Antecedents of academic achievement among elementary school American Indians and their classmates

Edwards, Karl Ormond, Ph.D.

University of Montana, 1987

Copyright ©1988 by Edwards, Karl Ormond. All rights reserved.

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark \qquad .

1. Glossy photographs or pages \qquad
2. Colored illustrations, paper or print \qquad
3. Photographs with dark background \qquad
4. Illustrations are poor copy \qquad
5. Pages with black marks, not original copy \qquad
6. Print shows through as there is text on both sides of page \qquad
7. Indistinct, broken or small print on several pages \qquad
8. Print exceeds margin requirements \qquad
9. Tightly bound copy with print lost in spine \qquad
10. Computer printout pages with indistinct print \qquad
11. Pages) \qquad lacking when material received, and not available from school or author.
12. Page (s) \qquad seem to be missing in numbering only as text follows.
13. Two pages numbered \qquad . Text follows.
14. Curling and wrinkled pages \qquad
15. Dissertation contains pages with print at a slant, filmed as received \qquad
16. Other \qquad
\qquad
\qquad
```
                        By
                Karl Drmond Edwards
                8.S., University of Utah, 1973
                B.A., University of Utah, 1974
                M.I.S., University of Montana, 1%gs
Fresented in partial tulfiliment of the requirements
            for the degree of
        Docter of Fhilosophy
        University of Montana
```

 1987
 Approved by

© 1988

KARL ORMOND EDWARDS
All Rights Reserved

Antecedents of Academic Achievement Among Elementary School Anerican Indians and Their Classmates (776 pp.)
Director: Radrey L. Eratsos.

The antecedents of academic azhievement were the focus of this panel and cross-sectional, enisting records study of American Indian elementary students and their classmates. Unlike most studies, this study more complexly operationalized academic achievement as ter. separate test 5cores. Antecedent data on academic achievement, teacher evaluations, personal/familial characteristics, and school environmentilearning contexts of Indian ($n=201$) and non-Indian ($n=253$) students were collected to: (1) describe student characteristics and determine if Indian students achievenent was, a三 previous studies have reported, telow that of their classmates; (2) discover antecedents that accounted for population and Indian academic achiavement: (3) determine if predictors of achievement were different for Indians than for the population, or if they varied by giade ievej: and (4) determine whether predictors were potentially manipulate by the Echool Eystem.

Descriptive statastics documenteo that Indian studeris were statistically and substantively gifferent from non-Indian students in antecedent academic achievement. teanner evaluations, parsonal:familial characteristics, and school environnentilearinag contexts. Analyses also demonstrated that the achievement levei of Indian students wes below that of non-Indian students, both for the aggiregate and at individual grade ievels.

Antecedente of indian achisvenent were different from those that predicted population achievement, accounted for more variance by grade level then for the aggregate, and were iofe predictive at particular grade levels than others. More of the predictors were potentially manifulatie by tre school system for botin the population and Indian students even though no more manipuiable variables entered the regression modals than expected by chance alone. Fotentially manipulatle predicturs accounted for significantly more of the explained variance for both the population ($65 \%-97 \%$) and Indian students ($80 \%-100 \%$). However, nori-manipulable antecedents, particularly perscnal/familial factors; were significantly more important to understanding population, rather than lndian, achievenent. Conversely, antecedent teacher evaluations were significantly more important to explaining Indian, rather than population, achievement. Fanel data showed that the achievenent gap between Intian Etudents and their classmates was generally less for third than second grade students, least for fourth grade students, but greatest for fifth and sixth grade stucients. Non-manipulable antecedents were more important ior Indian students at higher grade levels.

This dissertation is dedicated to my wife, cindy, and our children, Kristoffer and Fyan.

```
This research was part of an ongoing effort by the Washoe County School Eistrict Title IV Indian Education program to underetand，and hopatully facilitate，fmerican Indian student achievement．In 1783 the iitie \(] V\) program director，Sylvia micloud，submitted a Chapter i cláh giant proposal to purchase aquipinent and hire a researcher to deveigy a computerized student protile program to helo monitor Iridani亏tudent academic achievement and zuccess．Larger concarns of the district＇s special services director and curriculum specialist，ひerry Holluway，iricluded more generaizaed，thegretical understandingョ of Indicn aducation in the Washoe Courty School District，along with the more eaplirit aoplied goals．
Upori appraval of the block grant，attempts to locate a research assietant through the University of fivvada－feno proved unsuccessful， and the pusition was advertised in the local paper．i was subsequently haied for the position：with the clear understanding that I would be able to keep copies of all data collected for theoretical analyses in this dissertation．Thus，the oroject began with two
```

```
separate goals that, nonetheless, encompassed related sets of
objectives: (1) the theoretical exploration of Indian education in
the Washoe County School District; and
(2) the applied program development. The necessity to collect
information on both Indian and non-Indian students was explained to
the Title IV director and concurrent]y to Jerry Holloway.
    Data collection began in July, 1984, with the recording of the
Stanford Achievement Test Scores {algng with other types of test
sceres) on Indian students. Once permissiun and cooperation to obtain
data files from the mainframe were made, data collection begari ir
earnest. Most data were collected between September, 1994, and
December, lgat. Copies of the student's permanent records, enralimenc
forme: and other information were mede. Date: file structures for use
on persorial computers were created to Establjsh student profiles per
the applipd qoal: but data was not EfitEred (due to hardware damagei
successfully prior to my departure from Feno--although exflicit
guidelines were left for my replacement.
    Shortly after I began working for the district, I submitted a
research proposal to the district to conduct research for my
dissertation. The research would consist of analyzing characteristacs
of education, including both Indian and non-Indian student
differences, and identifying predictors of academic success. Through
the support of Jerry Holloway, and the interests of others in the
```

```
district, the proposal. was wholeheartedly approved. From that point
on, data was collected with the theoretical questions in mind;
although such isses here obviously cognate to the applied neeas,
albeit larger in scope.
    Data collection on Ny part ceased in December, 1984, when I
returned to Montana, but data collection on American Indian students
has remained an ongoing process. With my departure, the theoretical
issues became my oniy qual, while the Title IV program divorced itself
Of this theoretical goal in favor of the more strict applied goal.
However, since the district, and particularly Jerry Holloway, remalned
interested and supportive of my research: data collection was
complated in absentia.
    The results of this stucy, therefore, while intended to te
theoretical, will hopefully have sume applied effects as weli.
Moreover, it is my hope that I will be atie tu conduct further
rasearch in the Washoe County Schogi gistirict to obtaim both
attitudinal and interactional data.
```


ACKNOWLEDGEMENTS

```
    As witt sny project of this size, there are numerous individuals
who have helped tremendously in making it a reality, and it wouid be
impcseibla to thank each of them specifically. I woulc, therefore,
like to give my thanks to all the unnamed people who go gracicusiv
assisted me throughout this project. Special thanks, iowever, are due
to a few without whose help this dissertation mould not ae a fa\mp@code{aly.}
    First and foremost, I would like to thank my wise ano co-morker,
Cindy, for her constant support, assistance, and encourggement. Cindy
was of inestimable assistance in coding the da:a and in editing and
Eyping the manuscript. A special thanks iz given to my chair, Dr. Fiod
Erod, for his constant support, invaluable criticisms, enthusiasm,
long hours in the terminal room, and for his moral support during the
long hours of work.
    A very special thanks is also given to jerry Holloway for his
enduring belief in me, his protracted support and material assistance,
and for providing me with the opportunity to conduct this research.
To Haudeefi best and the other Ehzpter I, Title IV; und special
```

```
services staff, a word of thar.ks is due for all their help in locating
resources, teaching me the ropes of the district policies, and in the
use of personal computers.
    I would also like to thank [r. John McQuiston for his putting up
With my frantic requests and for assistance in collecting data on
school and student socioeconomic statuses.
    Last, but not least, a special note of thanks is particularly due
to my committee and my family for their faith, patience, and
encouragement.
```


OOMTEATS

Fage
LIST GF TAELES :ix
LIET OF FIEUFES. :
Chaoter

1. FESEARCH FFGELEH.
Fesearch fevien
Mecsures ot jtu山ant gucaess UEEA in
Frevigus Rejearin Z
 50
Buniary of Thaoretionh Persoect:ye. E
2. METHODOLOG: 4.
Fiesearch Design 54
Fesearch Frocedures 53
Sampling Methods. 55
Techniques $: 9$
Sampling procedures during data analysis 4
Data Collection Methods 67
Techaiques 67
Operationalization. 71
3. (Continued)

Deperident varjatize. a
Indiars and non-Imdians , 5.
Date Analysi Methois 03
Controlling for schocl Enfollment
differences 3
Techniques and processual sets of
data analysis 33
S. COAFARATIVE CHARAETERISTICE JF ACADEMIC

ACHIEVEMENT IN THE WASHOE COLNTY GCHOOL DISTRICT. . . . EB
Data Arialysis Prucasjes 7
Comparison of Student Achirvenent Test Sores. . . . 74
Indian and Non-indian Differances yt
Academac hchievement Congorizons by
Grade Level , 100
Educational Characteristics of the bashoe
County School ifistrict. i14
Etudent Achievenent Evaduatagi Characteristics. . . ifs
Indiar and mon-Indian congarisons 115
lidian and non-lndian confarisons by grade level 122

Eackgraurd Characteristics. 100
Sociocconomic status characteristics. 181
Home envirorment characteristics. 138
Echocl related backorubind factors 146
Thaividual bachorund characterastics AEO

Chapter

Fage
3. (Continued)
Indian characteristice. 152
Sunmary 159
School Environfent and Learning Context
Characteristics 160
School socioeconomic status chafacteristics 161
Library characteristics 172
Student and faculty characteristics 178
Summary 185
Conclusions 107
Student Characteristics of Education 157
Indian and Non-Indian Difierences 153
Implications 193
4. FORMULATION OF ACADEMIC ACHIEVEMENT MODELS. 190
Mathodolugical Clarificaticn. 197
Data Collection Frocedures. 190
Data Analysis Frocedures 17%
Correlates of Acadenic Achievenent. 202
Frevious Academic Achlevenent 203
Studerit Evaluations 204
Eackgrounc Characteristics. 205
School Environment and Learning Contexts. 20%
Summary 21"
Fredicting Academic Achievement 213

Chapter

F＇ミ日に
4．（Continued）
Stepwise Multiple fegression frocedures ．．．．．．． 213
Modals of Acadenic ahiguement．．．．．．．．．．． 27
Nord studv 引kills achievenent ．．．．．．．．．． 2 ．
Fieading comprehansion achieveñent ．．．．．．．．2le
Feading test total áhicverent．．．．．．．．．．． 220
Vocatulary knowledge achiavement．．．．．．．．．． 220
Listening comprehension achievenent ．．．．．．．． 22 i
Auditory tast totai achievenent ．．．．．．．．．． $2 \pi=$
Spelling achievemert．．．．．．．．．．．．．．．．iag
Math concepts actilevamant ．．．．．．．．．．．．zaz
Math test total achicvement ．．．．．．．．．．．．こご
Sciance knowledga athayznent ．．．．．．．．．．Zas
Sumary ．．．．．．．．．．．．．．．．．．．．．2a
Developing jeneral Hodals ot ncadenic
Achievenent ．．．．．．．．．．．．．．．．． 22 ？
Ethnicity and Achiavanent．．．．．．．．．．．．．ane
Grade Level and Achievenent ．．．．．．．．．．．．$-=0$
General Models of Acadenic Àchievement．．．．．．．Zeo
General reading model of achievement．．．．．．．．
Genergl math model of achievenant ．．．．．．．．Z4y
Sumary ．．．．．．．．．．．．．．．．．．．．．． 4
Conclusions ．．．．．．．．．．．．．．．．．． 275
5．MCDELS DF ACADEMIC ACHIEVENENT．．．．．．．．．．．．． $24 E$

Chapter

Fage
5. (Continued)

Theoretical Clarification 243
Methodological Clarifications 252
Data Collection Frocedures. 252
Data Analysis Frocedurà. 253
Discussion of fesearch festiats. 250
Intercorrelations Among Fredictor Variables 257
General Fieading Model 257
General Math Model. 253
Student Achievement in the fashoe County
School District 259

Accounting for the Variance 2tj
Suppressor Variables. 274
Manipulable and Non-Manipulatle Variables 275
Summary 270
Indian Achievement in the dashoe County
School District 250
Accounting for the yariance 200
Manipulable and Non-Manipulable Variables 286
Summary 285
6. COMPARIgONS OF ACADEMIC ACHIEVEMENT 290

Word Study 5kills 300
Fieading Comprehension 302
feading Test Total. 304

t. (Continued)

Vocabulary knomledge. 300
Listening Comprehension 300
Auditory Test Total 310
Spelling. 312
Math Concepts 314
Math Test Total 316
Science knonledoe $3: 7$
Accounting for the Yariance 35
Suppressor Veriatleミ. 323
Manipulatle and Mon-manipulable Variables. 32 g
The "uther" Firedictais. Sit
Unused fredictors Eit
Summary . 337
Comparison of Indian and Indiari Modified
Models of Achievement 341
Methodolcgical Clarifications 342
Indian hodified Models of Achievement 343
Comparison of Models. 343
Comparison of "Other" Predictors. 3̄1
Summary . 35
Summary of Academic Achievement in the Washoe County School District 355
7. MDDELS OF ACADEMIC ACHIEVEMENT EY GRADE LEVEL 35 E

Chapter

Fage
7. (Continued)

Methodological and Theoretical Clarification. 300
Population Models Without giade Level 300
Indian Models Without Grade Level Zos
Modifiad Indian Models Without Grade Level. 372
Summary . 377
Grade Level Models of Achievement 350
Washoe County School District Fopulation
Models by Grade Level 381
Wishoe County School Bistrict lidian Student
Ăhiavement by Grade Level. 392
Comparison of Population and Indian Models
口f Achievemant by Erade Leval 404
Comparison of sacond grade models. 40 .
Comparison of thitd grade models. 410
Cumparison of fourth giade Nodels 415
Comparison of fifth grade models. 4z!
Comparison of sixth grace modeis. 42 E
Accounting for the variance 454
Maripulable and Non-Manipulade Variables 447
Summary 465
E. The manifulability of achievement 469

Characteristics of Academic Achievement 470
Methodological CLarification. 47 i

Chapter

Fage
8. (Continued)

```
Cofiparative Analyses of Academic
AChieveñnt Fredictors. . . . . . . . . . . . . . 47
```

Comparison of reading and math predictur pools473

Comparisons of inanipulability by
models of achiavenent 431
Comparisons of types of antecedent predictors. 487

Summary . $4 E^{5}$
Comparative Analysis gi Explained Variance. 457
Comparison of average variances in
reading and math orientad models. 49 C
Comparisun of variances by models 49e
Comparison of Explained variances
by types of predictors. 476
Sumimary . 5 s
Conclusions 504
Antecedent Fredictors 507
Student's kesidence 510
Achievement by Grade Level. 515
Manipulability of Academic Achievement. 514
Factors Unique to Indian Etudents 517
Types of Fredictors 519
Eumary . 520
Chapter Paga
9. THE ACADEMIC ACHIEVEMENT OF THE WASHDE COUNTY SCHODL DISTRICT ELEMENTAFY SCHOOL FQFULATIDN AND INDIAN STUDENTS: SUMMAFY AND CONCLUSIDNS. 523
Discussion 525
Academic Achievement 528
Comparable and Contrastable Cnaracteristics of Models 538
Fredictors of academic achievenent. 5.39
Variances in acadenic achievement 541
Fredictors by orade level 542
Unique characteristics of madel ミ. 543
Frequent predictors 544
Frequent predjctors by grade level 545
Manipulability of Acadenic Achievement 545
Characteristics of Academic Achisevement 54%
Conclusions 55
10. ACADEMIC ACHIEVEMENT DF INDIAN STUDENTS: DISCUSEION AND IMFLICATIONS 56
Indian Education. 566
Implications. 553
Methodological Implications 583
Theoretical Implications 585
Fracticaliapplied implications 597
Summary 599
ENDNOTES 60^{2}
REFERENCES 605
A. DISTRICT infornation 620
E. coding manual 327
C. VARIABLE LIST 561
D. descriftive statistics for vaidagleg. 664
E. COFRELATION MATEICES 674
F. STEFWISE MULTIFLE REGRESSION FESULTE. 678
G. Fofulation stefwise and forced entiy nultifle FEGRESSION RESULTS 685
H. indian stefulse and forced enthy multifle FEGRESSIUN FESULTS. 69%

1. MODIFIED IHDIAN STEFAISE ARD FOFCED ENTGY MULTIFLE FEERESSION REEULTE 711
 fegression resulte ry brade level 715
K. indian stepuise and forced entay nultifle regressiun results by grade level 746
i. Mamffllable ard nen-manifllafle ffidictors and variances gy grade level. 768
Table Page
2. Washoe Eounty School Distirict Student Fopulation. 50
3. Original Indian and Aon-indian Elementary School Student Samples by School Number. 63
4. Washoe County School District Transiency Feport For Elementary 5chools 1973-1954. t
5. Reduced Indian and Non-Indicin Student Samples by Schaol Number 65
6. Erade Standardization Svstem 74
G. Student Achievements. 75
7. Fatterns of Teacher Evaluationis 76
E. Fersonal and Farental Eackground Characteristics. 77
8. Scheol Environment and Learning Content Characteristics 73
9. Stanford Student Academic Achievement Subtests, Tests, and Eattery Versions 50
10. Differences Eetween Indians and Non-indiansTaking the Stanford Achievement Tests (SAT) $9 E$12. Mean Comparisons of Indian and Non-IndianStudents For Standardized (z-Score)Achievement Test (SAT) Scores 97
11. Mern Comparisons of Indian and Non-IndianStanford Achievement Test (SAT) Scores byGrade Level . 101
12. Mean Comparisons of Indian and Ron-IndianStudents For Student Achievement and
Teacher Evaluation Charactaristics. $11 t$
13. Differences Eetween Indian and hon-Indian
Students in Teacher Evaluations 121
14. Mean Comparisons of Indian and Non-Indian
Sutject Grades by Grade Level 124
15. Student's Family Income 133
16. Differences Eetween Indian and Non-Indian Students in Eackground Socioeconomic Status Characteristics. 124
17. Differences Eetween Indian and Non-Indian
Students in Eackground Hede Environment
Characteristics $1+0$
18. Differences Eetween Iróa an and Non-IndianStudents in School Attendence EackgroundCharacteristics 147
Zi. Student's Age (in Months) at Tine of Testirg. 151
19. Differences Between Indian and Nan-IndianStudents in Personal BackgrowndCharacteristics153
20. Indian Student's National/Trioal Affiliations 155
21. Gpecial Eackground Characteristics \quad f
Indian Students 156
22. School's Median Family Income 162
2t. School Enrollments. 165
23. Age of Echool (in Years) 165

Table

28. Mean Comparisons of Indian and Non-Indian Students For School Environment and Learning Contert Characteristics Fer Student $1 t 9$
29. Mean Comparisons of Indian and Non-Indian Students For Library School ENvironment and Learning Context Characteristics Fer Student. 173
30. Mean Comparisons of Indian and Non-Indian Students For Student and Faculty School Environment and Learning Context Characteristics. . . . 179
31. Mean Comparisons of Indian and Non-Indian
Students For Student and Faculty School
Environment and Learning Context
Characteristics Fer Student 180
32. Sample Differences Between Indian and
Hon-Indian Students by Grade Level.154
33. Comparison of Fiegression Models 231
34. General Models of Academic Achievement in
the Washoe County School District 230
35. Fopulation Fredictor Models of Acedemic
Achievement . 261
St. Comparison of Original and Fopulation
Regression Models $2 t e$
36. Step of Entry for Predictor by Acacemic
Achievement Model for Student Faptilation.272

ZB. Comparison of Fercentages of Manipuiable and

Non-Manjpulable Variables for the Original

and Fopulation Models 277
37. Fredictor Models of Indian Academic Achievement 281
40. Step of Entry for Fredictor by Academic
Achievement Model for Indian Students 284
41. Percentages of Manipulable and Non-Manipulable
Variables Entering Indian Models. 287
Table Fage
42. Comparison of Fopulation and Indian Regreミsion Models. 292
43. Comparison of Fredictor Eentributions to Models 32044. Comparison of Fercentages of Manipuiable andNon-Manipulable Variatles for the Fopulationand Indian Modele330
75. Comparison of Table and Erplained Variances
Accounted for by Manipulable and Non-Manipuiable Variables 3.2
46. Antecedent Fredictors Not Entering Modele After Stepwise/Forced Entry Fegression. 83
47. Modified Predictor Models of Indian Academic
Achievement 344
4S. Comparisan of indian and Modified Indian
Fegression Modeis 346
49. Comparison of Fooulation Fenression Models
With anc Without Graie Level. 361
50. Comorison of Indian Feuression Models
With and bitnout Grade Level. 36
51. Comparisun of Moditied Indian Fegression Modele
With and without Erade Level. 874
52. Fredictors of Academic Achievement by Grade Level
for Fopulation. 352
53. Fredictors of Academic Achievement by Grade Level
for Indian Students 393
54. Fercentage of Variance Contributed by Variablesto the Total Model Variance for Second GradeFoptilation and Indian Students405
55. Fercentage of Variance Contributed bv Variablesto the Total Model Variance for Third GradeFopulation and Indian Etudent=. 411
Table Fage
56. Fercentage of Variance Contrituted by Variatles to the Total Modal Variance for Fourth Grade Fopulation and Indian Students. 4it
57. Farcentage of Variance Contributed by Variabiesto the Total Model Variance for Fifth GraceFopulation arid Indian Students. 422
Fercentage of Variance Contributed by Variatiesto the Total Model Variance for Sixth Grase
Fopuiation and Indian Students 429
59. Eonparison of Total Variance Accounted forby the Fopulation and Indian Models forEach Grade Lavel. 433
60. Fercantages of Manipulable and Non-ManipulableFredictors and Total Variance by Grace Levelfor the Fopulation. 448
bi. Fercentages of E:oplained Manipulable and hon-manifulatle Variances by grade Level. 454
62. Conparison of Original. Population and
Indian Fredictor Fools475
63. Number and Fercentage of Manipulable and fori-Marifulable variables in the Original, Fopulation and Indian Fegression Models of Achievement.482
64. Comparison of Variable Frequencies of Acadenic Achievement, Student Evaluation, Fersonal and Familial Gackground Characteristice, and Echool Environment and Learning Context Fredictors 488
65. Mean Comparisons of Average Aifounts of Variancas
Accourted for by Manipulable Variables. 494
66. Mean Comparisons of Average Amounts of Variances
Accounted for by Non-Manipulable Variables. 476
67. Comparisons of Table and E\%plained Variances in
the Orjginal, Fopulation, and Indian Models of
Achievement497
68. Comparisons of Variances hcounted for by
Manipulable anj Hon-Manipulable Firedictors. 499

 Comparison of Average Amounts of Variances

 Accounted for by Type of pradictor. 502
 70. Mean Differences in Standardized achievement
Test Ecores Across Grade Levels for Models. 530
71. Fredictors Common to and Unique to the Fopulation and Indian Achievement Modeis 540

FIGURES

Figure Page

1. Processes of Normal Science 47
2. Processes of the First Research Cycle 50
3. Frocesses of the Second Fesearch Cycle. 52
4. Frocesses of the Third Research Cycle 54
5. Frocesses of the Fourth Research Cycle 55
6. Flow of Data Analysis 87
7. Mean SAT Scores for Indian Students (I),Non-Indian Students (NI), and Population (F). 53
8. Mean Word Study Skills Scores by Grade Level 103
9. Mean Keading Comprehension Scores by Grade Level 104
10. Mean Reading Test Total Scores by Grade Level 105
11. Mean Vocabulary Scores by Grade Level 106
12. Mean Listening Comprehension Scores by Grade Level 107
13. Mean Auditory Test Total Scores by Grade Level. 108
14. Mean Spelling Scores by Grade Level 109
15. Mean Math Concepts Scores by Grade Level 110
16. Mean Math Test Total Scores by Grade Level 111
17. Mean Science Scores by Grade Level 112
Figure Fage
18. Mean (1983) Keading Grades by Grade Level 127
19. Mean (1983) Math Grades by Grade Level 128
20. Mean 1983 Grade Point Averages by Grade Level 129
21. Student's Median Family Income 136
22. School's Median Family Income 163

Chapter 1

FESEARCH PFOBLEM


```
Indian test scores" (Goldsamt and Jones, 1983:4-40); that is, the
researchers failed to significantly e:plain which factors, school or
non-school, associated with academic success.
    Most previous research, moreover, has focused upon secondary
school students (grades 7-12), which has created a void of any recent
comprehensive research on the academic achievement of elementary
school students (grades K-b). A number of studits häve also indicated
this need for more research on elementary stwdent a=hievement (e.g.,
Brod, 1977a, 1979b; Develupment Associates, Inc., 1983; W.C.S.D.g
1984). Together, this need for further research and the lack of any
cohesive theoretical understanding about the academic achievement of
Indian students (McShane, 1083), denoted the need for an inductive and
comparative study to identify descriptore and antecedents of both
Indian and ron-Indian academic achievement.
    To inductively and deductively e%amine the academic achievement of
elementary school Indian students and their non-Indian classmates in
the Washoe County School District, this study encompassed four
ubjectives. The first objective was to describe and compare
characteristics of elementary school Indian and non-Indian students
(including academic achievement) in the Washoe County School
District. The second obiective inductively identified and isolated
antecedent factors of standardized achievement test scores, which were
then developed into predictive models for explaining elementary school
student success in the Washoe County School District. The third
objective of the research deductively determined which factors best
```


Abstract

predicted academic achievement for the Washoe County School District elementary school students. Tests were also made to determine if different factors explained academic achievement for either Indian students or for students at different grade levels, than for the Washoe County School District elementary school total population in general. The fourth and final objective of this study was to empirically assess whether factors found to explain academic achievement for elementary school Indian students and their classmates were within the school system; and therefore potentially manipulable by it, or, as found in most previous research, outside the control of the schools, and not subject to manipulation by the Washoe County School District.

