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The authors reviewed recent quantitative genetic research on learning disabilities that led to the
conclusion that genetic diagnoses differ from traditional diagnoses in that the effects of relevant genes
are largely general rather than specific. This research suggests that most genes associated with common
learning disabilities—language impairment, reading disability, and mathematics disability—are gener-
alists in 3 ways. First, genes that affect common learning disabilities are largely the same genes
responsible for normal variation in learning abilities. Second, genes that affect any aspect of a learning
disability affect other aspects of the disability. Third, genes that affect one learning disability are also
likely to affect other learning disabilities. These quantitative genetic findings have far-reaching impli-
cations for molecular genetics and neuroscience as well as psychology.
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Quantitative genetic research in psychology has moved beyond
merely demonstrating the widespread importance of genetic influ-
ence to ask more interesting questions, including questions about
genetic overlap between traits. Although learning disabilities—
such as language, reading, and mathematics disabilities—are rel-
ative newcomers to quantitative genetic research, this research has
already begun to yield interesting results concerning genetic links
within and between learning disabilities. Three types of research
are relevant: genetic links between learning disabilities and learn-
ing abilities, genetic links within learning disabilities (genetic
homogeneity), and genetic links between learning disabilities (ge-
netic comorbidity). The purpose of this article is to review research
on these three issues, which have not previously been reviewed,
and to consider their implications. We use the term genetic links to
refer to genetic effects that are in common between disabilities or
dimensions, including specific quantitative genetic statistics such
as genetic correlation, bivariate heritability, and group heritabil-
ity—statistics explained later.

A few preliminary points should be made. First, our focus on
genetic links within and between learning disabilities is not meant
to imply that genes are only generalists. Indeed, as we emphasize
in several places, this same research provides some of the best
available evidence for the importance of genes specific to disabil-
ities. Second, our focus on genetic research is not meant to deni-
grate the important contribution of environmental factors or the
interplay between nature and nurture in the development of learn-
ing disabilities. We highlight genetic results because recent re-
search suggests some surprising findings concerning genetic links
within and between learning disabilities. Third, our review focuses

on common disorders whose origins involve multiple genes and
multiple environmental influences—not rare single-gene disorders
such as phenylketonuria or chromosomal disorders such as
Down’s syndrome. In order to focus on these genetic findings, our
review assumes some background in quantitative genetics, such as
familiarity with the twin method; more background information is
available elsewhere (Plomin, DeFries, McClearn, & McGuffin,
2001).

Finally, we acknowledge that strong views are held on the use
of appropriate labels for children’s low performance, with the pros
and cons debated for such labels as challenge, delay, difficulty,
disorder, and impairment. We use the word disability with its
semantic link to the word ability because research reviewed in the
following section suggests that common learning disabilities are
the low end of the normal distribution of learning abilities.

Genetic Links Between Learning Disabilities and Abilities

A crucial issue for understanding learning disabilities is the
extent to which the genes that affect learning disabilities also affect
normal variation in learning abilities. To the extent that the same
genes affect learning disabilities and abilities, this implies that
learning disabilities are the quantitative extreme of the same ge-
netic influences that contribute to the normal range of variation in
learning abilities. Stated more provocatively, if this were the case,
there are no etiologically distinct disabilities; what we call disabil-
ity is just the low end of the normal distribution of ability.

A method called DeFries–Fulker (DF) extremes analysis (De-
Fries & Fulker, 1988) can be used to assess genetic links between
learning disabilities and abilities. It is necessary to describe this
method in some detail because the conclusion that there are genetic
links between learning disabilities and abilities depends on it,
especially because we extend the usual interpretation of DF ex-
tremes analysis. Traditionally, twin data on disabilities are pre-
sented as twin concordances in which the phenotype is treated as
an affected-versus-unaffected dichotomy. If concordances for
identical twins (monozygotic; MZ) are greater than concordances
for fraternal twins (dizygotic; DZ), genetic influence is implicated
in relation to the diagnostic dichotomy. In contrast, twin data on
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normal variation in abilities are presented as twin correlations, and
greater MZ than DZ correlations suggest genetic influence on
individual differences in ability. Heritability, a genetic effect size
indicator, can be derived from twin concordances for disability and
from twin correlations for ability. As shown below, such herita-
bility estimates are substantial both for learning disabilities and
abilities (Plomin, 2001a, 2003a). Although it might seem that
finding similar heritability estimates for disabilities (as assessed by
twin concordances) and abilities (as assessed by twin correlations)
indicates genetic links between disabilities and abilities, this is not
necessarily the case because completely different genes could be
responsible for the heritabilities of disabilities and abilities even if
the heritabilities are the same.

DF extremes analysis assesses genetic links between disability
and ability by bringing together dichotomous diagnoses of disabil-
ity and quantitative traits of ability. (The three types of approaches
are contrasted in Figure 1.) Rather than assessing twin similarity in
terms of individual differences on a quantitative trait of ability
(Figure 1a) or in terms of concordance for a diagnostic cutoff
(Figure 1b), DF extremes analysis (Figure 1c) assesses twin sim-
ilarity as the extent to which the mean standardized quantitative
trait score of cotwins is as low as the mean standardized score of
selected extreme or diagnosed probands. This measure of twin
similarity is called a group twin correlation (or transformed cotwin
mean) in DF extremes analysis because it focuses on the mean
quantitative trait score of cotwins rather than the individual dif-
ferences. Genetic influence is implied if group twin correlations

are greater for MZ than for DZ twins. Doubling the difference
between MZ and DZ group twin correlations estimates the genetic
contribution to the average phenotypic difference between the
probands and the population. The ratio between this genetic esti-
mate and the phenotypic difference between the probands and the
population is called group heritability. It should be noted that
group heritability does not refer to individual differences among
the probands—the question is not why one proband is slightly
more disabled than another, but rather why the probands as a group
are so much more disabled than the rest of the population.

Although DF extremes group heritability can be estimated by
doubling the difference in MZ and DZ group twin correlations
(Plomin, 1991), DF extremes analysis is more properly conducted
using a regression model (DeFries & Fulker, 1988). The DF
extremes model fits standardized scores for MZ and DZ twins to
the regression equation, C � B1P � B2R � A, where C is the
predicted score for the cotwin, P is the proband score, R is the
coefficient of genetic relatedness (1.0 for MZ twins and .5 for DZ
twins), and A is the regression constant. B1 is the partial regression
of the cotwin score on the proband, an index of average MZ and
DZ twin resemblance independent of B2. The focus of DF ex-
tremes analysis is on B2. B2 is the partial regression of the cotwin
score on R independent of B1. It is equivalent to twice the differ-
ence between the means for MZ and DZ cotwins adjusted for
differences between MZ and DZ probands. In other words, B2 is
the genetic contribution to the phenotypic mean difference be-
tween the probands and the population. Group heritability is esti-

Figure 1. (a) Genetic approaches to disabilities and abilities. (b) Focusing on ability, twin correlations indicate
twin similarity for individual differences in the normal range of variation. Focusing on disability, twin
concordances (or polychoric correlations based on the liability-threshold model) describe twin similarity based
on a dichotomy of affected versus not affected. (c) DF extremes analysis brings together disability and ability
with the twin group correlation, an index of the similarity of the mean quantitative trait score of cotwins to the
probands. DZ � dizygotic; MZ � monozygotic.
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mated by dividing B2 by the difference between the means for
probands and the population.

Finding group heritability implies that disability and ability are
both heritable and, most important in the present context, that there
are genetic links between the disability and normal variation in the
ability. That is, group heritability itself, not the comparison be-
tween group heritability and the other estimates of heritability,
indicates genetic links between disability and ability. This is not
the usual interpretation of group heritability estimated from DF
extremes analysis. Group heritability is usually interpreted as the
heritability of the extreme score, whereas we are suggesting that
group heritability can be interpreted as a bivariate analysis of the
relationship between an extreme score and a quantitative trait. If a
measure of extremes (or a diagnosis) were not linked genetically to
a quantitative trait, group heritability would be zero. For example,
using height as an example, if we selected short people as probands
and assessed their cotwins on a quantitative measure of height, we
would expect that MZ cotwins would be much shorter on average
than DZ cotwins, and thus we ought to find substantial group
heritability. But suppose someone tricked us and put in an unre-
lated quantitative trait measure; group heritability would then be
zero. In this sense, DF extremes analysis, even in the supposedly
univariate case, is actually a bivariate analysis between one mea-
sure (an extreme score or diagnosis) and another measure (a
quantitative trait score). Even when ostensibly the same measure is
used to select extreme probands and to assess quantitative trait
scores in cotwins (e.g., height), DF extremes analysis is best
considered as a bivariate analysis because the genetic processes
that operate at the extreme can differ from those that affect the rest
of the distribution. If the genetic processes that operate at the
extreme are completely different from those that operate for the
rest of the distribution, group heritability will be zero. For exam-
ple, it is possible that a severe form of learning disability is due to
a single-gene disorder that contributes little to normal variation in
learning ability. However, as discussed later, most researchers now
believe that common disorders are caused by common genetic
variants—the common disease/common variant hypothesis (Col-
lins, Euyer, & Chakravarti, 1997)—rather than by a concatenation
of rare single-gene disorders. To the extent that the same genes
contribute to learning disability and normal variation in learning
ability, group heritability can be observed but the magnitude of
group heritability depends on the individual heritability for normal
variation and the heritability of disability gleaned from concor-
dances for disability.

One more digression is necessary in order to begin to address
the strength of the genetic links between learning disabilities and
abilities. We have just argued that if group heritability is substan-
tial, disabilities and abilities must be linked genetically. But how
strong are the genetic links? For example, group heritability cannot
be substantial if the heritability of disability and ability are both
low. Because DF extremes analysis brings together dichotomous
diagnoses of disability and quantitative traits of ability, we suggest
that if disability and ability are strongly linked genetically, group
heritability (as estimated by DF extremes analysis) should be
intermediate to the heritability of the disability diagnosis (as esti-
mated from twin concordances) and the heritability of the ability
dimension (as estimated from twin correlations). If the genetic link
between a disability and ability is weak, DF extremes group
heritability could be negligible even though the disability and the
ability are highly heritable. It is possible to estimate more precisely

the strength of the genetic link between disability and normal
variation using multivariate genetic techniques as described in the
next section. However, we will not describe these methods because
they are under development and no data of this type have as yet
been reported.

Thus, DF extremes analysis can be used to assess genetic links
between disability and ability, although it is not usually viewed in
this way. DF extremes analysis also appears similar to the liability-
threshold model, which is often used to analyze dichotomous data
such as twin concordances (Falconer, 1965; Plomin, 1991; Smith,
1974). However, there is a critical difference: The liability-
threshold model assumes a continuous dimension even though it is
based on dichotomous data (i.e., disabled or not). The liability-
threshold analysis converts dichotomous diagnostic data to poly-
choric correlations (Smith, 1974) in order to analyze a hypothetical
construct of a threshold with an underlying continuous liability. In
contrast, DF extremes analysis assesses rather than assumes a
continuum. If all of the assumptions of the liability-threshold
model are correct for a particular disorder, it will yield results
similar to DF extremes analysis to the extent that the quantitative
dimension assessed is linked genetically to the qualitative disorder
(Plomin, 1991). In the following review of genetic research on
learning disabilities and abilities, we tested this assumption by
comparing DF extremes group heritability with liability heritabil-
ities calculated from twin concordance data.

Tables 1–3 summarize results from twin studies for language,
reading, and mathematics disability and ability, respectively. Be-
cause interpretation of the strength of the genetic links between
disability and ability requires comparisons between the three types
of heritability, each table is divided into three panels: (a) DF
extremes analysis, which combines analysis of a dichotomous
diagnosis of disability and a continuous dimension of ability to
yield group heritability estimates; (b) analysis of dichotomous
diagnoses of disability, which yields liability heritability estimates
based on polychoric twin correlations derived from twin concor-
dances; and (c) analysis of continuous dimensions of ability, which
yields individual differences heritability estimates based on twin
correlations. We have reviewed 16 studies that provide enough
information to extract all three estimates. Many other studies have
been reported, although most involved small samples (e.g., studies
of language disability and ability; see Stromswold, 2001). Each
panel is divided into results from previous studies and results from
our new study, called the Twins Early Development Study (TEDS;
Plomin et al., 2001; Trouton, Spinath, & Plomin, 2002) that
focuses on the issue of the links between the abnormal and normal.
From previous studies, it is difficult to compare the three types of
heritability estimates because different samples and different mea-
sures were used to investigate learning disabilities and learning
abilities. The best way to compare heritabilities for disabilities and
abilities is to study an unselected community sample that is large
enough to make it possible to select children with disabilities
within the same sample and with the same measures used to study
abilities. TEDS is the first learning disabilities study of this type.
The sampling frame for TEDS was about 7,500 pairs of twins
born in the United Kingdom whose parents were contacted from
birth records and who participated in a study of cognitive and
language development when the twins were 2, 3, 4, and 7 years of
age.

