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Abstract

Investigating sources of within- and between-group differences and measurement invariance (MI)

across groups is fundamental to any meaningful group comparison based on observed test scores. It is

shown that by placing certain restrictions on the multigroup confirmatory factor model, it is possible to

investigate the hypothesis that within- and between-group differences are due to the same factors.

Moreover, the modeling approach clarifies that absence of measurement bias implies common sources

of within- and between-group variation. It is shown how the influence of background variables can be

incorporated in the model. The advantages of the modeling approach as compared with other

commonly used methods for group comparisons is discussed and illustrated by means of an analysis of

empirical data.
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1. Introduction

Investigating within- and/or between-group differences on test scores is the focus of a large

number of research studies. The variance of an item or subscale score within a group indicates

the individual differences within the group. Individual differences with respect to multiple

observed variables may be summarized in a within-group variance–covariance (or correla-

tion) matrix. The structure of this matrix can be investigated using confirmatory (or

exploratory) factor analysis. Confirmatory factor analysis (CFA) is concerned with ‘‘explain-

ing’’ the common content of observed variables captured by their covariances with a smaller

number of underlying latent variables called factors. As CFA is applied to the covariance

matrix within a single group, the common factors can be regarded as the sources of systematic

within-group differences. Differences between groups, on the other hand, are often tested by

comparing the groups with respect to the means of the observed scores or with respect to the

means of the factors underlying the observed scores. The latter may be viewed as an analysis

of the sources of between-group differences and can be done by carrying out multigroup

CFA.

To render the group comparisons meaningful, it is necessary to address the issue of

measurement invariance (MI) and demonstrate that a given test measures the same underlying

factors across groups. We use the expression ‘‘same factor’’ to indicate that a factor has

exactly the same conceptual interpretation across groups. The interpretation of a factor

depends on the content of the observed items or subscales that are related to the factor and the

strength of those relations. Consequently, for a factor to have an identical interpretation across

groups, it is necessary that the relations of the observed variables and the underlying factor

are exactly the same across groups.

The present paper focuses on the relation between these three aspects of group compar-

isons, namely the relation between the sources of within-group differences (i.e., which factors

explain individual differences within a group?), the sources of between-group differences

(i.e., which factors explain the differences between groups?), and MI (i.e., does the test

measure the same factors in all groups?). Although all three aspects have been extensively

investigated separately, the relation between the three has not been clearly examined. In

addition, we show that hypotheses concerning these three issues can be tested using

multigroup confirmatory factor models.

Two areas, in which the relation between within- and between-group differences and MI is

important, are ethnic group differences in IQ test scores and the seemingly linear increase

over time in mean IQ test scores, termed the ‘‘Flynn effect’’ (Flynn, 1987, 1999). In these

areas of research, it has been frequently noted that sources of within-group differences and

sources of between-group differences are not necessarily identical (Lewontin, 1970). Differ-

ences between ethnic groups on an IQ test may be due to other factors than those which

contribute to the individual differences within each of the groups. Although several studies

focus explicitly on the issue of within- and between-group differences, both in a more general

context (Turkheimer, 1990, 1991) and specifically with respect to the Flynn effect (Flynn,

2000; Rodgers, 1998), it is common practice to investigate the two sources of variance

separately. Examples are single group factor analysis and multiple regression, which are
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based on within-group differences, and (M)ANOVA, in which groups are compared with

respect to their observed means. Another common strategy is to compare the test score means

adjusted for the influence of some variable of interest (Phillips, Brooks-Gunn, Duncan,

Klebanov, & Crane, 1998). As will be shown, this approach is based on the implicit

assumption that sources of within-group variance are the same as sources of between-group

variance. This assumption is usually not tested in practice. In order to show that within- and

between-group differences are indeed due to the same factors, it is necessary to analyze the

means and the covariances of the observed scores simultaneously.

As mentioned above, if comparisons of item or subscale scores are to be valid, the test has

to measure the same underlying factors in all groups. The concept of MI provides a

theoretical framework, which includes the necessary conditions to establish whether a given

test measures the same factors in the groups under consideration. The definition of MI states

that, conditional on the factor scores, observed scores do not depend on group membership.

This means that members of different groups who have the same score on the factor (e.g., the

same level of ability) have on average the same observed scores. The definition of MI implies

that groups may differ only with respect to the means and covariances of the factors that are

measured by the observed scores. In practice, MI can be investigated by fitting multigroup

CFA models to a given data set. To represent MI, certain model parameters are restricted to be

equal across groups. Both the restricted model and a less restricted model are fitted to the

data. The models may be compared by means of a likelihood ratio test. The test can provide

evidence that MI is tenable (for applications, see Dolan, 2000; Dolan & Hamaker, 2001).

The central issue of the present paper concerns the relation between MI on the one hand

and within- and between-group differences on the other hand. Specifically, the definition of

MI across groups implies that between-group differences cannot be due to factors with a

different conceptual interpretation than the factors that account for the within-group differ-

ences. Although the importance of MI has been acknowledged (Byrne, Shavelson, & Muthén,

1989; Dolan, 2000; Lubke, Dolan, & Kelderman, 2001; Marsh, 1994; McArdle, 1998; Oort,

1998), this implication is not well recognized. Hence, if in practice the hypothesis of MI is not

rejected, one can conclude with some confidence that within- and between-group differences

are attributable to the same factors.

Given the importance of conclusions in areas such as ethnic differences and/or the Flynn

effect, it is surprising that, at least to our knowledge, few of the recent studies use multigroup

CFA. A possible reason for the lack of using more state-of-the-art methods may lie in the

rather technical character of publications discussing implications of MI (Bloxom, 1972; Ellis,

1993; Meredith, 1993). Although some technical formulation is unavoidable, it is our aim to

explain the relation between MI and common sources of within- and between-group in an

accessible way and to discuss the advantages of using multigroup confirmatory factor models

rather than other commonly used methods. The approach proposed in this paper is applicable

to a wide range of research questions. The approach is adequate if groups are to be compared

on tests that consist of a larger number of continuous items or subscale scores, which are

assumed to measure a smaller number of underlying factors. This includes group comparisons

on multidimensional test batteries (e.g., IQ test batteries) as well group comparisons on

personality, mood, and attitude questionnaires or combinations of these.
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The paper is organized as follows. First, the multigroup CFA model is presented. We show

that observed scores are decomposed into common factor scores and a regression residual,

which comprises measurement error and item specific error. This decomposition has the

advantage that groups can be compared with respect to the means and covariances of the

factors. Second, we explain the concept of MI on a theoretical level and on a more practical

level in the context of the multigroup common factor model. The multigroup common factor

model corresponding to MI is characterized by a set of invariance restrictions across groups.