Fesearch Review

Abstract

In 1928 the Meriam Feport documented what was termed the "failure" of Indian schools to provide adequate training and education for Indian children. As a result of this Congressional investigation, the Johnson-0'malley Act of 1934 was enacted to correct problems found in the education of Indians. Since then, numerous scientific studies and school systefi evaluations of Indian education have been made, both in the context of Indian/government and public/private schools. In the first of these studies, Feterson (1948) concluded that considerable progress had been made and demonstrated a substantial reduction in the Jabeling of academic retardation. In 1950 Anderson and his associates


```
did a follow-up study of Peterson's project, and generally supported
the findings of Feterson. From these results it was concluded
    that as the cultural and educational backgrounds of Indian
    children become more like those of white children in public
    schools, the more closely will the educational achievement of
    Indian children match that of white children (Beatty, 1953:xvi).
    Other studies during this time period also drew favorable
conclusions as to lndian academic success. For example: in 1951
Hopkins wrote approvingly of the federal and mission schools on the
Tongue Fiver (Northern Cheyenme) Reservation. Simjlarly, Dale (1955)
evaluated the program of practical education on the Fine Ridge
Reservation and concluded that the program had definitely achieved its
purposes. E%cept for occasional anomalies such as these studies, the
nearly universal conclusion of investigations and evaluations of
Indian education has been that the Indian students were failing.
    A third follow-up study of Indian education was made by Coombs and
his associates in 195B, which has been considered by some researchers
(Eerry, 1968; Danlworth, 1969: DiSilvestro, 1961; Edington, 1969) the
most significant investigation done between the Meriam Report (1928)
and the Fenfedy Feport (1969). While Feterson reported positive
trends in Indian education, and Anderson generally verified Feterson's
findings, Coombs et al. showed that Indians were not achieving as well
as Feterson's study had indicated. The research of Coombs et al.
offered substantial evidence that Indian students were not achieving
as well in the basic skills subjects as non-Indian students, nor as
well as reported in previous studies.
    In 1967 a special United States Senate subcommittee was charged to
```



```
performances. Dependent variables were measures of student
achievement, attendance, and retention. With respect to academic
achievement, Development Associates, Inc., concluded that factors
typically conceived of as predictive of student achievement were not
predictive of Indian student achievement.
    Very few of the [Title [V-A Indian Education] project or student
    characteristics which were studied served as meaningful predictors
    of Indian student test scures....It would thus appear either
    that: (a) the variables which were selected for study in this
    evaluation are not those which are related to Indian student
    achievement test performance; (b) the measurement of those
    variables was imprecise or inaccurate; or (c) there are few
    project or student variables which are meaningful predictors of
    Indian student achievement test scores (Goldsamt and Jones,
    1983:4-40; emphasis added).
The researchers also made the startling conclusion that attendance and
retention were not a problem for Indian students per se.
    It appears that the attendance problem is no greater among Indian
    students than among the general student population....While local
    perceptions of the role of Title IV, Fart A projects in reducing
    dropout were positive, the Indian student dropout rate remained
    relatively constant over the past ten years (Rudes, 1983:13-3).
Lastly, Development Associates, Inc., made the general conclusion that
participation in Title IV, Fart A programs was not related to the
academic achievement of Indian students.
    Most Title IV, Fart A project[s] include a formal component to
    improve the academic performance of Indian students. The
    Development Associates evaluation did not provide definitive
    evidence that Fart A project[s] have improved Indian student
    academic performance. Achievement test scores were not found to
    be stronqly related to program participation by students or the
    extent of acaむemic programing by project[5] (Hopstock, 1983:9-3;
    emphasis added).
    This evaluation project was unique in that it had as one of its
objectives, the isolation of predictors of Indian students' academic
```

```
achievement test scores through statistical analysis techniques. That
is; unlike most other studies on Indian education, Development
Associates, Inc., had attempted to statistically describe the causes
as well as the effects of Indian student achievement. Specifically,
Development Associates, Inc., measured the following variables, where
asterisks (*) indicate variables also used to test project level
differences (1983:4-13):
    Contextual Variables
    * Technical Assistance Center Geographic Region (E categories)
    * Number of Indian students in project (S categories)
    * Geographic location of project (on or near Reservation, other
        rural area, urban area, metropolitan areal
    * Proportion of Indians to total students in district (4
        categories)
    * Whether or not Indians in projects represented a single tribe
    Program Characteristics
    * Cultural Emphasis (yes, no)
    * Counseling Emphasis (yes, no)
    * Basic Academic Skills Emphasis (yes, no)
    Student Characteristics
    * Language Spoken at Home: English only, Indian language only,
        both English and an Indian language, another combination of
        languages
    * Receiving Free or Partially Free Lunch (SES measure)
        Sex
        Grade
    * Tutorial Emphasis in Reading: none, remedial, or enrichment
    * Tutorial Emphasis in Mathematics: none, remedial, or
        enrichment
    Development Associates, Inc., as indicated above, concluded that
nO measured variable, including Title IV, Fart A program
participation, was a significant predictor of academic achievement
test scores for Indian students. These findings by Development
Associates, Inc., much more than other studies, suggested that the
factors explaining Indian education were different than those commonly
```

```
believed to be predictive of Indian, or any other, student
achievement. What other factors, then, have been commonly believed to
explain Indian educational success/failure?
    While many studies have examined the effects of schooling on
Indian students, fewer have studied the causes (5zasz, 1977), and even
fewer have tried to develop any theory of Indian education (McShane,
1983). This has probably been because most researchers have relied
upon accepted educational theories, which focused upon the student and
his family to explain educational success. Yet the conclusions made
by Development Associates, Inc., suggested otherwise berause they
included these factors in their study. Therefore, before examining
these general educational theories, a review of other explanations
concerning Indian education might be helpful.
    In a rare attempt io synthesize the literature on lndian education
in an effort to explain the academic achievement of Indian students,
Damian McShane (1983) has developed what he calls a transcultural and
developmental model of Indian student achievement. McShane
categorized the persomal, familial, and cultural factors usually
offered for explanations into five basic concepts, which he "refers to
as D models...disadvantage/deficit/deprivation (Ddd), disorganization/
disruption (Dd), dependence (d), difference (D), and developmental
change (Dc)" (1983:34). For McShane, the developmental change concept
has been the least applied, but most critical, of the five. Factors
McShane included under developmental change were: a) academic
performance (i.e., the crossover phenomenon; see below for discussion
```

```
of thisl; b) the neurosensory system; cl verbal and nonverbai language
ability; d) identity, stress, and mental health referral; e)
child-rearing; competence, and development; f) motivation crientation;
and g) family integrity and stability.
    Clearly, McShane has attempted, Ghrough his focus upon
developmental change, to place aoded emphasis upon psychological
factors.
There has been no concentrated focus upon the interrelationships among cognition, affect, and behavior. Typically, research has pursued questions with one of these three areas to the exclusion of the effacts of the others (1983:43-44).
Despite his preference for psychological explanations, McShane's
developmental change perspective of academic achievement incorporated,
in limited fashion, the ather four concepts, which were more
sociocultural in nature:
    Three levels of factors (family, child, teacher) directly or
    indirectly influence actual academic achievement over time, and
    two major sorts of environmental components (environment and
    peers) influence the nature of the context within which important
    transactions take place.
    In addition, underlying dimensions, primarily related to the
    family level, are identified with the particular "D"
    model...previous research has suggested may apply (1983:44).
Moreover, McShane's model held that "the first or primary level
influence upon variation in American Indian achievement lies within
the teacher-student relationship" (1983:44).
    NcShane's transcultural and developmental model contained several
problems, however. First, where is the "transcultural" (whatever he
HEant by this) part of the model? Second, which does he really see as
the focus? Was it the psychological cognitive, affect, and behavior,
```

```
or the social psychological interactional relationships? What was
clear, was that "non-developmental" concepts were not very important,
while it appeared that psychological factors werg important. Lastly,
why did McShame unekpectedly give emphasis to the student-teacher
relationship as the most important factor to understanding Indian
achievement? That is, when McShane stated that the relationship was
the primary influence on Indian achievement, that was his first (and
only) discussion of any type of interaction.
    Regardless of the internal conflict of what the primary influence
was in his madel, McShane did include, at one point, an interactive
factor (i.e., relationships) as an explanatory variable. Equally
important, McShane's model was relatively complex in comparison to the
general educational models often used to eaplain Indian achievement.
The model did: nonetheless, place an emptasis upon psychological
factors through its focus upon the student's cognitive, affective, and
behavioral asperts (i.e., the individual) and his familial influences.
    While McShane paid only limited attention to sociocultural
factors, most studies that have offered any type of conceptual
explanations about Indian student achievement have focused upon
sociocultural factors. Indeed, several of the studies already
discussed (Coombs et al., 1958; Meriam et al., 1928; U.S. Senate,
1967) drew attention to the sociocultural differences of the Indian
student. Eerry (1968), in his review of the research on Indian
education since the Meriam Report, generally concluded that
sociocultural differences were the cause of Indian student failure.
```



```
student's individual, familial, and cultural characteristics have best
explajned student achievement. Clearly, this dominant theory has the
same perspective as found in the literature on Indian education, but
with no group specification. This perspective has been essentially
predicated upon a few very influential studies.
    Foremost and earliest among this group of studies was the United
State's governmentally instigated report on the Equality of
Educational Dpportunity, also known as the "Coleman Report", by James
Coleman and his ascociates in 196b. The study conducted a large scale
cross-sectional survey of academic achievement in over 4,000 schools,
with some 645,000 students of all ethnic (including Indian) and racial
origins. The results were interpreted to indicate that educational
attainment was essentially independent of the schooling a student
received. During this same time period, a number of cross-sectional
studies were done in England that resulted in the Flowden Fieport,
Children and Their Frjmary Echools, in 1967. This study, similar in
many regards to the Coleman Feport, concluded that schools had limited
influence on the development of their students. Moreover, both of
these reports determined that home, parental, and other
non-manipulable influences beyond the control of the school system far
outweighed any manipulable influence of the school system on student
success.
Al50 quite influential upon existing beliefs about the effect of
schools on student success was the work of Arthur Jensen. In his
monumental report, "How Much Can We Boost IQ and Scholastic
```

```
Achievement?" Jensen (1969) reviewed the evidence on the factors that
influence ID and scholastic achievement. Jensen concluded that the
most influential factors were biologically determined, which was
substantiated by the fact that compensatory education had been tried,
and that it apparently had failed.
    In }1972\mathrm{ the last influentially condemning study was reported by
Christopher Jencks and his associates in Inequality: A Feassessment
of the Effect of Family and Schooling in America. Jencks et al.
reanalyzed numerous sets of statistical data, including the data from
the Coleman et al. study, and drew the startling conclusion that
    equalizing the quality of high schools would reduce cognitive
    inequality by one per cent or less [and that] additional school
    expenditures are unlikely to increase achievement, and
    redistributing resources will not reduce test score inequality
    (1972:109).
    As a result of these studies, it generally has come to be accepted
that education does not have any great influence on student success.
There has been, however, considerable disagreement as to what actually
influenced such success. Jensen (1969) concluded that heredity was
the predomjnate factor, while Jencks et al. (1972) interpreted student
success as essentially based on "luck." Coleman et al. (1966) and the
Flowden Report (1967), on the other hand, 5aw the roots of inequality
in familial and cultural influences during the pre-school years.
Thus, the dominant theoretical position has been that school systems
Have very little influence over student success.
    This dominant theory of educational success, consequently, has
been directly transposed to guide research on the academic achievement
```

```
of Indian students. While the psychological factors stressed by
McShane are not explicitly part of these dominant explanations, they
certainly can be located within its framework. Although more obvious,
so can the sociocultural factors. Thus, because of the apparent
adaptability of the dominant model, it can be understood why there has
been very little theorizing in Indian education.
    Yet there have been a number of recent and less prestigious
studies that have countered or refuted this commonly held pessimistic
view concerning the influence of school systems on student success. A
problem with this theoretical perspective, which has been a protlem in
Indian education as well, has been that;
    regarding the influence of the social contest or environment on
    individual behavior, reviews of the eoucational literature have
    generally not taken this theoretical tradition into account.
    Instead; they have tended simply to describe empirical results
    and/or present large scale models of interacting influences on
    achievement (Stockard and Mayberry, 1987:2).
    Similarly, part of the problem has derived from the fact that
those studies that have presented evidence demonstrating that school
systems did have an effect on student success have not been large,
cross-sectional studies, but rather, small, regional, cross-sectional
or longitudinal studies. Of these studies, the longitudimal studies
have been more generally accepted. Accordingly, one of the few
acknowledged challenges to the dominant theoretical position came in
197%, as the result of the longitudinal study of twelve London
secondary schoals by Michael Futter and his associates. The
researchers utilized a variety of data collection and analysis
techniques to investigate why there were differences between schools
```

```
in terms of various student measures (including academic
achievement). They looked at four generally different features: (1)
characteristics of students at the time they entered secondary school
(intake variables); (2) facets of the process of schooling (i.e.,
types of social organization and types of environments); (S) student
outcomes of these processes (i.e., achievement of educational goals);
and (4) ecological factors influential to the school process. From
their results, Rutter et al. made these definitive conclusions, which
clearly contradicted the dominant theoretical position on the
influerice of schools:
    First, our investigation clearly showed that secondary schools
    varied markedly with respect to their pupils' behaviour,
    attendance, exam success and delinquency. This had been observed
    before, but the demonstration that these differences remained even
    after taking into account differences in their intake was new
    [emphasis in the original]. This suggested that, contrary to many
    views, secondary schools do have an important influence on their
    pupils' behaviour and attainments [emphasis added].
    Secondly, we found that these variations in outcomes were
    systematically and strongly associated with the characteristics of
    schools as social institutions (1979:205).
The researchers also identified a number of variables that they found
to be assaciated with student success, but more interestingly they
concluded that
    the pattern of findings suggested that not only were pupils
    influenced by the way they were dealt with as individuals, but
    also there was a group influence resulting from the ethos of the
    school as a social institution (Futter et al., 1979:205).
That is, academic achievement was influenced by the quality of social
interactions between students and school personnel, and by
characteristics or image (or ethos) of the school itself.
    Other research has asked how schools can facilitate student
```

```
achievement by focusing on areas in which schools have more direct
control. In reviewing the effects of groupjng or contextual variatles
such as ability, racial, and/or socioeconomic composition of the
classroom or school, Stockard and Mayberry (1987) found a number of
studies in which such factors had minimal effect on achievement le.g.,
Alwin and Otto, 1977; Bridge, Judd and Moock, 1979; Campbell and
Alexander, 1965; Nelson, 1972; Wiatrowski et al., 1982). Another
important area that studies have focused on, which schools have
control over, has been learning climates. In looking at school
climates, Stockard and Mayberry (1987) found in their review that
valuing academic achievement along with social rewards for students:
accomplishments, an emphasis on basic skills, administrative
leadership, and an orderly atmosphere all had an effect on student
achigvement (e.g., Brookover et al., 1979; Purkey and Smith, 1982;
Futter et al., 1979; Wynne, 1980). In general, Stockard and Mayberry
(1987) found that the same characteristics important to the school
climate were important to the classroom climate as well. However, the
teacher's skills, expectations, and attitudes were also important to
the classroom environment. School size has also been shown to be an
important factor for understamding student achievement. Recent
studies, moreover, have found a nonlinear relationship (Stockard and
Mayberry, 1987) between school size and achievement, where the
negative effect was greater for some social categories of students
(Summers and Wolfe, 1977).
Thus; there have been a number of studies that have identified
```

```
factors that were manipulable by the school system for students in
general. In the first real review of this literature, Stockard and
Mayberry have proposed a conceptual framework to understand the role
of potentially manipulable fartors in student achievement:
    We are suggesting that most of the literature on the effect of
    environmental variables on student achievement can be understood
    by utilizing two broad-ranging, key variables presented in
    theoretical examinations of environmental or contextual effects:
    (1) the nature of a group's norms and values, and (2) the
    relationships among the group members. We further suggest that
    the norms and values of the group may be linked to distinctions
    between instrumental activities, those oriented toward task
    completion,and expressive activities, those oriented toward
    promoting socioemotional integration of the group. Finally, the
    relative balance between these activities and their content are
    seen as influenced by the nature of group relations (1987:2-3).
In sum, Stockard and Mayberry have proposed a primarily sociological
theoretical perspective that has focused upon interaction norms, and
values (or ethos), which would be manipulable by school systems.
    Very few studies, however, have investigated such mamipulable
factors to determine if they helped to explain the academic
achievement of Indian students. Indeed, the only known studias were
done by Rodney Brod (1975, 197ba, 1976b, 1977, 1779b). But, academic
acknowledgement of Brod's research has been limited to tribal
publications and one reading at the American Association for the
Advancement of Science meetings (1976b). Despite this visibility
problem, Erod's findings have seriously challenged commonly held ideas
about Indian achievement. That is, Erod found that potentially
manipulable variables within the school system accounted for over 90%
of the explained variance in the student's grade point average in a
rural school district enrolling Indian students (1975).
```

```
In exploring explanations for his findings, Brod pointed out, as did Futter et al. (1979), that national (or large rross-sectional) survey data were problematic in that they often (a) did not detect the variabjlity in regional and local patterns, (b) ignored schoal system factors when teachers, curricula, and facilities were the same, and (c) disregarded the fact that slight gross differences become magnified when statistically controlled (1976b:1). That is, the large-scale studies have helped in identifying gross differences between school systems, but have done little to explain educational processes and effects within particular school systems. This, Mehan (1979) has suggested, has resulted in very few practical policies having been produced. Mehan, in his work on classroom social organization, has also suggested three related methodological problems with large scale correlational studies:
1. These studies have attempted to use an 'input-output' model of schooling. However, indices of input, such as the number of books in the school library or the opinions of teachers, do little to explain variations in output (i.e., educational performance).
2. There is no way of knowing where the presumably missing input variables are to be found. This leads to considerable disagreements of what missing factors are likely to be (e.g., ability grouping or classroom arrangements).
3. "Correlational studies seldom provide similar findings on the same topic...[andl even produce contradictory interpretations of the 5ame data" (Mehan, 1979:7) (Silverman, 1985:8-9).
Consequently, a central issue involved with determining the predictors of Indian and other student's achievement has been a methodological problen. In a more recent study, James Coleman and his associates have rebutted these arguments in another national,
```

```
cross-sectional survey. In this stucy, as part of the continuing
National Assessment of Educational Progress, Coleman et al. compared
public and private high school systems. Based upon their new
conclusions, Coleman et al. again argued for the use of large, rather
than small, cross-sectional studies:
    despite this evidence that schools do make a difference, not much
    is known about what characteristics of schools affect
    achievement....The task of gaining some idea of factors affecting
    achievement and of the effects of their variations on American
    education is not a simple one; but large-scale surveys of students
    involving national samples of schools provide one approach to this
    task. Their principle virtue is coverage of a large enough set of
    schools to preclude finding fortuitous differences between schools
    having high and low achievement, and attributing causal
    significance to these fortuitous differences (Coleman et al.,
    1982:10-11; emphasis in the original).
While Coleman et al. have reaffirmed their previous conclusions
(Coleman et al., 1966) that ultimately the variables associated with
student success reside beyond the school's control, their arguments
have also pinpointed a major problem source. That je, while Coleman
et al. and others have been interested in determining the predictors
of academic achievement for the average American (whomever that may
bel, other researchers (and Brod in particular) have been more
concerned with particular groups or classes of students.
    Rutter and his associates also have provided some insight into yet
another methodological problem, that of measuring educational
achievement or success.
    A careful examination of the various studies shows that when like
    is compared with like the results of different investigations are
    pretty much in agreement on the main findings. The apparent
    clashes in evidence arise largely because the studies have
```

```
    qathered difforent kinds of data or have used different
    statjstical analyses to answer quite different questions
    (1979:2-3; emphases added).
That is, Rutter et al. have underscored the methodological differences
between their use of longitudinal data and the large-scale,
cross-sectional data used by Coleman et al, and others, which have
been most influential in creating the impression that education has
made little difference. But, paramount to this methodological issue
has been the overreliance of cross-sectional surveys on a single
measure of verbal ability or skill for their dependent variable.
Rutter et al., showed that reliance on such a measure tended to
underestimate the importance of schooling, as djd the choice of
subjects used; that is, subjects generally learned at school such as
mathematics or science tended to show greater school differences than
those subjects more likely learned outside of the school system, such
as English or social studies (1779:4).
    While Erod, Mehan, and Futter et al, have provided some insight on
the methodological differences of various types of studies, they have
not totally clarified the issues concerned with e%plaining educational
success. They have failed, for instance, to discuss the findings of
other relevant longitudinal studies such as the 1971 report on
Delinquency and Dropout by Delbert S. Elliott and Harwin L. Voss.
Fesults of this longitudinal study reinforced the findings of the more
influential cross-sectional surveys, having demonstrated that family
factors, which were not manipulable by the school system, were the
most important factors in accounting for student failure as measured
```

```
by delinquency and dropout. Similarly, the arguments against
cross-sectional studies made by Rutter et al. failed to account for
the findings of small scale or regional cross-sectional studies, such
as those by Erod, which have often supported the findings of
longitudinal studies, such as their own.
    The most important insight to be made from these studies,
therefore, was that they have gathered different kinds of data, to
answer many different types of questions. This insight has profound
implicaticns, given the fact that most of the prestigious studies were
certainly attempting to answer a question quite disparate from that of
this and a number of other studies. That is, the goal of Coleman et
al., Jencks et al., and athers has been social equality, where
education was the means to the goal, rather than educational equality,
where all students would receive equal education. It would seen very
probable that those factors involved in explaining educational
Equality were different from those of social equality.
    These methodological differences, therefore, have confused the
theoretical understanding of educational influences. Yet, equally
germane to these methodological problems has been the
operationalization of the dependent variable--student success; that
is, how one has defined and measured student success was shown by
Rutter et al. to determine the degree and type of educational
influence upon such student success.
```

Measures of Student Success Used in Previous Research
The implicit, if not erplicit, goal of formal education for Indian


```
may have contained two subtests, while at another grade level there might have been three or four subtests. A battery for one grade level may have been the reading, lanquage, and math tests, while for another grade level they might have included reading, listening, math, and science in the battery total. This problem has been further compounded by the fact that standardized test results have been reported as raw scores, percentiles, stanines, and grade equivalent scores. As pointed out above, the one most prevalently singled out for measuring achievement has been the verbal ability/skills test score. Percentiles tended to be the most common scores used, but researchers have used, on occasion, stanines, grade equivalent scores, and, less often, standardized raw scores. However, many researchers have not explained which test score was used, verbal or otherwise.
These methodologically diverse practices have raised serious questions as to the comparability of research findings from one study to the next, and to the validity and reliability of using a single test measure to determine academic achievement. Although Eome studies have used single measures other than verbal skill (e.g., DiSilvestro, 19611, and others have used several test/subtest scores to measure achievement (e.g., Quirk, 1965), there has remained considerable variation in the use of raw scores, stanines, percentiles, and grade equivalents (e.g., Anderson et al., 1953; Coombs et al., 1958; Dankworth, 1969; Development A5sociates, Inc., 1983; Freus5, 1969). Moreover, the use of standardized achievement test scores to
```

```
determine academic achievement posed a number of other problems.
First, as mentioned above, such tests have not necessarily tested
students on what they have been taught. Second, standardized tests
have often contained hidden biases against various subpopulations
being tested because of wording, format, and underlying assumptions.
On a general or national level a variety of different forms of tests
have been administered to a number of different grade levels, and at
different times of the year. The cultural biases inherent in
standardized achievement tests, as well as other assessments of
aptitude and achievement, have been documented and will not be
discussed.2 Third, it had to be assumed that the measured skills and
knowledge were common to either the gaal of assimilation or any other
emergent educational goals.j It must also be assumed that, although
culturally biased, standardized raw scores from a variety of subtests
and tests, as well as the battery total, provide the most accurate and
most comprehensive measurements of student skill or academic
achievement. All of these problems, assumptions, and biases
notwithstanding, for purposes of this research, achievement test
scores were assumed to provide the most valid, reliable, and relevant
information available regarding student academic achievement. That
is, while achievement test scores probably did not measure Indian
student socialization or education, they did certainly measure their
enculturation or assimilation of the required skills for survival in
an alien culture. The assumption, therefore, was made that at this
point in time, non-assimilative goals for Indian education have
```

```
remained unrealistic for the school system. Hence, Indian achievement
must be measured in terms of Indian students learning the skills
measured by standardized tests.
    Frevious studies on Indian academic achievement have included many
types of comparisons: Indians versus whites; full blood Indians
versus mixed blood Indians; males versus females; tribe versus tribe;
one type of school versus another; English speaking Indians versus
non-English speaking Indians; Indian versus local, state, and national
norm5; acculturated or assimilated Indians versus non-acculturated
Indians; reservation Indians versus non-reservation Indians; and
Indians at one grade level versus Indians at another grade level.
Studies also have used nationally standardized and locally
standardized tests as well as tests that are either culture free or
culturally biased.
    Yet, regardless of the instruments or criteria used, nearly every
study has indicated that Indian students have low academic
achievement. There were, of course, exceptions. Some studies have
indicated that some individual Indian students do enceedingly well
(e.g., Graham, 1951; Lee, 1953; Lloyd, 1961; Uhlman, 1953), while a
number of studies have reported that Indian students at certain grade
levels did better than other students (e.g., Eranchard, 1953; Eryde,
1965, 1970; Coombs et al., 1953; Dorn, 1954; Kayser, 1953; Lloyd,
1961; Parmee, 1968; Feters, 1963; Feterson, 1948; Quirk, 1965; Fist,
1961; Safer, 1964; Uhlman, 1953; Wa%, 1964; Witherspoon, 1962).
    Several studies have also discussed a phenomenon known as the
```

```
"crossover effect," which occurred when Indian students were doing
better at various early grade levels; but did worse at other, higher,
grade levels (Berry, 1968; Eryde, 1965, 1970; Chadwick, 1972; Coombs
et al., 1958; Fuchs and Havighurst, 1972; Peters, 1963; Quirk, 1965;
Saslow and Harrover, 1968). Other research has described a "learning
plateau effect" (e.g., Fuchs and Havighurst, 1972; McShane, 1983:
Witherspoon, 19$2), where Indian students performed at similar levels
as their classmates until they reached a certain grade level or
"learning plateau." Unfortunately, a few researchers (e.g., McShane,
1983) have concluded that chese two patterns of achievement were the
same phenomenon, presumably because the "crossover" and "learning
plateau" both occurred around the fourth or fifth grade. In
particular, both Chadwick (1972) and Berry (1968) cited studies as
Eupgorting the crossover effect, when in actuality the references only
stated that Indians in certain grade levels did comparatively worse
than nori-lndians, but from that point on, the gap became increasingiy
larger.
    Estelle Fuchs and Robert 3. Havighurst pointed out that most
studies that have found a learning plateau or crossover effect, have
failed to account for age differences due to the fact that Indian
students were being held back:
    When Indian pupils are tested on such subjects as reading and
    arithmetic, and are compared with other children of the same
    chronological age, they are likely to average below the national
    norms from the start of school (1972:126).
The only study to really show any crossover effect was the one
reported by John Eryde (1965, 1970), which showed Indian students to
```

```
be doing better until puberty (around si%th or seventh gradel. Fuchs
and Havighurst, however, pointed out that Bryde's data were suspect,
and, therefore, concluded that
    since a variety of careful research studies have failed to confirm
    the existence of a 'crossover phenomenon,' we believe that the
    usual finding concerning the low school achievement of Indian
    children should be credited" (1972:128).4
This conclusion drawn by Fuchs and Havighurst was 50mewhat supported
by Development Associates, Inc., who made a meta-analysis (Glass,
1975, 1978) of all available previous research studies on Indian
achievement done during the 19505, 19605, 19705, and 19805 to measure
or determine the typical findings. Development Associates, Inc.,
found that
    the 1970s data show a modest "classic" slope (divergent) downward
Thus, the meta-analytic review terhnique, used by Development
Associates, Inc., demonstrated, that, at least in the 1960s, there
were some very different processes occurring at the early grade
levels. In contrast, Development Associates, Inc., also concluded that
    American Indian reading and mathematics achievement, particularly
    in the upper grades, is as high or higher than it has been at any
    time in the last thirty years. Nevertheless, these remain well
    below the national norms, and the academic needs of Indian
    students have not been met (Day, 1983:2-22).
Moreover, the results of this meta-analysis found that nearly all
research that analyzed achievement by grade level corroborated the
```

```
conclusion that Indian student achievement varied considerably, and
more so than established norms, by grade level (regardless of whether
or not a plateau or crossover effect was found or not).
In summary, previous research has demonstrated that Indian
students were academically, significantly less successful than their
classmates, regardless of the educational goals or how student
achievement was measured. While some studies have reported a
crossover effect, a more likely conclusion was that Indjan student
success simply varied by grade level. Nonetheless, these results have
suggested that Indian achievement varjed by grade level. In regards
to grade level differences in general, therefore, it should be noted
that in their analysis of longitudinal data on high school student
aspirations, Driessen and Elliott (19S8) found significantly different
aspirations for each grade level. Additionally, generalizations in
the literature about the education of Indian students have attributed
a number of cabses to Indian student academic failures. In his review
of the literature for the Kennedy Feport, Eerry discussed the causes
under eight sociocultural categories: the intelligence of the Iridian
student; teachers; parents; cultural deprivation; the cultural
tarrier; the language barrier; the school; and the lndian student's
self-concept (1968:43-98). Clearly the focus of these reputed causes
was primarily upon the Indian students themselves; that is, Indian
students were failing because of factors generally bevond the control
Of the school systems. Moreover, it was noted that Eerry's categories
of sociocultural predictors of lndian achievement were very similar to
```