In the following review of twin studies of disability and ability,
we have not discussed sex differences because neither quantitative
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Table 1
Language Disability and Ability: Twin Resemblance and Heritability Estimates for DeFries–Fulker (DF) Extremes Analyses,
Dichotomous Diagnoses of Disability, and Continuous Ability Measures

Reference Age (years) Measure
Cutoff

(%)

Twin resemblancea Heritability
estimateb

(95% CI)MZ N/pairs DZ N/pairs

DF extremes analysis

Previous studies
Bishop et al. (1999)c 7–13 Auditory repetition 16 .61 27 .56 21 0.11 (0.00, 0.73)

Nonword repetition 16 .74 25 .15 22 1.17 (0.55, 1.79)
Tomblin & Buckwalter (1998)d 4–16 Composite of language tests 15 .98 43 .76 24 0.45 (0.24, 0.66)

TEDS
Spinath et al. (2004)e Aggregate (2, 3, 4) MCDI composite 5 .96 44 .77 37 0.39 (0.15, 0.63)
Viding et al. (2004)f 4 Composite of 8 language tests 15 .86 160 .68 131 0.37 (0.15, 0.59)

Dichotomous disability analysis

Previous studies
Bishop et al. (1999)c 7–13 Auditory repetition 16 .50 (.78) 27 .44 (.72) 21 0.12

Nonword repetition 16 .61 (.87) 25 .17 (.28) 22 1.18
Tomblin & Buckwalter (1998)d 4–16 Composite of language tests 15 .96 (1.00) 43 .69 (.87) 24 0.26

TEDS
Spinath et al. (2004)e Aggregate (2, 3, 4) MCDI composite 5 .86 (.99) 44 .52 (.82) 37 0.34
Viding et al. (2004)f 4.5 years Composite of 8 language tests 15 .75 (.92) 160 .54 (.73) 131 0.38

Continuous ability analysis

Previous studies
Bishop et al. (1999)c 7–13 Auditory repetition .60 51 .49 49 0.22 (—)

Nonword repetition 16 .74 25 .15 22 1.17 (0.55–1.79)
Tomblin & Buckwalter (1998)d 4–16 Composite of language tests — 43 — 24 0.48 (0.06, 0.90)

TEDS
Spinath et al. (2004)e Aggregate (2, 3, 4) MCDI composite .96 656 .83 648 0.22 (0.19, 0.27)
Colledge et al. (2002)g 4.5 years Composite of 9 language tests .66 101 .58 97 0.16 (0.14, 0.64)

Note. MZ � monozygotic; DZ � dizygotic; CI � confidence interval; TEDS � Twins Early Development Study; MCDI � MacArthur Communicative
Development Inventory.
a Twin resemblance refers to twin group correlations for DF extremes analysis, twin probandwise concordances (tetrachoric correlations in parentheses) for
dichotomous disability analysis, and twin intraclass correlations for continuous ability analysis. The twin group correlation is the ratio of the mean cotwin score
on the quantitative ability measure to the mean proband score. For example, expressed as standard scores, if the mean cotwin score is �1.0 (i.e., one standard
deviation below the mean) and the mean proband score is �2.0, the twin group correlation is 0.5. For the dichotomous disability analysis, we report twin
probandwise concordance (the number of probands in concordant pairs divided by the total number of probands), which is more appropriate than pairwise
concordance (number of concordant pairs divided by the total number of pairs) when both members of the twin pair can be ascertained. For example, in a study
in which 30 of 100 pairs of twins are concordant, pairwise concordance is 30% (30/100), whereas probandwise concordance is 46% (60 probands in concordant
pairs divided by 130, the total number of probands). Twin probandwise concordance indicates the risk that a cotwin of a proband is affected. Tetrachoric
correlations were calculated using a model-fitting program (Mx). Contingency tables representing concordant and discordant affected and unaffected pairs were
derived from published twin probandwise concordances (or number of probands) and total numbers of pairs with at least one affected member. The numbers of
pairs in the two discordant cells were obtained by equally dividing the total discordant number between them. The number of pairs in the unaffected concordant
cell was estimated from the population prevalence of the disability as defined in each population-based study, usually a cutoff percentage. The threshold was
obtained from the approximate population prevalence of the disability as reported in the literature. For the DF extremes analysis and the dichotomous disability
analysis, N/pairs refers to the number of pairs with at least one proband. For continuous ability analysis, the twin intraclass correlation represents the ratio of the
variance between pairs to the total variance (Shrout & Fleiss, 1979). The twin correlation is intraclass rather than the usual Pearson interclass correlation because
members of a twin pair do not represent two separate classes (variables). The intraclass correlation is equivalent to the average interclass correlation for all possible
pairings of twins. It can be estimated accurately by entering twins in a double-entry format in which Twin B follows Twin A for one class and Twin A follows
Twin B for the other class, which guarantees equal means and variances for the two classes. Dashes indicate that relevant data are not available in the published report.
b The heritability estimate refers to group heritability for DF extremes analysis, liability heritability for dichotomous disability analysis, and individual differences
heritability for continuous ability analysis. CIs for heritability estimates are presented in parentheses (dashes indicate that CIs are not available from the published
data). Liability heritability estimates were obtained from tetrachoric correlations which were calculated using Mx. Because these were derived from published
results, 95% CIs are not available for the liability heritability estimates. CIs for the tetrachoric correlations are presented in footnotes for each study.
c Probands were selected on the basis of low performance on at least one of four language measures. The following two tests were examined in relation to language
ability and disability: Tallal’s Auditory Repetition Test assesses detection, association, discrimination, sequencing, and serial memory; the Children’s Nonword
Repetition Test is a measure of phonological short-term memory. For the tetrachoric correlations, the threshold was estimated from the approximate population
prevalence of specific language impairment (7%) reported in Leonard (1998). Tetrachoric correlations and 95% CIs were 0.78 (0.53, 0.91) for MZs and 0.72 (0.39,
0.90) for DZs for auditory repetition, and 0.87 (0.68, 0.96) for MZs and 0.28 (�0.19, 0.68) for DZs for nonword repetition.
d N/pairs refer to twinships rather than twin pairs as 3 sets of triplets were included in the analysis (resulting in five twin comparisons). For individual differences
heritability, twin correlations were not reported; heritability was estimated using an augmented multiple regression model (DeFries & Fulker, 1988). Tetrachoric
correlations and 95% CIs were 1.00 (0.99, 1.00) for MZs and 0.87 (0.66, 0.96) for DZs.
e Average N-weighted results for male and female pairs, excluding results for opposite-sex pairs are presented here. Verbal performance was assessed using
age-appropriate vocabulary and grammar scales from the MCDI—U.K. Short Form, the abbreviated and anglicized adaptation of the MCDI. Combined vocabulary
and grammar scores were used in the analyses. Only the results of the aggregate score based on scores across 2, 3, and 4 years of age are presented here; all scores
had high age-to-age correlations. For the extremes analyses, only the results from the 5% cutoff are presented here. Similar results were obtained at the 10% cutoff.
Tetrachoric correlations and 95% confidence intervals were 0.99 (0.97, 1.00) for MZs and 0.82 (0.66, 0.92) for DZs.
f The nine measures included in the composite assessed such diverse aspects of language as vocabulary, syntax, phonology, and articulation. Different cutoffs
reported in the study showed similar results, although 5% and especially 1% cutoffs tended to yield even greater estimates of group heritability (h2

g). Tetrachoric
correlations and 95% confidence intervals were 0.92 (0.88, 0.95) for MZs and 0.73 (0.62, 0.82) for DZs.
g Results reported here for same-sex pairs only. The published model-fitting estimate of individual differences heritability is greater because opposite-sex twins
were included in the model-fitting analysis. The nine measures assessed diverse aspects of language such as vocabulary, syntax, phonology, and articulation.
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nor qualitative sex differences have been found in previous re-
search. That is, studies such as TEDS and the Colorado study of
reading that are large enough to provide adequate power to detect
differences in genetic influences for boys and girls find little

evidence of sex differences in genetic or environmental parameter
estimates (e.g., Wadsworth, Knopik, & DeFries, 2004). Also,
studies such as TEDS and the Colorado study that include opposite
sex twins to assess genetic correlations between boys and girls find

Table 3
Mathematics Disability and Ability: Twin Resemblance and Heritability Estimates for DeFries–Fulker (DF) Extremes Analysis,
Dichotomous Diagnoses of Disability, and Continuous Ability Measures

Reference
Age

(years) Measure
Cutoff

(%)

Twin resemblancea

Heritability estimateb

(95% CI)MZ N/pairs DZ N/pairs

DF extremes analysis

Previous studies
Alarcón et al. (1997)c 8–20 Composite of WRAT and PIAT 6.7 .96 40 .77 23 0.38 (0.03, 0.73)

TEDS
Oliver et al. (2004)d 7 Composite of teacher assessments 15 .72 171 .40 198 0.65 (0.41, 0.89)

Dichotomous disability analysis
Previous studies

Alarcón et al. (1997)c 8–20 Composite of WRAT and PIAT 6.7 .73 (.94) 40 .56 (.83) 23 0.22
TEDS

Oliver et al. (2004)d 7 Composite of teacher assessments 15 .67 (.86) 171 .44 (.59) 198 0.54

Continuous ability analysis

Previous studies
Knopik & DeFries (1999) 8–20 Composite of WRAT, WISC-R

or WAIS-R, and PIAT
— 220 — 135 0.67 (—)

TEDS
Oliver et al. (2004)d 7 Composite of teacher assessments .74 1,044 .43 957 0.62 (0.56, 0.77)

Note. MZ � monozygotic; DZ � dizygotic; CI � confidence interval; WRAT � Wide Range Achievement Test; PIAT � Peabody Individual
Achievement Test; TEDS � Twins Early Development Study; WISC-R � Wechsler Intelligence Scale for Children—Revised; WAIS-R � Wechsler Adult
Intelligence Scale—Revised.
a Twin resemblance refers to twin group correlations for DF extremes analysis, twin probandwise concordances (tetrachoric correlations in parentheses) for
dichotomous disability analysis, and twin intraclass correlations for continuous ability analysis. The twin group correlation is the ratio of the mean cotwin score
on the quantitative ability measure to the mean proband score. For example, expressed as standard scores, if the mean cotwin score is �1.0 (i.e., one standard
deviation below the mean) and the mean proband score is �2.0, the twin group correlation is 0.5. For the dichotomous disability analysis, we report twin
probandwise concordance (the number of probands in concordant pairs divided by the total number of probands), which is more appropriate than pairwise
concordance (number of concordant pairs divided by the total number of pairs) when both members of the twin pair can be ascertained. For example, in a study
in which 30 of 100 pairs of twins are concordant, pairwise concordance is 30% (30/100), whereas probandwise concordance is 46% (60 probands in concordant
pairs divided by 130, the total number of probands). Twin probandwise concordance indicates the risk that a cotwin of a proband is affected. Tetrachoric
correlations were calculated using a model-fitting program (Mx). Contingency tables representing concordant and discordant affected and unaffected pairs were
derived from published twin probandwise concordances (or number of probands) and total numbers of pairs with at least one affected member. The numbers of
pairs in the two discordant cells were obtained by equally dividing the total discordant number between them. The number of pairs in the unaffected concordant
cell was estimated from the population prevalence of the disability as defined in each population-based study, usually a cutoff percentage. The threshold was
obtained from the approximate population prevalence of the disability as reported in the literature. For the DF extremes analysis and the dichotomous disability
analysis, N/pairs refers to the number of pairs with at least one proband. For continuous ability analysis, the twin intraclass correlation represents the ratio of the
variance between pairs to the total variance (Shrout & Fleiss, 1979). The twin correlation is intraclass rather than the usual Pearson interclass correlation because
members of a twin pair do not represent two separate classes (variables). The intraclass correlation is equivalent to the average interclass correlation for all possible
pairings of twins. It can be estimated accurately by entering twins in a double-entry format in which Twin B follows Twin A for one class and Twin A follows
Twin B for the other class, which guarantees equal means and variances for the two classes. Dashes indicate that relevant data are not available in the published report.
b The heritability estimate refers to group heritability for DF extremes analysis, liability heritability for dichotomous disability analysis, and individual
differences heritability for continuous ability analysis. Liability heritability estimates were obtained from tetrachoric correlations which were calculated
using Mx. See Table 1 for details.
c The results reported here are for the combined sample, including math disability with and without reading disability; the paper also reports the results for
the two subsamples separately. The threshold was defined as 1.5 standard deviation of the control sample, which is consistent with the approximate
population prevalence of mathematic disability of 6% reported by Mazzocco and Myers (2003). Tetrachoric correlations and 95% CIs were 0.94 (0.86, 0.98)
for MZs and 0.83 (0.61, 0.95) for DZs.
d Published results include three measures (using and applying; numbers; shapes, spaces, and measures) but we report results only for a composite of the three
measures. The data in this study were teachers’ assessments of academic achievement in three areas of mathematics based on U.K. National Curriculum criteria
for Key Stage 1. The data were also analyzed separately for the members of a twin pair measured by the same or different teacher. Although twin concordances
and correlations were lower when the children were assessed by different teachers, this applied to both MZ and DZ twins, so the heritability estimates obtained
from these data were only slightly lower for the children assessed by the different teacher (the shared environment estimates were greater in the group assessed
by the same teacher). Only the averages for the entire sample are presented here. The threshold was defined in the study as 15% of the sample (SD � 1.03).
Tetrachoric correlations and 95% CIs were 0.86 (0.80, 0.90) for MZs and 0.59 (0.47, 0.69) for DZs.
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little evidence for such qualitative sex differences (e.g., Knopik,
Alarcón, & DeFries, 1998; Viding et al., 2004).