Third, we show that MI implies that between-group differences are unlikely to be due to other

factors than those capturing systematic within-group differences. We discuss how this result

can be used in practice. By comparing a model with the invariance restrictions across groups

to a less restricted model in a likelihood ratio test, one can examine not only whether MI

holds but also whether between-group differences are due to differences in the same factors as

the within-group differences. Fourth, we discuss how the multigroup model can be extended

to include background variables. The way in which background variables are integrated can

be guided by the outcome of tests of MI (Oort, 1992, 1998). Finally, we briefly discuss the

advantages of multigroup CFA as compared with other commonly used methods and present,

for the purpose of illustration, an analysis of scores of African and Caucasian Americans on

an IQ test (Osborne, 1980).

2. The multigroup model

The basic idea in multigroup CFA as opposed to single group analysis is to fit factor

models in several groups simultaneously. The factor model fitted within a group is a linear

regression model, which relates observed item or subscale scores to a smaller number of

latent variables called factors. Say we have i = 1, . . ., I observed scores, Y, measuring l = 1,

. . ., L factors. Suppose further that the total sample consists of j = 1, . . ., J subjects each

belonging to one of s= 1, . . ., S groups. If I = 6, L= 2, J= 300, and S= 2, we would have a test

with six items or subscales measuring two factors and 300 test takers that are divided over

two groups, for instance, 180 subjects in one group and 120 in the other. The within-group

model for the score of subject j on item i can be expressed as follows:

yij ¼ mi þ
X

L

l¼1

kilhjl þ eij: ð1Þ

As can be seen, the observed score y is modeled as the sum of a regression intercept, m, the

scores on the different factors, h, each multiplied with the corresponding slope parameters, k,

and a residual, e. In the context of the factor model, the parameters for the slope, k, are called

factor loadings. Note that the intercepts and the factor loadings are the same for all subjects

but may differ across items; hence, the intercept m and the factor loading k have no subscript j

but the item subscript i in Eq. (1). The factor score h is specific to each subject and has

subscript j for the subject and subscript l to indicate which of the L factors we are referring to.

A factor score represents, for instance, the individual’s math ability level. Consequently, it
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does not vary across items. The residual contains error that is specific for a given item and

random measurement error of a given person (Bollen, 1989). It has subscripts ij, meaning that

the regression residual may vary across items and subjects.

The multigroup confirmatory factor model can be fitted to the means and covariances of

the observed items or subscales instead of the raw scores (Sörbom, 1974). To obtain the mean

of item Yi within a group, we average across subjects in that group. The mean of the residual

is assumed to be zero; hence, the mean of item Yi is

EðY iÞ ¼ mi
X

L

l¼1

kilEðhlÞ; ð2Þ

where E denotes the expected value or mean. Commonly, the mean of an observed item score

is denoted as l and the mean of a factor as a Hence, we get

li ¼ mi þ
X

L

l¼1

kilal: ð3Þ

For I items or subscales, we have I of these equations
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: ð4Þ

which can be summarized in matrix notation as

Ms ¼ Ns þ

V

sAs: ð5Þ

The subscript s is added to indicate that this is the equation for the means of group s, s= 1, . . .,

S. The dimensions of M and N are 1� I,

V

is I� L, and A is 1� L.

The matrix equation for the variances and covariances can be derived in a similar way.

Again, Eq. (1) is the point of departure, and the variances and covariances of observed

variables are expressed in terms of underlying factors and residuals. The residuals are

assumed not to be correlated with the factors and not intercorrelated. The intercepts are

constants and have therefore zero covariance with the factors and the residuals. Hence, the

(co)variances of the observed scores, Y, equal the sum of the factor (co)variances pre- and

postmultiplied with the corresponding factor loadings and the variances of the residual scores.

We adopt again commonly used notation and denote the covariance matrix of the items as �,
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the covariance matrix of the factor scores as 8, and the variances of the residuals as 0. The

resulting equation for the variances and covariances in group s is

s¼

V

s8s

Vt
s þ0s: ð6Þ

It is important to note that the equation for the means and the equation for the covariances are

both derived from the same regression equation presented in Eq. (1). Recall that Eq. (1)

described the regression of the observed item scores on underlying factor(s). Hence, Eq. (5)

describes the means of the item scores in terms of the means of those factors, whereas Eq. (6)

describes the (co)variances of the items in terms of the covariances of the factors. The factor

loadings, �, are the same in the model for the means and the model for the covariances, that

is, for a given model a factor loading has the same value in the mean model (Eq. (5)) and in

the covariance model (Eq. (6)).

The multigroup confirmatory factor model comprises the model for the means as shown in

Eq. (5) and the model for the covariances as shown in Eq. (6). The parameters of the full

model are the regression intercepts, the factor loadings, the factor means, the factor

(co)variances, and the residual variances. These parameters can be used to impose a specific

structure on the means of the observed scores and their covariances. Parameters can be

restricted to take the same value in each group (i.e., to be invariant across groups) and/or to

take a specific value. By comparing restricted models with less restricted models, one can test

the hypothesis that the restrictions are tenable.

By fitting the full model to the means and (co)variances from several groups simulta-

neously, one can compare (1) the means across groups (i.e., the between-group differences)

and (2) the covariances across groups (i.e., the within-group differences). These two

comparisons are done simultaneously in a single analysis. Note, however, that between-

group comparisons with respect to factor means and covariances are meaningful only if the

observed scores are not biased, that is, if the observed scores are measurement invariant

across groups. In Section 3, we elaborate on MI (i.e., unbiasedness) and show that it requires

some of the model parameters to be invariant across groups. Imposing and testing these

restrictions is straightforward in the multigroup model. This is followed by a section in which

we show that multigroup model restricted to represent MI implies that between- and within-

group differences are due to the same factors.

3. Measurement invariance

MI has been defined in a very general context, independent of the sort of data at hand

(e.g., binary items, continuous items or subscales, etc.) or the type of model for the data.

Essentially, it is a statement that the distribution of observed variables given the un-

derlying factor scores is the same in all groups. In the context of IQ scores for instance,

this means that given a certain level of, say, verbal ability, all test takers have the same

probability of answering a verbal item correctly, independent to which group the test

takers belong.

�
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As an approach to the definition of MI, we utilize the concept of selection (Bloxom, 1972;

Ellis, 1993; Meredith, 1993). Groups can be conceptualized as being derived by applying a

function to a selection variable. Suppose the selection variable is ‘‘ethnicity,’’ then a suitable

selection function may be one, which assigns the value 0 to Hispanics, the value 1 to

Caucasians, and the value 2 to African Americans. This selection function results in three

ethnic groups. The selection variable is sometimes called grouping variable because it

indicates group membership. We refer to it by the letter V.