those in McShane's (1983) proposed model; which helped to reiterate
that Moshane's model was nothing more than a rearticulation of
previous imputed concepts.
Previous Research in the Study Setting
The Washoe County School District, with district offices in Reno,
Nevada, encompassed 6,60日 square miles in area. The majority of the
schools were in the fieno-Sparks area, with the other schools in the
district located in communities eight to sixty miles from Reno. All
students were enrolled through neighborhood zoning of street grids.
The district was composed of sixty public schools: forty-two
elementary schools, nine middle schools, and nine high schools.
Additionally, there were nine private elementary schools, five private
middle schools, and five private high schools in the feno-Sparks urban
area. Fyramid Lake Indian feservation, located within the school
district, also had a tribally operated high school at Nixon, Nevada,
that was completely separate from the washoe County School District.
The Washoe County School District had three Indian groups that
were educationally served by the district's Title IV, Part A, Indian
Education program. Each group was also served by separately
contracted Johnson-0'Malley programs. One group was the Fieno-sparks
Indian Colony, which was a small reservation located along the city
limits between the cities of Fieno and Sparks. It was appronimately
three blocks wide and about si\% blocks iong. It was federally
recognized, and had recently acquired several new facilities which
included Indian Health Services. The second group was the federally

```
recognized Fyramid Lake Indian Feservation, with tribal offices
located in Nixon, Nevada, forty-five miles east of Feno. The
reservation had three primary communities: Wadsworth, Ni:on, and
Sutcliff. The third group was the (Feno) Nevada Urban Indians; Inc.,
with offices located in Reno, who represented the Reno-Sparks area
urban Indian population. The Fyramid Lake Indian Reservation and
Feno-Sparks Indian Colony students primarily attended si% schools
(that were within their respective school zones), while the urban
Indian students were widely scattered throughout the school district.
    There have been four previous studies of Indian education in the
Washoe County School District area. The earliest study was "An
Analysis of the Language Achievement of Indian Children in Washoe
County Elementary Schools with Froposals for Improvement," by I.
Anthony DiSilvestro in 1981. DiSilvestro compared language
achievement and intelligence test scores of Indian children at two of
the elementary schools, which were the neighborhood schools for the
Feno-Sparks Indian Colony (n = 44) and the Fyramid Lake Indian
Feservation (n = 27) communities. DiSilvestro used IQ test scores and
determined that there were no significant differences in intelligence
between students at the two schools. Utilizing grade equivalent
language achievement scores, DiSilvestro then compared third graderj
at Natchez Elementary School Sthe Fyramid Lake Indian Reservation
community school) with fourth graders at Orvis fing Elementary (the
Frno-5parks Indian Colony community school), and found that there were
significant differences in standardized achievement test scores.
```



```
the same school, intelligence test scores, and father's and mother's
occupations. She then compared the two samples on the reading (word
meaning, paragraph meaning), spelling, language, and math
(computation, concepts, applications) sections, along with the
cumposite scores, of the Stanford Achievement Test. Like DiSilvestro,
Quirk used grade placement (or equivalent) scores, rather than
standardized scores, but she did employ multiple measures of
achievement and used both test and subtest scores. 0uirk also
compared the students in terms of teacher ratings (1-5) of class
participation. Quirk found considerable evidence that Indians in the
fourth grade outperformed non-Indian students with matched background
characteristics. Quirk also found Indian students outperformed their
classmates in grades four through eight in spelling achievement; in
grades four, six and seven for paragraph meaning and math computation
achievement; in grade four in word meaning and math concepts
achjevement; and in grade seven in lanquage and math applications
achievement, With respect to composite means, she found the following
differences in mean composite grade placement (equivalent) scores for
Indian and non-Indian students (1965:54):
    Grade 3 - [the] non-Indian group [was] higher by . 3E [equivalent
        grade levels]
    Grade 4 - [the] Indian group [was] higher by . 42 [equivalent grade
                levels]
    Grade 5 - [the] non-Indian group [mas] higher by . 36 [equivalent
                                    grade levels]
    Grade 6 - [the] non-Indian group [was] higher by .04 [equivalent
                grade levels]
    Grade 7 - [the] Indian group [was] higher by . 21 [equivalent grade
    levels]
    Grade 日 - [the] non-Indian group [was] higher by . bb [equivalent
        grade levels].
```

```
However, siatistical tests of these, and other, equivalent grade level differences were not significant. That is, Duirk found no significant differences, with respect to academic achievement, between the Indian and non-Indian students in her study. Except for the finding that the academic achievement of Indian students was not significantly different from that of their classmates, Quirk's results were similar to those in other studies, which indicated that Indian students compared best in grade four (holding both age and sex constant), best in the subject of spelling, and that they participated less than did non-Indian students in the classroom.
Unlike the first two studies, which were essentially descriptive, in \(19 \dot{9}\) Marjorie C. Preuss conducted "An Investigation of Eackground Factors in American Indian Academic Ferformance" to determine correlates "of intellectual functioning of the American Indian student" (1969:2). Preuss subjects (n = 96 ) were not, however, part of the Washoe County School District, but rather were made up from the senior class at the Stewart Indian Boarding School in Carson City, Nevada, which was about 30 miles south of Reno. The study was discussed here only because the school was in close proximity to the Washoe County School District, many of the subjects had been in the Washoe County School District at one time, and because so few studies have been done that were relevant to Indian student achievement in the Washoe County School District. Her dependent variables were intelligence, as measured by 10 scores, and academic achievement, as indicated by the test battery total scores (Freuss did not indicate
```

```
whether she usad raw, percentile, grade equivalent, or some other
standardized score), while the independent, or predictor, variables
were dichotomous scores for self-concept (t or -), number of school
years completed (1 to 5 and bt), and level of deprivation (more or
lessl. Freuss found self-concept to be the only factor that
significantly correlated with achievement test scores, while elevated
test scores were related to off-reservation residence (part of
deprivation score). Freuss appropriately concluded that the variables
or measures were methodologically inappropriate for explaining
academic achievement.
    The last study related to Indian education in the Washoe County
School District was performed as part of a U.S. Department of Health,
Education, and Welfare grant. Richard T. Dankworth investigated the
"Educational Achievement of Indian Students in Public Secondary
Schools as felated to Eight Variables, Including Fesidential
Environment," in 1969 under the project direction of James A.
Jacobsen. Like Freuss, Dankworth was interested in determining what
variables showed a significant relationship or correlation to
educational achievement. Unlike most studies (and not just those done
in the Washoe County School District) of Indian education, Dankworth
was also interested in demonstrating how much of a significant
contribution the independent variables made in explaining the
variability in the educational achievement of Indian students.
    Dankworth's dependent vari able was academic achievement as
measured by the student's achievement test total or composite score,
```

```
while the independent variables were: (1) mental ability as measured
by 10 scores; (2) level of anxiety as ranked ty correct answers; (3)
verbal concept choice as ranked by correct or higher level choices;
(4) self-coricept as measured by the average of three different scores;
(5) achievement-motive as scored by the district psychologist; (b)
interaction with the dominant culture as categorized by high,
moderate, and low interaction with the dominant culture; and (7)
residence as categorized by rural reservation, urban colony, and
multi-gthnic community. The sample (n = 140) included thirty-nine
(7th-12ti grade) students from the Fyramid Lake Indian Fiservation,
fifty-one from the Reno-Sparks Indian Colony, and fifty from
multi-ethnic communities. All seven variables were found to correlate
with achievement, and when acting together were determined to account
for 60.6% of the variability in achievement test battery composite
score. Four of the seven variables were found to contribute
significantly (p<.01) to 59. 3% of the variability in achievement:
(1) IG, 48.9%; (2) residence, 4.1%; (3) verbal concept choice, 3. 2%;
and (4) interaction with the dominant culture, 3.1%. The other three
variables, achievement motive, self-concept, and level of an*iety,
together accounted for only 1.3% of the variance. More importantly,
Dankworth found that the percent of variance explained or predicted by
any one variable was different for, or varied among; his three
residence groups. In particular, he found that
    partial regression coefficients showed that the effect of
    residence environment with respect to achievement was negative for
    rural reservation students and pasitive for urban colony and
    multi-ethnic community students (1969:68).
```

```
A major fault with these findings was that both In and verbal concept choice scores would be expected to correlate strongly with
``` achiavement in that they all were measures of similar phenomena, cognition. That is, one was left having to conjecture as to what e\%olained IQ, unless, of course, one looked to other studies, where evidence would have indicated that 10 was also predicted by previous achievement. Thus, knowing that 10 accounted for nearly \(50 \%\) of the variance in composite achievement test scores was not very e\%planatory. Moreover, because Dankworth used the composite score, it would be even mure probable to correlate with la. Additionally, the instrument used for categorizing interaction with the dominant culture both overlapped with other variables and was of questionable validity. It was noted, moreover, that the independent variables all focused upon the student's attributes, thereby implying that achievement was not manipulable by the schools.

In sum, previous investigations related to student success in the Washoe County School District have been of little utility, practically or theoretically, due to methodological deficiencies and theoretically nonproductive independent variables. These studies further established the need for new, up-to-date, knowledge concerned with academic achievement in the Washoe County School District. As a final note, the Title IV-A Indian Education program explicitly manted to use academic achievement scores (W.C.S.D., 1984).

\section*{Summary of Theoretical Ferspective}
```

    A review of the related research on the education of Indian
    students provided a broadly dismal portrayal. It also raised
questions as to whether schools really have any effect on students,
and, if not, questioned what the potential causes or antecedents of
student failure were. Literature on these questions in broader
educational research generally have concluded that schools do not have
any influence on student success, although theoretically reievant
exceptions have found contrary evidence that schools do effect student
success or failure (methodological exceptions aside). It seemed
apparent, ther, that there was a need for additional empirical
research to help clarify the existing theoretical confusion in both
education, in general, and Indian education, in particular.
In empirically studying student success, academic achievement has
been the predominant criteria. Moreover, some form of standardized
achjevement test has been the usual measure of academic achievement.
Regardless of the criteria or measures used, however, nearly all
research has concluded that Indian students were less successful
(Eerry, 1968; Coleman et al., 1965; Coombs et al., 1958; Development
Associates, Inc., 1983: Havighurst, 1970; Peterson, 1948; U.S. Senate,
1969). Other research, however, has demonstrated that considerable
variance existed by grade level, and a few studies have found that
Indian students did better than other students at certain grade levels
(Eerry, 1968; Eryde, 1965, 1970; Chadwick, 1972; Coombs et al., 1958;
Day, 1983; Fuchs and Havighurst, 1972; Havighurst, 1970; Feters, 1963;

```
```

Quirt, 1965; Saslow and Harrover, 1968; Witherspoon, 19621. Further support that grade level differences might be important was found in a study of student aspirations by grade level, which found considerable variation across the grades (Driessen and Elliott, 1968). The overwhelming conclusion that emerged from the literature on achievement by grade level was, onee again, the continued need for additional empirical research.
The four previous studies related to the academic achievement of Indian students in the Washoe County School District (Dankworth; 19t?; Disilvestro, 1961; Quirk, 1765; Freus5, 1969) generally contained methodological or theoretical problems. Although auirt (1965) drew some important conclusions, she still inferred, despite the fact that her study had no statistically significant results, that Indian students generally became progressively less successful in the school system. Quirk also concluded that the observed differences, although not statistically significant were due to the usual normschool related factors. Moreovar, administrators, counselors, and teachers have continued to feel that "Intian students are dropping through the cracl:s of the school system" (W.C.S.D., 1984), and were unsure of what factors may have been antecedent to, or explanatory of, such failure.
The goal of this research, therefore, was to more fully understand (relative) Indian student academic success. In doing so this study analyzed aggregate data on student and school factors, statistically testing them to determine if Indian student achievement was significantly different than non-Indian achievement. Moreover, the

```

```

    5. Are different factors antecedent predictors of achievement for
    Indian and nom-Indian students?
    6. Are different factors antecedent predictors of achievement
        across different grade levels?
    7. Is residence (reservation, colony, urban) a determinant of
        Indian student achievement?
    8. Do factors applicable to Indian students only (e.g., tribal
        affiliation, preschool) affect the antecedent structural
        models of achievement?
        9. Do manipulable variables account for more of the total
        variance than non-manipulable variables?
        10. Do more manipulable than non-manipulable variables account for
        the explained variance?
    Solutions to the first two questions established parameters to
    answer the third question. Answering the third provided a basis for
answering questions four through eight. Finally, the evidence from
answering these questions formed the foundation for answering the last
two questions. Although hypotheses would usually be derived from the
data in inductive research, the theoretical perspective of this study,
as presented above, has implied certain research hypotheses:
Hf: Standardized achievement test scores for Indian students are
significantly lower than scores for non-Indian students in
the Washoe County School District.
H2: Class grades, attendance, and other measures of achievement
are significantly different for Indian and non-Indian
students in the Washoe County School District.
Hz: Teacher evaluations are different for Indian and non-Indian
students in the Washoe County School District.
H4: Fersonal and familial background characteristics are
significantly different for Indian and non-Indian students in
the Washoe County Schooi District.

```

\footnotetext{
\(H_{5}:\) School environment and learning context variables are different for Indian and non-Indian students in the Hashoe County School District.
\(H_{5}:\) Grade level is an antecedent predictor of standardized achievement test scores in the Washoe County School District.
\(H_{7}:\) Ethnicity is an antecedeni predictor of standardized achievement test scores in the Washoe County School District,
\(H_{8}: A s\) compared to the general population, different antecedent factors are predictive of standardized achievement test scores for Indian students in the Washoe County School District.

Ho: Different antecedents are predictive of standardized achievement test scores at different grade levels in the Washoe County School District.

Most of these hypotheses, however, were non-directional, which allowed for greater inductive understanding.
}

\section*{Chapter 2}

\section*{METHODOLOGY}

processes and its e\%emplar process for socializing new "scientists:"
```

While several elaborations of this view helped facilitate comprehension for conducting research (Dooley, 1984; Jones, 1985; Kerlinger, 1986; Reynolds, 1971; Wallace, 1971), they have failed to explicitly incorporate the reality of research into the circular process of normal science. That is, these derivatives have tended to present research as simply that of testing a hypothesis, which was based upon a review of the literature, while implicitly assuming that some deductive link existed to a substantive theory. These models provided examples of hypothesis testing, but then failed to demonstrate how the results related to theory. Again, the assumption appeared to be that researchers should intuitively understand how to relate results to theory. Most studies that have followed these models of research, therefore, have often culminated in elegant results, but were not cumulative (despite the pretense of doing otherwise).
Yet, such models (e.g., Wallace, 1971) also implicitly presented research as noncircular. These views of the research process dictated that if one was doing research he/she should proceed in one of two ways. They could begin with conclusions, derive hypotheses and formulate appropriate variables and instruments, collect data utilizing one of the preferred methods of observation, statistically reduce the data to test the hypotheses, and infer conclusions based upon these statistical results, with the assumption that these inferences somehow related to theoretical understanding. Conversely, he/she could select a topic of interest, perhaps based upon other

```
```

research results, collect data based upon a predisposed method,
organize the data from these observations into classes of data from
which patterns, clusters or models would be drawn into conclusions,
and, occasionally, could formulate these into generalizations or
grounded theory.
These models or views did not reflect, however, the ideal (kuhn,
1970) processes of normal science, which involved two generalized
research procedures. The first ideal process started by deducing
hypotheses from existing theory rather than previous research
conclusions, and instrumenting the concepts of these hypotheses so
that observations could be made instead of employing a predisposed
method. Next, these observations were analyzed and compared io the
deduced concepts to test the induced hypotheses. These conclusions
were then inductively reintegrated into the theory through constructs
and generalizations. The second ideal process began by making
empirical observatiuns using a variety of known methods, which were
induced into abstractly comprehensive constructs. Synthesizimig these
constructs with other observations, generalizations were evaluatively
constructed into a theory, from which hypotheses were deduced and
tested wjth further observations. These observations were then
compared to previous constructs to modify the theorv.
Much research, therefore, has been both noncumulative (i.e., did
not build upon e%isting theory or develop new theory) and noncircular
(i.e., was not both inductive and deductive). This reality of
research, however, has not been reflected in the existing models of

```
```

research. This absence indicated a substantial need to davelop a
model for conducting scientific research that accurately represented
both those processes that were actually followed in reseafeh as well
as those that should have been involved in normal science. Figure 1
frovides an alternative model of the research processes that has
attempted to demonstrate the complexity of scientific research. This
miodel has sought to reflect both the reality of what normal science
involves (represented by the inner circle), as well as kutn's (1970)
ideal conceptualization of normal science {indicated by the outer
cirele). Implicit to this model is the fact that research really
involves a number of subjective/political decisions rather than
automatic stages. It was concejved that scientific research could
involve one of any number of processes and begin at any one of the
decision points (represented by rectangular boyes in Figure 1).
Unlike other models of normal science, therefore, this model
conceptualized the possibility of research beginning at decision
points other than theory or observation, which has been particularly
true of applied and engineering science, and has involved
subjective/political considerations rather than objective and logical
procedures.
The present model or view of scientific research provided for the
possibility of modifying the usual conceptualization of research to
accurately reflect what much of research has actually
entailed--beginning research with some predetermined variables,
preferred instruments and methods, or subjective opinion (hypothesis)

```

Figure 1. Processes of Normal science

```

in mind. That is, much research has not even started with
conclusions, but rather began at some other stage in the model, and
then in post hoc fashion integrated other conclusions to corroborate
the results. Ethical issues aside, the model presented in Figure 1
was formulated to imply that research has, does and can begin at any
point in the research cycle; although certain decision points are
methodologically more appropriate.
Ferhaps more fundamental to this view (Figure 1) of science, in
contrast to other models of science, was the recognition that
conclusions of previous studies, rather than theory or observations
(as idealized by kuhn), were the focus or beginning point of most
research in what has been referred to as normal science. That is,
conclusions can form the foundation for either: (1) inductive,
deductive, empirical, andior theoretical research; or (2) the end of a
research project. Furthermore, this model has implicated that normal
science should not involve just stages of research, but rather jt
should involve a combination of research processes interconnected by
numerous individual decisions. That is, normal science would be
processual, with individual researchers making subjective, albeit not
e<plicit, decisions as to when to begin and end their own particular
project.
This research project, as alluded to in the previous chapter, was
what this study would refer to as processual. Thus, the research was
composed of cycles based upon subjective decisions to continue on,
beginning with the initial decision to begin with the conclusions of

```
```

previous studies on Indian education. The first cycle of this
research, as found in Figure 2, involved two distinct sets of
processes. The first set began by framing the literature to identify
factors on which there existed available data within the Washoe County
School District, but that had not been previously studied in
conjunction with Indian education. For instance, factors such as
preschool attendance, tribal status with the federal guvernment, and
participation in the gifted student program had not been considered
before. Such data were collected without any other considerations
other than to determine if differences existed between Indian and
non-Indian elementary stadents; or in the case of characteristics
applicable to Indian students only, to describe such characteristics.
Following observation or data collection, the data were coded into
Categories or variables for analyses, and conclusions were drawn from
these findings. The second set of processes in the first cycle of
this research project involved synthesizing hypotheses about the
characteristics of Indian education and deductively defining concepts
that were empirically measurable. These concepts were oferationally
defined into specific instruments of observation. Data collection
consisted of making observations and coding data into specific
variables, which were then descriptively and comparatively analyzed.
Conclusions were made simultaneously with the findings from the first
set of procedures.
Thus; the first cycle of research involved two sets of processes,
one essentially inductive or exploratory and the other deductive. The

```

Figure 2. Processes of the First Research Cycle

Figure 3. Processes of the Second Research Cycle

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4. Processes of the Third Research Cycle

Figure 5. Processes of the Fourth Research Cycle

process because too many gaps existed to be able to formulate such a theory.

\begin{abstract}
Fundamental to these cycles of research processes, however, were the decision making points, at which the research project could have terminated: (1) when making the observations: (2) following the initial analysis processes; (3) upon making conclusions that other questions were inappropriate; (4) upon re-instrumenting the data and developing explanatory models; (5) after deriving any one of the conclusions; or (\((6)\) after a pravisional theory was developed.
\end{abstract}

\section*{Fesearch Design}

This research project was conducted in conjunction with a washoe County School District Block Grant to collect information on Indian students, and to develop student profiles based upon this data, for the Title IV-A Indian Education program. \({ }^{6}\) Although the ultimate use of the data may have been for applied needs, the current research retained basic theoretical research as its sole purpose throughout the project. Data were collected by the researcher while in the official capacity of Fesearch Assistant with the school district.

The project began on July 1,1984 , by first setting up a detailed research design, including an extension of theoretically relevant goals and objectives from those in the project's original grant. Between September, 1984, and January, 1985, data sources were identified and letters of information sent to school principals and appropriate departments, after which the data were collected,
```

collated, verified and copied. Data coding for the study was done
separately from that for the school district. This was done for
several reasons. First, the district Titlo IV program did not want
numeric data, but rather verbal data, and secondly, they did not want
all the dada. Hence, separate code books were made. Actual coding
for the study was done by the researcher's assistant and verified by
both the researcher and the assistant. Coding for the district was
cune simultaneously with the data entry. Data were entered onto a
personal computer by employees of the school district (January, 1985,
to July, 1985), while the researcher employed a professional data
entry person to enter and verify the data on a mainframe computer
(May, 1985). The researcher did all data editing, updating, and final
verification, which occurred between June, 1%85, and September,
1985. Data analysis was periodically conducted using the mainframe's
SFSSX program between Ortober, 1985, and November, 1986, as time and
resources allowed.
The study employed a variation of the cross-sectional
correlational survey design, but included temporal data. As the
cross-sectional data were based upon existing information, a
Ghronological or temporal order to the data was achieved through this
ertensive cross-sectional information as it occurred over time. In
this respect the research also employed a type of longitudinal
decign. Data were not, however, collected on all variables at two
points in time, particularly for the dependent variables. It would
seem best, therefore, to classify the research design or this study as

```
```

semi-longitudinal; that is, it was not truly longitudinal, but it did
have temporality built into it and contained some longitudinal data.
Moreover, because the data were collected on students in various
grades, a panel design was also used for certain comparisons.

```

\section*{Research Procedures}

Following the identification and delineation of the research questions from analyses of previous studies' conclusions, the first set of processes involved identifying the research population and samples. Once the research samples were identified, data collection methods and procedures were implemented. This was followed by data analyses that resulted in conclusions from which the second research cycle of the study began. In the second cycle, secondary data analysis procedures and regression analyses were used to develop models for predicting academic achievement. Data were once again reorganized using secondary data analysis techniques in the third research cycle, and these observations were analyzed using regression analyses procedures. Following this, a second set of processes involved framing the regression results and conducting mypothesis testing to draw conclusions from the regression results. The fourth research cycle included inductive synthesization procedures.