Language Disability and Ability

Table 1 summarizes twin studies of language disability and
ability. Only two previous studies have been reported totaling 70
MZ pairs and 46 DZ pairs (Bishop et al., 1999; Tomblin &
Buckwalter, 1998). As a result of the small sample sizes, 95%
confidence intervals (in parentheses) for the group heritability
estimates are large and results are variable but suggest a moderate
average estimate for DF extremes group heritability (see Table 1,
top panel). For dichotomous diagnoses of language disability (see
Table 1, middle panel), the average twin concordances of 76% for
MZ twins and 50% for DZ twins also suggest moderate genetic
influence for dichotomous diagnoses of language disability, which
is confirmed by the average liability heritability estimate. For
individual differences heritability (see Table 1, bottom panel),
these two studies suggest an average estimate of .47 for language
ability. Despite the small sample sizes and use of different mea-
sures, the results from these previous two twin studies of language
disability suggest that DF extremes group heritability is similar to
liability heritability of disability and individual differences herita-
bility of ability, suggesting strong genetic links between language
disability and ability.

In TEDS, twins were assessed for vocabulary and grammar at 2,
3, and 4 years using the MacArthur Communicative Development
Inventory (MCDI), a parental rating instrument (Fenson et al.,
2000). A composite language measure yielded a DF extremes
group heritability estimate of .39 using a 5% cutoff (see Table 1,
top panel), which suggests at least moderate links between dis-
ability and ability (Spinath, Price, Dale, & Plomin, 2004). Using
the same measure and the same sampling frame, the DF extremes
group heritability estimate is similar to the estimate of .34 for
liability heritability (see Table 1, middle panel) based on concor-
dances for dichotomous diagnoses (5% cutoff). These heritability
estimates are also roughly similar to the estimate of individual
differences heritability (.22, see Table 1, bottom panel) based on
twin correlations for the entire sample. These findings suggest that
to the extent that genetic influence affects language in early
childhood, genetic overlap between disability and ability is
substantial.

TEDS also conducted in-home tests of language at 4.5 years for
low-language children and controls selected initially on the basis
of their MCDI scores at 4 years. Eight hundred pairs of twins were
assessed in their homes on eight language measures, which yielded
a general factor that accounted for 41% of the total variance
(Colledge et al., 2002). A composite measure representing this
general language factor was used to select 579 children in 160 MZ
twin pairs and 131 same-sex DZ twin pairs who were below the
15th percentile of a control group (Viding et al., 2004). DF
extremes analysis for the composite language measure yielded a
group heritability estimate of .37, which is similar to the liability
heritability estimate of .38. The individual differences heritability
estimate is .16 based on 101 MZ and 97 DZ control twin pairs.
Although we report the results for a 15% cutoff in Table 1 in order
to make the results more comparable with previous studies, we
also examined results for more stringent cutoffs, such as 7%, 2%,
and 0.1%. The results suggested increasing group heritability for
more extreme cutoffs: .37, .42, .48, and .76, respectively, for 15%,

7%, 2%, and 0.1% cutoffs (Viding et al., 2004). However, caution
is warranted because the sample sizes are small, as more extreme
cutoffs are used to select probands so that a few extreme cases
could determine the result. If this trend is true, it would suggest
that genetic factors play a larger role for more severe language
impairment or that environmental factors become overwhelmed as
the genetic risk becomes stronger. In the present context, this result
would suggest that genetic links between language disabilities and
abilities are even stronger for more severe language disability,
although it should be noted that TEDS is a community sample and
is unlikely to include extremely severe language disorders.

In summary, in previous studies as well as in TEDS, group
heritability is substantial, which suggests genetic links between
language disability and ability. Moreover, group heritability is
similar to liability heritability of language disability and is as great
or greater than individual differences heritability of language abil-
ity. These results suggest strong genetic links between language
disability and ability.

Reading Disability and Ability

Table 2 summarizes results for reading disability and ability for
previous reports from two studies (Light & DeFries, 1995; Light,
DeFries, & Olson, 1998; Stevenson, 1991; Stevenson, Graham,
Fredman, & McLoughlin, 1987) that permit estimates of the three
types of heritability, but not for other studies that estimate only one
type of heritability (Bakwin, 1973; Matheny, Dolan, & Wilson,
1976). The major twin study is from Colorado (DeFries & Gillis,
1993; Willcutt et al., 2003). DF extremes analysis, which was
devised initially for the specific purpose of analyzing data from
this study (DeFries & Fulker, 1988), estimated group heritability
as .52 (Light & DeFries, 1995), as shown in the top panel of Table
2. Twin concordances were 68% for MZ twins and 40% for DZ
twins, which yields a liability heritability estimate of .46 (see
Table 2, middle panel). The Colorado study also included a control
group, which yielded an individual differences heritability of .42
(Light, DeFries, & Olson, 1998). A review of five twin studies of
individual differences in various measures of reading ability in
childhood yielded an average individual differences heritability
estimate of .41 (Stromswold, 2001). An earlier twin study yielded
an average heritability of .33, although the results are mixed across
measures which is to be expected given the relatively small sample
size (Stevenson, 1991; Stevenson, Graham, Fredman, &
McLoughlin, 1987).

In TEDS, reading was assessed toward the end of the 2nd year
of school, when the children were 7 years old, using the Test of
Word Reading Efficiency (TOWRE; Torgesen, Wagner, & Ra-
shotte, 1999), which was administered by telephone (Harlaar,
Spinath, Dale, & Plomin, 2005). DF extremes group heritability is
.60, which is in between the estimates of liability heritability (.50)
and individual differences heritability (.70) from this same study.
When the same children were assessed for reading by their teach-
ers on the basis of criteria from the U.K. National Curriculum, the
results were very similar.

In summary, results for reading are similar to those for language
in showing substantial group heritability, which suggests genetic
links between reading disability and ability. Also similar to the
results for language, group heritability is similar to liability heri-
tability and individual differences heritability, suggesting that the
genetic links between disability and ability are strong.
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Mathematics Disability and Ability

Only one twin study has been published regarding mathematics
disability, which estimated DF extremes group heritability of .38
(Alarcón, DeFries, Light, & Pennington, 1997; see Table 3). Lia-
bility heritability estimated from the twin concordances is .22;
individual differences heritability in a control sample was .67
(Knopik & DeFries, 1999). Thus, the DF group heritability esti-
mate is in between those of liability heritability and individual
differences heritability.

In TEDS, mathematics was assessed by teachers using criteria
from the U.K. National Curriculum (Oliver et al., 2004). Group
heritability is substantial (.65) and similar to liability heritability
and individual differences heritability (.54 and .62, respectively;
Oliver et al., 2004). Thus, the results from TEDS support the
hypothesis that disability is linked genetically to ability.

Summary and Quantitative Trait Locus (QTL) Model

In summary, DF extremes analysis generally shows substantial
group heritability for language, reading, and mathematics. These
findings indicate genetic links between disability and ability.
Moreover, group heritability of disability is intermediate to liabil-
ity heritability of disability and individual differences heritability
of ability, which suggests that genetic influences on disability
largely overlap with genetic influences on ability. These findings
suggest that common disabilities are merely the low end of the
same genetic influences that affect abilities. That is, the abnormal
is normal.

This quantitative genetic research has a clear implication for
molecular genetic research: When a gene is found that is associ-
ated with a learning disability, the same gene can be expected to be
associated with variation in the normal range of ability. This
prediction is compatible with a major shift in molecular genetic
research. Until the past decade, molecular genetic research focused
on identifying genes responsible for single-gene disorders in which
mutations in a single gene are necessary and sufficient to cause a
disorder. For single-gene disorders, the abnormal is not normal—
such disorders are etiologically distinct from normality. Although
there are thousands of single-gene disorders, they are rare, with
typical frequencies of .0001 or less (King, Motulsky, & Rotter,
2002). In contrast, learning disabilities are much more common,
with frequencies greater than .01. It is now generally accepted that
genetic influence on common disorders is caused by multiple
genes of small effect size rather than a single gene of major effect
size (Plomin, Owen, & McGuffin, 1994). These multiple-gene
effects are known as quantitative trait loci (QTLs) because they
produce a quantitative continuum of genetic effects even if the trait
is assessed as a dichotomous diagnosis. In other words, the QTL
model posits that the abnormal is normal in that the genes respon-
sible for disorders are the same genes responsible for normal
variation.

The research reviewed in this section thus supports the QTL
model for common learning disabilities. The ultimate proof of the
hypothesis that the abnormal is normal will come when QTLs
identified for learning disabilities are found to be associated with
the normal range of variation in abilities and vice versa. We return
to this issue later in the section on DNA, which includes concrete
examples of single-gene and QTL influences on learning
disabilities.

Genetic Homogeneity Within Learning Disabilities and
Abilities

The previous section described research using DF extremes
analysis that indicates strong genetic links between learning dis-
abilities and abilities. Two other types of research broach the issue
of the generality of genetic effects on learning disabilities more
directly by investigating the extent to which the same genes
operate within a disability and between disabilities. That is, within
a disability, to what extent do the same genes influence different
components of the disability? Although this issue is usually re-
ferred to as genetic heterogeneity, which reflects the hope that
genetically distinct components or subtypes will be found within a
disability, it could just as well be called genetic homogeneity in the
sense of assessing the extent to which the same genes influence
different aspects of a disability. The other category of research
addresses genetic links between disabilities and is called genetic
comorbidity.

These issues of genetic homogeneity and comorbidity in re-
search on learning disabilities and abilities can be addressed using
multivariate genetic analysis. In contrast to univariate quantitative
genetic analysis that decomposes the variance of a single trait into
genetic and environmental sources of variance, multivariate ge-
netic analysis decomposes the covariance between traits into ge-
netic and environmental sources of covariance (Martin & Eaves,
1977). In other words, multivariate genetic analysis assesses ge-
netic and environmental factors responsible for the phenotypic
correlation between two traits. If the same genes affect different
traits, a correlation will be observed between the traits. One of the
genetic causes of correlation is that the same genes influence both
traits, an effect called pleiotropy. The key concept in the present
context is the genetic correlation, which indicates the extent to
which genetic effects on trait X correlate with genetic effects on
trait Y regardless of the heritabilities of X and Y. The genetic
correlation, which is described in greater detail below, can be
considered as the probability that a gene found to be associated
with X will also be associated with Y. It should be noted that
multivariate genetic analysis is completely different conceptually
from the comparison between the heritabilities of two traits, which
involve univariate genetic analyses of the variance of each trait
considered separately. Highly heritable traits might show no ge-
netic overlap, and modestly heritable traits might show complete
genetic overlap. Genetic overlap can only be evaluated by means
of multivariate genetic analysis.

Although multivariate genetic analysis can be used to analyze
genetic overlap at the extremes of disability as discussed below,
multivariate genetic research has primarily analyzed normal co-
variation in unselected samples using the standard multivariate
extension of univariate quantitative genetic analysis (Martin &
Eaves, 1977), shown in Figure 2. Such multivariate genetic anal-
yses of normal variation in abilities are relevant to the investiga-
tion of disabilities if, as the previous section strongly suggests,
disabilities are merely the quantitative extreme of the same genetic
and environmental factors that operate throughout the continuum.
For twin studies, multivariate genetic analysis is based on cross-
trait twin correlations for two or more traits. That is, one twin’s X
is correlated with the cotwin’s Y. The phenotypic covariance
between two traits is attributed to their genetic overlap to the
extent that the MZ cross-trait twin correlation exceeds the DZ
cross-trait twin correlation. The proportion of the phenotypic co-
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variance between X and Y attributed to genetic covariance between
X and Y is called bivariate heritability (Plomin & DeFries, 1979).