The definition of MI (or absence of bias) with respect to the selection variable V has been

given by Mellenbergh (1989) as

f ðY j h; sÞ ¼ f ðY j hÞ; ð7Þ

where, as before, Y and h are observed scores and factor scores, respectively. A distribution

function is denoted as f(�) and V= s is the selection variable, which determines group

membership s. This definition states that, given a subject’s factor score(s) h, the subject’s

observed scores Y do not depend on group membership. The definition of MI focuses on the

distribution of the observed scores and is therefore not confined to a specific model. It is

applicable regardless of the model for the observed scores.

Meredith (1993) has introduced a weak form of MI (WMI), in which invariance is limited

to the means (denoted as E(�)) and covariances (denoted as �(�)) of the distribution of Y:

E(Yjh,s) =E(Yjh) and �(Yjh,s) =�(Yjh). Since the multigroup model discussed here is

based on the assumption of multivariate normality of the factor scores and normality of the

residuals, WMI and MI coincide.

A number of researchers have provided methods to investigate MI in the context of the

common factor model (see, for instance, Marsh, 1994; McArdle, 1998; Mellenbergh, 1994a,

1994b; Oort, 1998). The present article is based on the work by Meredith (1993). Meredith

has elaborated the relation between MI (and WMI) and the multigroup factor model. More

specifically, he has shown how the parameters of the multigroup model have to be restricted

such that the model represents MI. There are three sets of restrictions implied by MI. First, the

regression intercepts, N in Eq. (5), have to be invariant across groups. Second, the factor

loadings, � in Eqs. (5) and (6), have to be invariant across groups. The third restriction

concerns the regression residuals and consists of three parts: the residual variances, 0 in Eq.

(6), have to be invariant across groups, all residual covariances have to be zero (i.e., no

correlated errors), and the residual means have to be zero. As mentioned above, zero residual

means and zero residual covariances are part of the model described above. Together, these

restrictions are called ‘‘strict factorial invariance’’ (SFI). Meredith has provided proofs that

SFI almost certainly ensures MI.

On a more conceptual level, the necessity of the three restrictions can be understood as

follows. First, suppose a regression intercept of one of the observed items differs across

two groups, say in Group 1 the intercept equals 2 and in Group 2 it equals 1. All other

parameters being invariant across groups, this means that the first group scores

consistently higher on that item than the other group for each value of the factor. The
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regression line corresponding to the regression of that item on the factor in Group 1 is

parallel to that of Group 2 but is located higher. As a result, the means of the observed

scores depend on group membership, i.e., E(Yjh,s) does not equal E(Yjh). Hence, MI

does not hold.

Secondly, differences in factor loadings (i.e., differences in the slopes of the regression of

observed variables on the factor) across groups can be interpreted in terms of an interaction

between group membership and factor scores. Again, take the two groups as an example, but

now suppose that they have different slopes of the regression of a given item on a factor.

Consequently, the regression lines of the two groups cross at some level of the factor score.

Only at that level of the factor score do the groups have the same average observed score. For

lower factor scores, one group scores lower than the other, and for higher factor scores, it is

the other way around. Such an interaction is a form of bias because, again, for a given factor

score (excluding the value where the regression lines cross), the observed scores depend on

group membership. Thus, factor loadings that differ for the groups are also inconsistent with

the definition of MI.

Third, regarding the residual variances, suppose that a test is used for an admission

decision and a certain level of ability (as measured by the factor) is required. If the decision is

based on the observed scores, then the number of incorrect admissions and incorrect

rejections is higher in the group with the larger residual variance (see also Meredith,

1993). More formally, given equal factor loadings, �(Yjh,s) does not equal �(Yjh) and

MI does not hold. The argument with respect to the necessity of zero residual means is the

same as with respect to the necessity of equal intercepts. If in a data set the residual means are

nonzero, this would be manifested in terms of the intercepts. Group differences in residual

means show as differences in intercepts because it is part of the multigroup model that the

residual means are restricted to zero. As mentioned above, unequal intercepts implies that one

group scores consistently higher than another group and MI is absent. Finally, residual

covariances have to be zero. A nonzero residual covariance between two observed items

implies that these items have something in common in addition to the factors. Hence, a

residual covariance can be interpreted in terms of an additional factor. One may think that

restricting the residual covariances (i.e., the correlated errors) to be equal across groups would

be sufficient for MI, but in fact it is not. Regard the residual covariance between the two items

in terms of an additional factor. For the same reason as discussed above, the factor loadings of

both items on the additional factor have to be equal across groups to achieve MI, it is not

sufficient to fix their covariance or correlation to be equal.1

The requirement of group-invariant intercepts, group-invariant factor loadings, and

residuals with group-invariant variances, zero means and zero covariances can be easily

specified in the multigroup model. Intercepts, loadings, and residual variances are specified to

1 If the residual covariance is represented in terms of an additional factor, then, conditional on the other

factors, the residual covariance equals the product of the factor loadings and the variance of the additional factor.

To achieve MI, not this product but both factor loadings have to be equal. The variance of the additional factor

may in fact differ across groups.
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be invariant across groups, and the residual covariances are fixed to zero.2 The restricted

measurement invariant model can be represented as follows:

M1 ¼ N; ð8Þ

Ms ¼ Nþ

V

As; s ¼ 2; . . . ; S ð9Þ

s¼

V

8s

Vt þ0: ð10Þ

One of the requirements necessary for the estimation of the model is to fix the factor means,

A, to zero in one of the groups; here, we have chosen Group 1 (Sörbom, 1974). The

requirement is due to the fact that the scale of the factors is arbitrary and has to be fixed. As a

result, the parameters A estimated in the remaining groups represent factor mean differences

with respect to the first group.

Comparing Eqs. (5) and (6) with Eqs. (8)–(10), one can see that in the restricted model,

only the factor means and the factor covariances may differ across groups in the MI model.

Neither of the other model parameters has a group subscript. This is exactly what the

definition of MI requires.

4. MI implies that between-group differences cannot be due to other factors than those

accounting for within-group differences

The statement that between-group differences are attributable to the same sources as

within-group differences (or a subset thereof) is another way of saying that mean differences

between groups cannot be due to other factors than the individual differences within each

group. To confirm this statement, we have to show that two propositions are tenable by the

usual statistical criteria: (1) that the same factors are measured in the model for the means as

in the model for the covariances and (2) that the same factors are measured across groups.

The first part follows directly from the way the multigroup model has been derived. We

have shown that the two parts of the multigroup model, the model for the means and the

model for the covariances, have been deduced from the same regression equation (Eq. (1)).

Eq. (1) specifies the relation between observed scores and underlying factors. To derive the

multigroup model, we have taken the mean of Eq. (1) (as shown in Eq. (5)) and the variances

and covariances (see Eq. (6)). Taking means and (co)variances does not change the relation

between observed scores and their underlying factors as specified in Eq. (1). The factors in

the model for the means are the same as in the model for the covariances because both

submodels are derived from the same regression equation of observed variables on the

factors.