\section*{Sampling Methods}

A number of different sampling techniques and procedures were utilized during the various cycles of the data collection. This was done to best identify the most representative samples of both Indian
```

and non-Indian students. As discussed below, both practical and
theoretical justifications were employed in identifying the research
samples.

```


\section*{Table 1. Washoe County School District Student Fopulation}
\begin{tabular}{|c|c|c|}
\hline Fopulation & N & \(\%\) \\
\hline Elementary School Fopulation, District & 15,909a & \\
\hline Elementary School Population, Indian Students & 456 & 2.87 \\
\hline Elementary School Fopulation, Non-Indian Students & 15,453 & 97.14 \\
\hline Middle School Fopulation, District & 5,277 \({ }^{\text {b }}\) & -- \\
\hline Middle School Fopulation, Indian Students & 98 & 1.87 \\
\hline Middle School Fopulation, Non-Indian Students & 5,179 & 98.14 \\
\hline High School Fopulation, District & 9,0835 & -- \\
\hline High School Fopulation, Indian Students & 156 & 1.72 \\
\hline High School Fopulation, Non-Indian Students & 8,927 & 98.25 \\
\hline Total Student fopulation, District & 30,269d & -- \\
\hline Total Student Population, Indian Students & 710 & 2.35 \\
\hline Totai Student fopulation, Non-Indian Students & 29,559 & 07.65 \\
\hline
\end{tabular}
```

a--Includes 7th and 8th grade students from an elementary school
located on the Fyramid Lake Indian Reservation, which is K
through 8th grade.
b--Includes bth grade students at one of the middle schools.
C--Includes alternative high school students and 7th and 8th grade
students at one of the high schools.
d--Does not include homebound students.

```
```

Washoe County School District to have the research focus upon the
elementary school students. It was for these reasons, therefore, that
this study limited the study population to the 15,909 elementary
school students.
To obtain comparability and generalizability, several different
techniques of sampling were necessary. First of all, due to the small
number of Indian students in the population, proportionate random
sampling would have been difficult to use. Thus, purposive sampling
was used to collect data on all identifiable Indian students.
Identification was initially based on Title IV Indian Education
records, and then verified at individual schools by interviewing
school personnel. Such procedures demonstrated some inherent
difficulties in self-reporting systems. A number of students
identified as Indian were actually non-Indians, and they were
eliminated from the population. A number of known Indjan students
(i.e., eligible for Title IV assistance, which meant they were at
least one-eighth Indian) were self-identified as belonging to other
racial ethnic groups (e.g., Hispanics). For consistency such students
were not included in this study as Indian students.8 Additionally,
eleven Indian students were included in the study that were identified
only through individual school records. These discrepancies between
district and school records are indicated in Table A-1 of Appendix A.
Data were collected on all Indian students from only forty of the
forty-two elementary scmools (n = 488), because two of the schools had
no Indian students enrolled.

```

\begin{abstract}
In order to ensure comparability between Indian and non-Indian groups, it was decided that the sampling would have to have similar case representation for each school and grade level. 9 Hence, proportional stratified random sampling was employed to identify non-Indian students to be included in the study. 10 Sampling was done using district student lists. Substitute samples were also taken to allow for the tremendous transiency in the school district (which will be discussed in greater detail below). While the original mon-Indian sample consisted of \(1,004(3.4 \%)\) kindergarten through twelfth grade students, 11 only the 544 elementary students were used in this study.

Table 2 lists the samples for Indian and non-Indian elementary students by school, while Table A-1 in Appendix A indicates the sample figures for all sixty elementary, middle, and high schools. At school number 28 There were only 22 non-Indian students enrolled and was, therefore, deliberately oversampled, which added nineteen students to the sample size. Additionally, data on the seventh and eighth grade students at this elementary school were collected, because it had kindergarten to eighth grade students. The actual number of students, therefore, for whom data were collected was 1,032 (or 488 Indian and 544 non-Indian students). These sampling techniques and procedures ensured a high degree of similarity among all students within grade levels and schools with regards to teachers, physical facilities, and curricula. Holding these factors constant provided a control to isolate other school or nonschool system factors that might account for hypothesized underachievement, if such were to be found.
\end{abstract}

Table 2. Original Indian and Non-Indian Elementary School Student Samples by School Number
\begin{tabular}{|c|c|c|c|c|c|}
\hline School Number & Number of Indian Students & Number of Non-Indian Students & School Number & \begin{tabular}{l}
Number of \\
Indian \\
Students
\end{tabular} & Number of Non-Indian Students \\
\hline 1 & 1 & 12 & 22 & 2 & 13 \\
\hline 2 & 3 & 15 & 23 & 1 & 15 \\
\hline 3 & 57 & 13 & 24 & 6 & 7 \\
\hline 4 & i) & 10 & 25 & 11 & 14 \\
\hline 5 & 11 & 15 & 26 & 15 & 13 \\
\hline 6 & 13 & 13 & 27 & 11 & 15 \\
\hline 7 & 5 & 22 & 28 & \(116^{\text {a }}\) & \(22^{\text {a }}\) \\
\hline 8 & 5 & 19 & 29 & 6 & 11 \\
\hline 9 & 7 & 14 & 30 & \(t\) & 12 \\
\hline 10 & 22 & 16 & \(31^{6}\) & 0 & 0 \\
\hline 11 & 2 & 13 & 32 & 10 & 13 \\
\hline 12 & 4 & 12 & 35 & 47 & 18 \\
\hline 13 & 2 & 13 & 34 & 10 & 10 \\
\hline 14 & 3 & 9 & 35 & 13 & 6 \\
\hline 15 & 8 & 15 & 36 & 11 & 14 \\
\hline 16 & 0 & 5 & 37 & 17 & 22 \\
\hline 17 & 6 & 14 & 38 & 17 & 17 \\
\hline 18 & 4 & 15 & 39 & 4 & 14 \\
\hline 19 & 2 & 2 & 40 & 3 & 4 \\
\hline 20 & 5 & 17 & 41 & 4 & 11 \\
\hline 21 & 12 & 18 & 42 & 5 & 11 \\
\hline & & & Totals & 488 & 544 \\
\hline
\end{tabular}

\footnotetext{
a--The sample at this school includes 7 th and 8 th grade students. b-This school has only special education students and therefore was not sampled.
}
```

Sampling procedures during data analysis. Ultimately the 1,032 Indian and non-Indian students in the samples were reduced first to 669 students (Indian sample $=286 ;$ non-Indian sample $=383$ ), and then down to 459 students (Indian sample = 201; non-Indian sample = 25日) for the data analyses. These drops in the sample size were caused by a number of factors. First of all, it was found that seventeen of the selected cases were duplicate listings and that ten students had never really enrolled in the Washoe County School District. Secondly, twenty-one of the cases collected had been from grades seven and eight. These two factors reduced the sample size to 984 elementary students. Next, it was decided to eliminate all students involved in special education ( $n=92$ ) and English as a Second Language (n $=2$ ) programs because the district did not require these students to take the academic achievement tests, which were used as the dependent variables. 12 It was also necessary to remove all kindergarten (n = 164) and pre-kindergarten ( $n=3$ ) students too, as they did not take the student achievement tests. These eliminations reduced the sample size to 723 first through sixth grade students.
As noted above, transiency was a very large problem in the Washoe County School District. While initial sampling techniques and procedures were used to account for this problem, the selection of students who moved out of the district during the 1983-84 school year still existed. That is, even after the sampling had been completed and data collection bequn, fifty-four $(n=54$ ) students included in the sample had since moved. Indeed, during the initial sampling

```
```

procedures, eighty (n = 80) students selested as part of the original
S44 non-Indian students had already transferred, which required that
replacement student; be selected.
While these figures seemed quite large, e:amination of the Washoe
County School District's transiency report sustained these figures.
Table 3 presents the transiency rates over the last si% school years
for the forty-two elementary schools in this study; {see Appendix A-2
for middle and high school rates). As can be seen, the transiency
rate varied tremendously from a low of 21% for school number 2 during
the academic year under study (1983-84), to highs of 114% for school
number 27 during 1983-84 and 162% for school number 24 during
1980-81. Indeed the mean transiency rate for the Washoe County schaol
District elementary schools ranged from a low of 53% during the
1983-84 and 1902-83 school years, which were the years included in
this study, to a high of 73% for the 1979-80 school vear. In summary,
while the transiency problem during the data gathering stage would
seem to have been quite zxtensive, it was, in fact, relatively low.
Obviously, with over half the elementary school students moving
out of or into the schools under study, it was not unlikely that a
number of students would have moved during the course of the study
period. While many of these problems were alleviated during the
initial sampling replacement procedures, others were not accounted for
until the very end of the data collection procedures. This was due to
the fact that, although these students had moved out of the district,
their new schools had not requested their recordz until after data

```

Table 3: Washoe County Sihool District Transiencya Report For Elementary Schools 1978-1984
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SCHOOL HUMEER & \[
\begin{gathered}
1983-84 \\
(\%) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1982-83 \\
(2) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1981-82 \\
(\%) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
198(1-81 \\
1 \%) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1979-80 \\
(\%) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1978-79 \\
(\%) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { SCHOQL } \\
& \text { NUMEER }
\end{aligned}
\] & \[
\begin{gathered}
1985-84 \\
(\%) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1992-93 \\
(y) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1981-82 \\
(\%) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
198(1-81 \\
(\%)
\end{gathered}
\] & \[
\begin{gathered}
1979-80 \\
(\%) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1978-79 \\
(\%) \\
\hline
\end{gathered}
\] \\
\hline 1 & 59 & 58 & 76 & 89 & 87 & 77 & 22 & 23 & 46 & 36 & N/A & N/A & N/A \\
\hline 2 & 21 & 23 & 27 & 46 & 34 & 27 & 23 & 44 & 04 & \(5 i)\) & 72 & 76 & \(t 4\) \\
\hline 3 & 59 & 57 & 56 & 79 & 77 & 74 & 24 & 110 & 74 & 54 & 16. & 121 & 139 \\
\hline 4 & 31 & 38 & 51 & 48 & 55 & 47 & 25 & 30 & 35 & 40 & 38 & 45 & 44 \\
\hline 5 & 79 & 62 & 99 & 99 & 85 & 91 & 26 & \(8:\) & 7 & 94 & 56 & 52 & 36 \\
\hline 6 & 59 & 59 & 58 & 66 & 47 & 72 & 27 & 114 & 92 & 135 & \(N / \mathrm{H}\) & \(\mathrm{Ni/H}\) & W/A \\
\hline 7 & 23 & 39 & 38 & \(\mathrm{N} / \mathrm{H}\) & N/A & N/ith & 28 & 42 & 45 & 72 & 44 & 44 & 45 \\
\hline 8 & 35 & 43 & W/ \(/ \mathrm{H}\) & \(N / A\) & N/A & \(N / A\) & 29 & to & 69 & 69 & N/ H & Nit & N/in \\
\hline 7 & 28 & 45 & 60 & 41 & 43 & 50 & 30 & 39 & 43 & 50 & 50 & 59 & 54 \\
\hline 10 & 85 & 76 & 114 & 12 & 96 & 97 & 31 & 20 & 3.4 & 21 & 35 & 35 & 40 \\
\hline 11 & 25 & 41 & 32 & N/A & \(\mathrm{H} / \mathrm{H}\) & \(\mathrm{N} / \mathrm{H}\) & 32 & 31 & 45 & 52 & 49 & 81 & 52 \\
\hline 12 & 55 & 41 & 59 & 75 & 58 & 51 & 33 & 54 & 37 & 44 & 40 & 51 & 42 \\
\hline 13 & 39 & 40 & 49 & 5 & 4.3 & 45 & 34 & 59 & 63 & 94 & 53 & 55 & 58 \\
\hline 14 & 45 & 42 & 44 & Wit & N/ H & N/A & 35 & 95 & 70 & 88 & 89 & 84 & 59 \\
\hline 15 & 24 & 27 & 23 & 29 & 32 & 30 & 32 & 82 & 7.3 & 74 & 63 & 38 & 58 \\
\hline 16 & 47 & 64 & 75 & 51 & 50 & 42 & 37 & 100 & 78 & 83 & 92 & 97 & 84 \\
\hline 17 & 42 & 59 & 75 & 30 & 40 & 89 & 38 & 67 & 84 & 102 & 124 & 117 & 116 \\
\hline 15 & 57 & 45 & 48 & 48 & 52 & 66 & 39 & 34 & 85 & 40 & 36 & 43 & 38 \\
\hline 19 & 50 & 4.3 & 45 & 45 & 64 & 58 & 40 & 49 & 65 & 44 & 100 & 141 & 124 \\
\hline 20 & 28 & 34 & 34 & 28 & 32 & 3 B & 41 & 73 & 54 & 45 & 67 & 78 & 46 \\
\hline 21 & 49 & 39 & \(5 t\) & 68 & 65 & 69 & 42 & 46 & 4.5 & \(5!\) & 5t & 75 & 30 \\
\hline & & & & & & & Means & 53 & 5 & 61 & 64 & 73 & 61 \\
\hline
\end{tabular}
a--Trarisıency \(=\) Tütal E \(5-\) Sept. Enroll. \()+\mathrm{K}^{\prime} \mathrm{s}+\mathrm{W}\) s/Sept. Enrali.
```

collection had begun. As such, these cases required considerable
tracing to substantiate that they were indeed transients.13 While not
all cases were corroborated as having moved, most of the transients (n
= 54) were verified and thereby eliminated from the data analyses.
This reduction brought the sample size down to ós students (286
Indian students and 383 non-Indian students) for data analysis
purposes. Justification for further reducing the sample size was made
because the study sought to identify antecedent predictors of
achievement test scores, and it was assumed that the best predictors
would be 1982-83 school year class grades. Therefore, only those
students who were in the Washoe County School District during both the
1982-83 and 1983-84 school years were used for data analyses. Dne
hundred and thirty-three (n = 133) of the 6\&9 students had been in the
first grade in 1983-84, which meant that they had no grades for the
1982-83 academic year, because they had been in kindergarten, and
could not be included in the analyses. The transient rate again
affected the study sample, as seventy-seven (n = 77) students were not
enrolled in the school district during 1982-83 (although enrolled in
1983-84). These two factors reduced the research sample, as shown in
Table 4, to 459 students (201 Indian students and 250 non-Indian
students) for data analysis purfoses.

```

\section*{Data Collection Methods}

Data were collected on location in the field, except where noted below. A variety of techniques and procedures were emplayed during the first cycle to collect existing data on the district, the schools,

Table 4. Reduced Indiari and Nori-Indian Stuoent Samples by Sinool Nuaber
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\begin{tabular}{l}
School \\
Nuaber
\end{tabular}} & \multicolumn{4}{|c|}{Sumber of Students} & & \multirow[b]{3}{*}{School Huaber} & \multicolumn{4}{|c|}{Nuster of Studants} \\
\hline & \multicolumn{2}{|c|}{Indians} & \multicolumn{2}{|l|}{Non-Indians} & & & \multicolumn{2}{|r|}{Indians} & \multicolumn{2}{|l|}{Non-Indians} \\
\hline & Original Sanole & gedured Sanple & Urig̣inal Sample & \begin{tabular}{l}
Feduced \\
Sample
\end{tabular} & & & Criginal Sascle & \begin{tabular}{l}
Reduced \\
Saple
\end{tabular} & Uriginal
Sample & Foduted
Sample \\
\hline 1 & 1 & 0 & 12 & 8 & & 2 & 2 & 2 & 15 & 11 \\
\hline 2 & 3 & 2 & 15 & 10 & & 2 & 1 & i) & 15 & 5 \\
\hline 3 & 57 & 35 & 13 & 7 & & 24 & 5 & 1 & 7 & 3 \\
\hline 4 & (& 0 & 10 & 7 & & 25 & 11 & 2 & 14 & 9 \\
\hline 5 & 11 & 5 & 15 & 4 & & 26 & 15 & 3 & 13 & 3 \\
\hline 6 & 13 & \(b\) & 15 & 7 & & 27 & 11 & 1 & 15 & 7 \\
\hline 7 & 5 & 1 & 22 & 5 & & 23 & \(116^{\text {d }}\) & 44 & \(22^{\text {a }}\) & 6 \\
\hline 8 & \(t\) & 0 & 19 & 4 & & 29 & 6 & 4 & 11 & 5 \\
\hline 9 & 7 & 1 & 14 & 3 & & \(3{ }^{3}\) & 5 & 1 & 12 & 3 \\
\hline 10 & 22 & 3 & 15 & 5 & & \(31^{6}\) & \% & 0 & c & 0 \\
\hline 11 & 2 & 0 & 13 & 3 & & 32 & 10 & 5 & 13 & 8 \\
\hline 12 & 4 & i & 12 & 5 & & 33 & 47 & 24 & 13 & 7 \\
\hline 13 & 2 & 2 & 15 & 11 & & 3 & 10 & E & 10 & 4 \\
\hline 14 & 3 & 0 & 7 & : & & 3 & 15 & 5 & \(t\) & 4 \\
\hline 15 & 8 & 4 & 15 & 11 & & 3 t & 11 & ? & 14 & 0 \\
\hline 16 & 0 & \(j\) & 5 & . & & 7 & 17 & \(\stackrel{5}{5}\) & 2 & 11 \\
\hline 17 & 5 & 2 & 14 & 11 & & 5 & 17 & 8 & 17 & 6 \\
\hline 18 & 4 & 5 & : 5 & il & & \(3 ?\) & 4 & 2 & 14 & 10 \\
\hline 19 & 2 & 2 & - & 1 & & 40 & \(\checkmark\) & 0 & 4 & 0 \\
\hline 26 & 5 & \(!\) & 17 & 9 & & 41 & 4 & i & 11 & 5 \\
\hline 21 & 12 & ? & 10 & 11 & Totals & 42 & \(\frac{5}{489}\) & \(\frac{3}{201}\) & \(\frac{11}{544}\) & \(\frac{9}{258}\) \\
\hline
\end{tabular}

b--This school had only special education studerits and therefore nas iut 三afulad,
```

and the students. The secondary data analysis method was then used to
reorganize these observations in the other research cycles. Dine
advantage to using the existing records method was that all measures
were nonreactive in relation to this research project. It was
recognized that many of the measures when initially made were indeed
reactive, but this would be true of most existing records. Another
advantage to using existing records was that they could be more
readily used with both primary and secondary data collection
procedures and analyses.

```

Techniques. The existing records method of research was used through all phases of the research project. fis such, this study relied upon demographic and performance records, available to, or found within, the Washoe County School District, as indicators or observations of student characteristics and achievement. This was not meant to imply that attitudinal data were not conceived to be theoretically relevant, but rather that such information was beyond the possible scope of the current research project. Data were collected on factors considered both mamipulable and non-manipulable by the school system. That is, factors such as se:, residence, parent's occupation, and days not enrolled were generally considered beyond the control or manipulation of the school district. Conversely, previous student achievements or grades, patterns of teacher evaluation, and the learning contexts or environments of classrooms and schools were taken to be potentially manjpulable or subject to change by the school system.
```

Data were collected using a variety of procedures. 14 Data for the dependent variatles were collected using forms developed by the researcher for the district to record the raw, grade equivalent, and percentile scores of all subtests taken by each student. Simjlar procedures were used for recording data on preschool programs (Indian students only), the Title IV program (Indian students only), the gifted student program, the English as a Second Language (ESL) program, and the federal lunch program. A second procedure involved making xerox copies of permanent records, enrollment forms, and report cards. Xeroxing was also used to make copies of the district's 1983-84 reports concerning student-teacher ratios, employment figures, and data on each school's library resources (which were provided in annual reports). [nformation on school facilities was collected by reading through records and making field notes of key factors. A \%ero\% copy of an older report was also made. A final procedure irvolved mapping techniques. The 1980 United States census map was overlayed onto the Washoe County School District grid system to identify median family incomes by student to generate measures of personal socioeconomic status, and to determine the median family income by school (school socioeconomic status). 15
The data set was reorganized using secondary data analysis procedures after it was initially analyzed and the results were synthesized into subsequent deductive research hypotheses. This second technique of data collection was used during both the second and third cycles of the project. Specific procedures invalved the

```
```

recoding of factors and the computation or creation of new variables
for subsequent analyses of the data. Additionally, cases were
weighted appropriate to their sample referent for use in inferential
statistical population estimates.16

```

\begin{tabular}{|c|}
\hline As a standardized score, the z-score has been designed to have a mean \\
\hline value of 0.00, which has been defined as "normal, " and has tended to \\
\hline range from a high of +3.00 (or the 99 th percentilel to a low of -3.00 \\
\hline (or the \(15 t\) percentile). Negative numbers indicated scores below the \\
\hline mean, while positive scores were above the mean. Thus, standard \\
\hline \(z\) zscores were more powerful statistically because they were derived \\
\hline from the properties of the normal probability curve and they preserved \\
\hline the absolute differences between scores, which allowed for the \\
\hline calculation of averages and correlations that were then directly \\
\hline comparable. Moreover, by using national means and standard \\
\hline deviations, the scores could also have been compared to scores from \\
\hline other parts of the country that were nationally standardized. \\
\hline Subject grades were also converted to a standard coding system for \\
\hline comparability, because two different grading systems were employed by \\
\hline teachers in the Washoe County School District: (1) the traditional \\
\hline grades of \(A, E, C, D\), and \(F\) (with pluses and minuses) : and (2) the \\
\hline less conventional, but frequently used, system of outstanding (0), \\
\hline satisfactory (S), and improvement needed (I) (also with pluses and \\
\hline minuses). In order to standardize the grading systems, several \\
\hline assumptions were made concerning the latter grading system. First of \\
\hline all, it was assumed that satisfactory (S) was the same as the letter \\
\hline grade \(C\) (or doing average work). Secondly, it was assumed that \\
\hline outstanding (0) was the same as the letter grade A (or doing superior \\
\hline work), and that improvement needed (I) meant the same as the letter \\
\hline grade \(F\) (failing). The third assumption concerned the use of pluses \\
\hline
\end{tabular}
```

and minuses in conjunction with the grades 0, S, and I. It seemed
reasonable to assume that 0- meant the same thing as E+; that St meant
the same thing as B-; and so forth. As a result, grades were
standardized using the system provided in Table 5.
As the Washoe County School District does not calculate grade
point averages (GFAs) for elementary school students, such variatles
had to be created, which was done by computing the mean grade for the
arithmetic, language, reading, science/health, and social studies
grades. Additionally, a cumulative grade point average (variable) was
calculated on the bases of the 1982-83 and 1983-84 grades.
Tables 6, 7, 8, and }9\mathrm{ list the specific items of information
collected and used in this study. Table b identifies the manipulable
and non-manipulable factors of student achievement; Table 7 contains
the manipulable and non-manipulable measures of teacher evaluation
patterns; Table 8 presents the manipulable and non-manipulable
Personal and parental background characteristics; and Table q lists
the manipulable and non-manipulable school environment and learning
context categories.

```

Dependent variables. The dependent variables were measured by the 82 Stanford Achievement Test, Form E, which had different battery
versions for each grade level:
\begin{tabular}{cl}
Grade Level & \(\frac{\text { Version }}{1}\) \\
2 & Primary 1 \\
2 & Frimary 2 \\
3 & Intermediate 1 \\
4 & Intermediate 1 \\
5 & Intermediate 2
\end{tabular}

\section*{Table 5. Grade Etandardization System}
\begin{tabular}{|c|c|c|}
\hline System \({ }^{\text {a }}\) & System \(2^{\text {b }}\) & Standardized Scorec \\
\hline \(A^{+}, A\) & 0, 0+ & 4.00 \\
\hline A- & & 3.60 \\
\hline E+ & 0- & 3.40 \\
\hline E & & 3.00 \\
\hline E- & \(5+\) & 2.610 \\
\hline C+ & & 2.40 \\
\hline C & 5 & 2.00 \\
\hline C- & & 1.60 \\
\hline D+ & 5- & 1.40 \\
\hline D & & 1.00 \\
\hline D- & I + & 0.60 \\
\hline F+ & & 0.40 \\
\hline \(F, F-\) & I, I- & 0.00 \\
\hline
\end{tabular}
```

a--5ystem 1 refers to traditional letter grading: A = superior;
B = Above Average; C = Average; D = Fassing, Eelow Averaga;
F = Failing.
b--System 2 refers to less traditional grading: 0 = Dutstanding:
S = Satisfactory; I = Improvement Needed.
c--Values are those used by many colleges and high schools.

```

Table b. Studant Achievaments
Manipulable Non-Manipulabie
```

Arithmetic Grade* Achievement Test Scores
Handwriting Grade* Days Not Enrolled
Language Grade*
Reading Grade*
Science/Health Grade*
Social Studies Grade*
Spelling Girade*
Art Grade*
Music Grade*
Achievement Test Form
Davs Fresent*
Days Absent*
GFA*
Times Tardy*
English Grades*
Math Grades*
Feading Grades*
Spelling Grades*
Science/Health Grades*
Social Studies Grades*
Handwriting Grades*
Art Grades*
Music Grades*

```
*-Also occur simultaneously with or after achievement tests.