As shown in Figure 2, the genetic contribution to the phenotypic
covariance is the product of the square root of the heritability of X
(ax), the heritability of Y (ay), and the genetic correlation (rA)
between X and Y. Because the heritabilities of X and Y are known,
the genetic correlation can be extracted from this estimate of the
genetic contribution to the phenotypic covariance (i.e., axayrA). As
mentioned earlier, the genetic correlation is the key concept in the
present context because it indicates the extent to which genetic
effects on X correlate with genetic effects on Y independent of the
heritabilities of X and Y. A genetic correlation of 1.0 means that the
same genes affect X and Y regardless of the heritabilities of X and
Y, and a genetic correlation of 0.0 means that completely different
genes affect X and Y. Roughly speaking, the genetic correlation
can be viewed as a probability that when a gene is found to be
associated with X, it will also be associated with Y. The genetic
correlation thus provides evidence not only for generalist genes but
also for genetic effects specific to a disability or ability. To the
extent that the genetic correlation is less than 1.0, it suggests that
there are genes that affect X but not Y.

Although few multivariate genetic analyses have as yet been
reported for the extremes of learning disabilities, twin cross-
concordance rates for MZ and DZ twins can be used to assess the
etiology of homogeneity and comorbidity. A twin pair is cross-
concordant if Twin 1 manifests disability X and Twin 2 manifests
disability Y. As mentioned in the previous section on univariate
analyses, twin concordance data can be converted to polychoric
correlations using the liability-threshold model. Similarly, in mul-
tivariate analysis, cross-trait twin concordance data between symp-

tom X and symptom Y within a disability (to test for genetic
homogeneity) and between disability X and disability Y (to test for
genetic comorbidity) can be converted to polychoric cross-trait
twin correlations and analyzed with the same multivariate genetic
model used to analyze normal variation in unselected samples.

DF extremes analysis has also been extended to bivariate anal-
ysis (Light & DeFries, 1995). Rather than selecting probands as
extreme on X and comparing the quantitative scores of their MZ
and DZ cotwins on X, as in univariate DF extremes analyses,
bivariate DF extremes analysis selects probands on X and com-
pares the quantitative scores of their cotwins on Y, a cross-trait
twin group correlation. The genetic contribution to the phenotypic
difference between the means of the probands on trait X and the
population on Y is estimated by doubling the difference between
the cross-trait twin group correlations for MZ and DZ twins.
Bivariate group heritability is the ratio between this genetic esti-
mate and the phenotypic difference between the probands on trait
X and the population on Y. As in univariate DF extremes analysis,
bivariate DF extremes analysis brings together disability and abil-
ity by analyzing the relationship between probands with extreme
scores on X and normal variation in cotwins on Y. Unlike multi-
variate genetic analysis of normal variation or multivariate
liability-threshold analysis of concordance, bivariate DF extremes
analysis is directional in the sense that selecting probands on X and
examining quantitative scores of cotwins on Y could yield different
results compared with selecting probands on Y and examining
quantitative scores of cotwins on X. A group genetic correlation
can be derived from four group parameter estimates: bivariate
group heritability estimated by selecting probands for X and as-
sessing cotwins on Y, bivariate group heritability estimated by
selecting probands for Y and assessing cotwins on X, and univar-
iate group heritability estimates for X and for Y (see Knopik,
Alarcón, & DeFries, 1997).

In this section and in the next, we report multivariate genetic
analyses of these three types (multivariate genetic analyses of
normal variation in ability, multivariate genetic analysis of dichot-
omous disabilities, and bivariate DF extremes analysis), although
most research involves the first type of analysis. We highlighted
estimates of genetic correlation because the genetic correlation
directly assesses genetic overlap within and between disabilities
and abilities. It should be emphasized that confidence intervals
surrounding estimates of genetic correlation can be large; we
report confidence intervals when available. Although several stud-
ies are not nearly large enough to provide adequate power to
estimate genetic correlations, we have shown that the results are
surprisingly consistent in pointing to substantial genetic correla-
tions within and between disabilities and abilities. The present
section focuses on multivariate genetic analyses of components
within disabilities and abilities (genetic homogeneity), and the next
section considers analyses across disabilities and abilities (genetic
comorbidity). We reviewed all available multivariate genetic anal-
yses, but our review is, of course, limited to the particular mea-
sures included in these published studies; much room is available
for future studies using other measures that might be better moti-
vated by cognitive theory.

Language Disability and Ability

Traditional linguistic accounts of language development have
emphasized a discontinuity between grammar and lexicon (Pinker,

Figure 2. Correlated factors model for individual differences trait X and
trait Y in one individual from a twin pair. Though not illustrated here, there
are genetic and shared environmental correlations between the two mem-
bers of a pair for both X and Y scores. Variance in each trait is divided into
that due to latent additive genetic influences (A), shared environmental
influences (C), and nonshared environmental influences (E) with the sub-
scripts x and y to denote scores on traits X and Y, respectively. Paths,
represented by lower case (a, c, and e), are the standardized regression
coefficients and are squared to estimate the proportion of variance ac-
counted for. Correlations between the latent genetic, shared environmental,
and nonshared environmental influences are denoted by rA, rC, and rE.
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1994). However, subsequent empirical studies found substantial
correlations between grammar and vocabulary (Fenson et al.,
1994). Recent linguistic theories have assumed that there is a
greater interdependence between grammar and lexicon (Bates &
Goodman, 1997; Tomasello, 2003); phonological processes are
now thought to be central to this interdependence (Chiat, 2001;
Morgan & Demuth, 1996).

As summarized in the top panel of Table 4, we are aware of only
one multivariate genetic study of genetic homogeneity within

language development other than studies involving TEDS twins.
The first reported study was a small twin study suggesting very
substantial genetic correlations between a phonological awareness
factor and a general language factor (Hohnen & Stevenson, 1999).
In TEDS, genetic links were investigated between parent-assessed
vocabulary and grammar at 2 years for nearly 2,000 pairs of twins
(Dale, Dionne, Eley, & Plomin, 2000). The genetic correlation was
estimated as .61, suggesting that genetic effects on vocabulary and
grammatical ability overlap substantially. Similar results were

Table 4
Genetic Homogeneity: Genetic Correlations Within Language, Reading, and Mathematics Learning Disabilities and Abilities

Reference
Age

(years) Measures

Unselected (U)
or extremes

(E)

N/pairs
Genetic correlations

(95% CI)MZ DZ

Language ability and disability
Previous studies

Hohnen & Stevenson (1999) 6 and 7 Phonological Awareness factor (phoneme blending,
sound categorization and phoneme deletion)
vs. General Language factor (grammar and
vocabulary)

U 67 60 1.00a (6 years);
.90a (7 years)

TEDS
Dale et al. (2000) 2 MCDI vocabulary vs. MCDI grammar U 1,008 959 0.61 (—)
Dionne et al. (2003) 3 MCDI vocabulary vs. MCDI grammar

1994 birth cohort U 771 734 0.89 (0.74, 0.99)
1995 birth cohort U 502 547 0.63 (0.49, 0.77)

Hayiou-Thomas et al.
(2004)

4.5 7 language (lexical and grammatical) measures
(average)

U 281 275 0.61 (—)

2 articulation measures U 281 275 0.89 (0.69, 1.00)
Latent factors of language vs. articulation U 281 275 0.64 (0.32, 0.96)

Reading ability and disability

Previous studies
Gayan & Olson (2003) 7–18 Word Recognition vs. Orthographic Coding Ub 257 183 0.92 (0.85, 0.99)

Word Recognition vs. Phonological Decoding Ub 257 183 0.97 (0.93, 1.00)
Orthographic Coding vs. Phonological Decoding Ub 257 183 0.82 (0.74, 0.94)

Gayan & Olson (2001) 7–18 Word Recognition vs. Orthographic Coding E 30–
215

14–
159

0.81, 0.94 (—)

Word Recognition vs. Phonological Decoding E 30–
215

14–
159

0.97, 0.99 (—)

Davis et al. (2001) 8–20 Orthographic Coding vs. Rapid Naming (numbers
and letters)

E 236 314 0.68 (—)

Phonological Decoding vs. Rapid Naming
(numbers and letters)

E 236 314 0.38 (—)

TEDS
Previously unpublished

TEDS datac
7 TOWRE sight word efficiency vs. TOWRE

phonemic decoding efficiency
U 1,396 1,298 0.86 (0.84, 0.88)

Harlaar et al. (in press) 7 TOWRE total score vs. UK National Curriculum
teacher assessment of reading

Same teacher U 1,386 1,274 0.74 (0.66, 0.81)
Different teacher U 1,386 1,274 0.84 (0.80, 0.88)

Mathematics ability and disability

TEDS
Previously unpublished

TEDS datad
7 UK National Curriculum teacher assessments of 3

components of mathematics
Numbers vs. Shapes U 1,146 1,032 0.88 (0.86, 0.91)
Numbers vs. Applications U 1,146 1,032 0.88 (0.85, 0.92)
Shapes vs. Applications U 1,146 1,032 0.85 (0.82, 0.89)

Notes Dashes indicate that relevant data are not available in the published report. MZ � monozygotic; DZ � dizygotic; CI � confidence interval;
TEDS � Twins Early Development Study; MCDI � MacArthur Communicative Development Inventory; TOWRE � Test of Word Reading Efficiency.
a Although genetic correlations were not reported in Hohnen and Stevenson (1999), we were able to calculate genetic correlations, but not CIs, from the
published data. b Analysis based on combined samples of reading-disabled and control individuals. c Model-fit statistics for this previously unpublished
analysis are �2(11) � 21.51, p � .03, Akaike information criterion (AIC) � �.49, root-mean-square error of approximation (RMSEA) � .02. d Model-fit
statistics for this previously unpublished analysis are: �2(24) � 30.46, p � .17, AIC � �17.54, RMSEA � .02.
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found at 3 years (Dionne, Dale, Boivin, & Plomin, 2003). Cross-
lagged multivariate genetic analyses from 2 to 3 years suggest that,
in equal measure, genetic influences on vocabulary at 2 years
contribute to grammar at 3 years and genetic influences on gram-
mar at 2 years contribute to vocabulary at 3 years (Dionne et al.,
2003).

The use of parental assessment measures in TEDS might have
led to increased genetic overlap if parents are unable to discrimi-
nate lexical and grammatical abilities of their children. However,
substantial genetic overlap was also found in TEDS in a multivar-
iate genetic analysis of a diverse battery of nine language tests
administered by different testers to each twin in their home for 556
pairs of twins when the twins were 4.5 years old (Hayiou-Thomas,
Kovas, et al., 2004). The nine language measures assessed lexical,
grammatical, and phonological abilities (as described in detail in
Viding et al., 2003). The average genetic correlation among the
nine measures was .58. The seven phonological, lexical, and
grammatical tests yielded an average genetic correlation of .61.
The two articulation measures yielded lower genetic correlations
with the other seven measures (average genetic correlation of .52).
A two-factor model consisting of general language and articulation
fit the data better than a single-factor model. Nonetheless, the
genetic correlation between these two latent factors was .64. Thus,
the results of this multivariate genetic study of language provide
strong evidence for the hypothesis of substantial genetic overlap
among diverse aspects of language.

This research analyzed normal covariation in unselected sam-
ples. No multivariate genetic analyses of homogeneity have been
reported for language-impaired groups.

Reading Disability and Ability

It has been proposed that reading disabilities result from
independent deficits such as phonological deficits and ortho-
graphic deficits (Castles & Coltheart, 1993) and deficits in
rapid naming (Wolf & Bowers, 2000). It would follow from
such theories that these processes are relatively independent
genetically. Double-deficit models (e.g., Wolf & Bowers, 2000)
and triple-deficit models (e.g., Badian, 1997) have also been
proposed in which reading disability requires two or three
deficits, but these deficits are also implicitly independent (Pen-
nington, in press). To the contrary, although there are few
multivariate genetic analyses of genetic homogeneity within
reading, they support the hypothesis of substantial genetic
homogeneity across components of reading, including phono-
logical and orthographic processes.