2 In most software programs for confirmatory factor analysis, it is not necessary to explicitly fix the residual

means to zero.

�
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The second part is implied by the concept of MI. The concept of MI has been developed by

Meredith (1993) to provide the necessary and sufficient conditions to determine whether a set

of observed items actually measures the same underlying factor(s) in several groups. MI

states that the only difference between groups concerns the factor means and the factor

covariances but not the relation of observed scores to their underlying factors. Only if the

relation of an observed variable to an underlying factor differs across groups, one can argue

that a ‘‘different factor’’ is measured in those groups. If Eq. (1) holds across groups with

identical parameter values, with the understanding that the mean and the covariances of the

factors, H in Eq. (1), may differ, then one can conclude that the proposition that same factors

are measured across groups is tenable.

To illustrate our argument, we discuss two scenarios that show why differences in the

sources of within- and between-group differences are inconsistent with MI. First, we discuss

the case that all factors underlying between-group differences are different from the factors

underlying within-group differences. Second, we consider a situation in which the within-

group factors are a subset of the between-group factors, that is, the two types of factors

coincide but there are additional between-group factors that do not play a role in explaining

the within-group differences. In addition, we show that the case, where between-factors are a

subset of the within-factors, is consistent with MI and that the modeling approach provides

the means to test which of within-group factors does not contribute to the between-group

differences.

Suppose observed mean differences between groups are due to entirely different factors

than those that account for the individual differences within a group. The notion of ‘‘different

factors’’ as opposed to ‘‘same factors’’ implies that the relation of observed variables and

underlying factors is different in the model for the means as compared with the model for the

covariances, that is, the pattern of factor loadings is different for the two parts of the model. If

the loadings were the same, the factors would have the same interpretation. In terms of the

multigroup model, different loadings imply that the matrix � in Eq. (9) differs from the

matrix � in Eq. (10) (or Eqs. (5) and (6)). However, this is not the case in the MI model.

Mean differences are modeled with the same loadings as the covariances. Hence, this model

is inconsistent with a situation in which between-group differences are due to entirely

different factors than within-group differences. In practice, the MI model would not be

expected to fit because the observed mean differences cannot be reproduced by the product of

A and the matrix of loadings, which are used to model the observed covariances. Consider a

variation of the widely cited thought experiment provided by Lewontin (1974), in which

between-group differences are in fact due to entirely different factors than individual

differences within a group. The experiment is set up as follows. Seeds that vary with respect

to the genetic make-up responsible for plant growth are randomly divided into two parts.

Hence, there are no mean differences with respect to the genetic quality between the two

parts, but there are individual differences within each part. One part is then sown in soil of

high quality, whereas the other seeds are grown under poor conditions. Differences in growth

are measured with variables such as height, weight, etc. Differences between groups in these

variables are due to soil quality, while within-group differences are due to differences in

genes. If an MI model were fitted to data from such an experiment, it would be very likely
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rejected for the following reason. Consider between-group differences first. The outcome

variables (e.g., height and weight of the plants, etc.) are related in a specific way to the soil

quality, which causes the mean differences between the two parts. Say that soil quality is

especially important for the height of the plant. In the model, this would correspond to a high

factor loading. Now consider the within-group differences. The relation of the same outcome

variables to an underlying genetic factor are very likely to be different. For instance, the

genetic variation within each of the two parts may be especially pronounced with respect to

weight-related genes, causing weight to be the observed variable that is most strongly related

to the underlying factor. The point is that a soil quality factor would have different factor

loadings than a genetic factor, which means that Eqs. (9) and (10) cannot hold simulta-

neously. The MI model would be rejected.

In the second scenario, the within-factors are a subset of the between-factors. For instance,

a verbal test is taken in two groups from neighborhoods that differ with respect to SES.

Suppose further that the observed mean differences are partially due to differences in SES.

Within groups, SES does not play a role since each of the groups is homogeneous with

respect to SES. Hence, in the model for the covariances, we have only a single factor, which

is interpreted in terms of verbal ability. To explain the between-group differences, we would

need two factors, verbal ability and SES. This is inconsistent with the MI model because,

again, in that model the matrix of factor loadings has to be the same for the mean and the

covariance model. This excludes a situation in which loadings are zero in the covariance

model and nonzero in the mean model.

As a last example, consider the opposite case where the between-factors are a subset of the

within-factors. For instance, an IQ test measuring three factors is administered in two groups

and the groups differ only with respect to two of the factors. As mentioned above, this case is

consistent with the MI model. The covariances within each group result in a three-factor

model. As a consequence of fitting a three-factor model, the vector with factor means, A in

Eq. (9), contains three elements. However, only two of the element corresponding to the

factors with mean group differences are nonzero. The remaining element is zero. In practice,

the hypothesis that an element of A is zero can be investigated by inspecting the associated

standard error or by a likelihood ratio test (see below).

In summary, the MI model is a suitable tool to investigate whether within- and between-

group differences are due to the same factors. The model is likely to be rejected if the two

types of differences are due to entirely different factors or if there are additional factors

affecting between-group differences. Testing the hypothesis that only some of the within

factors explain all between differences is straightforward. Tenability of the MI model

provides evidence that measurement bias is absent and that, consequently, within- and

between-group differences are due to factors with the same conceptual interpretation.

5. Testing the measurement invariant model

The multigroup model can be fitted using standard software such as Mplus (Muthén &

Muthén, 2002), Lisrel (Jöreskog & Sörbom, 1999), EQS (Bentler, 1993), or Mx (Neale, M.C.,
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Boker, S.M., Xie, G., & Maes, H.H., 2002). Tenability of the MI model may be evaluated on

the basis of measures of goodness-of-fit and/or likelihood ratio tests (see, for instance, Bollen,

1989; Bollen & Long, 1993). Since MI is a composite hypothesis consisting of three

restrictions, rejection of MI can have several causes. In order to distinguish between the

causes of misfit, it may be useful to conduct the analysis in two steps (Mandys, Dolan, &

Molenaar, 1994). In both steps, the mean model and the covariance model are fitted

simultaneously. First, only the factor loadings and the residual variances are restricted to

be equal across groups. The residual covariances are fixed to zero. The factor means are fixed

equal to zero in all groups and the restriction of equal intercepts over groups is relaxed. Eqs.