\section*{Table 7. Fatterns of Teacher Evaluations}
\begin{tabular}{|c|c|}
\hline Manipujable & Non-Manipulable \\
\hline Upward Erading Averaging Eias* & Teacher Code \\
\hline Special Education Code & \\
\hline Citizenship Grade* & \\
\hline (Was Student Fietained) & \\
\hline (Number of Times Fietained) & \\
\hline U. G.A.E. ct Citizenship Grade* & \\
\hline Work Habits* & \\
\hline Social Habits* & \\
\hline Courses Needing Improvemient* & \\
\hline Gifted Frogram & \\
\hline English as a Second Language Program & \\
\hline
\end{tabular}

\footnotetext{
*-Also occur simultaneousiy with or after achievement tests.
}

Table E. Fersonal and Farental Background Characteristics
\begin{tabular}{|c|c|}
\hline Manipulable & Non-Manioulable \\
\hline & Fiersonal \\
\hline Emergency Contact Person & 5 ¢e: \\
\hline Einergency Contact Fhone Number & Fiesidence \\
\hline \multirow[t]{29}{*}{505 Form} & Eirthdate \\
\hline & Girthplace \\
\hline & Frevious M.C.S.D. Attendance \\
\hline & Facial Ethnic Group \\
\hline & Last School ittended \\
\hline & Transfers (Total)* \\
\hline & Transfers (1993-84)* \\
\hline & Months in District \\
\hline & Who is Native American \\
\hline & Nationality \\
\hline & National Status \\
\hline & Attended Freschooi \\
\hline & Type of Freschool \\
\hline & Number of Years in Freschool \\
\hline & Telephone Number \\
\hline & Farental \\
\hline & Fersonal Median Family Income Free/feduced Fare Meal \\
\hline & Father Living \\
\hline & Father's Status \\
\hline & Father's Dccupation \\
\hline & Father's Employment Location \\
\hline & Nother Living \\
\hline & Mother s Status \\
\hline & Mother's Dccupation \\
\hline & Mother s Employment Location \\
\hline & Farents Absent \\
\hline & Farents Employed \\
\hline & Father's Eirthplace \\
\hline & Mother's Eirthplace \\
\hline
\end{tabular}
```

*-Also occur simultaneously with or after achievenent tests.

```

\section*{Table g. School Environment and Learning Context Characteristics}
```

        Manipulable
    Non-Manioulable
    Grade Level
    School
Grid
Enroljment of 5chool*
School's Library Characteristics*
Number of Students by Grade*
Number of Teachers by Grade*
Number of Aides/Assistants by Grade*
Special Education Students by Grade*
ESL Students by firade*
Number of Library Resource Teachers*
Number of Federal Emplayees*
Number of Counselors*
Total Staff*
Age of School*
Number of Improvements in Schooi*
Number of Classrooms in School*
Total Square Footage of Schoci*
School's Site ACreage Size*
Total Cost of School Construction*

```
*-Also occur simultanecusly with or after achievement tests.

\begin{abstract}
The specific subtests and tests for each battery are shown in Table 10. As can be seen from the table, not all subtests and tests were given to all grade levels.

Two particularly ambiquous domains were science and mathematics. Separate subtests for math computation and application were given at all grade levels except first grade, where a combined subtest included both computation and application. Methodologically and theoretically it was impossible to determine how to handle these subtests correctly, consequently the decision was made to exclude these subtests. In reference to the science domain, the subtest given to first and second grade students was labeled environment rather than science, which was the label given to the test given to the other grade levels. These tho subtests were technically different strands of the science domain, but were methodologically and theoretically assumed to have been measuring similar types of achievement (i.e., science). In this case, therefore, the subtests labeled environment and science were treated as the same domain for purposes of for both data collection and analysis.
\end{abstract}

Three other subtests (word reading, reading, language) and one test total (total languaga) were not used as dependent variables berause they were not given to all grade levels being studied; nor were any parallel tests given. This was an interesting observation because a number of previous studies have purportedly utilized the language total test scores (i.e., verbal scores). The using information test was not included in this study for several reasons:

Table 10, Stanford Student Academic Ánievement
Subtests, Tests, and Sattery Versions
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Domatin} & \multicolumn{4}{|c|}{Gatterv Yersion} \\
\hline & Frimary 1 & Frimary 2 & Frimary 3 & Interfinediate
\[
182
\] \\
\hline \multirow{6}{*}{FEADING} & Word Study Skills & Word Etudy Skills & Hord Study Skills & Word Etudy
\[
5 k i 115
\] \\
\hline & Mord Reading & Word Pieadina & & \\
\hline & Feading & Fieading & Feading & Fieading \\
\hline & Comprehension & Cumbrehension & Comprehension & Comprehencion \\
\hline & Reading & Feading & & \\
\hline & Total Feadino & Total feadino & Total Feading & Total Feadifio \\
\hline \multirow{5}{*}{Listening} & Vocatulary & Vocabulary & Vocabulary & Vocabulary \\
\hline & Listening & Listening & Listening & Listening \\
\hline & Comprehension & Comprehension & Cowerehension & Comprehension \\
\hline & Total & Total & Total & Total \\
\hline & Listening & LiEtening & Listenina & Listenino \\
\hline \multirow{4}{*}{LANGUAGE} & Spellina & Spelijin & Spejling & Spellino \\
\hline & & & Lanquage & Lanouage \\
\hline & & & Total & Total \\
\hline & & & & Lanauage \\
\hline \multirow{7}{*}{mathematics} & Concepts of Number & Concepts of Number & Concept of Number & Concept of Number \\
\hline & & Math & Math & Math \\
\hline & & Eomputation & Computation & Computation \\
\hline & & Hath & Math & Math \\
\hline & & Acplication & Aeplication & Goplication \\
\hline & Computation : Application & & & \\
\hline & Total Math & Total Math & Total Math & Total Math \\
\hline \multirow[t]{4}{*}{```
SCIENCE &
SOCIAL
SCIENCE
(ENUIFONMENT)
```} & Environment & Envirgnment & & \\
\hline & & & Social & Social \\
\hline & & & Science & Science \\
\hline & & & Science & Science \\
\hline USING & & & Using & Using \\
\hline InFORMATION & & & Information & Information \\
\hline
\end{tabular}
```

(1) the tast was only available for grades three through six; and (2)
the test was not given to all students in those grades. As à result,
ten dependent variables were used in this study:

```
\begin{tabular}{|c|c|c|c|}
\hline Subtest Name & Test Name & Variable
\(\qquad\) & Domain \\
\hline Word Study Skills & & ZSKLS & Fieading \\
\hline Reading Comprehension & & ZFEAD & Fieading \\
\hline & Total Feading & ZFEADT & Feading \\
\hline Vocabulary & & IVOC & Listening \\
\hline Listening Comprehension & & ZLIST & Listening \\
\hline & Total Listening & ZAUDIT & Listening \\
\hline Spelling & & ZSFELL & Language \\
\hline Concepts of Numbers & & 2MATH & Mathematics \\
\hline & Total Math & ZMATHT & Mathematics \\
\hline Environment & & ZSCIENCE & Science \\
\hline Science & & ZSCIENCE & Science \\
\hline
\end{tabular}

Indians and non-Indians. 17 Since there was tremendous variance in the definitions for the terms Indian and non-Indian, clarification on how these were used is necessary. Conceptually the terms were interpreted to be broad sociocultural ideas similar in nature to European and non-European. Specifically this meant that the terms were not used in this study as biological constructs. They were used instead as overgeneralized ethnic realities. How does one define overgeneralized ethnic realities like European or Indian?

First of all, unlike most other appellations, a distinction between American Indians and India Indians was necessary. As such, this study assumed Indians meant American Indians. Secondly, and again unlike other terms like European, the term Indian has had a multitude of legal defjnitions that often contradict each other. More
```

importantly, these legal definitions have usually combined both ethnic
and biological meanings, thus converting the term into a racial
appellation. Indeed, for most people Indian has been a racial rather
than ethnic term, while European has been an ethnic identification.
European has been used to refer to someone who belonged to one of
the many unique or confederated cultures in Europe. Simply replacing
European with Indian, the term (American\ Indian would then be used to
refer to someone who belonged to one of the many unique or
confederated cultures in America. Indian was, therefore, conceptually
defined in this study as a referring to students who belonged to one
of the more than ane hundred different cultures historically and
contemporaneously found in America. Non-Indjan was simjlarly defined
as referring to all students in this study who did not belong to one
Of the identifind Indian cultures.
Indian and non-Indian were operationally defined as follows. In
filling out their school enrollment forms all students had to
self-identify themselves into one of five "racial ethnic group"
Categories used by the Washoe County School District: (1) American
Indian-Alaskan Native; (2) Asian or Facific Islander; (J) Elack not
Hispanic; (4) White not Hispanic; or (5) Hispanic. As mentioned
above, this type of measurement was not very reliable because students
often fit into more than one category. Despite this problem, all
students were coded into the category they had identified, unless it
was demonstrated that the data were incorrect. All students
self-identified as Indian were verified before being coded as such.

```
```

Thus, for purposes of this study all students self-identified as
American Indian/Alaskan Native were operationally defined as Indian.
All other students were operationally defined as non-Indians. 10

```

\section*{Data Analysis Methods}

Each research cycle involved different data analysis techniques and procedures, although those methods employed in the first cycles were prerequisites for subsequent cycles.

Controlling for school enrollment differences. Due to a number of circumstances, schools and the corresponding student enrollments were considerably different enough that statistical differences would be expected through such differences alone. All school factors, therefore, were divided by that school's enrollment to obtain per student ratios for purposes of data analyses. For example, the number of classrooms or library books per student enrolled were used for the data analysjs procedures: rather than just the (raw) number of classrooms or library books in the school attended by the student. Thus, controlling for enrollment size eliminated the chance of artificial differences between Indian and non-Indian students simply because they attended different sized schools.

Techniques and processual sets of data analvsis. Data analysis Was performed using the SPSSX (Statistical Fackage for the Social Sciences Mainframe version) software on the University of Montana computer system. Four sets of procedures were employed during the project. The first set of procedures (see Figure 2) involved the
```

following techniques to identify and describe patterns about the
research samples:
Frequencies: descriptive tables of values and the corresponding
number of cases and percentages for those values for
each variable or factor.
Histograms: descriptive, graphic representation of the
frequencies involved with each variable.
Univariate
Statistics: descriptive statistical calculations of the mean,
median, mode, standard deviation,variance,
skewedness, kurtosis, sum, range, maximum, and
minimum.
The second set of procedures involved the following techniques to
test the initiai research hypotheses that differences between Indian
and non-Indian students existed:
Cross-
tabulations: to compare joint distribution of Indian and
non-Indian samples with the nominal and ordinal or
categorical data. Chi-square (}\mp@subsup{x}{}{2}\mathrm{) tests of
association (along with other bivariate statistics)
indicated the significance of observed
distributions. This determined if observed
distributions were due to chance or dependent upon
whether students were Indian or non-Indian (i.e.,
ethnicity), and hence statistically significant. On
a number of the school environment and learning
context variables the data were markedly skewed. As
such these interval data could not be tested using
the t-test, as discussed below. Instead, the Median
Test for a difference between two medians, which is
essentially a simple chi-square, was made for these
factors.
I-Test5: to compare sample means of interval or variable data
by calculating students' t and testing the
significance of the difference between the means.
This determined if Indian and non-Indian differences
were statistically significant.
Upon completing these two sets of data analysis procedures,
conclusjons concerning the results were made. As part of the second

```
```

research cycle in this study (see Figure S), a third set of data
analysis procedures was employed, following secondary data analysis or
reorganization procedures, to inductively identify classes of
predictive factors of academic achjevement test scores, so as to
develop a model or models for further hypothesis testing:
Correlations: to test the association or relationship between two
variables. Goth simple and partial correlations
(the relationship between two factors holding other
relevant variatles constant) were made.
Stepwise
Regressions: to test the effects of variables on the dependent
variable, isolating and simultaneouslv analyzing
the strongest group of factors that independently
predict the dependent variable. The stepwise
furiction causes the most powerful predictor to be
selected first.
The fourth set of data analysis procedures was employed durang the
third research Cycle (see figure 4). The purpose of these analyses
wes to test hypotheses concerning differences in predictor models for
Indian students, for each grade level in the population, and at each
grade level for Indian students. Additionally, analyses were made to
detarmine statistical differences between the population and Indaan
students both in terms of manipulable and nori-manifulable factors, and
in terms of the four types of factors (see Tables b through 9i. The
following techniques were employed during this phase of the research
project:

```
```

 Stepwise and
 Forced Entry
 Fegressions: to test to see what variables from the predjctor
 pool, when forced into the operation, were found
 to be significant predictors for achievement test
 scores. Analyses were done for the district, for
 Indian students, for the district by each grade
 level, and for Indian students by each grade
 level.
 Binomial Test,
 Fusher's E%act
 Test, t-test
 and Chi- Square: to test explanatory accountability and
 percentages of predictors explaining population
 and Indian academic achievement.
 Figures 2, 3, 4, and 5 include the amalytic processes of this
 research project as discussed here, while Figure b presents the
sequential flow of the data analysis techniques encompassed in this
study.

```

Figure 6. Flow of Data Analysis


\section*{CHAFTER 3}

\author{
COMPARATIVE CHARACTEFISTICS OF ACADEMIC ACHIEVEMENT IN THE WASHOE COUNTY SCHOOL DISTRICT
}
The objectives of this study were to: (1) describe
characteristics of elementary education in the population and to
determine if Indian students were academically less successful than
non-Indian students; (2) discover antecedent factors that accounted
for observed variance in academic success; (3) compare Indian student
and grade level models with population models of academic achievement;
and (4) assess whether such antecedent predictors were manipulable by
the school system. As indicated in chapter 2 , this study began with a
synthesis of the literature, posing a number of questions and
hypotheses about Indian and non-Indian education in the washoe county
School District. Since answers to some questions relied upon answers
to other proceeding questions, the research was conducted through four
cumulative cycles.
the objectives. That is, the first cycle of research, which consisted
of two simultaneous sets of processes, provided empirical evidence
concerning the first objective. The conclusions of these two sets of
```

research processes in the first cycle provided the beginning stage for
the second cycle of research that focused on the objective of
developing a predictive model (or models) of academic success in the
Washoe County School District. These inductively created models of
academic achievement, in turn, became the first stage of the third
cycle of the research processes to test for differences between the
population and Indian students and at each grade level in the
predictor models, along with assessing whether such predictive factors
were manipulable by the Washoe County School District. The fourth
cycle of research was to build upon the conclusions of the previous
three research cycles, as well as other research, to synthesize a
theory atout Indian education (or education in general).
The results of the first cycle of this research project are
reported in this chapter: while the results of the other research
cycles will be presented in succeeding chapters. Specifically, this
chapter was concerned with the following research questions:
1. What student characteristics are related to education?
3. Do Indian students differ from other students?
This chapter also dealt with the following research hypotheses, which
were synthesized from the literature, and that were concerned with
these two research questions:
H1: Standardized achievement test scores for Indian students are
significantly lower than test scores for non-Indian students
in the Washoe County School District.
H2: Class grades, attendance, and other measures of previous
achievement are significantly different for Indian and
non-Indian students in the Washoe County School District.

```
```

H3: Teacher evaluations are different for Indian and non-Indian
students in the Washoe County School District.
H4: Fersonal and familial background characteristics are
significantly different for Indian and non-Indian students in
the Washoe County School District.
H5: School environment and learning context variables are
different for Indian and non-Indian students in the Washoe
County School District.

```

\section*{Data Analysis Frocesses}

Data collection was accomplished as discussed in Chapter 2, after which the data were coded by an assistant using the code book found in Appendi: \(E\), and then entered onto the mainframe computer by a professional data entry person. All data entries were verified by both the data entry person and the researcher. All subsequent editing Was done by the researcher. Data were initially entered into two separate files, one for information on individual students and the other for data on each of the schools. There were ninety-eight variables for which data were entered in the student file and ninety variables in the school file. Systems files for conducting statistical analyses were set up using the Statistical fackages for the Social Sciences software (SFSSX). As part of these systems files, thirty-nime new variables were created for the student data systems file, and four new variables for the school data systems file.

Computer commands were also included in the student data systems file to exclude cases. Specifically, all preschool, kindergarten, and seventh and eighth grade students were left out of the systems file. Additionally, students identified as either special education or

English as a Second Language (ESL), and those who had moved intofout of the district after the administration of the stanford Achievement Enams, were eliminated from the student data systems file.

Once these two systems files had been established, a merged systems file was created by matching the school data appropriate to each case in the student data file, which resulted in a combined file consisting of 230 variables and 669 cases. 19 Of the 230 variables, 81 variables were not used for the following reasons:
1. 59 variables had been recoded/computed into new variables;
2. 8 variables were used for administrative purposes only;
3. 4 variables were used to enclude or control for specific characteristics (i.e., special education, ESL, moved intoiout of the district, did not previously attend);
4. 7 variables had too many cases with missing data to be appropriately used; and
5. 3 variables had no variance (i.e., all elementary schcols were found to have no microfilms, microfiches, or newspaper subscriptions).

This left a combined systems file of 149 variables, which are listed in Appendi: C. 20

Procedure files were set up for data analyses of the combined systems file. As part of the procedure files, a command was included to select only those students who had class grades for both the 1982-83 and 1983-84 school years, which reduced the data file case size to the delimited study sample of 459 students. Another command categorized the students into two groups, Indian and non-Indian.

Three separate procedure files were used during this cycle of the study. The first procedure file utilized the frequencies package of
```

SFSS'. This analysis used the combined systems file and celculated
frequency distributions for each of the selected variables along with
univariate statistics and histograms of the data distributions. A
summary of the univariate statistics (mean, mode, median, range, and
sample size) for both the overall sample and Indian students only is
presented in Appendig D. The frequencies procedure file was utilized
four times, once each for the weighted population, the total sample,
Indian students only, and non-Indian students only.
The other two procedure files were used to test the research
hypotheses of this research cycle. One file employed the
crosstabulations package and the other used the t-test paclage of
SPSSX. Selection of which file or statistic to use was based upon
standard criteria. The t-test required that the data be randomly
sampled, involve interval or ratio scale measurements, be taken from a
normally distributed population, and have approximately equal
variances. The chi-square test, which was part of the
crosstabulations package, was used whenever a measure did not meet
these criteria. Df the 139 independent varjables used in this study
(see Appendix D), 112 involved interval data, 24 had nominal data, and
3 had ordinal data. In the case of these latter variables the Median
Test chi-square statistic was employed to test whether it was probable
that the two groups, Indjans and non-Indians, were drawn from
populations with the same median. The Median Test chi-square was
calculated by hand by using the population median as the point at
which to divide the Indian and non-Indian student distribution

```
```

frequencies on the involved variables into two groups, one less than
or equal to the population median and the other greater than the
population median. These frequencies were then entered into
crosstabulation tables and the chi-square was computed (Isaac and
Michael, 1985:179).
The inferential t-test statistic was used to determine whether
differences between the means could have been expected by chance.
Fhrased differently, the t-test answered the question of whether the
samples could have been drawn from a population in which the means for
the two groups were identical. The chi-square test, also an
inferential statistic, was used with the crosstabulation tables to
determine if the observed relationships in the table were
statistically significant. That is, chi-square answered the question
Of whether it was likely that the sample was drawn from a population
in which the variables were related or if the differences erist simply
because of chance alone. The Median Test chi-square statistic was
used to test the difference between the two medians. Both statistics
actually tested the null hypothesis rather than the alternative
hypothesis. The null hypothesis for the t-test stated that there was
no difference between the means of the two groups; and the null
hypothesis for the chi-square test stated that there was no difference
between the distributions ottained from the two groups on each item.
Fejection of these null hypotheses was based upon the predetermined
level of significance or the accepted level of alpha error (i.e., p
<.05), and would have indicated that the alternative hypotheses were

```
```

probably true and not due to random chance or sampling errors. The results of these hypothesis tests are reported below as they relate to the dependent variables and the independent background, achievement, evaluation, and school environment and learning context variables.

```

\section*{Comparison of Student Achievement Test Scores}

The Stanford Achievement Tests (SATs) were administered to students at all schools in the district during the week of April 2 , 1994. Scores were reported on official SAT forms alonq with local and national norms, and were accessible to teachers by early June (before school ended for the summer). Copies of these forms were made and data were then entered onto collection inventories or forms. Scores were reported in three formats: raw scores, grade equivalent scores, and percentiles. Generally speaking, teachers relied upon the grade equivalent scores, although some referred to the percentiles, but the norms were seldom used, if even looked at. There was no district policy concerning who was or was not to take the exams; indeed there was little consistency at either the school or classroom level. Hence it was important to first determine how many of the students in the study had taken part or all of the exams. Table 11 provides the frequencies and percentages of Indian and non-Indian students who did or did not take the SATs. Out of the 459 students, only \(2.8 \%(n=13)\) did not take part or all of the tests. Although more Indian than non-Indian students took the SATs, these differences were not found to be statistically significant.

Tabie 11. Differences Eetween Indians and Non-Indians Taking the Stanford Achievemerit Tests (SAT)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Took Exams } \\
\text { (SAT) } \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Indian \\
Students
\end{tabular} & Non-Indian Students & \begin{tabular}{l}
Sample \\
Totals
\end{tabular} \\
\hline Yes & \[
\begin{gathered}
197 \\
(98.0 \%)
\end{gathered}
\] & \[
\begin{gathered}
249 \\
(96.5 \%)
\end{gathered}
\] & \[
\begin{gathered}
44 \% \\
(97.2 \%)
\end{gathered}
\] \\
\hline No & \[
\begin{gathered}
4 \\
(2.0 \%) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
9 \\
(3.5 \%) \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
13 \\
12.8 \% \\
\hline
\end{array}
\] \\
\hline Totals & \[
\begin{gathered}
201 \\
(100.0 \%)
\end{gathered}
\] & \[
\begin{gathered}
253 \\
(100.0 \%)
\end{gathered}
\] & \[
\begin{gathered}
455 \\
(100.0 \%)
\end{gathered}
\] \\
\hline & \(x^{2}=.455\) & \(\bar{p}=1.5\). & \\
\hline
\end{tabular}


\section*{Table 12. Mean Comparisons of Indian and Non-Indian Students for Standardized (Z-Score) Achievement Test (SAT) Scores}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Variable \\
Name
\end{tabular} & Indian Mean & \[
\begin{gathered}
\text { Non-Indian } \\
\text { Mean }
\end{gathered}
\] & Fopulation Mean & t-ratio \\
\hline Word Study Skills & -. 12 & . 29 & . 28 & 4.89*** \\
\hline Feading Comprehension & -. 06 & . 38 & . 37 & 5.93*** \\
\hline Reading Test Total & -. 08 & .37 & . 36 & 6. 23 *** \\
\hline Vocabulary Knowledge & -. 39 & . 22 & . 20 & 7.29*** \\
\hline Listering Comprehension & -. 24 & . 17 & . 16 & 4.92*** \\
\hline Auditory Test Total & -. 33 & . 16 & . 15 & 5.5E*** \\
\hline Spelling & -. 09 & .21 & .20 & 3.44*** \\
\hline Math Concepts & -. 43 & . 15 & . 11 & 6.54*** \\
\hline Math Test Total & -. 22 & . 28 & . 27 & 5.74*** \\
\hline Science knowledge & -. 05 & .37 & . 36 & 5.42*** \\
\hline
\end{tabular}

SAT Gubtests/Tests
```

national norm, in the test score differences for reading, spelling,
and science such differences were negligible.
Indian students did best in science, spelling, reading
comprehension, and the reading test total, and were weakest in math
concepts, vocabulary, and auditory test total. Interestingly,
non-Indian students also did their best in reading comprehension,
science, and the reading test total, while scoring lowest in math
concepts, auditory test total, and listening comprehension. While
both Indian and non-Indian students did poorly in math concepts,
Indian students clearly did even more poorly than their classmates.
Among the tested areas Indian students were closest to their peers in
sFelling, with only a . S0 z-score difference: but this was still
significantly lower than their classmates.
These results from the tests for mean differences between Indian
and non-Indian students provided evidence for the rejection of the
nuli hypothesis, and the acceptance of the alternative hypothesjs,
H1: Standardized achievement test scores for Indian students are
significantly lower than test scores for non-Indian students
in the Washoe County School District.
Moreqver, Indian students' test scores were consistently below the
national norm, but demonstrated a relatively consistent pattern with
their classmates. That is, both Indian and non-Indian students tended
to do poorly or well on the same subtest/test areas, although the
non-Indian students were consistently higher than the Indian students.

```
\begin{tabular}{|c|}
\hline \multirow[b]{24}{*}{} \\
\hline \\
\hline
\end{tabular}

Table 13. Mean Comparisons of Indian and Non-Indian Stanford Achievement Test (SAT) Scores by Grade Level
\begin{tabular}{|c|c|c|c|c|}
\hline Dependent Variable & \begin{tabular}{l}
Girade \\
Leve]
\end{tabular} & Indian Mean & Non-Indian Mean & t-value \\
\hline Word Study & 2 & -. 05 & . 16 & . 51 \\
\hline \multirow[t]{4}{*}{5kills} & 3 & -. 37 & . 15 & 2.57** \\
\hline & 4 & -. 17 & . 40 & 2.90** \\
\hline & 5 & -. 18 & . 26 & 2.56** \\
\hline & \(t\) & . 15 & . 55 & 2.80** \\
\hline Feading & 2 & . 01 & . 31 & 1.79 \\
\hline \multirow[t]{4}{*}{Comprehension} & 3 & . 08 & . 44 & 2.30\% \\
\hline & 4 & -. 01 & . 26 & 1.38 \\
\hline & 5 & -. 23 & . 27 & 2.76** \\
\hline & \(t\) & -. 06 & . 65 & 4.72*** \\
\hline Feading & 2 & .02 & . 26 & 1.44 \\
\hline \multirow[t]{4}{*}{Test Total} & 3 & -. 10 & . 38 & 3.02** \\
\hline & 4 & -. 06 & . 37 & 2.28* \\
\hline & 5 & -. 23 & . 28 & 3.08** \\
\hline & 6 & . 02 & .64 & 4.52*** \\
\hline Vocatulary & 2 & -. 54 & . 10 & 3.11** \\
\hline \multirow[t]{4}{*}{knowledge} & 3 & -. 23 & .25 & 2.54** \\
\hline & 4 & -. 37 & . 14 & 2.54** \\
\hline & 5 & -. 44 & .21 & 3. \(59 * * *\) \\
\hline & 5 & -. 35 & . 47 & 4. \(48 * * *\) \\
\hline Listening & 2 & -. 43 & -. 05 & 1.67 \\
\hline \multirow[t]{4}{*}{Compiehension} & 3 & -. 05 & . 15 & 1.10 \\
\hline & 4 & -. 18 & . 25 & 2.15* \\
\hline & 5 & -. 29 & . 19 & 2.91** \\
\hline & 6 & -. 26 & . 51 & 4.54*** \\
\hline Auditory & 2 & -. 50 & . 08 & 2.61** \\
\hline \multirow[t]{4}{*}{Test Total} & 3 & -. 15 & . 22 & 1.95* \\
\hline & 4 & -. 29 & . 20 & 2.41* \\
\hline & 5 & -. 38 & . 15 & 2.95** \\
\hline & 6 & -. 34 & . 24 & 2.45* \\
\hline
\end{tabular}

Tatle 13. (continued)
\begin{tabular}{|c|c|c|c|c|}
\hline Dependerit Variable & Grade Level & Indjan Mean & \begin{tabular}{l}
Non-Indian
\(\qquad\) \\
Mean
\end{tabular} & t-value \\
\hline \multirow[t]{5}{*}{Spelling} & 2 & -. 04 & . 08 & . 55 \\
\hline & 3 & -. 05 & . 24 & 1.92 \\
\hline & 4 & . 08 & . 21 & . 57 \\
\hline & 5 & -. 25 & . 07 & 1.57 \\
\hline & 6 & -. 15 & . 51 & 3.87*** \\
\hline \multirow[t]{5}{*}{Math Concepts} & 2 & -. 45 & -. 12 & 1.55 \\
\hline & \(\stackrel{3}{ }\) & -. 30 & . 11 & 2.22* \\
\hline & 4 & -.45 & . 09 & 2.42* \\
\hline & 5 & -. 51 & . 15 & 4.35*** \\
\hline & \(t\) & -. 40 & . 56 & 4.51*** \\
\hline Math Test & 2 & -. 3.3 & -. 01 & 1.45 \\
\hline \multirow[t]{4}{*}{Totai} & 3 & -.02 & . 36 & 2.36* \\
\hline & 4 & -. 11 & . 35 & 2.25* \\
\hline & 5 & -. 34 & . 27 & 3.54*** \\
\hline & 6 & -. 32 & . 58 & 4.62*** \\
\hline Science & 2 & -. 42 & -. 0.5 & 1.80 \\
\hline \multirow[t]{4}{*}{knowledge} & 3 & -. 16 & . 42 & 3. 50\%** \\
\hline & 4 & . 15 & . 42 & 1.45 \\
\hline & 5 & -. 06 & . 51 & 3.43*** \\
\hline & 5 & . 05 & . 70 & 4.09\%** \\
\hline
\end{tabular}
*--p<.05 **--p<.01 ***--p<.001

\title{
Figure 8. Mean Word Study Skills Scores
} by Grade Level


\section*{Figure 9. Mean Reading Comprehension Scores by Grade Level}


Figure 10. Reading Test Total Scores by Grade Level


Figure 11. Mean Vocabulary Scores
by Grade Level


Figure 12. Mean Listening Comprehension Scores by Grade Level


Figure 13. Mean Auditory Test Total Scores
by Grade Level

Figure \(\begin{gathered}\text { 14. Mean Spelling Scores } \\ \text { by Grade Level }\end{gathered}\)


Figure 15. Mean Math Concepts Scores
by Grade Level


Figure 15. Mean Math Test Total Scores by Grade Level

Figure 17. Mean Science Scores

Grade Level
```