As indicated in the middle panel of Table 4, the Colorado study
has reported very high genetic correlations among multiple mea-
sures of reading such as word recognition, orthographic coding
(e.g., distinguishing homophones), and phonological decoding
(e.g., sounding out nonwords) in multivariate genetic analyses of a
twin sample that combines reading-disabled and control samples
combined (Gayán & Olson, 2003). In one of the only multivariate
genetic analyses of reading disability, the Colorado group showed
similarly high genetic group correlations (Gayán & Olson, 2001).
The Colorado group also showed that poor performance on ortho-
graphic coding and phonological decoding is genetically linked
with a rapid naming test involving numbers, colors, objects, and
letters (Davis et al., 2001; see also, Tiu, Wadsworth, Olson, &
DeFries, 2004).

In TEDS, a multivariate genetic analysis was conducted using
the two subtests of the TOWRE thought to assess substantially
different reading processes: Sight Word Efficiency (SWE), which
assesses the ability to read aloud real words, and Phonemic De-
coding Efficiency (PDE), which assesses the ability to read aloud
pronounceable printed nonwords (e.g., “framble,” “tegwop”), sim-
ilar to the measure used in the Colorado study (Gayán & Olson,
2001). SWE and PDE were highly correlated phenotypically (r �
.82), and both subtests were highly heritable (Harlaar, Spinath, et
al., 2005). For the present review, we conducted a bivariate genetic
analysis of the SWE and PDE subtests and found a genetic corre-
lation of .86 between them.

Even more impressive evidence for genetic homogeneity comes
from a bivariate genetic analysis based on the same sample that
analyzed the covariance between the TOWRE total score, which
specifically assesses reading accuracy, and year-long teacher as-
sessments of reading based on U.K. national curriculum criteria,
which assess diverse reading processes (Harlaar, Dale, & Plomin,
in press). The genetic correlation between these two very different
measures of reading was .74 for twins in the same classroom and
.84 for twins in different classrooms. These findings from TEDS
provide strong support for the hypothesis of genetic homogeneity,
at least for early reading skills.

Mathematics Disability and Ability

We could find no published reports of multivariate genetic
analyses within mathematics disability or ability. For this reason,
we conducted a preliminary analysis of TEDS data for 2,178
7-year-old same-sex twin pairs whose mathematics performance
was assessed by their teachers based on U.K. national curriculum
criteria. Teachers rated the twins’ performance on three aspects of
mathematics: numbers, shapes, and application. As indicated in the
bottom panel of Table 4, the genetic correlations between these
three components of mathematics performance were between .85
and .88. Although the teachers rated these three components of
mathematics performance using guidelines from the U.K. national
curriculum, it is possible that these genetic correlations are inflated
by teachers’ inability to discriminate components of mathematics
performance. Ongoing research in TEDS includes a mathematics
project in which a battery of diverse tests of mathematics perfor-
mance is being administered at 10 years via the Internet, which
will provide a strong test of the hypothesis of genetic homogeneity
for mathematics performance.

Summary

Multivariate genetic analyses of the normal range of variation
consistently find substantial genetic homogeneity within the do-
mains of language, reading, and mathematics. For language, ge-
netic correlations are about .60 between vocabulary and grammar
in 2- and 3-year-olds and between diverse language measures in
4.5-year-olds. For reading, genetic correlations are about .80 be-
tween word reading and nonword reading in 7-year-olds and about
.80 between the TOWRE test of word identification and teacher
assessments of general reading skills in 7-year-olds. For mathe-
matics, a multivariate genetic analysis yielded genetic correlations
in excess of .80 between three aspects of mathematics performance
in 7-year-olds. Multivariate genetic analyses of genetic homoge-
neity within disabilities rather than analyses of individual differ-
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ences in unselected samples have only been reported for reading
disability. These analyses yielded group genetic correlations of
about .90 between word recognition and component processes
such as orthographic and phonological decoding. Although multi-
variate genetic analyses of genetic homogeneity within language
and mathematics disabilities have not been reported, the results for
language and mathematics ability and the findings presented in the
previous section indicating strong genetic links between disability
and ability suggest that substantial genetic homogeneity will also
be found for components of language and mathematics disabilities.

Although the results showing substantial genetic homogeneity
are remarkably consistent, genetic homogeneity is best viewed as
a hypothesis to be tested in future research examining other com-
ponents of language, reading, and mathematics rather than as a
conclusion because of the limited number of studies that have
addressed these issues, the limited types of measures that have
been used, and the confidence intervals surrounding estimates of
genetic correlations. As discussed later, the ultimate test of the
hypothesis of genetic homogeneity will come when genes are
found to be associated with any component of these disabilities
and abilities: Will the same genes be associated with other com-
ponents of these disabilities and abilities?

Genetic Comorbidity Between Learning Disabilities and
Abilities

The previous section addressed multivariate genetic analyses of
components within disabilities and abilities (genetic homogene-
ity). The present section considers multivariate genetic analyses
across disabilities and abilities (genetic comorbidity). Comorbidity
refers to the co-occurrence of different disorders in the same
individual. The question addressed in this section is the extent to
which learning disabilities overlap genetically rather than the
processes by which the genetic overlap comes about (Neale &
Kendler, 1995; Rhee et al., 2004). We review bivariate genetic
research on comorbidity between language and reading, between
language and mathematics, and between reading and mathematics.
The results are summarized in Table 5. The section ends with a
trivariate genetic analysis of language, reading, and mathematics.

Language Versus Reading

The question of whether oral language and reading impairments
are fundamentally distinct or spring from common sources is as yet
unresolved. Recent research has been concerned with elucidating
the regions of overlap and specificity between them (Bishop &
Snowling, 2004). As indicated in Table 5, although there are not
many multivariate genetic studies of comorbidity between lan-
guage and reading, they consistently yield estimates of substantial
genetic correlations. The first study in this area yielded a genetic
correlation of .98 (Thompson, Detterman, & Plomin, 1991); sub-
sequent studies also estimated substantial genetic correlations in
unselected samples (Bishop, 2001; Gayán & Olson, 1999; Hohnen
& Stevenson, 1999) as well as for selected extreme groups
(Bishop, 2001; Gayán & Olson, 2001). Although not included in
Table 5, adoption data also point to substantial genetic overlap
between language and reading. The etiology of covariation be-
tween language ability indexed by verbal subtests of the Wechsler
Intelligence Scale for Children—Revised or the Wechsler Adult
Intelligence Scale—Revised and reading performance assessed by

the PIAT was investigated in a parent–offspring analysis of 198
adoptive and 220 nonadoptive families participating in the Colo-
rado Adoption Project (Wadsworth, DeFries, Fulker, & Plomin,
1995a). The genetic correlation was .80 between language and
reading composites. A sibling analysis of the same data at 7 years
was reported for 100 pairs of nonadoptive siblings and 90 pairs of
adoptive siblings (Wadsworth, DeFries, Fulker, & Plomin, 1995b).
The genetic correlation between language and reading was also
.80. It is noteworthy that the genetic correlation from the parent–
offspring analysis was as great as the genetic correlation from the
sibling analysis. Because the offspring were assessed in the sum-
mer following first grade (at the average age of 7.4 years) and the
parents were of course adults, this finding indicates genetic overlap
between language and reading that extends from middle childhood
through adulthood.

In TEDS, multivariate genetic analyses have been conducted
between language and articulation composites from nine measures
administered in twins’ homes at 4.5 years (see Viding et al., 2003,
for details of measures) and a reading composite (TOWRE plus
teacher assessments) at 7 years (see Harlaar, Dale, & Plomin, in
press, for details of measures) for 1,074 twin pairs with data at
both ages who were oversampled for language and cognitive
problems (Hayiou-Thomas et al., 2004). Individual differences
analyses of the entire sample yielded a genetic correlation of .59
between language at 4 years and reading at 7 years and a similar
genetic correlation of .50 between articulation at 4 years and
reading at 7 years. In one of the few multivariate genetic analyses
of disability, the group genetic correlation between low language
at 4 years and low reading at 7 years was .78; the group genetic
correlation was similar (.68) between low articulation at 4 years
and low reading at 7 years (Hayiou-Thomas, Harlaar, & Plomin,
2004). These results suggest strong genetic comorbidity between
language and reading, even when language is assessed at 4 years
and reading at 7 years.

Also in TEDS, multivariate genetic analyses have been reported
between spoken language and reading abilities for 1,730 MZ and
1,566 same-sex DZ pairs of 7-year-old twins as assessed by
teachers (Oliver, Dale, & Plomin, 2004). The genetic correlation
between spoken language and reading was .71. Teacher-assessed
writing skills were also included in this analysis and yielded
genetic correlations of .70 (.64–.76) with spoken language and .84
(.80–.88) with reading.

Language Versus Mathematics

The middle panel of Table 5 summarizes the three twin studies
that conducted multivariate genetic analyses of the relationship
between language and mathematics. The first study was conducted
before multivariate genetic analysis had been formally developed
(e.g., Martin & Eaves, 1977). It was a twin study of 1,300 MZ and
864 DZ twin pairs in U.S. high schools who had been selected to
compete on the National Merit Scholarship Qualifying Test
(NMSQT; Loehlin & Nichols, 1976). Multivariate genetic analysis
was later applied to these NMSQT data (Martin, Jardine, & Eaves,
1984) and modest genetic correlations were found between En-
glish Usage and Mathematics and between Vocabulary and Math-
ematics (.52 and .39, respectively; see Plomin & DeFries, 1979).

These genetic correlations from the NMSQT study are lower
than those found between language and reading as reviewed in
the previous section. Although language and mathematics could
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be less genetically correlated than language and reading, it is
also possible that the results of the NMSQT study are influ-
enced by its use of a sample selected for high ability. This latter
hypothesis is supported by the results of the Cleveland study,
described in the previous section, which found a genetic cor-
relation of .98 between language and mathematics for its com-
munity sample (Thompson et al., 1991). In previously unpub-
lished analyses, TEDS finds a genetic correlation that lies in
between the extremes of the NMSQT study and the Cleveland
study: the genetic correlation was .59 between teacher-assessed
spoken language and mathematics.

The Colorado Adoption Project, described in the previous sec-
tion, also suggests moderate genetic overlap between language and
mathematical ability. Genetic correlations were .48 in parent–
offspring analyses (Wadsworth et al., 1995a) and .57 in sibling
analyses (Wadsworth et al., 1995b).

These analyses involve individual differences in unselected
samples. Analyses of genetic links at the extremes of language and
mathematics disability have not been reported.

Reading Versus Mathematics

Finally, the bottom panel of Table 5 summarizes multivariate
genetic studies of reading and mathematics. Again, the first mul-
tivariate genetic analysis of normal variation was the Cleveland
study, which yielded a very high genetic correlation (.98; Thomp-
son et al., 1991). Subsequent studies yielded more modest but
nonetheless substantial genetic correlations: .47 and .61 in the
Colorado study (Knopik & DeFries, 1999) and .74 in TEDS
(Kovas, Harlaar, Petrill, & Plomin, in press). Data from the Col-
orado Adoption Project support the twin analyses and also suggest
substantial genetic correlations between reading and mathematics.
The genetic correlation between reading and mathematical perfor-
mance was .80 in a parent–offspring analysis (Wadsworth et al.,
1995a) and .83 in a sibling analysis (Wadsworth et al., 1995b).

The Colorado group also reported the first multivariate genetic
analysis of reading disability and mathematics (Light & DeFries,
1995). Although the twins were selected for reading disability,
they were unselected for mathematics disability; dichotomizing the
mathematics variable yielded twin cross-concordances of 68% for
MZ twins and 40% for DZ twins, suggesting substantial genetic
influence. In a bivariate DF extremes analysis of reading disability
using the mathematics variable as a continuous score, MZ and DZ
cross-trait group correlations were .92 and .66, respectively. Bi-
variate heritability was .55, suggesting substantial genetic overlap
between reading disability and mathematics ability.

A follow-up Colorado analysis selected twins both for reading
disability (102 MZ and 77 same-sex DZ twin pairs) and for
mathematics disability (42 MZ and 23 DZ pairs; Knopik et al.,
1997). Bivariate DF extremes analysis for reading disability pro-
bands versus mathematics ability yielded results similar to those
described above. Analysis of mathematics disability probands ver-
sus reading ability also yielded similar results. This was the first
report in which a genetic correlation was calculated from bivariate
DF extremes analysis. The genetic correlation between reading
disability and mathematics disability was estimated as .53.