(8)–(10) change to

Ms ¼ Ns ð11Þ

s¼

V

8s

Vt þ0: ð12Þ

Here, the mean model is saturated. By equating observed means to the regression intercepts,

for each observed mean a separate parameter is estimated, which, in addition, may vary across

groups. Fitting this model serves to investigate whether the restricted model for the

covariances holds across groups (i.e., within-group differences due to the same factors across

groups). Some researchers allow group-specific residual variances (Little, 1997). As

mentioned before, group-specific residual variances may be problematic (see also Lubke &

Dolan, 2003; Meredith, 1993). If equal factor loadings and error variances across groups

result in the rejection of the covariance model, modification indices may help to identify the

variables that cause the misfit (i.e., identify the biased variables).3 In case one has a

hypothesis that a given background variable is causing the bias, one may proceed by

extending the model. Incorporating such a variable in the model may eliminate the misfit (see

Section 6). If the model fits adequately, in a second step, covariances and the restricted mean

model (i.e., Eqs. (8)–(10)) are fitted simultaneously. In this step, it is tested whether observed

mean differences can be accounted for by mean differences in the same factors as within-

group differences. Appreciable decrease of model fit with respect to the first step of the

analysis will occur if observed mean differences are not solely due to mean differences in the

factor underlying within-group differences. The decrease can be interpreted in terms of

absence of MI because intercept differences between groups are due to other factors in

addition to the factors underlying the within-group differences.

The decrease in model fit can be tested statistically with a likelihood ratio test because the

models are nested: a model with a restricted mean structure is compared with the same model

with an unrestricted mean structure. Given the assumption of multivariate normality of the

observed scores and a sufficiently large sample, the decrease in model fit can be evaluated if

the restricted model is correct. Under these conditions, the difference in w
2 resulting from

fitting the two models is w2 distributed. The degrees of freedom of the likelihood ratio test

�

3 Modification indices are provided by the output of standard software for structural equation modeling and

indicate the decrease in w
2 if a restricted parameter is freed and the model is reestimated (Sörbom, 1989).
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equals the difference in free parameters between the two models. In case the first step results

in an adequate fit of the covariances and the likelihood ratio test is not statistically significant,

one can be reasonably sure that MI is tenable and that between-group differences are not due

to other factors than within-group differences. Other criteria may also be employed to

determine tenability of the model. Measures of goodness-of-fit such as RMSEA, BIC, CAIC,

and others are discussed by Bollen and Long (1993). For an illustration, see Dolan and

Hamaker (2001).

Testing MI in the multigroup model can serve to investigate specific hypotheses. One can

compare groups at one point in time or at different time points.4 For instance, consider the

Flynn effect. The Flynn effect concerns a seemingly linear increase over time in observed IQ

test scores, which has been consistently observed way in several countries. The effect is most

notable on items requiring problem solving ability. The gains happen too fast to be of genetic

origin (Flynn, 1987, 1999). Researchers doubt that it is in fact an increase in intelligence

factors but attribute the effect to various other influences such as increased environmental

complexity, improved nutrition (Schooler, 1998; Sigman & Whaley, 1998), or, as Flynn

(2000) has proposed, increased time investment in abstract problem solving. To reject the

hypothesis that there is an increase in mean intelligence factors and to conclude that the gains

in observed scores are due to other variables than the intelligence factors, one can start with a

model that does not include any of the potential explanatory variables. The MI model is fitted

to the means and covariances of two or more generation groups and compared with the fit of a

less restricted model. If the higher observed scores of later generations are not due to the

intelligence factors measured by the test, the MI model should fit appreciably worse than the

less restricted model, because the generation mean difference in observed scores cannot be

explained by mean differences in the intelligence factors. Such an analysis would also reveal

which of the observed items or subscales show gains that are not explained by gains in the

factors. By inspecting the content of these items, one can develop hypotheses concerning

other variables that may explain the gains and include these variables as background variables

in the model (see Section 6).

The MI model can also serve to compare different groups at one time point. Examples of

analyses of MI using data previously analyzed by Jensen and Reynolds (1982) and Naglieri

and Jensen (1987) are described by Dolan (2000), Dolan and Hamaker (2001), and

Gustafsson (1992).

6. Model extension with background variables

Frequently, researchers have data concerning the subjects in addition to the test scores they

want to analyze. There are two ways of integrating background variables in the multigroup

model. First, one can specify the hypothesis that background variables influence only the

4 Investigating the same group across time is called latent growth modeling and is thoroughly described

elsewhere (Muthén, 2001).
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factor(s). We will call this Option 1. Option 1 serves to investigate structural relations, for

instance, the hypothesis that nutrition has an impact on IQ factors. Importantly, the influence

of the background variable on the observed scores is indirect since it is conveyed through the

factors (see Fig. 1). Second, one can specify that a background variable has a direct influence

on observed scores in addition to the influence on the factors, i.e., Option 2. This option is

suitable if one wants to eliminate the influence of a variable, for instance, age, and estimate

the influence of the factors on the observed scores while controlling for age. The two options

are depicted in Figs. 1 and 2.

The background variable c may be an observed variable or a factor and is therefore

depicted in a circle as well as in a rectangle. The observed means of Items 1 and 2 in Fig. 1

consist of the sum of an regression intercept and a direct effect of the factor h1, whereas the

observed means of Items 3–5 consist of the sum of an intercept, the direct effect of h2, and

the indirect effect of c, which is conveyed through h2.

Option 2 (see Fig. 2) can be accommodated by simply adding direct effects of the

background variable on the observed item(s).

The choice between the two options can be guided by testing a measurement invariant

multigroup model.5 First, a model is fitted without the background variables. The mean

model is unrestricted, that is, Eqs. (11) and (12) specify the model. Rejection in the first step

of the analysis indicates that the observed within-group covariances cannot be modeled with

the same factor structure across groups. MI does not hold without even including the means.

There are variables that influence the observed scores differentially across groups. To

investigate whether one of the background variables is causing the deviation from MI,

Option 2 can be specified to include direct effects of the background variables on the

observed items. If, on the other hand, the first step leads to an acceptable fit, the full MI

model with restricted means is fitted and compared with the less restricted model. This is

done again without the background variables. If the decrease in model fit of the MI model as

compared with the less restricted model is significant, one may inspect the modification

5 See Oort (1992, 1998) for a single group approach of using background variables to detect bias.

Fig. 1. Option 1: Factor scores h2 are regressed on a background variable, c which can be latent or observed.
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indices pertaining to the intercepts to identify items that have mean differences that are not

explained well by the factors. As before, Option 2 can be specified to include direct effects of

the background variable(s) on the items that are not measurement invariant. Suppose the

model decrease is not significant, one can conclude that the within-group variation is due to

variation in the factors and that observed mean differences between groups can be explained

by mean differences in the factors. MI is tenable. In that case, it is not necessary to specify

direct effects of the background variables on the observed variables because the only

variation that remains to be explained is the within- and between-group variation in the

factors.6 Hence, Option 1 can be specified to estimate the regression of the factors on the

background variables.