non-Indian achievement dramatically increased. It was noted that,
except for the auditory test total scores, non-Indian sixth grade
students were consistently achieving at least one-half a standard
score (z >.50) above the national norms. Sixth grade Indian students.
test scores were not, however, as consistent over test areas. For
e:ample, the mean word study skills score of z = . I5 was slightly
above the national norm and the reading test total mean of z = . 02 was
essentially at the national norm, but the math concepts mean of z =
-.4t was considerably below the national norm. A third important
pattern was that across the tests, and for both Indian and non-Indian
students, the fifth grade somehow precipitated lower academic
achievement.
In looking at just Indian students by grade level it was found that the third grade was usually the level at which they performed best. Interestingly, in spelling and science, which have often been found to be Indian students' strongest areas, Indian students did best at the fourth grade level instead. The results indicated that Indian students' spelling achievement dropped off after the fourth grade and Was statistically significantly worse than noni-Indian students' spelling achievement. This was particularly unexpected because most previous research had indicated that spelling was the one area Indian students did consistently well in. Indeed, the data analyses of the aggregate data in this study also suggested that Indian and non-Indian achievement in spelling were essentially equal. These results suggested that this was not totally accurate and that overall Indian

```
```

students' spelling achievement was probably being misrepresented by
their success in the 3rd and 4th grades.
Ferhaps the most disturbing area of Indian student achievement
found across grade levels was for reading comprehension. That is,
reading comprehension was the only test area that really exhibited a
negative learning regression line. Yet, even in this achievement
area, Indian students were essentially achieving par with other
students in the nation. Generally speaking, teachers appeared to have
been doing their job for both Indian and non-Indian students, although
some clearly were not. This result must be tempered, however, by the
results discussed above and the statistical tests that demonstrated
Indian students were academically significantly less successful than
their non-Indian ciassmates. The results of this study also seemed to
corroborate other research conclusions that Indian students were
achieving fairly consistently until about the fourth grade, but that
between the fourth and fifth grade Indian students appeared to almost
give up rather than "plateau out."

```
    Educational Characteristics of the Washoe County School District
    In addition to data on academic achievement test scores, data were
collected on a large number of other educational characteristics in
the Washoe County School District. In a number of cases the data were
simply collected because they existed rather than because they were of
theoretical or applied importance, while other factors were included
because of their probable differences between Indian and non-Indian
```

students. The results of the descriptive data analyses for the Washoe
County School District population in general, Indian students only,
and non-Indian students only are presented below, along with the
results of the hypothesis testing analyses. The results of the
hypothesis testing procedures were further analyzed for their
validating support of the remaining research hypotheses concerning
Indian and non-Indian differences.
Student Achievement/Evaluation Characteristics
The most common measures of student achievement other than
academic achievement tests have been grade point averages (GFAs),
previous grades in specific subject areas, and the number of days
absent (absenteeism). Univariate statistics {mean, mode, median,
range, variance, and sample sizel for each of these variables are
presented in Appendi: D for the Indian and non-Indian etudents.
Indian and non-Indian comparisons. The means for all Indian
students, non-Indian students, and the combined total sample are
presented, with the t-ratio value of Indian and non-Indian student
differences, in Table 14. In looling at the means in Table 14, and
other descriptive statistics from Appendi: D, several patterns and
changes that occurred between the 1982-83 and 1983-84 school years
were observed.
Descriptive statistics indicated that, comparatively, the Indian
mean GFA rose two hundredths of a grade point (t.02) between the
1982-83 and 1983-84 school years, while the non-Indian mean GPA

```
```

Table 14. Mean Comparisons of Indian and Non-Indian
Students For Student Achievement and
Teacher Evaluation Characteristics

```
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Variable \\
Name
\end{tabular} & Indian Mean & \[
\begin{gathered}
\text { Non-Indian } \\
\text { Mean } \\
\hline
\end{gathered}
\] & t-ratio \\
\hline Accumulated GFA & 2.40 & 2.76 & 6.11*** \\
\hline 1983 Grade Foint Average & 2.35 & 2.74 & 5.62*** \\
\hline 1964 Grade Foint Average & 2.41 & 2.78 & 5.62*** \\
\hline 1783 Grithmetic Grade & 2.63 & 3.01 & 4.87*** \\
\hline 1783 Language Grade & 2. 52 & 2.88 & 4.66*** \\
\hline 1953 Reading Grade & 2.45 & 2.87 & 4.6.3*** \\
\hline 1983 Science/Health Graue & 2.21 & 2.48 & 3.79*** \\
\hline 19ES Social Studies Grade & 2.13 & 2.46 & 4.37*** \\
\hline 1983 Spelling Grade & 2.88 & 3.10 & 2.63** \\
\hline 1984 Arithmetic grade & 2.55 & 2.54 & 5. 3 S*** \\
\hline 1984 Lanquage Grade & 2.49 & 2.90 & 5.05*** \\
\hline 1984 Feadirg Grade & 2.42 & 2.87 & 5.70*** \\
\hline 1984 Science/Health Grade & 2.27 & 2.61 & 4.51*** \\
\hline 1984 Social Studies Grade & 2.30 & 2.55 & S.16\%* \\
\hline 1984 Spelling Grade & 2.92 & 3.22 & 3.82*** \\
\hline Number of Days Fresent
\[
(1982-83)
\] & 153.50 & 163.38 & \(-0.10\) \\
\hline Number of Days Fresent
\[
(1983-84)
\] & 166.89 & 169.90 & 2.71** \\
\hline Number of Days fibsent
\[
(1982-83)
\] & 11.51 & 9.27 & -2.54** \\
\hline Number of Days Absent
\[
(1953-84)
\] & 11.88 & 9.65 & -2.54* \\
\hline \begin{tabular}{l}
Number of Days Not \\
Enrolled (1982-83)
\end{tabular} & 3.02 & 5.00 & 1.16 \\
\hline \begin{tabular}{l}
Number of Days Not \\
Enroiled (1983-84)
\end{tabular} & 1.43 & 0.32 & -1.47 \\
\hline 1983 Citizenstip Gradea & 3.00 & 3.16 & 2.02* \\
\hline 1984 Citizenship Gradea & 2.99 & 3.24 & 2.76** \\
\hline
\end{tabular}

\footnotetext{
*--p<.05 **--pく.01 ***--pく.001
a--Teacher Evaluations Characteristic.
}

```

and non-Indian students, with the single distinction that Indian
student achievement was lower than non-Indjan student achievement.
Statistical comparisons were made between Indian and non-Indian
students on the twenty-one student achievement variables and two of
the teacher evaluation variables to determine if these observed
differences were statistically significant. Statistical tests of
these observed differences in the means, or t-ratios, indicated {Table
14) that Indian students were significantly different from non-Indian
students in eighteen of the twenty-one student achievement measures
and in both of the teacher evaluation characteristics. Although it
was found that Indian students were enrolled in the Washoe County
School District for more days than non-Indian students during 1982-83,
Indian students were also enrolled fewer days in 1093-84. Mean
comparisons of Indians and non-Indians demonstrated that these
differences were not, however, statistically significant. That is,
Indians and non-Indians were enrolled in school for a statistically
similar number of days.
Although not statistically important, the result of the t-test for
the number of days present in 1982-33 was substantively significant
because Indian and non-Indian students' class attendance frequencies
were not significantly different. Indeed, not only was their
attendance essentially the same, Indian students were present slightly
more often than other students, a unique result in comparison to other
research studies. This result became even more significant in light
of the t-test for days absent in 1982-83, which proved to be

```
```

statistically significant. That is, the results demonstrated that
Indians were absent significantly more often than other students, yet
they were present more days than non-Indian students! This situation
was the result of the fact that Indian students were also enrolled
more days than non-Indians. Hence, when both days absent and days not
enrolled were considered in combination, it became clear that
non-Indian students were in the classroom fewer days in 1982-8.3 than
Indian students.
These results had both practical and methodological implications
with regards to absenteeism policies and research. First, it should
be noted that the data implicated recordkeeping errors on the part of
the school teachers. The number of days present, number of days
absent, and the number of days not enrolled, when added together
should have totaled 180 days. However, the mean figures for neither
group added up correctly. Second, this result highlighted a
methodological problem for studying absenteeism in that each measure
was found to present a different image of the situation. One solution
to this problem would be to convert the frequency counts into
percentages, so that rather than coding the number of days abeent
{e.g., 11.9), the percentage of days absent (e.g., 6.6%) would be
entered.
This methodological issue also raised practical concerns because
absentee policies have usually been based upon examination of the
number of days absent. Much previous research has concluded that
Indian students were absent more, and thus that they were in the

```
```

classroom less. This was interpreted to mean that Indian students
were learning less than students who were less absent and presumably
present more. Yet the results here have suggested the possible
fallacy of such assumptions and conclusions, because Indian students
in the Washoe County School District were both present and absent more
than mon-lndians. Indeed, if this study had taken the same assumption
that attendance was positively correlated with achievement, then
Indian students should have done academically better than other
students because they were, at the time, attending class more than
their classmates.
In looking at teacher evaluations of students in both Tables 14
2nd 15 it was found that Indian students were statistically
significantly differently evaluated on two of five variables (40%) in
comparison to the eighteen of twenty-five statistically significant
factors (86%) for student achievement factors. Indian students' mean
citizenship grades were two-tenths of a grade point (.2) below their
non-Indian classmates (Table 14). In looking at other types of
teacher evaluations2l in Table 15 it was found that teacher
evaluations of Indian and non-Indian students were not statistically
significantly different. The failure to find a significantly large
enough chi-square value may have been due to the number of cases
involved in the variatles for both groups. Only 14% of the students
in the Washoe County School District total sample had been retained
one or more times, with 3% having been retained for the 1983-84 school

```

\section*{Table 15. Differences Between Indian and Nom-Indian Students in Teacher Evaluations}
\begin{tabular}{|c|c|c|c|c|}
\hline Variablegalue & & ndians & Non-Indians & Total \\
\hline \multicolumn{5}{|l|}{Gifted Froqram} \\
\hline \multirow[t]{2}{*}{Nomparticipant} & f & 195 & 241 & 436 \\
\hline & \% & (97.0) & (93.4) & (95.0) \\
\hline \multirow[t]{2}{*}{Participant} & f & 6 & 17 & 23 \\
\hline & \% & ( 3.0\()\) & (5.6) & ( 5.0) \\
\hline \multirow[t]{2}{*}{Total} & & 201 & 256 & 459 \\
\hline & \multicolumn{4}{|c|}{\(x^{2}=2.37 \quad p=\pi .5\).} \\
\hline
\end{tabular}

Was 5tudent Fietained in 19842
\begin{tabular}{|c|c|c|c|c|}
\hline No & \% & \[
\begin{gathered}
196 \\
(97.5)
\end{gathered}
\] & \[
\begin{gathered}
243 \\
\{06.1)
\end{gathered}
\] & \[
\begin{gathered}
444 \\
(95.7)
\end{gathered}
\] \\
\hline Yes & \(\ddagger\) & 5 & 10 & 15 \\
\hline & \% & (2.5) & 13.91 & (3.5) \\
\hline Total & & 201 & 258 & 459 \\
\hline & & \(x^{2}\) & \(p=\) & \\
\hline
\end{tabular}

Total Number of Times fetained
\begin{tabular}{|c|c|c|c|c|}
\hline Hone & \[
\begin{aligned}
& \ddagger \\
& \%
\end{aligned}
\] & \[
\begin{gathered}
168 \\
(83.6)
\end{gathered}
\] & \[
\begin{gathered}
227 \\
(88.0)
\end{gathered}
\] & \[
\begin{gathered}
395 \\
(84.1)
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{Once} & f & 32 & 29 & 61 \\
\hline & \(\%\) & (15.7) & (11.2) & ( 13.3 ) \\
\hline \multirow[t]{2}{*}{Twice} & \(f\) & 1 & 2 & 3 \\
\hline & \% & ( 1.51 & 1.51 & ( \\
\hline \multirow[t]{2}{*}{Total} & & 201 & 258 & 457 \\
\hline & & \(x^{2}\) & \(p=\) & \\
\hline
\end{tabular}
```

year. Moreover, only 5% of the elementary students had participated
in the gifted program.
Despite the fact that differences were not statistically
significant, and that the percentage of cases different from the mode
were generally small for two of the variables, there were several
substantively significant results concerned with teacher evaluations
in Table 15. First of all, it was shown that non-Indian students were
twice as likely to be participants in the gifted student program.
Secondly, 4.4% more of the Indian students than non-Indian students
had been retained at least once since entering school. In other
word5, 12.0% of the non-Indian students in comparison to 16.4% of the
Indian students attending elementary school in the Washoe County
School District had been retained at least one grade. This meant
Indian students were substantively significantly more likely than
non-Indian students to be retained a year. That is, one out of every
si: Indian students had been retained a grade in elementary school in
the Washoe County School District. While this figure was not
statistically different from that for non-Indians, practically
speaking, this was a substantively higher rate of grade retention.
Indian and non-Indian comparisons by grade level. A major
conclusion of the literature review in Chapter 1, and of the empirical
resuits from this study in regards to standardized achievement test
scores, was that Indian students had higher levels of achievement at
certain grade levels than others. Erod (1976b); Brod and Erod (1991);
Eryde (1965, 1970); Coombs et al. (1958); Havighurst (1957, 1970), and

```

```

Table 16. Mean Comparisons of Indian and Non-Indian
Subject Grades by Grade Level

```
\begin{tabular}{|c|c|c|c|c|}
\hline Variable & Grade Level & Indian Hean & Non－Indian Mean & t－vaiue \\
\hline Mean Grade & 2 & 2.48 & 2.65 & 2．22＊ \\
\hline \multirow[t]{4}{*}{Point Average} & 3 & 2.63 & 2.65 & 0.19 \\
\hline & 4 & 2.42 & 2.88 & 3．50＊＊＊ \\
\hline & 5 & 2.32 & 2.84 & \(3.80 \% * *\) \\
\hline & 6 & 2.20 & 2.89 & 了． \(80 \% * *\) \\
\hline 1983 Grade & 2 & 2.55 & 2.70 & 1.60 \\
\hline \multirow[t]{4}{*}{Point Average} & 3 & 2.65 & 2.66 & 0.10 \\
\hline & 4 & 2.37 & 2.82 & \(3.43 * * *\) \\
\hline & 5 & 2.32 & 2.79 & उ．38＊＊＊ \\
\hline & 6 & 2.16 & 2.88 & 3．63＊＊＊ \\
\hline \multirow[t]{5}{*}{1983 Math Grade} & 2 & 3.02 & 3.22 & 1.28 \\
\hline & 3 & 2.93 & 3.04 & 0.74 \\
\hline & 4 & 2.70 & 3.17 & 2．91＊＊ \\
\hline & 5 & 2.41 & 2.83 & 2．7t＊＊ \\
\hline & 6 & 2.22 & 2.85 & 5，03＊＊ \\
\hline 1783 Larguage & 2 & 2.65 & 2.90 & 1.45 \\
\hline \multirow[t]{4}{*}{Grade} & 3 & 2.90 & 2.82 & －0．49 \\
\hline & 4 & 2.52 & 3.16 & 3．85＊＊＊ \\
\hline & 5 & 2．31 & 2.74 & 2．65＊＊ \\
\hline & 6 & 2.35 & 3.00 & 3．18＊＊ \\
\hline 1983 Feading & 2 & 2.74 & 2.96 & 1.26 \\
\hline \multirow[t]{4}{*}{Grade} & 3 & 2.90 & 2.92 & 0.18 \\
\hline & 4 & 2.44 & 3.00 & 2．93＊＊ \\
\hline & 5 & 2.23 & 2.75 & 3．22＊＊ \\
\hline & 6 & 2.32 & 2.86 & 2．61＊＊ \\
\hline 1983 Science／ & 2 & 2.14 & 2.21 & 0.54 \\
\hline \multirow[t]{4}{*}{Health Grade} & 3 & 2.27 & 2.24 & －0．24 \\
\hline & 4 & 2.11 & 2.41 & 1.67 \\
\hline & 5 & 2.39 & 2.88 & 3．25＊＊ \\
\hline & 6 & 2.07 & 2.88 & 3．67＊＊＊ \\
\hline
\end{tabular}
＊－－p＜．05＊＊－－pく．01＊＊＊－－pく．001
```

Table 1b. icontinueg)

```
\begin{tabular}{|c|c|c|c|c|}
\hline Variable & Ḡrate L르른 & Indるaா MEan & Non－Indian Mean & t－value \\
\hline 1583 Social & 2 & 2.17 & 2.20 & 0.05 \\
\hline \multirow[t]{4}{*}{Studies Grade} & 3 & 2.24 & 2.27 & 0.20 \\
\hline & 4 & 2.08 & 2.36 & 1.67 \\
\hline & 5 & 2.25 & 2.75 & －．15＊＊ \\
\hline & 6 & 1.87 & 2.82 & उ． 50 ＊＊＊ \\
\hline 1935 Speiling & 2 & 2.72 & 5.01 & 1.45 \\
\hline \multirow[t]{4}{*}{Grade} & 3 & E． 24 & 3.17 & －6．45 \\
\hline & 4 & 8.07 & 3.22 & \(\therefore \mathrm{CB}^{\text {c }}\) \\
\hline & 5 & 2.77 & 3.02 & 1．47 \\
\hline & ¢ & 2.62 & 3.25 & 2．72＊＊ \\
\hline 1764 Grate & 2 & 2.42 & 2.62 & 2．12＊ \\
\hline \multirow[t]{4}{*}{coint Average} & S & 2.01 & 2.64 & Q． 22 \\
\hline & 4 & 2.48 & 2.94 & 「．il＊＊ \\
\hline & 5 & 2.31 & 2.96 & 3．60＊＊＊ \\
\hline & \(\bigcirc\) & 2.23 & 2.55 & こ． \(52+* *\) \\
\hline \multirow[t]{5}{*}{1754 Math Grage} & 2 & 2.73 & 2.95 & 1.15 \\
\hline & 3 & 2.06 & 2.94 & \(2.17 \%\) \\
\hline & 4 & 2.55 & 2.71 & \(2.10 *\) \\
\hline & 5 & 2．54 & 2.75 & －．te＊＊ \\
\hline & \(\pm\) & 2．2 & \(2 . E\) & こ．6＊＊ \\
\hline 190a Larguage & 2 & 2.71 & 2.76 & 1.13 \\
\hline \multirow[t]{4}{*}{Gride} & 3 & 2.65 & 2.77 & 0.65 \\
\hline & 4 & 2.58 & E．0 & 2．7\％＊＊ \\
\hline & 5 & 2.35 & 2.76 & S．0．＊＊ \\
\hline & 6 & 2． 2 & 2．77 & З．53＊＊＊ \\
\hline 1984 Fieading & I & 2.50 & 2.52 & 1.64 \\
\hline \multirow[t]{4}{*}{Grade} & 3 & 2.30 & 2．74 & 0.00 \\
\hline & 4 & 2.42 & 2.75 & 2．74＊＊ \\
\hline & j & 2.24 & 2.79 & 3． \(37 *\) \\
\hline & 6 & 2.10 & －． 71 & 4．15＊＊＊ \\
\hline
\end{tabular}
＊－0．0．05＊＊－－p．01＊＊＊－～0．．01

Table lb. (continued)
\begin{tabular}{|c|c|c|c|c|}
\hline Variable & \begin{tabular}{l}
Grade \\
Leve:
\end{tabular} & Indian Mean & \begin{tabular}{l}
Nü-Indian \\
Mean
\end{tabular} & t-value \\
\hline 1984 Ecience: & 2 & 2.00 & 2.22 & 2.74** \\
\hline \multirow[t]{4}{*}{Health Grace} & \(\pm\) & 2.51 & 2.43 & -0.55 \\
\hline & 4 & 2.46 & 2.74 & \(3.46 * * *\) \\
\hline & 5 & 2.12 & 2.32 &  \\
\hline & \(\bigcirc\) & 2.27 & 2.42 & こ.12** \\
\hline 1904 Social & 2 & 1.97 & 2.22 & 5.15** \\
\hline \multirow[t]{4}{*}{Studies Grade} & 3 & 2.54 & 2.29 & \(\cdots \mathrm{l} .3\) \\
\hline & 4 & 2.40 & 2.34 & 2.5.** \\
\hline & \(\vdots\) & 2.27 & 2.50 & 3.17** \\
\hline & \(\bigcirc\) & 2.54 & 2.75 & 2.31* \\
\hline 1984 Efelling & 2 & 3.01 & 3.20 & 1.22 \\
\hline \multirow[t]{4}{*}{crade} & 3 & 3.12 & 3.10 & -0.09 \\
\hline & 4 & 2.94 & 5.27 & 1.71 \\
\hline & 5 & こ. 94 & 3.35 & 2.30* \\
\hline & \(\stackrel{ }{5}\) & 2.00 & 3.20 & 2.31** \\
\hline
\end{tabular}

Figure 18. Mean (1983) Reading Grades

Grade Level

Figure 19. Mean (1983) Math Grades

(F) 2nd Grade 3rd Grade 4 Grade 5 Grade

Figure 20. Mean 1983 Grade Point Averages

Grade Level

```

achievers in class. While not as statistically significant, the same
pattern was observed for class grades in 1982-8j.
Non-Indian students' grades were found to generally increase by
grade level, which indirectly reflected the anticipated accumulation
of knowledge by students, while grades for Indian students generally
declined. Thus, the patterns of teacher awarded grades of student
academic achievement did not parallgl those patterns found for
standardized achjevement test scores. Moreover, it was noted that of
all the average grades listed in Table lb, only two were below average
(i.e., <2.00). Both of these below average grades were for Indian
students only: the 1982-83 social studies grade (1.87) for sixth
graders; and tho 1983-84 50cial studies grade (1.97) for second
graders. Both substantively and in terms of absolute standards,
Indian students were found to be doing quite well; conversely, when
compared to their classmates Indian students in the Washoe County
School District were doing relatively poor.

```

\section*{Background Characteristics}

Most variables concerning the students' personal and familial background characteristics were, by their nature, nominal measurements. That is, their information could only have been nominally categorized. Often occupational data can be coded as ordinal data using one of the occupational scales availatle to researchers, but such scales were not feasible with the imprecise data available to this study. For example, if the parent worked at one of the hospitals, then that hospital was listed on the student's
```

enrollment form for employment (as well as employer) rather than a
specific occupation such as doctor, nurse, pharmacist, or custodian.
Consequently, data were coded into general occupational fields (e.g.,
medical profession) that were meaningless in terms of status ranking.
As a result, occupational codes were recoded as working or not working.
In regards to ethnic (i.e., not racial) distributions it was noted
that there were 258 non-Indian and 201 Indian students in this study.
Thu5, 55% of the study sample were non-Indians and 44% sf the students
were Indians. While descriptive and comparative hypothesis testing
statistics were based upon these figures, the more sophisticated data
analysis techniques were weighted so that the research sample was more
representative of the Washoe County School District ethnic
distributions of 97% non-Indian and 3% Indian elementary school
students.

```
```