Language, Reading, and Mathematics

An analysis was conducted for this review that brings the
foregoing series of bivariate comparisons together with the first

trivariate genetic analysis of language, reading, and mathematics
based on U.K. national curriculum teacher assessments in TEDS at
7 years for 1,538 MZ and 1,419 same-sex DZ pairs. The model is
presented in Figure 3a as a Cholesky path model. The three
measured variables (rectangles) are teacher-assessed language,
reading, and mathematics and the latent variables (circles) repre-
sent A (additive genetic), C (common or shared environment), and
E (nonshared environment) estimates. Focusing on the three ge-
netic latent variables (Figure 3b), the three squared path estimates
leading to mathematics are .22 for A1, .12 for A2, and .30 for A3.
These three genetic estimates sum to the heritability of mathemat-
ics (.64) and indicate that 34% (.22 out of .64) of the genetic
variance of mathematics is in common with both language and
reading, 19% (.12 out of .64) of the genetic variance of mathe-
matics is in common with reading but independent of language,
and 47% (.30 out of .64) of the genetic variance of mathematics is
independent of both language and reading. Figure 3c shows uni-
variate heritabilities and the genetic correlations derived from the
Cholesky model. The correlations were .64 between language and
reading, .59 between language and mathematics, and .71 between
reading and mathematics. Thus, this trivariate analysis confirms
the results of the previous series of bivariate analyses in showing
substantial genetic correlations between language, reading, and
mathematics.

Summary

The third way in which genes are generalists is that genes that
affect one learning disability and ability also substantially affect
other learning disabilities and abilities. Only a few studies have
addressed the issue of genetic overlap across domains, but they
consistently find evidence for substantial genetic overlap for the
normal range of variability. For example, in five unselected twin
samples, genetic correlations between language and reading range
from .67 to 1.0. For language and mathematics, two twin studies
using unselected twin samples found genetic correlations of .59
and .98. For reading and mathematics, three studies using un-
selected twin samples reported genetic correlations of .47, .76, and
.98. In the only bivariate genetic analysis of disabilities rather than
abilities, a correlation of .53 was found between reading disability
and mathematics disability. Thus, it seems safe to hypothesize that
genetic correlations between these learning disabilities and abili-
ties are substantial.

This hypothesis might be difficult to accept because it goes
against the common observation that there are specific disabilities.
For example, some children with reading problems have no prob-
lem with mathematics and vice versa (Bishop, 1997; Van Orden,
Pennington, & Stone, 2001). However, it should be noted that such
so-called double dissociations occur even when disabilities are
highly correlated. For example, in TEDS, the phenotypic correla-
tion between reading and mathematics is .65, yet as shown in
Figure 4, many children with scores one standard deviation below
average for reading are above the mean in mathematics and vice
versa. However, this apparent double dissociation is to be expected
from the bivariate normal distribution. There are two issues: First,
whether more cases of dissociation are observed than are expected
from the bivariate normal distribution; second whether different
causal processes are responsible for problems with reading and
problems with mathematics. Moreover, genetic correlations within
and between learning disabilities and abilities are greater than their
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Table 5
Genetic Comorbidity: Genetic Correlations Between Language, Reading, and Mathematics Learning Disabilities and Abilities

Reference
Age

(years) Measures

Unselected (U)
or extremes

(E)?

N/pairs
Genetic correlations

(95% CI)MZ DZ

Language vs. reading

Previous studies
Thompson et al.

(1991)
6–12 Metropolitan Achievement Test subtests of

language and reading
U 146 132 1.00 (—)

Hohnen & Stevenson
(1999)a

6 and 7 Phonological Awareness factor (phoneme
blending, sound categorization and
phoneme deletion) and Language
factor (grammar and vocabulary) vs.
Reading factor (single-word reading,
spelling, irregular-word reading, prose
reading, nonword reading, and
pseudohomophones)

Phonological Awareness factor vs.
Reading factor

U 66 60 0.67 (6 years) and 0.73
(7 years)

Language factor vs. Reading factor U 66 60 0.90 (6 years) and 0.69
(7 years)

Gayán & Olson
(2003)b

7–18 Latent variable of phoneme awareness
(phoneme transposition, phoneme
deletion, and auditory
conceptualization) and three latent
variables of reading (word
recognition, phonological decoding,
and orthographic coding)

Phoneme Awareness vs. Word
Recognition

U 257 183 0.75 (0.65, 0.86)

Phoneme Awareness vs. Phonological
Decoding

U 257 183 0.79 (0.70, 0.89)

Phoneme Awareness vs. Orthographic
Coding

U 257 183 0.55 (0.42, 0.70)

Gayán & Olson
(2001)

7–18 Tests of Phoneme Awareness vs. Word
Recognition

E 503 360 0.53, 0.70 (—)

Bishop (2001) 7–16 Factors of language impairment (1.
Receptive Grammar, Comprehension,
Recalling Sentences, Word Finding,
Graded Naming; 2. Nonword
Repetition) vs. reading (BAS Word
Reading, Vernon Graded Word Spelling)

Language Impairment vs. Reading E 64 23 0.64c (0.00, 1.29)
Language Impairment vs. Spelling E 64 23 0.49c (0.00, 1.09)
Nonword Repetition vs. Reading E 64 23 0.86c (0.45, 1.27)
Nonword Repetition vs. Spelling E 64 23 0.70c (0.30, 1.10)

TEDS
Oliver et al. (in press) 7 UK National Curriculum teacher assessments

of spoken language and reading
U 1730 1566 0.71 (0.65, 0.77)

Harlaar et al.
(in press)

4 and 7 Language and articulation composites at 4
years vs. reading composite at 7 years

Language vs. Reading U 386 688d 0.59 (0.39, 0.85)
Articulation vs. Reading U 386 688d 0.50 (0.24, 0.98)

Hayiou-Thomas et al.
(2004)e

4 and 7 Language and articulation composites at 4
years vs. reading composite at 7 years

Language vs. Reading E 114 158 0.78 (—)
Articulation vs. Reading E 102 161 0.68 (—)

Language vs. mathematics

Previous studies
Loehlin & Nichols

(1976)
17–18 U.S. National Merit Scholarship

Qualifying Test
?

English Usage vs. Mathematics 1,300 864 0.52 (—)
Vocabulary vs. Mathematics 1,300 864 0.39f (—)

Thompson et al.
(1991)

6–12 Metropolitan Achievement Test subtests of
language and mathematics

U 146 132 0.98 (—)

TEDS
Previously unpublished

TEDS datag
7 UK National Curriculum teacher assessments

of spoken language and mathematics
U 1,538 1419 0.59 (0.53, 0.65)
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phenotypic correlations and we do not see the genetic correlations
to the same extent that we see phenotypic associations and disso-
ciations. Finally, even in terms of genetics, genetic correlations are
not 1.0, which means that there are specialist as well as generalist
genes. However, what is interesting from this review of multivar-
iate genetic research is the great extent to which genes are
generalists.

How Do Generalist Genes Work?

Research reviewed in the previous sections suggests that, to a
substantial extent, genes that affect learning disabilities and abil-
ities are generalists in three ways: (a) genes that affect common
learning disabilities are largely the same genes responsible for

normal variation in learning abilities, (b) genes that affect one
component of a learning disability or ability affect other compo-
nents, and (c) genes that affect one learning disability or ability
affect others as well. What are the mechanisms by which genes can
have such general effects? This question can be addressed at
several levels of analysis: DNA (molecular genetics), brain (neu-
roscience), and mind (cognitive psychology).

DNA

Molecular genetics will provide the most direct test of the three
generalist genes hypotheses drawn from our review of quantitative
genetic research. The obvious predictions are that (a) most genes
found to be associated with a particular learning disability will also

Table 5 (continued )

Reference
Age

(years) Measures

Unselected (U)
or extremes

(E)?

N/pairs
Genetic correlations

(95% CI)MZ DZ

Reading vs. mathematics

Previous studies
Thompson et al.

(1991)
6–12 Metropolitan Achievement Test subtests of

reading and mathematics
U 146 132 0.98 (—)

Light & DeFries
(1995)

8–20 Reading composite (PIAT reading
comprehension, reading recognition,
and spelling) vs. mathematics (PIAT
mathematics and WISC-R arithmetic
subtests)

E 148 111 0.55h (—)

Knopik et al. (1997) 8–20 Composites of reading (PIAT reading
comprehension, reading recognition,
and spelling) vs. mathematics (PIAT
mathematics, WRAT arithmetic)
disability

E 42–102 23–77 0.53 (—)

Knopik & DeFries
(1999)

8–20 Composites of reading (as above) and
mathematics (as above plus WISC-R
or WAIS-R arithmetic) ability

Unselected sample U 220 135 0.47 (0.20, 0.74)
Reading-disabled sample ?i 290 236 0.61 (0.52, 0.68)

TEDS
Kovas, Harlaar,

Petrill, & Plomin
(in press)

UK National Curriculum teacher
assessments of mathematics and
reading composite (TOWRE and UK
National Curriculum teacher
assessments of reading)

U 999 928 0.74 (0.68, 0.80)

Note. MZ � monozygotic; DZ � dizygotic; CI � confidence interval; BAS � British Ability Scales; TEDS � Twins Early Development Study; PIAT �
Peabody Individual Achievement Test; WRAT � Wide Range Achievement Test; WISC-R � Wechsler Intelligence Scale for Children—Revised;
WAIS-R � Wechsler Adult Intelligence Scale—Revised; TOWRE � Test of Word Reading Efficiency.
a Although genetic correlations were not reported in Hohnen and Stevenson (1999), we were able to calculate genetic correlations, but not CIs, from the
published data.
b Analysis based on combined samples of reading-disabled and control individuals.
c Bivariate group heritability, not group genetic correlation. It is not possible to calculate bivariate group genetic correlations in this study because the
sample was selected for language impairment, whereas bivariate group genetic correlations require bidirectional selection—that is, for probands low in
reading as well as probands low in language.
d Analysis based on combined sample of same-sex and opposite-sex twins.
e The results reported here are from the sex-limitation analysis and on combined sample of same-sex and opposite-sex DZ twins. The best fitting model
was the one that equated the parameters for the two sexes.
f Genetic correlations were not calculated in this publication but the data were used to calculate genetic correlations later (Martin, Jardine, & Eaves, 1984;
Plomin & DeFries, 1979).
g Model-fit statistics for this previously unpublished analysis are �2(24) � 39.21, p � .03, Akaike information criterion (AIC) � �8.79, root-mean-square
error of approximation (RMSEA) � .02.
h Bivariate group heritability, not group genetic correlation. The genetic correlation between reading disability and mathematics disability cannot be
calculated because the selected sample was reading disabled; the converse bivariate genetic analysis was not reported for low mathematics probands and
a continuous measure of reading in the cotwins. However, assuming that an analysis of mathematics disability probands and reading ability in cotwins
yielded the same result as in the reported analysis of reading disability probands and mathematics ability in cotwins, the group genetic correlation would
be 0.71 between reading disability and mathematics disability.
i Although this analysis involved reading-disabled individuals, it was an analysis of individual differences rather than a bivariate DF extremes analysis.
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be associated with normal variation in the relevant learning ability,
(b) most genes found to be associated with any component of a
learning disability or ability will also be associated with all other
components, and (c) most genes associated with a particular learn-

ing disability or ability will also be associated with other learning
disabilities and abilities. However, these predictions cannot as yet
be tested because no genes have been identified that are reliably
associated with common learning disabilities or abilities. A major

Figure 3. Trivariate analysis (Cholesky path model) of language, reading, and mathematics for teacher-assessed
data at 7 years in the Twins Early Developmental Study. Top: Full model. The three measured variables (rectangles)
are teacher-assessed language, reading, and mathematics, and the latent variables (circles) represent A (additive
genetic), C (common or shared environment), and E (nonshared environment) estimates. Middle: Genetic results: The
three genetic latent variables (circles) and the three path estimates leading to the three measured variables (rectangles).
Bottom: Proportion of the total variance attributable to genetic influences for each trait is indicated by the paths leading
from the latent genetic factors to the measured traits. Correlations between the latent genetic influences on each trait
(transformed Cholesky parameters) are denoted by rGx and are represented by the double-headed arrows.
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reason why identification of genes has been slower than antici-
pated is that there are likely to be many more genes with much
smaller effect sizes than had been anticipated, which means that
larger studies with greater power to detect small effects are needed
(Plomin, DeFries, Craig, & McGuffin, 2003; Zondervan & Car-
don, 2004). Optimism is warranted with the advent of completely
new approaches such as whole genome association studies involv-
ing thousands of DNA markers genotyped on microarrays (Carl-
son, Eberle, Kruglyak, & Nickerson, 2004), including microarray
genotyping of DNA pooled across large samples of learning dis-
abled individuals and controls (Butcher et al., 2004). The good
news from the generalist genes theory is the prediction that the
same set of genes is associated with most learning disabilities.