7. Disadvantages of other commonly used methods for group comparisons

In what follows we briefly discuss some of the drawbacks of alternative methods for group

comparisons. Methods for group comparisons such as those used in recent studies concerning

the Flynn effect and ethnic differences hinge on, at times implicit, assumptions about the

relation between sources of within-group variance and between-group variance. In addition,

the issue of MI is not always addressed adequately. Although the MI model is certainly not

restricted to the analysis of IQ test results, we think that this area of research may benefit

greatly by adopting a comprehensive model, which integrates MI and within- and between-

group sources of variance.

One of the alternative methods is multiple regression. Multiple regression is a method for

observed variables. It has been used, among others, to evaluate the effect of variables such as,

say, welfare status, on ethnic differences in IQ test scores (Herrnstein & Murray, 1994).

Fig. 2. Option 2: The latent or observed background variable, c, has additional direct effects on observed variables

Y4 and Y5.

6 An exception is a background variable, which influences only the within variation but not the between

differences of a single item. This is discussed by Lubke and Dolan (2003).
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Usually, the item scores are summed and the resulting test score is predicted by several

observed variables. Hence, one of the problems of this approach arises from the fact that

predictors in multiple regression are assumed to be measured without error, which is unlikely

the case with measurements in the social sciences. The consequences of possibly different

error variances across groups are neglected. It is well known that neglecting measurement

errors can lead to biased estimates (Rock, Werts, & Flaugher, 1978). Moreover, Millsap

(1995, 1997) has discussed in detail the paradoxical relation between measurement and

prediction bias. He has shown that it is very likely that the prediction of an observed variable

from observed predictors will be biased across groups if the predictors are in fact

measurement invariant. The problem can be solved by modeling the structural relations

between the factors underlying the observed predictors and the test scores instead of using the

observed variables.

Another common strategy to examine the effect of a particular variable on mean score

differences is to compare the test score means adjusted for the influence of that variable

(Phillips et al., 1998). Again, this type of analysis is usually carried out with observed

variables (e.g., test sum scores), which makes investigation of MI impossible. In addition, this

approach is based on the implicit assumption that within-group variance and between-group

variance have common sources. Within-group variation is used as a proxy for between-group

variation. Suppose a given factor, say E, accounts for 10% of the variance in test scores

within both of two groups. It is possible that the same factor varies to a much larger degree

between groups. Comparison of mean differences corrected for the within-group influence of

E leads to meaningful results only under the assumption that the within-group impact of E is

comparable with the between-group impact. However, this assumption is rarely tested in

practice.

The third method that has been repeatedly used to investigate ethnic group differences in

IQ test scores has originally been proposed by Jensen (1985) and is called ‘‘method of

correlated vectors.’’ The method, which has been extensively discussed elsewhere (see

special issues in Multivariate Behavioral Research, 1992 and Cahiers de Psychologie

Cognitive, 1997), is designed to test the hypothesis that black–white differences in IQ test

scores are fundamentally due to differences in general intelligence (or ‘‘g’’). For a comparison

of this specific method and the multigroup model, the reader is referred to Lubke et al. (2001).

Using simulated data, that study shows that Jensen’s method lacks specificity. Group

differences were ascribed to mean differences in a general intelligence factor when simulated

population data were not in accordance with such conclusions. Roorda, Dolan, and Wicherts

(2003) drew the same conclusion on the basis of reanalyses of published data set. For a

detailed criticism of the method of correlated vectors, see Dolan and Hamaker (2001).

The last issue relates to the search for explanatory factors (i.e., suitable background

variables in the MI model). Suppose that the MI model is tenable for IQ test data from two

generation groups. Hence, factor mean differences can account for the observed mean

differences. The mean difference across generations is usually larger in a problem-solving

factor than in a, say, verbal factor, because the gains over time are much more pronounced in

nonverbal items involving abstract reasoning. Consequently, when deriving hypotheses

concerning the sources of the factor mean difference, one should think of background
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variables that have a lesser impact on the verbal factor. This issue has already been stressed

by Flynn (1998). The same argument holds for ethnic differences: apparently, Caucasian

Americans outperform African Americans on all subtests; however, the disparity seems to

be less in memory-related items (Dolan, 2000; Jensen, 1985). Therefore, a background

variable accounting for ethnic differences should have less impact on a memory factor.

However, in recent studies in this research area, the effects of background variables is only

investigated in relation to total test scores, not with respect to certain factors or items.

Differential effects of background variables on factors can be easily evaluated using the MI

model.

8. Illustration using Osborne’s twin data

For the empirical example, we use data published in Osborne (1980). The subjects are

African and Caucasian American twins drawn from public and private schools in Kentucky,

Georgia, and Indiana. Note that this is clearly not a representative sample for the population

of African and Caucasian Americans in the United States; conceptual interpretations of the

analysis below are therefore not generalizable. The analysis is included for illustrative

purposes.

The data are scores on four subscales of the Primal Mental Ability Test developed by

Thurstone and Thurstone (1938). The first scale is verbal meaning, which is designed to

measure the ability to understand ideas expressed in words (‘‘verbal’’). Secondly, we have

number facility, which refers to the ability to work with numbers (‘‘number’’). Next, there is

reasoning, that is, the ability to solve logical problems (‘‘reason’’), and finally, we include

spatial relations, which refers to the ability to visualize objects and figures rotated in space

and the relations between them (‘‘spatial’’). In addition, we have age, sex, and SES status as

assessed by the method of Warner, Meeker, and Eells (1949). Our illustration consists of a

two-group analysis using the data pertaining to one twin of each pair. Ethnicity is the

grouping variable. Age, sex, and SES are used as background variables. Data from the second

twin of each pair are used for validation. In Table 1, summary statistics for blacks and whites

Table 1

Summary statistics of the Osborne data

Sex Age SES Verbal Numerical Reason Spatial

Twin 1

Blacks 69/36 14.7 (1.5) 16.1 (4.3) 88.4 (12.1) 86.0 (14.6) 86.0 (14.2) 89.1 (13.0)

Whites 38/47 15.4 (1.4) 13.0 (3.7) 102.2 (15.1) 101.3 (18.2) 103.9 (15.9) 102.1 (16.3)

Twin 2

Blacks 68/37 14.7 (1.5) 16.1 (4.3) 90.6 (12.8) 86.2 (13.7) 86.7 (15.1) 90.8 (13.3)

Whites 50/35 15.4 (1.4) 13.0 (3.7) 105.1 (14.8) 101.2 (16.8) 106.6 (14.3) 101.6 (13.9)

Sex is presented as number of females/males. All other values are averages with standard deviations given

between brackets.
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are given for the twins separately. All analyses are carried out using Mplus 2.0 (Muthén &

Muthén, 2002).

Based on the results of a preliminary exploratory factor analysis, we choose a single-factor

model with the four subscales as observed variables to model the data within each group.