 Socioeconomic status characteristics. Analysis of previous
 research had indicated that socioaconomic status (SES) was a
tiemendously important factor in educational achievement and, as such,
was indirectly included in this study. That is, this study contained
no direct aggregate measure of socioeconomic status. A number of
indicators often included in the measurement of SES were, however,
included. Two different measures of family income were made along
with three scales of parental employment.
The first scale of socioeconomic status (SES), which was
statistically the most powerful measure because it was the only
interval scale measurement, was the median family income reported in

```


Table 17. Student's Family Incomea

a--Figures based upon residential median census incomes.

Table 18. Differences Eetween Indian and Non-Indian Students in Eackground Socioeconomic Status Characteristics


\footnotetext{
a--Crosstabulations using original values.
b--Crosetabulations using dichotomaus recodings.
}
\begin{tabular}{|c|c|c|c|c|}
\hline Vardable／Vajue & & Indians & Non－Indians & Tatal． \\
\hline \multicolumn{5}{|l|}{Whicn Farents are Emploved b} \\
\hline \multirow[t]{2}{*}{Euthifather} & \(\dagger\) & 118 & 22. & 55 \\
\hline & \％ & （5．7．7） & （35．7） & （75．7） \\
\hline \multirow[t]{2}{*}{Mother iNesther} & \(\dagger\) & 83 & 37 & 120 \\
\hline & \(\therefore\) & （41．5） & （14．3） & Et． \\
\hline \multirow[t]{2}{*}{Total} & & 201 & 258 & －55 \\
\hline & & \(x^{2}=\) & 1 0＜．00 & \\
\hline
\end{tabular}

Fathers Employment Statusb

Worting
\begin{tabular}{ccc}
\(f\) & 110 & 221 \\
\(\because\) & \((74.4)\) & \((72.5)\)
\end{tabular}

53
：5．

Not working
\(i\)
40
15
三6

Total
－ 25.51
\(\frac{1.51}{239}\)
\(\frac{1+.71}{375}\)
\(x^{2}=24.70 \quad 0 \leqslant .001\)

\section*{Mother \(\equiv\) Empioyment Etatus \({ }^{b}\)}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Working} & \(\dagger\) & 110 & 1 Et & \(\because \because\) \\
\hline & \(\%\) & 157．6i & （65．b） & 152． \\
\hline \multirow[t]{2}{*}{Not working} & \(f\) & 81 & B7 & 100 \\
\hline & \(\%\) & （42．4） & （34．4） & 5， \\
\hline Total & & 171 & 253 & ＋4＋ \\
\hline
\end{tabular}
```

a－－Crosstatulations usınu orıqınal rajues．
b＿－Erasetabujations Lising juchotomous recodinge．

```

```

which presents the results for this variable along with the three
variables concerned with parental employment, indicates that Indian
students were statistically significantly (p <.001) more than twice as
likely to have participated in the federal lunch program, and to have
had only his/her mother employed or neither parent employed.
In presenting the data on parental employment, both
crosstabulation tables using the original data codes and the
dichotomous recodings which were used for regression analyses, have
been included in Table 18. It should be noted that only the recodings
of father's and mother's occupations into working or not working
dichotomous variables were included in the results: because the
original data codes were too ambiguous. Although Indian students were
not statistically more likely to have a mother working, the
differences were substantively significant. When the results of this
variable, mother's employment status, were compared with the results
Of the variable on the number of parents employed, as originally
coded, these results were even more substantively significant. That
is, it was observed that Indian students were twice as likely as
non-Indian students to live in a home where the mother was the only
parent employed.
In terms of socioeconomic status, however, one of the most
significant implications of the results presented in Table 18 was that
Indian students were more than five times as likely to live in a
family in which both parents were unemployed. Unfortunately, when the
variable was recoded into a dichotomous measure this fact became

```
```

hidden by the fact that Indian students' mothers were more likely to
be working. Regardless of this masking effect, the results of the
recoding corroborated the statistically significant differences
between Indian and non-Indian students in terms of parental
employment. That is, most measures on parental employment clearly
demarked the substantively and statistically lower socioeconomic
status of Indian students' families.
Moreover, only 28% of the students in this study, and less than
one-fourth (23. }9%\mathrm{) of the Indian students, lived in what would be
considered traditional families where only the father worked.
Conversely, 21% of the Indian students came from families in which the
mother was the only parent working. The high cost of living in the
Feno area probably accounted for the relatively high rate of families
with both parents employed, which was 45.5% in the total sample and
53.9% among non-Indian families.
Home environment characteristics. Those variables most commonly
accepted as the best predictors of how well a student will do in
school have been those concerned with the family's home environment.
Factors such as whether the student's parents were alive, present in
the home, and whether the parent's status to the student was natural
or otherwise, have been the most often cited factors in the literature
for explaining achievement success differences. Most research on
Indian student education also concluded that residency, as defined by
proximity to non-Indians and isolation from other Indians, has had a
strong relationship with academic achievement. The underlying

```
```

assumptions of this conclusion have been that increased contact
between the two [u]tures would have a type of osmosis or, more
preferably, purging effect, and that assimilation was land has
remained) the primary goal of education.
Associated with home environment characteristics, but also a
socioeconomic measure of sorts, was whether the school office had a
telephone number listed for the student. Erod (1975, 1976a) had found
that such a factor helped explain variances found in terms of Indian
achievement. Thus, a primary interest of this study was to
investigate similar factors to determine whether they were
significantly different for Indian students than for their classmates,
and eventually to determine if such factors helped explain academic
achievement differences.
Table 19 presents the frequency distribution and chi-square
hypothesis test of distributional differences for each of the seven
Variables measured urder home environment characteristics. The
results concerning the number of parents present in the home, the
father's and mother's statuses to the student, and the student's
residential area were given twice, the first providing the data
distributions as originally collected and the second indicating
characteristics after the variables were dichotomously recoded. The
results indicated that Indian students were statjstically
significantly more likely than non-Indian students to come from home
environments that had a father or both parents absent, had a father

```

Table 19. Differences Between Indian and Non-Indian Students in Eackground Home Environment Characteristics
\begin{tabular}{|c|c|c|c|c|}
\hline Variable/Value & & ndians & Non-Indians & Total \\
\hline \multicolumn{5}{|l|}{Are Farents Absent?} \\
\hline \multirow[t]{2}{*}{Eoth Present} & \(f\) & 122 & 206 & 320 \\
\hline & \% & (60.7) & (80.2) & (71.6) \\
\hline \multirow[t]{2}{*}{Father Absent} & \(f\) & 68 & 42 & 110 \\
\hline & \% & (33.8) & (16.3) & (24.0) \\
\hline \multirow[t]{2}{*}{Mother Absent} & \(f\) & 6 & 8 & 14 \\
\hline & \% & (3.0) & (3.1) & (3.1) \\
\hline \multirow[t]{2}{*}{Eoth Absent} & f & 5 & 1 & 6 \\
\hline & \% & (2.5) & ( . 4 ) & (1.3) \\
\hline \multirow[t]{2}{*}{Total} & & 201 & 257 & 458 \\
\hline & \multicolumn{4}{|c|}{\(x^{2}=24.12 \quad p \leqslant .001\)} \\
\hline
\end{tabular}

Farent (s) Absent Froil Home?
Both Home
\begin{tabular}{cccr}
\(f\) & 122 & 206 & 322 \\
\(\%\) & \((60.7)\) & \((90.2)\) & \((71.6)\) \\
\(f\) & 79 & 51 & 130 \\
\(\%\) & \(\frac{(39.3)}{201}\) & \(\frac{(19.8)}{257}\) & \(\frac{(28.4)}{458}\)
\end{tabular}

Tota]
\(x^{2}=21.03 \quad p<.001\)
Is Father Living?
Living
\begin{tabular}{cccc}
\(f\) & 154 & 243 & 407 \\
\(\%\) & \((95.7)\) & \((99.6)\) & \((98.1)\) \\
\(f\) & 7 & 1 & 8 \\
\(\%\) & \(\frac{(4.3)}{161}\) & \(\frac{(.4)}{244}\) & \(\frac{(1.9)}{415}\)
\end{tabular}
\[
x^{2}=7.22 \quad p<.01
\]
a--Crosstatulations using original values.
b--Crosstabulations using dichotomous recodings.
```

Table 19. (continued)

```
\begin{tabular}{|c|c|c|c|c|}
\hline Variatle/Value & & ndians & Non-Indians & Total \\
\hline \multicolumn{5}{|l|}{Is Mother Living?} \\
\hline \multirow[t]{2}{*}{Living} & f & 200 & 257 & 457 \\
\hline & \% & (99.5) & (100.0) & (99.8) \\
\hline \multirow[t]{2}{*}{Deceased} & f & 1 & 0 & 1 \\
\hline & \% & ( 5 . 51 & (0.0) & ( . 21 \\
\hline \multirow[t]{2}{*}{Total} & & 201 & 257 & 458 \\
\hline & \multicolumn{3}{|r|}{\(x^{2}=1.28 \quad p=\pi .5\)} & \\
\hline
\end{tabular}

Father's statusto studenta
\begin{tabular}{|c|c|c|c|c|}
\hline Natural & \[
\%
\] & \[
\begin{gathered}
135 \\
(78.7)
\end{gathered}
\] & \[
\begin{gathered}
201 \\
(83.8)
\end{gathered}
\] & \[
\begin{gathered}
334 \\
(51.7)
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{Step} & f & 23 & 33 & 56 \\
\hline & \% & (13.6) & (15.8) & (13.7) \\
\hline \multirow[t]{2}{*}{Guardian} & \(\dagger\) & 6 & 5 & 11 \\
\hline & \% & (3.6) & ( 2.1) & ( 2.7) \\
\hline \multirow[t]{2}{*}{Deceased} & f & 7 & 1 & E \\
\hline & \(\%\) & (4.1) & ( 4 4) & (2.0) \\
\hline \multirow[t]{2}{*}{Total} & & 169 & 240 & 409 \\
\hline & & \(x^{2}=\) & \(p\) < & \\
\hline
\end{tabular}

Father's Status \({ }^{\text {b }}\)
\begin{tabular}{|c|c|c|c|c|}
\hline Natural & \% & \[
\begin{gathered}
133 \\
(78.7)
\end{gathered}
\] & \[
\begin{gathered}
201 \\
(83.8)
\end{gathered}
\] & \[
\begin{gathered}
334 \\
(81.7)
\end{gathered}
\] \\
\hline Other & f & 36 & 39 & 75 \\
\hline & \% & (21.3) & (16.2) & (18.3) \\
\hline Total & & 169 & 240 & 409 \\
\hline & & \(x^{2}\) & \(p=\) & \\
\hline
\end{tabular}

\footnotetext{
a--Crosstabulations using original values.
b--Crosstabulations using dichotomous recodings,
}
```

Table 19. (continued)

```
\begin{tabular}{|c|c|c|c|c|}
\hline Variable/Value & & Indjans & Non-Indians & Total \\
\hline \multicolumn{5}{|l|}{Mother's Status to Student \({ }^{\text {a }}\)} \\
\hline \multirow[t]{2}{*}{Natural} & f & 188 & 235 & 427 \\
\hline & \% & (96.7) & (96.0) & (96.4) \\
\hline \multirow[t]{2}{*}{Step} & f & 0 & 6 & 6 \\
\hline & \% & (0.0) & (2.4) & (1.4) \\
\hline \multirow[t]{2}{*}{Guardian} & f & 5 & 4 & 9 \\
\hline & \(\%\) & ( 2.6) & ( 1.5) & (1.4) \\
\hline \multirow[t]{2}{*}{Deceased} & f & 1 & 0 & i \\
\hline & \% & (. 51 & (0.0) & (0.2) \\
\hline \multirow[t]{2}{*}{Total} & & 194 & 249 & 4.43 \\
\hline & & \(x^{2}=\) & \(p=\pi .5\) & \\
\hline
\end{tabular}

Mother 5 Status
\begin{tabular}{|c|c|c|c|c|}
\hline Natural & \% & \[
\begin{gathered}
188 \\
(96.9)
\end{gathered}
\] & \[
\begin{gathered}
239 \\
(96.0)
\end{gathered}
\] & \[
\begin{gathered}
427 \\
(96.4)
\end{gathered}
\] \\
\hline Other & f & 5 & 10 & 16 \\
\hline & \% & (3,1) & ( 4.0\()\) & ( 3.6\()\) \\
\hline Total & & 174 & 249 & 443 \\
\hline & & \(x^{2}\) & \(p=\) & \\
\hline
\end{tabular}

Student's Telephone Number Listed?
\begin{tabular}{lcccc} 
Yes & \(f\) & 150 & 243 & 353 \\
& \(\%\) & \((74.6)\) & \((94.2)\) & \((85.6)\) \\
No & \(f\) & 51 & 15 & 66 \\
Total & \(\%\) & \(\frac{(25.4)}{201}\) & \(\frac{(5.5)}{258}\) & \(\frac{(14.4)}{459}\) \\
& & \(x 2=33.54\) & \(p<.001\) &
\end{tabular}

\footnotetext{
a--Crosstabulations using original values.
b--Crosstabulations using dichotomous recodings.
}

\section*{Table 19. (continued)}


\footnotetext{
- - Crosstabulations using original values.
b--Crosstabulations using dichotomous recodings.
}
```

who was deceased, were in a rural or reservation area, and did not
have a home telephone listed with the school.
Specifically, it was found that Indian students were twice as
likely to be living in a home environment where the father or both
parents were absent. It was also four times as likely that an Indian
student's father was deceased, although over 95% of all students'
parents were still living. Of the seven cases of students whose
fathers were deceased, only one was a non-Indian student's father, and
the only incident of a deceased mother was for an Indian student.
Thus, Indian students' families accounted for most of the variance in
these two variables. It was found that eighteen percent (18.3%) of
al] the students' fathers in the study were not the student's natural
father, and when regrouped into just "natural" and "other status"
categories, differences between Indian and non-Indian students were
found, although they were not statistically significant. fresumably
the observed statistically signjficant differences found in the
original distribution were due to the statistically significant
differences in the father's mortality for Indian students.
Substantively, however, it was found (Table 19) that Indian
students were slightly less likely to have a natural father, and
slightly more likely to have a father who was their legal guardian.
The fact that twice as much of the data (16% v5. 7%) for Indian
students as for non-Indian students were missing on father's status
was intriguing to note, because such missing data may nave been due to
the father's greater probability of being absent. In looking at the

```
```

results for mother's status, Indian and non-Indian students were not
statistically significantly different, although Indian students were
more likely to have a legal guardian and non-Indian students were more
likely to have a stepmother. It should be remembered that many of
these distributional differences, particularly as originally coded,
were comprised of small numbers of student cases, and in the case of
father's status 11% of the data were missing. Hence, these
conclusions should be tentatively interpreted.
As would be expected, the results (Table 19) indicate that
statistically more Indian students than non-Indian students lived on
the colony and reservation; or in rural locations when the data were
recoded. Conversely, nearly two-thirds (65.1%) of the non-Indian
students lived in urban residential areas.22 The Indian student
population was also found to be more equally divided into each of the
residential categories than the non-Indian student sample. Again,
this was expected since very few non-Indians were able to live on the
reservation or colony, while all Indian families could have lived in
the urban and rural areas.
Although the telephone has become an assumed part of the American
household, Table 19 demonstrates that 14% of the students' families in
the Washoe County School District total sample apparently had no
phone, or at least one was not listed with the school. Fully
one-fourth (25.4%) of the Indian students, or five times as many as
their classmates, did not have a phone listed zt the school office.
This statistically important difference may have been due to a number

```
```

Of causes, including economic burden or sociocultural factors, but the
effect was that Indian students' farents were less accessible by
school personnel and may have portrayed Indian parents to school
employees as not caring about their chjldren enough to list a home
phone. }2

```

Not too surprisingly, many characteristics of the home environment of Indian students were statistically significantly different from those of their non-Indian classmates. Specifically, they were statistically different in terms of parents' absence or presence, father's mortality, residential location, and having a telephone listed at the student's school, or \(57 \%\) of the measured factors. Although not statistically different in regards to the other variables, Indian students were substantively different in terms of father's and mother's statuses.
School related background factors. Student characteristics
concerning student mobility and enrollment, as well as parental access
for emergencies and school problems, have often been viewed as
causually associated with poor student achievement. Several
antecedent and concurrent measures of such school related background
factors of students are reported in Table 20 . In looking at the
results, several interesting patterns emerged concerning school
related background factors. first, in the Washoe county school
District the only characteristic for which Indian students were
statistically different from non-Indian students was the listing of an
emergency phone number at the school office. Given the fact that

Table 20. Differences Eetween Indian and Non-Indian Students in School Attendance Eackground Characteristics
\begin{tabular}{|c|c|c|c|c|}
\hline Variable/Value & & Indians & Non-Indians & Total \\
\hline \multicolumn{5}{|l|}{Change of Schools?} \\
\hline No & \[
\begin{aligned}
& f \\
& \%
\end{aligned}
\] & \[
\begin{gathered}
111 \\
(55.2)
\end{gathered}
\] & \[
\begin{gathered}
144 \\
(55.8)
\end{gathered}
\] & \[
\begin{gathered}
255 \\
(55.6)
\end{gathered}
\] \\
\hline Yes & \[
\begin{aligned}
& f \\
& \%
\end{aligned}
\] & \[
\begin{array}{r}
90 \\
(44.8) \\
\hline
\end{array}
\] & \[
\begin{gathered}
114 \\
(44.2) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
204 \\
(44.4) \\
\hline
\end{gathered}
\] \\
\hline Total & & 201
\[
x^{2}=0.02
\] & \[
\begin{aligned}
& 258 \\
& p=0.5 .
\end{aligned}
\] & 459 \\
\hline \multicolumn{5}{|l|}{Eirergency Contact Fhone Number Listed?} \\
\hline Yes & \[
\begin{aligned}
& \ddagger \\
& \%
\end{aligned}
\] & \[
\begin{gathered}
164 \\
(81.6)
\end{gathered}
\] & \[
\begin{gathered}
230 \\
(E 9.1)
\end{gathered}
\] & \[
\begin{gathered}
394 \\
(55.8)
\end{gathered}
\] \\
\hline No & \[
\begin{aligned}
& f \\
& \%
\end{aligned}
\] & \[
\begin{array}{r}
37 \\
(18.4) \\
\hline
\end{array}
\] & \[
\begin{gathered}
28 \\
(10.9)
\end{gathered}
\] & \[
\begin{gathered}
65 \\
(14.2) \\
\hline
\end{gathered}
\] \\
\hline Total & & \[
\begin{aligned}
& 201 \\
& x^{2}=4.70
\end{aligned}
\] & \[
\begin{aligned}
& 258 \\
& p<.05
\end{aligned}
\] & 459 \\
\hline \multicolumn{5}{|l|}{Eiferqency Contact} \\
\hline Yes & \[
\begin{aligned}
& f \\
& \%
\end{aligned}
\] & \[
\begin{gathered}
186 \\
(92.5)
\end{gathered}
\] & \[
\begin{gathered}
233 \\
(90.3)
\end{gathered}
\] & \[
\begin{gathered}
419 \\
(91.3)
\end{gathered}
\] \\
\hline No & \[
\begin{aligned}
& \dot{\dagger} \\
& \%
\end{aligned}
\] & \[
\begin{array}{r}
15 \\
(7.5) \\
\hline
\end{array}
\] & \[
\begin{array}{r}
25 \\
(9.7) \\
\hline
\end{array}
\] & \[
\begin{array}{r}
40 \\
(8.7) \\
\hline
\end{array}
\] \\
\hline Total & & \[
\begin{aligned}
& 201 \\
& x^{2}=0.45
\end{aligned}
\] & \[
\begin{aligned}
& 258 \\
& p=n .5 .
\end{aligned}
\] & 459 \\
\hline
\end{tabular}

Table 20. (continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Variable/Value} & \multicolumn{2}{|r|}{Indians} & \multicolumn{2}{|l|}{Non-Indians} & \multicolumn{2}{|r|}{Total} \\
\hline & & Cum \% & 1 & Cum \% & \(f\) & Cum \% \\
\hline \multicolumn{7}{|l|}{Number of Continuous Months in District (1982-83)} \\
\hline 2 Months & 1 & . 5 & 3 & 1.2 & 4 & . 9 \\
\hline 3 Months & --- & . 5 & 4 & 2.8 & 4 & 1.8 \\
\hline 4 Months & --- & . 5 & 4 & 4.3 & 4 & 2.7 \\
\hline 5 Months & 2 & 1.5 & 1 & 4.7 & 3 & 3.3 \\
\hline 6 Months & 5 & 4.0 & 3 & 5.9 & 8 & 5.1 \\
\hline 7 Months & 2 & 5.1 & 2 & 6.7 & 4 & 6.0 \\
\hline 8 Months & 2 & 6.1 & 2 & 7.5 & 4 & 6.9 \\
\hline 9 Months & 196 & 100.0 & 235 & 100.0 & 421 & 100.0 \\
\hline Total & 198 & & 254 & & 452 & \\
\hline Mean & 8.82 & & 8.67 & & 8.73 & \\
\hline & \multicolumn{4}{|l|}{t-ratio \(=-1.50\)} & \multicolumn{2}{|l|}{\(\rho=\) ก. 5.} \\
\hline
\end{tabular}


```

emergency phone number listings, a larger, but statistically
nonsjgnificant, number of Indian students had an emergency contact
person listed. Unfortunately, it would take much more sustained
effort to get in touch with an emergency contact person than to cal]
someone by phone.

```


Table 21. Student's Age (in Months) at Time of Testing
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Value \\
Months
\end{tabular} & \[
\begin{gathered}
\text { Indians } \\
\quad f \\
\hline
\end{gathered}
\] & NonIndians
ـ
\(\qquad\) & \begin{tabular}{l}
Value \\
Months
\end{tabular} & \[
\begin{gathered}
\text { Indians } \\
f \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Non- } \\
\text { Indians } \\
f \\
\hline
\end{gathered}
\] \\
\hline 81 & 0 & 1 & 126 & 3 & 3 \\
\hline 90 & 1 & 0 & 127 & 4 & 3 \\
\hline 91 & 3 & 2 & 128 & 4 & 5 \\
\hline 42 & 1 & 5 & 129 & 5 & 3 \\
\hline 93 & 5 & 3 & 130 & 4 & 7 \\
\hline 94 & 2 & 2 & 151 & 3 & 5 \\
\hline 95 & 4 & 4 & 132 & 4 & 2 \\
\hline 96 & 0 & 4 & 153 & 3 & 4 \\
\hline 77 & 2 & 3 & 134 & 2 & 2 \\
\hline 98 & 3 & 9 & 135 & 2 & 5 \\
\hline 99 & 0 & 7 & 136 & 3 & 4 \\
\hline 100 & 2 & 4 & 137 & 3 & 3 \\
\hline 101 & 2 & \(t\) & 135 & 7 & 5 \\
\hline 102 & 4 & \(t\) & 137 & 7 & 1 \\
\hline 103 & 4 & 9 & 140 & 6 & 7 \\
\hline 104 & 3 & 3 & 141 & 3 & 4 \\
\hline 105 & 1 & 3 & 142 & 3 & 4 \\
\hline 106 & 3 & 0 & 143 & 2 & 1 \\
\hline 107 & 4 & 10 & 144 & 2 & 5 \\
\hline 108 & 2 & 7 & 145 & 2 & 4 \\
\hline 109 & 3 & 4 & 146 & 3 & 2 \\
\hline 110 & 5 & 4 & 147 & 5 & 亏 \\
\hline 111 & 1 & 4 & 148 & 1 & 2 \\
\hline 112 & 2 & 3 & 149 & 3 & 3 \\
\hline 113 & 6 & \(b\) & 150 & 5 & 0 \\
\hline 114 & 3 & 6 & 151 & 1 & 2 \\
\hline 115 & 3 & 7 & 152 & 1 & 0 \\
\hline 116 & 3 & 1 & 154 & 1 & 0 \\
\hline 117 & 5 & 3 & 156 & 3 & 0 \\
\hline 118 & 3 & 7 & 157 & 1 & 0 \\
\hline 119 & 3 & 2 & 158 & 0 & 1 \\
\hline 120 & 5 & 9 & 159 & 0 & 1 \\
\hline 121 & 2 & 9 & 160 & 0 & 1 \\
\hline 122 & 3 & 0 & 161 & 1 & 0 \\
\hline 123 & 5 & 3 & 162 & 1 & 0 \\
\hline 124 & 2 & 3 & 164 & 1 & 0 \\
\hline 125 & 2 & 1 & Total & 201 & 258 \\
\hline & \multicolumn{2}{|c|}{Meari} & \multirow[t]{2}{*}{\(\frac{\text { Median }}{125}\)} & \multicolumn{2}{|l|}{Standard Deviation} \\
\hline Indians & \multicolumn{2}{|c|}{124} & & \multicolumn{2}{|c|}{18.1} \\
\hline Non-Indians & \multicolumn{2}{|c|}{119} & 125 & \multirow[t]{2}{*}{\(p<.0117\)} & 17.4 \\
\hline & \multicolumn{2}{|r|}{t-ratio \(=-2.97\)} & 118 & & \\
\hline
\end{tabular}
```

would seem that the age differences between Indian and mon-Indian students, contrary to what Fuchs and Havighurst (1972) have suggested, were not substantively significant.
The second commonly important variable, sex, js presented in fable 22, along with a third individual characteristic, place of birth. As can be seen from the results, there were slightly more females than males in both the Indian and non-Indian groups. While Indian male students comprised the smallest percentage, and Indian females the largest percentage, the distributional differences were not statistically significant. In terms of place of birth, statistically more Indian students were born in all categories of in-state measures, while nearly half the non-Indian students were born out of state. Gverall, just over half (51. 6%) of the total students sampled were born in fieno, and almost twothirds (60.8%) were born 50 mewhere in Nevada.

```
```