Reports are beginning to appear of genes associated with normal
variation in cognitive abilities. Some of these associations involve
general cognitive ability (Plomin, 2003b) and some are reported to
be specific to executive functions of the prefrontal cortex (Dia-
mond, Briand, Fossella, & Gehlbach, 2004). However, these re-
sults need to be replicated with larger samples. Although no genes
have as yet been reliably identified as associated with learning
disabilities, several linkages to chromosomal regions have been
found for learning disabilities. The first QTL linkages for common
learning disabilities were reported for reading disability, and rep-
licated linkages have been found for Chromosomes 6 and 15
(Fisher & DeFries, 2002). Although there was considerable excite-
ment during the past year about a gene (EKN1) that might be
responsible for the Chromosome 15 linkage (Grigorenko et al.,
2004; Taipale et al., 2003), several studies have failed to replicate
the association (Grigorenko et al., 2004). The first genome screen
for reading disability also found linkage to Chromosome 18
(Fisher et al., 2002). The first two QTL linkage studies of language
disability suggested linkages on Chromosomes 16 (Inoue &
Lupski, 2003; SLI Consortium, 2002) and Chromosome 13 (Bart-
lett et al., 2002). No linkage studies of mathematics disability have
been reported.

These QTL linkage results provide some support for the theory
of generalist genes. Because QTL linkage is based on the molec-

ular genetic equivalent of DF extremes analysis, it supports the
first hypothesis that genes associated with a particular learning
disability will also be associated with normal variation in the
relevant learning ability. In QTL linkage analysis, probands are
selected on the basis of a diagnosis, and their cosiblings’ regres-
sion to the mean on a quantitative trait is assessed as a function of
how similar the siblings are for a particular DNA marker (Fisher &
DeFries, 2002). That is, for a particular marker, siblings can be like
adoptive siblings sharing neither of their two alleles at that locus,
DZ twins sharing one of the two alleles, or MZ twins sharing both
alleles. This allele-sharing index of 0, 1, or 2 for each sibling pair
is substituted in the basic regression equation for the coefficient of
genetic relatedness (R) in the DF extremes analysis shown earlier.
Thus, analogous to the quantitative genetic version of DF extremes
analysis, QTL linkage requires a genetic correlation between learn-
ing disability in the proband and normal variation in learning
ability in the proband’s sibling. Going against this first hypothesis
of genetic links between the normal and abnormal is a recent QTL
linkage report suggesting that linkages are stronger at the extreme
(Francks et al., 2004).

QTL linkage results are also relevant to the second hypothesis of
genetic homogeneity. That is, to what extent are linkages specific
to certain aspects of learning disabilities? For reading disability,
the only learning disability for which sufficient research is avail-
able to address this issue, the answer is clear: The linkages are
general. That is, the same linkages appear across measures of
diverse reading processes, including orthographic coding, phono-
logical decoding, word recognition, and rapid naming (Davis et al.,
2001; Fisher & DeFries, 2002; Knopik et al., 2002). A similar
conclusion about the generality of linkage results has been reached
in a multivariate linkage analysis, which is a promising tool for
testing the hypothesis of generalist genes in linkage studies (Mar-
low et al., 2003). A multivariate QTL linkage analysis of word
recognition and IQ provide suggestive linkage for both traits on the
long arm of Chromosome 2 (Luciano et al., in press).

Concerning the third hypothesis of genetic comorbidity, we
predict that linkages for one learning disability will be found for
other learning disabilities. Although linkages reported in the first
two linkage studies of language impairment are not the same
linkages found for reading disability, these two studies themselves
report different linkages for language impairment (Bartlett et al.,
2002; SLI Consortium, 2002). Failure to replicate linkages is a
widespread problem for complex traits (Altmüller, Palmer, Fi-
scher, Scherb, & Wjst, 2001).

The rest of this section considers the mechanisms that lie be-
tween DNA and their general effects on learning disabilities and
abilities.

Pleiotropy. When genes are identified, powerful tools are
available to study the mechanisms by which genes have their
general effects within and between learning disabilities. Genes
themselves are not correlated unless their loci happen to be in close
proximity on the same chromosome. What is correlated is the
effects of the gene products transcribed from DNA. The central
dogma of DNA has focused on the less than 2% of DNA, called
coding regions of genes, that are transcribed into messenger RNA
(mRNA) and then travel outside the nucleus of the cell to form
templates from which amino acids are assembled in a process
called translation. For nearly all genes, a complicated process
called splicing occurs between transcription and translation. All of
the DNA within a gene is transcribed into mRNA, but segments of

Figure 4. Scatterplot between reading and mathematics scores in the
Twins Early Developmental Study for which the phenotypic correlation is
.65.
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mRNA (called introns) are deleted and remain in the nucleus,
whereas the other segments (called exons) are spliced back to-
gether and exit the nucleus, where they are translated into amino
acid sequences. In the past, introns were thought to be genetic junk
that has hitched a ride evolutionarily, but it is now known that in
some cases introns regulate the transcription of other genes. More-
over, it is likely that some of the other 98% of DNA not in coding
regions of genes can also have effects. Exons are conserved
evolutionarily—most of our exons are highly similar to DNA
sequences in primates, mammals, and even invertebrates. This
implies that the sheer number of such genes is not responsible for
the greater complexity of the human species. More subtle varia-
tions in DNA rather than the number of genes are responsible for
differences between mice and men (Brett, Pospisil, Valcarcel,
Reich, & Bork, 2002). If subtle DNA differences are responsible
for the differences between mice and men, even more subtle
differences are likely to be responsible for individual differences
within the human species. For example, noncoding DNA se-
quences outside of gene regions can act as genes by producing
RNA molecules that regulate gene expression directly rather than
being translated into amino acid sequences (Eddy, 2001). Al-
though many rare and severe disorders caused by a single gene
involve mutations in exons, DNA variations in introns and other
noncoding regions might be sources of more subtle generalist
effects on complex traits such as learning disabilities and abilities.

In genetics, manifold effects of such gene products are called
pleiotropy. Tracing the pleiotropic pathways between genes and
cognition through the brain is the key to understanding how
generalist genes have their diffuse effects within and between
learning disabilities and abilities. For example, genetic effects on
basic physical properties (e.g., dendritic density) or physiological
properties (e.g., synaptic plasticity) of the brain are likely to have
diffuse effects downstream. These pathways will be complex
(Fisher, in press; Inoue & Lupski, 2003) and determining direct
causation will be difficult (Page, George, Go, Page, & Allison,
2003) precisely because these genetic effects are so highly pleio-
tropic (Gray & Thompson, 2004).

Gene expression. A powerful tool for tracing the pleiotropic
effects of genes through the brain is gene expression (Carter et al.,
2001; Lockhart & Barlow, 2001). Gene expression can be indexed
by the presence of mRNA. Unlike DNA, which is the same in
every cell in the body, the amount of mRNA transcribed from a
gene varies in space and time as a function of the activity level of
the gene. Research on patterns of gene expression in different brain
regions and in response to different cognitive tasks is the genetic
equivalent of functional neuroimaging.

In the present context, a central question is the relative speci-
ficity or generality of gene expression across brain regions and
across tasks. The generalist genes theory predicts that genes will
have general rather than specific effects both across brain regions
and across tasks. Gene expression can be studied using postmor-
tem human brain tissue; for example, a recent study shows reduced
expression after age 40 in the frontal cortex of many genes in-
volved in synaptic plasticity, vesicular transport, and mitochon-
drial function (Lu et al., 2004). However, most gene expression
research involves mice. Mouse research on gene expression is
obviously not useful as a behavioral model of uniquely human
behaviors such as language, reading, and mathematics. However,
mouse model research will play an important role in charting the
expression of genes in the brain even for learning disability be-

cause nearly every human gene can be found in only slightly
altered form in mice (Crusio & Gerlai, 1999; Plomin, 2001b). A
critical development is microarray analysis, which can detect the
expression of tens of thousands of genes simultaneously (Bassett,
Eisen, & Boguski, 1999; Leach, 2004). Such gene expression
profiling was first used in cell lines to diagnose diseases based on
the profile of genes that are expressed in response to the disease
(Golub et al., 1999) and to study the response to drugs (Iyer et al.,
1999). Research on mice is underway that aims to create an atlas
of patterns of gene expression throughout the brain during learning
and memory tasks (Grant, 2003).

Proteomics. The next step beyond gene expression is to in-
vestigate the function of proteins that result from translation of
RNA. This field is called protein genomics, which led to the
neologism proteomics. Proteomics is much more difficult than
genomics because, unlike the triplet code of DNA that governs the
genome, there is no simple code for understanding the proteome.
There are also several complications. First, perhaps as many as
half of all human genes are alternatively spliced into exons and
introns and thus translated into different proteins (Banks et al.,
2000; International Human Genome Sequencing Consortium,
2001). Second, proteins are modified after translation. Although
the amino acid sequence of a protein can be predicted with cer-
tainty from the expressed DNA sequence, the functioning of a
protein depends on the way it folds, a process that is poorly
understood. Third, proteins attach themselves to other proteins;
understanding protein function depends on understanding the in-
teractions between proteins in these protein complexes. Again, this
complexity is a reflection of the highly pleiotropic nature of
genetic effects.

FOXP2. Identifying just one of the many genes responsible for
the heritability of learning disabilities can provide a small window
through which we can view mechanisms by which genes have their
pleiotropic effects. An instructive recent example is a mutation in
the FOXP2 gene that is responsible for a disorder of speech and
language that appeared in one three-generation family called the
KE family with 15 affected individuals (Lai, Fisher, Hurst,
Vargha-Khadem, & Monaco, 2001). Although this single-gene
disorder was originally thought to be specific to grammar (Gopnik,
1990), it is now known to involve wide-ranging language and
cognitive impairments as well as motoric problems related to
mouth movements (Vargha-Khadem et al., 1998). The mutation
responsible for the disorder in the KE family is rare, perhaps
unique to the KE family, and does not contribute to genetic
variation in common language disabilities (Meaburn, Dale, Craig,
& Plomin, 2002; Newbury et al., 2002). Nonetheless, identification
of the FOXP2 gene led to an intense research effort to explore
mechanisms by which the gene has its effect on speech and
language in the KE family.

Research on mice has been valuable in mapping the brain
expression of the FOXP2 gene. The central question is whether the
gene is expressed in a specific region of the brain involved perhaps
in communication such as the murine ancestor of Broca’s area. The
human gene is highly similar in mice: The mouse version of the
protein differs from the human version in only 3 of more than 700
amino acids (Enard et al., 2002). In mice, FOXP2 codes for a
particular type of regulatory protein called a transcription factor,
which regulates the transcription of other genes during embryonic
development (Carlsson & Mahlapuu, 2002). Because this is such a
basic function, FOXP2 would be expected to have general effects,
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and this is the case: FOXP2 is expressed throughout the nervous
system, as well as in embryonic lung, heart, and gut (Shu, Yang,
Zhang, Lu, & Morrisey, 2001). In the brain, FOXP2 is expressed
throughout development in many regions including cortex, thala-
mus, hypothalamus, striatum, cerebellum, and medulla (Lai, Ger-
relli, Monaco, Fisher, & Copp, 2003). We predict that most genes
associated with common forms of learning disabilities will have
similarly far-reaching pleiotropic effects, leading to genetic corre-
lations within and between learning disabilities and abilities.

Brain

Understanding how generalist genes work in the brain is not limited
to molecular methods such as gene expression and proteomics; stan-
dard tools such as neuroanatomical, pharmacological, electrophysio-
logical, and imaging measures are also relevant. Figure 5 illustrates
three basic models of how generalist genes could work in the brain. In
Model 1, a single brain mechanism, influenced by multiple genes, is
responsible for the genetic overlap between learning disabilities. For
example, it has been argued that individual differences in a single
fundamental brain mechanism such as neural plasticity could create
overlap between independent brain processes in their downstream
effects on behavior (e.g., Garlick, 2002). Other single mechanisms

have been proposed such as dendritic complexity, myelinization, and
speed of nerve conduction (Deary, 2000).