Following the two-step procedure described above, we first fit the model for the covariances

with equal factor loadings and residual variances across groups and leave the model for the

means unrestricted. The latter means that in both groups we specify the factor means to be

zero and estimate the intercepts. The fit of this model is very good (see fit measures for

‘‘covariance model’’ in Table 3). The largest modification index is smaller than 5. The

observed variable R2, that is, the variance of the subscales that is due to the single factor, is

higher in the white group. Note that although groups are restricted to have equal residual

variances and factor loadings, they may differ in the factor variance; hence, differences in R2

as observed here are possible. The observed variable R2 are shown in Table 2.

To investigate whether these differences are substantial, we fit a covariance model with

unrestricted means in which the factor variances are also fixed to be equal across groups. The

w
2 is 21.202 with 12 df. The difference in w

2 with the first covariance model is therefore 8.2.

With 1 df difference, this is a significant deterioration in model fit. Hence, groups apparently

differ in factor variance. In what follows, we leave the factor variance unrestricted across

groups.

The next model we fit is the full MI model. The intercepts are set equal across groups and

the factor mean is fixed to zero in one group and estimated in the other. The choice of

groups is arbitrary; here, we estimate the factor mean in the white group. The fit of the

model is good (see Table 3, full MI model). The factor mean difference between the two

groups is 1.164 standard deviations favoring the whites. The standardization is done using

the factor variance of the white group. The fit of the model for the covariances is compared

with the fit of the full MI model, still without covariates. The difference in w
2 equals 2.2

with 3 df difference, which is not significant. Hence, both the actual fit of the full MI model

Table 2

Observed variable R2 of the covariance model

Verbal Numerical Reason Spatial

Blacks .465 .493 .589 .347

Whites .638 .664 .744 .518

Table 3

Measures of goodness-of-fit

Model w
2 df RMSEA SRMR CFI

Covariance model 12.998 11 0.044 0.059 0.993

Full MI model 14.236 14 0.013 0.063 0.999

MI model with SES 19.109 21 0.0 0.084 1.0

The P-values of all fitted models are >.05.
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and the fit compared with the covariance model provide evidence that the Primal Mental

Ability Test is measurement invariant on a subscale level across the two ethnic groups. Since

the residual variances and factor loadings are equal, differences in the variance of the

observed subscales are due to differences in factor variance. Differences in the means of the

subscales are due to a difference in factor mean. Since the within-group differences (i.e., the

covariances) and the between-group differences (i.e., the means) are modeled simultaneously

using the same regression equation (i.e., the same factor loadings, intercepts, and residual

variances), we have evidence that within- and between-group variance are due to the same

factor.

The last step in our analysis concerns the incorporation of background variables. Since the

MI model holds, we choose Option 1 as explained above and regress the factor on the

covariates. The aim is to investigate whether factor mean differences are at least partially due

to mean differences in the covariates. Hence, we conduct preliminary t tests to compare

blacks and whites with respect to the covariates. These preliminary mean comparisons have 1

df and show that groups differ significantly with respect to SES (tSES= 7.4568). The t values

for age and sex are smaller (tage =� 4.5954 and tsex =� 2.6753). All differences are

statistically significant. Hence, in the model with covariates, we regress the single factor of

our model on age, sex, and SES. The results reveal that the regression on age and on sex is

not significant in either group. For SES, the results are more pronounced. The regression of

the factor on SES is significant in both groups. Holding the regression of the factor on SES

measurement invariant across groups, we find that the factor mean difference is slightly

decreased and equals 0.977 standard deviations as compared with 1.164 standard deviations

in the MI model without SES. Both standardized mean differences are derived using the

factor variance in the white group. To avoid the dependence on the factor variance in the

white group, one can compute the percentage decrease in factor mean difference, which is due

to SES. We find that SES ‘‘explains’’ 	 16% of the factor mean difference. Measures of

goodness-of-fit of the covariance model, the MI model, and the MI model with SES are

shown in Table 3.

The important difference with regression models without latent variables is that here we

investigate the relation of a background variable such as SES with the factor underlying the

observed IQ test scales while knowing that these scales actually measure the same factor in

both groups. The relation of SES and the underlying factor is examined in the absence of

measurement error, which accounts for a considerable proportion of the observed variance. If

the impact of SES were investigated without explicitly taking the proportion of measurement

error in each of the subscales into account, this might lead to distorted results (Millsap, 1995).

Since the data published by Osborne (1980) are twin data, we can validate our results using

the second twin of each pair as a validation sample. The general line of results is very similar.

Although the model fit of all models is slightly inferior, the covariance model with equal

factor loadings and residual variances is tenable. The largest modification index is smaller

than 7. The decrease in model fit when adding the restrictions in the model for the means (i.e.,

fitting the full MI model) is not statistically significant (w2 difference is < 2 with df

difference = 3; see Table 4). Hence, also in the validation sample, the test is measurement

invariant with respect to the ethnic groups. The factor mean difference is somewhat higher in
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the validation sample and equals 1.478 standard deviations. When incorporating the

covariates, we find that, as before, age and sex have no significant effect on the factor, but

SES does. Regressing the factor on SES results in a decrease of the factor mean difference to

1.181 standard deviations. This corresponds to 20% of the factor mean difference being due

to SES. The validation analysis therefore largely confirms the previous results.

9. Discussion

If groups are to be compared on observed test scores, it is necessary to investigate whether

the test is measurement invariant across groups. MI in the factor model, that is, absence of

bias, implies that within- and between-group variations are due to the same factors.

Consequently, establishing MI and investigating between- and within-group differences

coincide in the context of the multigroup confirmatory factor model. A model restricted

according to MI can be compared with a less restricted model in a likelihood ratio test, which

makes MI a testable hypothesis. If the MI model is rejected, it is very likely that between-

group differences are due to different factors than within-group differences and that the test at

hand is biased across the groups under investigation.

The multigroup model, incorporating the restrictions implied by MI, provides a useful tool

to investigate the Flynn effect and ethnic group differences. The possibility to extend the

model is a further advantage. By adding background variables, one can investigate whether

observed mean differences or mean differences in intelligence factors are (partially) due to

other factors. Multigroup models with background variables allow a more thorough

investigation of many of the proposed explanations of the Flynn effect and ethnic group

differences.

