.074 0.098
Scalar invariance 0.053 0.97 0.97 0.060 0.075 0.090 0.120

load on additional specific factors in the bifactor model. Both Tables 5 and 6 show
only negligible changes in the fit indices when the constrained models are com-
pared to the baseline (i.e., configural) solution.

In the analysis of measurement invariance for race, RMSEA changed very little
from the configural invariance model to the scalar invariance model: It went from
.052 to .053 as shown in Table 6 for the model with a general factor and five con-
tent factors. The NNFI and CFI measures also showed no change. For the individ-
ual groups, moderate changes in SRMRs were observed for African Americans,
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Hispanics, and others, probably because these samples were much smaller than the
White sample.

A similar pattern of results is apparent for the male—female comparison. Table 6
shows that the RMSEA had a trivial increase (.052 to .053), and the NNFI and CFI
did not change at all. The male SRMR changed little, and the female SRMR in-
creased moderately, probably because this sample was much smaller than the male
sample. In sum, the results suggest that there is little or no differential item and test
functioning across minority and majority groups.

Comparison of Form S Pilot and Navigator-Technical
Composites With Previous Forms

Eigenvalue and eigenvector analyses of the AFOQT Form S Pilot composite
showed only one eigenvalue over 1.0, accounting for 53% of the variance. A simi-
lar result was found for the Navigator—Technical composite with only one eigen-
value over 1.0 accounting for 55% of the variance.

The same analyses for the previous AFOQT Form O showed that the first
eigenvalue for the Pilot composite accounted for 50% of the variance in the matrix
and a second eigenvalue over 1.0 accounted for 13%. The Form O Naviga-
tor—Technical composite had one eigenvalue over 1.0 that accounted for 52% of
the variance.

DISCUSSION

In this study, a variety of confirmatory factor analysis models were fit to data from
the recently revised AFOQT. The results and conclusions are strikingly similar to
those obtained by Carretta and Ree (1996): an important general cognitive ability
factor underlies performance on all of the subtests and verbal, quantitative, reason-
ing, spatial, aircrew, and perceptual speed factors underlie groups of subtests.
Moreover, excellent fits were obtained, so we can have confidence in these find-
ings.

Mean and covariance structure analysis was used to investigate measurement
invariance for the AFOQT. Very positive results were obtained in that the overall
fit statistics for the most restrictive models (i.e., models specifying scalar invari-
ance) were nearly the same size as the fit statistics for the least restrictive models
(i.e., models specifying configural invariance). This indicates that AFOQT scores
can be used to make comparisons across candidates irrespective of their gender or
race.

Operationally, personnel measurement, selection, and classification decisions
involving the AFOQT are based on composite scores. The Pilot and Naviga-
tor—Technical composites are part of the system for aircrew training qualification
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including pilots, combat system operators, and air battle managers. Therefore, the
nature and performance of these composites is very important. Comparison of the
prior Forms O, P, and Q and current Form S composite scores and underlying
structure is informative.

On the first eigenvector for Form S, Arithmetic Reasoning had the greatest
loading (largest value eigenvector) at .502 and Table Reading showed the smallest
at .362. The results for the first factor from the Form O Pilot composite showed
high eigenvector values for the perceptual speed, spatial, and aviation job knowl-
edge subtests of Scale Reading (.795), Block Counting (.785), Mechanical Com-
prehension (.750), and Instrument Comprehension (.742). The magnitudes of the
Form S loadings are much smaller than the loadings for Form O. Further, Form S
has subtests that are more indicative of g than Form O. The subtests on the Form O
Pilot composite all share the characteristic that the male means are noticeably
greater than the female means. This is not the case in Form S. The newly imple-
mented Form S should be expected to have smaller male—female differences than
Form O.

For the Form S Navigator—Technical composite, the first factor accounted for
55% of the variance, with Arithmetic Reasoning again showing the greatest load-
ing at .512 and Table Reading the lowest at .304. High-level findings for Form O
were similar. The first factor accounted for 52% of the variance. The highest load-
ing on the first factor was Scale Reading (.815) followed by the three mathematics
tests: Arithmetic Reasoning (.807), Data Interpretation (.766), and Math Knowl-
edge (.788). Electrical Maze (.612) showed the lowest value. Mechanical Compre-
hension, Data Interpretation, Scale Reading, and Electrical Maze were all removed
from Form S. Further, Rotated Blocks and Hidden Figures were removed from the
Navigator—Technical composite. The Form S Navigator—Technical composite is
composed of four subtests that are good indicators of g, Verbal Analogies, Arith-
metic Reasoning, Math Knowledge, and Block Counting. It also includes a marker
for perceptual speed in Table Reading, the only speeded subtest on the AFOQT,
and General Science, which has loadings on verbal and aircrew factors. On both
Form S and Form O there was not a second eigenvalue equal to or above 1 for the
Navigator—Technical composite. Given the change in the content of Forms S a dif-
ference in validity might be expected. However, the presence of the highly
g-loaded subtests suggests otherwise.

In a series of papers, Ree and colleagues (Olea & Ree, 1994; Ree, Carretta, &
Teachout, 1995; Ree & Earles, 1991; Ree, Earles, & Teachout, 1994) showed that
psychometric g was largely responsible for predicting performance in training and
on the job for a wide variety of military samples. It appears that the current form of
the AFOQT taps psychometric g and would be expected to predict performance in
ways similar to previous forms.

The finding that the AFOQT taps psychometric g is consistent with Carroll’s
(1993) three-stratum theory of intelligence. Thus, the latent structure underlying
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the AFOQT appears similar to that found in many non-military contexts: g sits at
the apex and explains the most variance with a number of second stratum abilities
(e.g., verbal, quantitative, etc.) that explain lesser amounts of variance. We expect
that this structure will describe other military selection batteries and, similar to
Ree and colleagues’ findings, g will provide the dominant source of predictive
utility.

Our results also suggested that gender and racial/ethnic differences will not af-
fect the latent structure of military test batteries or their measurement equivalence,
at least for countries as diverse as the United States. Although there is considerable
diversity within the United States, it should be noted that English is the single,
main language, and therefore issues of translation and test adaptation (Hambleton,
Merenda, & Spielberger, 2005) do not arise. Particularly for measurement equiva-
lence, research is needed to ascertain whether our findings generalize to multilin-
gual countries. For countries speaking a single language, our findings suggest that
measurement equivalence is likely to hold.
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