Model 2 suggests that several genetically independent brain
processes affect multiple learning disabilities, thus creating phe-
notypic and genetic correlations at the level of learning disabilities,
even though the brain processes are themselves uncorrelated ge-
netically. In Model 3, brain processes that affect learning disabil-
ities are themselves genetically correlated. That is, although some
genes (e.g., Genes 1 and 6 in Figure 5) have effects specific to a
particular brain mechanism, most genes (e.g., Genes 2, 3, 4, and 5)
have pleiotropic effects on several brain mechanisms. Although all
three models could account for genetic correlations between learn-
ing disabilities, we favor Model 3 because we predict that the
theory of generalist genes applies just as much to the brain as to
behavior. That is, we predict that brain processes related to learn-
ing disabilities are themselves genetically correlated. This predic-
tion is contrary to the modularity view that dominates neuro-
science, which is represented by Model 2. Although the original
concept of modules as innate and invariant information-processing
units (Fodor, 1983) has been watered down to the notion of domain
specificity, it remains a pervasive view in neuroscience—from
older lesion studies to newer neuroimaging research—that brain
processes are discrete and independent (Elman et al., 1996;

Figure 5. Models of the relationship between genes (G), mechanisms (M), and learning disabilities (LD).
Although only two genes are shown influencing each mechanism, it is assumed that many genes are involved.
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Karmiloff-Smith, 1992; Pinker, 1994). Modularity is usually dis-
cussed at a species-typical level of analysis, but when applied to
learning disabilities, it motivates attempts to localize brain dys-
function, to assume heterogeneity rather than homogeneity within
and between learning disabilities, and to consider learning disabil-
ities as a “broken brain” rather than as a continuum of the same
processes responsible for normal variation.

Although much research using structural and functional neuro-
imaging techniques has been reported for learning disabilities,
hardly any of this research has used genetically sensitive designs
that directly test the theory of generalist genes. One exception
involves structural imaging research on individual differences in
brain region volumes, which finds high heritability and shows
correlations of about .40 with general cognitive ability (Deary,
2000; Vernon, Wickett, Banzana, & Stelmack, 2000), an associa-
tion that is substantially mediated genetically (Pennington et al.,
2000; Posthuma et al., 2002). In support of the theory of generalist
genes, the association with cognitive ability is not specific to any
single brain region (Plomin & Kosslyn, 2001). For example, a
recent study shows that cognitive ability is associated with gray
matter volumes in the frontal, temporal, parietal, and occipital
lobes (Haier, Jung, Yeo, Head, & Alkire, 2004), although other
research suggests that cognitive ability correlates primarily with
prefrontal cortical volumes (Gray & Thompson, 2004; Thompson
et al., 2001). Further support for a theory of generalist genes comes
from research showing that brain volumes across regions are
substantially correlated phenotypically (Pennington et al., 2000)
and genetically (Posthuma, de Geus, & Boomsma, 2003).

Phenotypic research on brain function is also relevant. That is,
if generalist genes contribute substantially to learning disabilities,
it follows that brain mechanisms involved in learning disabilities
can be expected to correlate phenotypically. A review of neuro-
science research on learning disabilities is beyond the scope of this
article, but it is interesting that neuroimaging research to date does
not provide much support for modularity. For example, a review of
functional imaging studies of reading disability concludes that
“there is no convergence on a single mechanism or region of
abnormal activation” (Grigorenko, 2001), although there is more
recent evidence in support of left occipitotemporal systems (Shay-
witz et al., 2004). Other functional brain measures using psycho-
physiological techniques have also been shown to be highly her-
itable but have not yet been shown to be related to cognitive
disabilities or abilities (Deary, 2000), such as peripheral nerve
conduction velocity (Rijsdijk & Boomsma, 1997), electroenceph-
alograph alpha peak frequency (Posthuma, de Geus, & Boomsma,
2001), and electroencephalograph coherence, which is a measure
of brain interconnectivity (van Baal, Boomsma, & de Geus, in
press; Van Beijsterveldt, Molenaar, de Geus, & Boomsma, 1998).
In summary, although much more research is needed to assess the
generality of brain mechanisms involved in learning disabilities,
extant data provide more support for the generalist genes theory
than for modularity.

Mind

Cognitive models of how generalist genes work can also be
considered in relation to Figure 5. That is, genetic correlations
among learning disabilities could come about by a single funda-
mental process such as working memory (Blair, in press; Conway,
Kane, & Engle, 2003) that affects all learning disabilities (see

Figure 5, Model 1). This simple model is central to cognitive
neuropsychology (Shallice, 1988). A recent evolutionary theory
involving a single cognitive mechanism proposed that general
intelligence evolved as a domain-specific adaptation to novelty but
has general effects because we now live in an evolutionarily novel
world (Kanazawa, 2004). A second possibility is that multiple
genetically independent cognitive processes are involved such as
central executive, phonological store, and articulatory loop pro-
cessing speed (Baddeley, 1986) that affect all learning disabilities
(see Figure 5, Model 2). Double-deficit models have been pro-
posed for language and reading but these tend to be like two
single-deficit models put together; single-deficit, double-deficit,
and what might be called multiple-deficit models of learning
disabilities have been recently discussed (Pennington, in press).
The third possibility is that the multiple cognitive processes are
themselves genetically correlated (see Figure 5, Model 3). Again,
we favor Model 3, predicting that the theory of generalist genes
also applies to the cognitive level of explanation.

Model 3 is supported by multivariate genetic research reviewed
earlier suggesting genetic homogeneity within learning disabili-
ties. That is, when component cognitive processes are analyzed,
they are substantially correlated genetically. For example, large
genetic correlations have been found, for language, between lex-
ical, grammatical, and phonological processes; for reading, be-
tween word recognition, orthographic coding, and phonological
decoding; and for mathematics, between numbers, shapes, and
application. It should be noted that this multivariate genetic re-
search assumes a model of correlated liabilities in which genes are
viewed as causal risk factors within as well as between learning
disabilities. Other models—for example, in which one disability
causes the other or when disabilities reflect different degrees of
severity—can also be addressed in multivariate genetic research
(Rhee et al., 2004), although greater clarity will be achieved when
specific genes and their mechanisms can be used.

Support for Model 3 also comes from multivariate genetic
research on psychometric tests of cognitive abilities that consis-
tently finds genetic correlations greater than .50 across diverse
cognitive abilities (Petrill, 2002; Plomin & Spinath, 2002). Similar
results suggesting substantial genetic overlap have been found for
more basic information processing measures that typically involve
reaction time or psychophysical measures of basic cognitive pro-
cessing (Deary, 2001). For example, in a German study of 169 MZ
and 131 DZ adult twin pairs, twins were assessed on two widely
used tasks, Sternberg’s memory scanning task and Posner’s letter-
matching task, which were designed to assess speed of accessing
short-term and long-term memory, respectively (Neubauer, Spi-
nath, Riemann, Borkenau, & Angleitner, 2000). A bivariate ge-
netic analysis of the two tasks yielded a genetic correlation of .84
(Plomin & Spinath, 2002), indicating substantial genetic overlap
between these tasks. Similar results were found in a study of
choice reaction time that included two, four, and eight choices—
which assess increasing cognitive load reflected in decision
time—in 184 MZ and 206 DZ pairs of young adult twins (Luciano
et al., 2003). Multivariate genetic analysis of the three choice
reaction time conditions yielded genetic correlations ranging from
.74 to .90.

These results support the hypothesis that generalist genes are
also important at the cognitive level of explanation. Such strong
genetic correlations among diverse cognitive measures suggest the
possibility that generalist genes that affect learning disabilities and
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abilities have even more general effects that extend to most cog-
nitive abilities and elementary cognitive processes and perhaps
even to perceptual processes. One of the oldest areas of psycho-
logical research involves a general factor that refers to the ubiq-
uitous positive correlations among diverse tests of cognitive pro-
cesses. This factor was discovered a century ago by Spearman who
called it g in order to avoid the many connotations of the word
intelligence (Spearman, 1904). A meta-analysis of 322 multivari-
ate studies indicates that the average correlation among diverse
cognitive tests is .29 (Carroll, 1993); the g factor accounts for
about 40% of the variance (Jensen, 1998). The g factor is also
indexed reasonably well by a total score as in IQ tests. The g factor
has been a focal point for quantitative genetic research with
meta-analyses yielding heritability estimates of about .50 (Plomin
& Spinath, 2004). Genetic correlations among such tests generally
exceed .50.

To what extent do the generalist genes that affect learning
disabilities and abilities also affect the g factor? Several of the
studies reviewed above explored this issue for language, reading,
and mathematics and generally find evidence for moderate genetic
overlap with the g factor. For example, in a report from the
Colorado group, a multivariate genetic analysis of phoneme aware-
ness, word recognition, phonological decoding, and orthographic
coding yielded genetic correlations with IQ of .56 (.38–.72) for
phoneme awareness, .53 (.37–.68) for word recognition, .49 (.30–
.67) for phonological decoding, and .44 (.29–.61) for orthographic
coding (Gayán & Olson, 2003). These genetic correlations with IQ
are lower than the genetic correlations among the language and
reading measures themselves (.76 on average), as reviewed earlier,
suggesting that not all generalist genes for learning disabilities
involve g. Other Colorado reports have yielded similar findings
(Alarcón, Knopik, & DeFries, 2000; Brooks, Fulker, & DeFries,
1990; Light, DeFries, & Olson, 1998), although some comparisons
yielded higher genetic correlations (Alarcón et al., 2000). In the
Cleveland study, genetic correlations were also somewhat higher
(.57–.85) between language, reading, and mathematics versus spe-
cific cognitive abilities of verbal, spatial, perceptual speed, and
memory (Thompson et al., 1991). In TEDS, teacher assessments of
reading and mathematics at 7 years for about 2,000 same-sex pairs
of twins yielded genetic correlations of .58 (.46–.72) between
reading and IQ and .67 (.53–.83) between mathematics and IQ,
with IQ assessed by two verbal and two nonverbal tests adminis-
tered by telephone (Kovas et al., in press). Similar results have
been reported in other twin studies (Bartels, Rietveld, van Baal, &
Boomsma, 2002; Hohnen & Stevenson, 1999; Luo, Thompson, &
Detterman, 2003a, 2003b; Viding et al., 2003) and adoption stud-
ies (Wadsworth & DeFries, 2003; Wadsworth et al., 1995a,
1995b).

In summary, some generalist genes that affect learning disabil-
ities and abilities appear to be even more general in that they also
affect other sorts of cognitive abilities included in the g factor.
Although these findings are relevant to the current debates about
the role of intelligence in the diagnosis of learning disabilities
(Lyon, Shaywitz, & Shaywitz, 2003), they do not take us much
farther in terms of understanding mechanisms because we do not
know what the g factor is any more than we know what causes the
general factor that pervades learning disabilities and abilities.

It will be difficult to resolve these issues of the nature of the g
factor and its relationship to learning disabilities and abilities at the
behavioral or cognitive levels of analysis. As Spearman noted in

1927, ultimate understanding of the g factor “must needs come
from the most profound and detailed direct study of the human
brain in its purely physical and chemical aspects” (Spearman,
1927, p. 403). However, even the neural level of analysis cannot
definitively disentangle causation from correlation, because behav-
ior can affect the brain as well as the brain affecting behavior.
DNA is not subject to this direction of effects confusion; neural,
cognitive, and behavioral functioning does not change the structure
of DNA. For this reason, we suggest that finding generalist genes
associated with learning disabilities and abilities will be particu-
larly useful in clarifying the nature of the g factor and its relation-
ship to learning disabilities and abilities. As discussed earlier in
this section, identifying these generalist genes will make it possible
to investigate the gene expression, proteomic, and neural mecha-
nisms by which these genes ultimately have their pleiotropic
effects on learning disabilities and abilities as well as on the g
factor.

Conclusions

Our review of quantitative genetic research indicates that the
genes responsible for the high heritabilities of learning disabilities
and abilities are largely general in their effects within and between
learning disabilities and abilities. This research also indicates that
not all genetic effects are general. Genetic effects that are specific
within or between learning disabilities and abilities are just as
important. However, because it is widely assumed that genetic
effects are specific, we have highlighted the surprising extent to
which genetic effects are general. We also reiterate that our focus
on genetic research is not meant to disparage the important con-
tribution of environmental factors; another review could be written
based on these same multivariate genetic studies about the shared
and nonshared environmental links between learning disabilities
and abilities.

Definitive proof of the importance of generalist genes will come
from molecular genetic research that identifies DNA associated
with learning disabilities and abilities. The large genetic correla-
tions within and between learning disabilities and abilities suggest
that genes with general effects are important targets for molecular
genetic research. When these generalist genes are identified, they
will greatly accelerate research on general mechanisms at all levels
from gene expression and proteomics to brain and mind to
behavior.

The implications of generalist genes for clinicians are also
far-reaching. For example, the research reviewed in this article
suggests that genetic diagnoses differ from traditional diagnoses in
that the relevant genes are largely generalists rather than special-
ists. That is, from a genetic perspective, language, reading, and
mathematics disabilities are not distinct diagnostic entities. Al-
though causes are not necessarily related to cures, it seems likely
that more general treatments will be required to address such
general problems. The full impact of generalist genes on clinical
work will come when these genes and their mechanisms are
identified. Generalist genes will serve as early warning systems
that will foster attempts to prevent learning disabilities rather than
waiting for learning disabilities to develop and cast their long
shadows over children’s lives before attempts are made to treat
them.
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