There are, of course, limitations of the multigroup approach. Although rather far fetched,

there are three possible exceptions to our argument that MI implies common sources of

between- and within-group differences. Two exceptions are due to the fact that the regression

residual of the confirmatory factor model consists of the sum of random error and a

contribution specific to the observed item. First, mean differences in the residual are absorbed

by the intercept because residual means are restricted to be zero. Hence, the regression

intercept of an observed score can be rewritten as m* ¼ m+E(q), where E(q) is the nonzero

mean (or expected value) of the residual. Equating the intercept m* across groups as part of

the set of MI restrictions does not exclude the possibility that groups differ in m to the same

Table 4

Measures of goodness-of-fit in the validation sample

Model w
2 df RMSEA SRMR CFI

Covariance model 18.640 11 0.086 0.087 0.969

Full MI model 20.121 14 0.068 0.090 0.975

MI model with SES 25.790 21 0.05 0.084 0.982

The P-values of all fitted models are >.05.
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extend as they differ in E(q) and that the two differences cancel each other out. In that

situation, MI would hold although there is a twofold bias. As shown by Meredith (1993), the

same indeterminacy exists with respect to the residual variances: if groups differ in specific

variance to the same amount as in random error variance, and these group differences

compensate each other, then the residual variance is invariant across groups. Since this is not

a likely scenario, we think that consideration of these two exceptions should be based on

evidence indicating that there might indeed exist two or more sources of bias with effects that

compensate each other. If there is a hypothesis at hand concerning potentially biasing factors,

these can be measured and included as background variables. The third exception concerns

the factor loadings. As mentioned above, it is unlikely that a set of items is related to two

conceptually different factors in exactly the same way. However, let us consider this

possibility. In terms of the factor model, it would imply that the factor loadings on the

conceptually different factors are equal or strictly proportional. As a consequence,

�h1 +�h2=�(h1 +h2) =�h*, meaning that the factors cannot be distinguished. Therefore,

equating � across groups cannot guarantee that the same factors are measured across groups,

and similarly, equating � across the mean and the covariance model cannot guarantee that

within- and between-group differences are due to the same factors. However, it is hard to

imagine why the interpretation of factors with equal factor loadings should be different across

groups or, similarly, why the interpretation of the factor should be different for the mean and

the covariance model. The interpretation of factors with respect to their content depends on

inspection of the content of the observed variables. When analyzing data with a modeling

approach, the derived factors exist merely by grace of their factor loadings: they are what

observed variables have in common. If the common content of the variables can be

interpreted in terms of conceptually different factors, the researcher can add observed

variables to the test in order to arrive at a unique interpretation of the factors. Hence, we

conclude that these three exceptions do not represent a serious threat to the interpretation of

the model.

The more serious problem may concern the power to reject the MI model. For instance,

how sensitive is the model with latent means in detecting the influence of a biasing variable

on the observed mean difference of a test score? Although an extensive power study is

lacking, Lubke, Dolan, Kelderman, and Mellenbergh (2003) have shown that, given a

correlation of .3 between the biasing factor and the selection variable and/or the factors

underlying the test, a factor loading of size 0.3 on the biasing factor is sufficiently large to

reject the MI model even if the reliability of the observed variables was low (e.g., 0.4). In that

study, sample sizes were equal across groups (N1=N2 = 1000). Large differences in sample

size across groups might be problematic. Kaplan and George (1995) have shown that unequal

sample sizes across groups have a negative effect on the power to reject a MI-related

hypothesis.

Aside from these limitations, simultaneous investigation of sources of within- and

between-group variance based on the MI model is a useful approach. The approach described

in the present paper is adequate in case the observed variables are continuous and measure

one or several underlying factors that are also continuous. Within-group variation is explicitly

specified to be due to the same factors as between-group variation. Representation in terms of

G.H. Lubke et al. / Intelligence 31 (2003) 543–566 563



these models may facilitate the conceptualization of a given hypothesis regardless of any

attempt to actually fit the models to data. Evaluation of a hypotheses can be based on

measures of goodness-of-fit. If the hypothesis, that within- and between-group differences are

due to the same factors, is rejected, a researcher may attempt to detect the items with mean

differences that cannot be explained by the factors than those underlying the test. This may

help to identify suitable background variables and include them in the model. Incorporation

of background variables as described in the previous sections can serve to substantially

strengthen (or refute) many of the currently proposed explanations regarding the Flynn effect

and ethnic differences. Although in the present paper we have focused on group comparisons

on cognitive tests, the range of possible applications of the multigroup common factor model

restricted to investigate MI extends beyond this field of research.

Acknowledgements

The research by the first author was supported through a subcontract to grant 5 R01

HD30995-07 by NICHD. The research of Conor Dolan was made possible by a fellowship of

the Royal Netherlands Academy of the Arts and Sciences.

References

Bentler, P. (1993). EQS structural equations program manual. Los Angeles: BMDP.

Bloxom, B. (1972). Alternative approaches to factorial invariance. Psychometrika, 37, 425–440.

Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.

Bollen, K. A., & Long, J. S. (1993). Testing structural equations models. Newbury Park: Sage Publications.

Byrne, B. M., Shavelson, R. J., & Muthén, B. O. (1989). Testing for the equivalence of factor covariance and

mean structures: The issue of partial measurement invariance. Psychological Bulletin, 105, 456–466.

Dolan, C. V. (2000). Investigating Spearman’s hypothesis by means of multi-group confirmatory factor analysis.

Multivariate Behavioral Research, 35, 21–50.

Dolan, C. V., & Hamaker, E. (2001). Investigating black–white differences in psychometric IQ: Multi-group

confirmatory factor analysis and a critique of the method of correlated vectors. In F. Columbus (Ed.), Advances

in Psychological Research, vol. 6 (pp. 31–60). Huntington: Nova Science.

Ellis, J. L. (1993). Subpopulation invariance of patterns in covariance matrices. British Journal of Mathematical &

Statistical Psychology, 46, 231–254.

Flynn, J. R. (1987). Massive IQ gains in 14 nations: What IQ really measures. Psychological Bulletin, 101,

171–191.

Flynn, J. R. (1998). IQ-gains over time: Toward finding the causes. In U. Neisser (Ed.), The Rising Curve: Long-

term gains in IQ and related measures (pp. 25–66). Washington, DC: American Psychological Association.

Flynn, J. R. (1999). Searching for justice: The discovery of IQ gains over time. American Psychologist, 54, 5–20.

Flynn, J. R. (2000). IQ-gains, WISC subtests and fluid g: g theory and the relevance of Spearman’s hypothesis to

race. In N. Foundation (Ed.), The nature of intelligence (pp. 202–227). Chichester: Wiley.

Gustafsson, J. E. (1992). The relevance of factor analysis for the study of group differences. Multivariate

Behavioral Research, 27, 319–325.

Herrnstein, R. J., & Murray, C. (Eds.). (1994). The bell curve. New York: The Free Press.

Jensen, A. R. (1985). The nature of the black–white difference on various psychometric tests: Spearman’s

hypothesis. Behavioral and Brain Sciences, 8, 193–263.

G.H. Lubke et al. / Intelligence 31 (2003) 543–566564



Jensen, A. R., & Reynolds, C. R. (1982). Race, social class and ability patterns on the WISC-R. Personality and

Individual Differences, 3, 423–438.
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