 Indian characteristics. In addition to the factors discussed
 above, data for seven variables were collected on Indian students
only. The results in Table 2J indicate that the 201 Indian students
in this study sample represented 4b self-identified ethnic or
politically autonomous tribes or nations. 24 Table 24 provides
information on the other six variables. Fractically speaking, the
most interesting result was that the Washoe County School District's
Title IV Indian Education program had federal 506 Forms on only
two-thirds (5%.7%) of the Indian students. About one-third (30.8%) of
the Indian students were involved in one of the Head Start preschool

```

Table 22. Differences Eetween Indian and Non-Indian Students in Fersonal Eackground Characteristics
Variable/Value Indians Non-Indians Total

Student's Sex
\begin{tabular}{lcccc} 
Male & \(f\) & 87 & 125 & 212 \\
& \(\%\) & \((43.3)\) & \((48.4)\) & \((46.2)\) \\
Female & \(f\) & 114 & 133 & 247 \\
Total & \(\%\) & \(\frac{(56.7)}{201}\) & \(\frac{(51.5)}{259}\) & \(\frac{(53.8)}{459}\) \\
& & & \(X^{2}=1.01\) & \(\rho=0.5\).
\end{tabular}

Student's Eirtnelacea
\begin{tabular}{|c|c|c|c|c|}
\hline Feno-5parks & \[
\begin{aligned}
& \ddagger \\
& \%
\end{aligned}
\] & \[
\begin{gathered}
110 \\
(54.7)
\end{gathered}
\] & \[
\begin{gathered}
127 \\
(45.2)
\end{gathered}
\] & \[
\begin{gathered}
237 \\
(51.5)
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{Schurz, Nevada} & \(\ddagger\) & 25 & 5 & 28 \\
\hline & \% & (12.4) & ( 1.2) & ( 6.1 ) \\
\hline \multirow[t]{2}{*}{Elsewhere jn Nevada} & \(\ddagger\) & 4 & 10 & 14 \\
\hline & \% & \((2.0)\) & (3.9) & ( 5.1 ) \\
\hline \multirow[t]{2}{*}{Out-of-State} & \(\ddagger\) & 59 & 105 & 164 \\
\hline & \% & (29.4) & (40.7) & (35.7) \\
\hline \multirow[t]{2}{*}{Outside the US} & \(f\) & 2 & 13 & 15 \\
\hline & \% & (1.0) & (5.0) & (3.3) \\
\hline \multirow[t]{2}{*}{Unknown} & f & 1 & 0 & 1 \\
\hline & \% & ( 4 4) & (0.0) & ( . 2 ) \\
\hline \multirow[t]{2}{*}{Total} & & 201 & 258 & 459 \\
\hline & & \(x^{2}\) & D< & \\
\hline
\end{tabular}
a-Crosstabulations using original values.
b-Crosstabulations using dichotomous recodings:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 22. (continued)
\begin{tabular}{|c|c|c|c|c|}
\hline VariablejValue & & ndians & Mon-Indians & Total \\
\hline \multicolumn{5}{|l|}{Student's Flace of Girth \({ }^{\text {b }}\)} \\
\hline \multirow[t]{2}{*}{Nevada} & f & 139 & 140 & 279 \\
\hline & \% & (69.2) & (54.3) & (60.8) \\
\hline \multirow[t]{2}{*}{Outside of Nevada} & f & 62 & 118 & 180 \\
\hline & \% & (30.8) & (45.7) & (39.2) \\
\hline \multirow[t]{2}{*}{Total} & & 201 & 257 & 458 \\
\hline & & \(x^{2}=\) & 1 p<.01 & \\
\hline
\end{tabular}

\footnotetext{
a--Crosstabulations using original values. b--Crosstatulations using dichotomous recodings.
}

Table 23. Indian Student's National/Tribal Affiliations
\begin{tabular}{|c|c|c|c|}
\hline Nation/Tribe & \(f\) & Nation/Tribe & \(f\) \\
\hline None Siven & 61 & Klaitath & 1 \\
\hline Washoe of Caljfornia & 2 & Ft. Feck Sioux & 2 \\
\hline Washoe/faiute & 3 & Duckwater Shoshone & 1 \\
\hline Haulapi/Faiute & 1 & Hopi/Faiute & 2 \\
\hline Fyramid Lake Faiute & 57 & Acoma (Fueblo) & 2 \\
\hline Cherokee of [k]ahoma & 1 & Cherokee/Wyandot & 1 \\
\hline Oglala Siou* & 1 & Turtle Mountain Chippewa & 1 \\
\hline Northern Faiute & 8 & Ft. Hall Shoshone/Eannock & 2 \\
\hline Fiaute & 8 & Navajo/Shoshone & 1 \\
\hline Navajo & 1 & Washoe/Fima/Maricopa & 1 \\
\hline Nez Perce/Faiute & 1 & Faiute'Sioux & 1 \\
\hline Cheyenme & 1 & Summit Lake Faiute & 2 \\
\hline Hestern Shoshone/Te-Moak & 5 & Norther: Cheyenne & 1 \\
\hline Chippewa/Cree & 1 & Fotawatomi & 3 \\
\hline Fallon Faiute/Shoshone & 1 & Klainath/Faiute & 2 \\
\hline Faiute/Shoshone & 6 & Faiute/Apache & 1 \\
\hline Shoshone & 2 & Shoshone/Maida & 1 \\
\hline Fosetud Sioux & 1 & Athataskan/Alaskan Native & 2 \\
\hline Yomba/Shoshone & 1 & Duck Valley Shoshone/Faiute & 1 \\
\hline Hestern Hevada Stioshone & 1 & kiowa & 1 \\
\hline Chumash & 1 & Apache & 1 \\
\hline Ft. Bidwell Faiute & 2 & Taos (Fueblo) & 1 \\
\hline Walker Fiver Faiute & 3 & Paiute/Chippewa-Cree & 1 \\
\hline & & Total & 201 \\
\hline
\end{tabular}

Table 24. Special Background Characteristics of Indian Students

Variable/Value
Frequency
Fercent
Is there a 506 Form for student?
\begin{tabular}{lrr} 
Yes & 140 & 69.7 \\
No & \(\frac{61}{301}\) & \(\frac{30.3}{100.0}\) \\
Total & 201 &
\end{tabular}

What is the Nations/Tribes Status?
Federally Fiecognized
Eskimo-Alaskan Native
62.7

Eskimo-Alaskan Native 2
Not Federally kecognized
1.0

Federally Terminated
State Fiecognized
Eoth Federally and State Fecognized
uther
Not Applicable
Total
0.5
1.5
0.5
1.5
30.8
\(\frac{3}{201}\)
1.5
100.0

Who is Indian Eilability Eased Onza
\begin{tabular}{lrr} 
Mother & 25 & 12.4 \\
Father & 17 & 8.5 \\
Both Mother and Father & 9 & 4.5 \\
Student Themself & 72 & 35.0 \\
Grandmother & 8 & 4.0 \\
Grandfather & 1 & .5 \\
Grandparents & 3 & 1.5 \\
Student and Farents & 62 & 30.5 \\
Not Applicable & \(\frac{4}{201}\) & \(\underline{2.0}\) \\
Total & & 100.0
\end{tabular}

\footnotetext{
a--Frequencies using original values.
b--Frequencies using recoded values.
}

Table 24 . (continued)
\begin{tabular}{|c|c|c|}
\hline VarianlejValue & Frequency & Fercent \\
\hline \multicolumn{3}{|l|}{Whois Indian Eliqibility Eased On?} \\
\hline Eoth Student and Parents & 134 & 66.7 \\
\hline Other & 63 & 31.3 \\
\hline Missing & 4 & 2.0 \\
\hline Total & 201 & 100.0 \\
\hline
\end{tabular}

Did Student Attend Freschool?
\begin{tabular}{lrr} 
Yes & 62 & 30.8 \\
Unknown & \(\frac{139}{201}\) & \(\frac{69.2}{100.0}\) \\
Total &
\end{tabular}

What Tyoe of Freschool?a
\begin{tabular}{lrr} 
Colony Headstart & 32 & 15.9 \\
Fieservation Headstart & 29 & 14.4 \\
Other & 1 & .5 \\
Missing Data & \(\frac{139}{201}\) & \(-\frac{69.2}{100.0}\) \\
Tutal & &
\end{tabular}

Did Student Attend Colony Headstart?
\begin{tabular}{lrr} 
No & 169 & 84.1 \\
Yes & -32 & \(-\frac{15.9}{100.0}\) \\
Total & 201 & 100.0
\end{tabular}

\footnotetext{
a--Frequencies using orjginal values.
b--Frequencies using recoded values.
}

Table 24. (continued)

Variaple/Value
Frequency
Fercent

\section*{Did Student Attend Fieservation Headstart?b}
\begin{tabular}{lrr} 
No & 172 & 85.6 \\
\(Y\) Es & \(\underline{29}\) & \(-\frac{14.4}{100.0}\) \\
Total & 201 & 100
\end{tabular}

Number of Years in Freschool
\begin{tabular}{lrr} 
One & 27 & 14.4 \\
Two & 32 & 15.9 \\
Three & 1 & .5 \\
Missing Data & \(\frac{135}{201}\) & \(-\frac{69.2}{100.0}\) \\
Total &
\end{tabular}
a--Fiequencies using original values.
b--Frequencies using recoded values.
```

programs. These data, however, were not very valid since they were
based primarily on Head Start files. That is, the information was not
self-disclosed and was most likely under- representative of Indian
students' preschool activities. For instance, it was known that many
of the non-reservation/non-colony Indians participated in the Reno
Head Start program; however, access to those records was denied.

```

```

contact person was listed at the school: and the number of continuous
months in the Washoe County School District for both the 1982-83 and
1983-84 school years. In contrast, they were significantly different
on eleven (55%) of the twenty variables: median famaly income;
participation in the federal lunch program; the number of parents
employed; whether the student's father was employed; the number of
parents absent from the home: whether the student's father was living;
whether a home telephone number was listed with the school's office;
the student's residence; whether an emergency telephone number was
listed with the school office; the student's age; and the student s
birthplace.

```

\section*{School Environment and Learning Context Characteristics}

Although many researchers have studied the influences of the student's school environment and learning contest characteristics, most have supported the conclusions made by Coleman et al. (196t) that such factors were not predictive of educational success, despite measurable differences that existed between ethnic and other groups. Such empirical results, however, would seem theoretically ridiculous. In other words, the logical deduction from the conclusion drawn by Coleman et al. would be that the school system has no effect or at least no intended effect) on students. Conversely, as Stockard and Mayberry (1987) have shown, numerous studies have shown that schools do make a difference. Therefore, analyses of school enyironment anc learning context characteristics were made 50 as to eventually analyae their ability to explain educational success.
```

Unlike Coleman et al., futter and his associates (1979) found that a number of school environment and learning context variables were important in explaining school success, and concluded that a school's ethos was one of the most important factors. Contributing causes included the school's median family income, the school's physical facilities, the teachers and staff, and some esprit de corps that resulted from the interaction of these and other more attitudinal characteristics. That is, some schools developed a good reputation and others a bad reputation, which could have been conceptualized in part by a school's socioeconomic status, and this reputation led to self-fulfilling prophesies on the part of the students, teachers, staff, and community.

```

School socioeconomic status characteristics. One measure of the school's ethos has been the school's socioeconomic status (SES). As such, this study measured the school's SES by calculating the school's median family income. Such a measure was derived by summing each student's median family income and dividing by the number of students in the study group from that school.

Table 25 and Figure 22 present the frequency distributions and statistics concerning the school's median family income. It was found that the distribution for schools attended by Indian students were more positively skewed, while the distribution of school's median income of non-Indian students approached a normal distribution. Other statistical results (Table 25) also demonstrated this. The t-test of means indicated that Indian students attended schools with mean family

Table 25. School s Median Family Income
\begin{tabular}{|c|c|c|c|c|c|}
\hline Value
\[
\pm
\] & Indians
\[
\pm
\] & \[
\begin{gathered}
\text { Non-Indians } \\
f \\
\hline
\end{gathered}
\] & value & \[
\begin{gathered}
\text { Indians } \\
f \\
\hline
\end{gathered}
\] & Non-Indians \\
\hline 16,320 & 1 & 3 & 24,105 & 0 & \(E\) \\
\hline 17,138 & 5 & 4 & 24.255 & 1 & 7 \\
\hline 17.150 & 3 & 3 & 24,384 & 2 & 11 \\
\hline 17.377 & 2 & 1 & 24.675 & 2 & 9 \\
\hline 17,413 & 8 & 4 & 24.934 & 1 & 9 \\
\hline 18,050 & B & 5 & 25.053 & 5 & 9 \\
\hline 18.100 & 44 & \(t\) & 25,745 & 3 & 7 \\
\hline 18,734 & 2 & E & 25,235 & 0 & 7 \\
\hline 19,290 & 2 & 4 & 20.307 & 2 & 1: \\
\hline 17.614 & 9 & 11 & 26.454 & is & 8 \\
\hline 19.934 & 3 & 0 & 20.523 & 2 & 10 \\
\hline 20, 050 & 24 & 7 & 20.677 & 3 & 1: \\
\hline 20,930 & 35 & 7 & 27.011 & 1 & 8 \\
\hline 21,689 & 12 & 12 & 27.700 & , & 5 \\
\hline 22,053 & 1 & 3 & 28.295 & 0 & 3 \\
\hline 22.953 & 7 & 11 & 27.532 & 2 & 1: \\
\hline 22.210 & 4 & 11 & \(30.02 i\) & 0 & 4 \\
\hline 23.593 & \(\pm\) & 7 & 32.510 & 2 & 10 \\
\hline \multirow[t]{3}{*}{23,547} & 0 & 5 & 32.879 & 0 & 1 \\
\hline & & & 35.75 & -0 & --i \\
\hline & & & Total & 201 & 25 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & Mean & & Megiza & & Mode & & \begin{tabular}{l}
tansary \\

\end{tabular} \\
\hline Indians & \(\ddagger\) & \(20,700.33\) & \(\pm\) & 20.530 .00 & \(\ddagger\) & 15,100.00 & & 2.570 .20 \\
\hline Nori-Irdians & \# & 24,015.77 & \(\ddagger\) & 24.254.04 & \(\pm\) & 21.059.00 & & 5.8.1.72 \\
\hline
\end{tabular}
ä--Figures tased upun resideritad medan cerisus ancomes.
Figure 22. School's Median FamilyIncome

```

incomes (\$20,700) statistically significantly below schools attended
by non-Indian students (\$24,017). The median differences were even
greater. One-half of the Indian students attended schools with median
family incomes of \$20,b30 or less, while over one-half of the
non-Indian students attended schools with median family incomes over
\$24,364.
Another characteristic that often affected the status of a
particular school has been the school's enrollment size. Table 26
indicates the study group's enrollments by school,25 for those schools
still represented in the study. In analyzing these results, the
discussion concerning sampling in Chapter 2 must be recalled. First,
the Indian sample had been a deliberate 100% sampling of the Indian
student population, while only a 3% stratified sample of the
non-Indian population was made. Second, the transiency rate in the
Washoe County School District was unusually high in most schools for
all students. Third, while the district elementary school Indian
population was about 3%, most of the Indian students attended one of
only several schools. To demonstrate, in School Number 28 the Indian
population accounted for 85% (see Appendi* A, Table A-1) of the total
school enrollment, while in School Number 3 and School Number 33,
Indian students made up 13% and 7%, respectively, of the student
body. As a result, these three schools alone accounted for 45% of the
total elementary school Indian population. Additionally, the decision
was made to restrict this study to students who attended school in the
Washoe County School District during both the 1992-8S and 198S-84

```

Table 26. School Enrollments

```

school years. It was not surprising, therefore, that apparently
sizable differences in the school enrollment frequency distribution
(Table 2S) were found, and that they indicated that considerably more
Indian students than non-Indian students were sampled at School Number
3, School Number 28, and School Number 33.
The results of the descriptive enalyses indicated that Indian
students attended schools that had mean enrollments of 375 students.
The modal frequencies and standard deviation indicated, on the other
hand, that most Indian students did not attend schools with mean
enrollments, but rather attended either much smaller schools ii.e.,
enrollment of 134 students) or much larger schools (i.e., enrollments
of 434 and 588 students). At the same time, the median enrollment
size was practically the same for both Indian (median = 430) and
non-Indiar (median = 425) students. These results, then, indicated
that Indian students primarily attended one of only a few schools,
which covered the spectrum from very low enrollment (School Number
28), to near average enrollment (School Number 3), to quite a large
enrollment (School Number 33). In contrast, the distribution for
non-Indian student enrollment sizes was much more normally
distributed, with a mean enrollment size of 415 students. A test of
mean differences (Table 2b) further suggested that Indian students
attended schools with significantly smaller average enrollments than
non-Indian students. A major implication of these results was that
further analyses of school environment and learning context

```
```

characteristics in the Washoe County School District would have to
control for enrollment size.
Theoretically, as well as realistically, the age, number of
improvements made, size, and total cost of constructing the school's
facilities should have all influenced the school's socioeconomic
\Xitatus or ethos. The results (Table 27) demonstrated that Indian
students did not attend schools that were statjstically significantly
newer or older than those attended by non-Indian students. The mean
age for schools in the Washoe County School District was twenty-three
years. Although the standard deviation was greater for non-Indian
students, this simply showed that they were more ljkely than Indian
students to attend the oldest (72 years old) and the newest (three to
four years old) schools.
Although initial analyses of other school characteristics (see
Appendi: A for descriptive statisticsl indicated that there were no
statistical differences between Indian and non-Indjan students in
terms of other school environment and learning content characteristics
at the schools they attended, when such factors were controlled for by
enrollment, statistically significant differences were found. That
is, the results (Table 2日) demonstrated that Indian students attended
schools that had had statistically significantly more improvements
made, had more classrooms and total square footage, and had larger
school sites per student than mon-Indian students. Although not
statistically greater, the schools attended by Indian students also
had higher total construction costs per student. It was noted,

```

Table 27. Age of School (in Years)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Years I & \[
\begin{gathered}
\text { Indians } \\
f \\
\hline
\end{gathered}
\] & \multicolumn{3}{|r|}{\[
\begin{gathered}
\text { Non- } \\
\text { Indians } \\
f \\
\hline
\end{gathered}
\]} & Years & \[
\begin{gathered}
\text { Indians } \\
f \\
\hline
\end{gathered}
\] & NonIndians \(f\) \\
\hline 3 & 9 & \multicolumn{3}{|c|}{4} & 27 & 18 & 24 \\
\hline 4 & 9 & \multicolumn{3}{|c|}{36} & 29 & 33 & 7 \\
\hline 12 & 44 & \multicolumn{3}{|c|}{6} & 29 & 7 & 25 \\
\hline 18 & 0 & \multicolumn{3}{|c|}{1} & 30 & 0 & 8 \\
\hline 19 & 5 & \multicolumn{3}{|c|}{16} & 35 & 8 & 6 \\
\hline 20 & 19 & \multicolumn{3}{|c|}{48} & 34 & 0 & 1 \\
\hline 21 & 24 & \multicolumn{3}{|c|}{7} & 35 & 2 & 4 \\
\hline 22 & 5 & \multicolumn{3}{|c|}{4} & 36 & 2 & 12 \\
\hline 23 & 1 & \multicolumn{3}{|c|}{3} & 49 & 3 & 3 \\
\hline 24 & 6 & \multicolumn{3}{|c|}{7} & 60 & 8 & 4 \\
\hline 25 & 0 & \multicolumn{3}{|c|}{5} & 72 & 1 & 7 \\
\hline \multirow[t]{2}{*}{26} & 6 & \multicolumn{3}{|c|}{20} & Total & 201 & 258 \\
\hline & & Mean & & & Mode & \multicolumn{2}{|l|}{Standard Deviation} \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Indians \\
Non-Indians
\end{tabular}} & & 23.4 & & & 12.0 & & \\
\hline & & 23.5 & & & 20.0 & & \\
\hline & & \multicolumn{3}{|l|}{t-ratio \(=0.35\)} & p & & \\
\hline
\end{tabular}

Table 29: Mean Comparisons of Indian and Non-Indian Students For School Environment and Learning Context Characteristics Fer Student
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Variable \\
Name \({ }^{\text {a }}\)
\end{tabular} & Indjan Mean & Non-Indian Mean & t-ratio \\
\hline \multicolumn{4}{|l|}{Hunter of School} \\
\hline Improvements & 0.0130 & 0.0108 & -3.78*** \\
\hline \multicolumn{4}{|l|}{Number of Classroome} \\
\hline \multicolumn{4}{|l|}{Total Square Footage} \\
\hline of School & 89.6575 & 80.0615 & \(-3.98 * *\) \\
\hline School Site Acreage Size & 0.0851 & 0.0181 & \(-5.90 \% * *\) \\
\hline \multicolumn{4}{|l|}{Total Cost of School} \\
\hline Construction & 1553.88 & 1438.87 & \(-1.43\) \\
\hline
\end{tabular}
*--p..05 **--pく.01 ***--pく.001
a--Due to the large differences in school enfollment, variables were controlled by dividing measures by the school's enroilinent to obtain per student values.
```

however, that most of the mean differences were not necessarily
substantively large.
In looking at the number of improvements made to school
facilities, which included things like building additions, carpeting,
and facility repairs or upgrading, it was found that 13 improvements
par 1000 students (or .013 improvements per student) had been made at
schools attended by Indian students and approximately 11 improvements
per 1000 students (or .011) had been made at schools most often
attended by non-Indian students. Although the schools exhibited
considerable variance in the number of improvements made (0-9), such
improvements were apparently appropriate to the school's enrollment
size as much as anything else.
While the observed number of classrooms per student was
substantively similar, with one room for every twenty students lor .05
classrooms per student), the total square footage per student was
substantively different. Dn the average, the square footage of
schools attended by Indian students (89.t6 square feet) was more than
B.S square feet per student larger than schools attended by non-Indian
students (80.06 square feet). Hence, the results (Table 2B) indicated
that Indian students attended significantly larger schools,
partjcularly when comparing total square footage per student.
The results also demonstrated (Table 28) that Indian students
attended schools with substantively larger school sites per student.
Un the average, schools most often attended by Indian students had a
little more than three acres per 100 students (or .03Ji acres per

```
\begin{tabular}{|c|}
\hline students had less than two acres per 100 students (or . 0181 acres per \\
\hline student). That is, schools attended by Indian students were on the \\
\hline average one acre larger per hundred students than schools most likely \\
\hline attended by non-Indian students. These substantively and \\
\hline statistically signjficant differences in school site acreage between \\
\hline Indian and non-Indian students were further amplified by other \\
\hline descriptive results. That is, it was observed (Appendix D) that the \\
\hline modal school site for schools most likely attended by Indian students \\
\hline was 12.5 acres, in comparison to 10 acres for schools most likely \\
\hline attended by non-Indian students. \\
\hline The last school characteristic for which data were collected was \\
\hline the total cost of school construction. The range for this variable \\
\hline was tremendously large, with the lowest total cost ( \(\ddagger 39,743\) ) almost \\
\hline 1.9 million dollars below the highest expenditure ( \(\ddagger 1,935,400\) ) . The \\
\hline \multirow[t]{2}{*}{school's age, enrollment size, number of classrooms and improvements, and total square footage were all factors that influenced the total} \\
\hline \\
\hline cost of construction. A simple comparison of the mean cost per \\
\hline student indicated substantive differences between Indian and \\
\hline non-Indian students (Table 28). It was found that, on the average, \\
\hline \$145 per student more had been spent on school construction costs at \\
\hline hools most likely attended by Indian students than at schools \\
\hline tended by non-Indian students. However, the t-test results itable \\
\hline ) indicated that this observed difference in total school costs per \\
\hline udent was not statistically significant. \\
\hline
\end{tabular}
```

In summary, the results found that lndian students attended schools with significantly lower median family incomes and school enrollments, but similarly aged schools. This considerable variation in school enrollment sizes made it necessary to control for enrollment size in further analyses of school environment and learning context characteristics. Once school enrollment was controlled, it was found that Indian students were statistically significantly more likely to attend schools with more improvements made, more classrooms, greater square footage, and larger school sites per student than for schools attended by their classmates.
Litrary characteristics. No other known studies have made as many multiple measurements of library characteristics as the current research. Data were analyzed on thirty-one different variables concerning the school's library environment and learning context. All of these data consisted of interval data, but many of them also had distributions with very large variances which made initial analyses difficult. However, once these variables were controlled for by the school's enrollment size, distributions and variances became stabilized and t-tests could then be used to test for Indian and non-Indian student differences.
Table 27 shows the mean values per student for both Indian and non-Indian students, and the results of the t-tests of the mean differences. The t-test results found that the two groups of students were statistically significantly different on twenty-five of the thirty-one (81%) library school environment and learning context

```

> Table 29: Hean Comparisons of Indian and Non-Indian Students For Library School Environment and Learning Context Characteristics Fer Student
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Variable \\
Namea
\end{tabular} & \begin{tabular}{l}
Indian \\
Mean
\end{tabular} & Non-Indian Mean & t-ratio \\
\hline \multicolumn{4}{|l|}{Number of Encyclopedia} \\
\hline Sets in Classrooms & 0.0177 & 0.0173 & -.36 \\
\hline \multicolumn{4}{|l|}{Number of Encyclopedia} \\
\hline Sets in Library & 0.0183 & 0.0124 & -3.88*** \\
\hline \multicolumn{4}{|l|}{Number of Encyclopedia} \\
\hline Sets Missing Volumes & 0.0064 & 0.0045 & \(-2.07 *\) \\
\hline \multicolumn{4}{|l|}{Total Number of} \\
\hline Sete in 1983 & 0.0132 & 0.0176 & 4.71*** \\
\hline \multicolumn{4}{|l|}{Total Number of} \\
\hline \multicolumn{4}{|l|}{Encyclopedia} \\
\hline Sets in 1984 & 0.0150 & 0.0202 & 4.10\% \\
\hline \multicolumn{4}{|l|}{Fercentage of Eooks} \\
\hline Added (1985-84) & 0.0154 & 0.0133 & \(-1.65\) \\
\hline \multicolumn{4}{|l|}{Fercentage of Eooks} \\
\hline Discarded (1983-84) & 0.0099 & 0.0082 & . 23 \\
\hline \multicolumn{4}{|l|}{Fercentage of Eooks} \\
\hline Lost (1983-84) & 0.0018 & 0.0014 & -4.27*** \\
\hline \multicolumn{4}{|l|}{Total Library Eooks} \\
\hline in 1983 & 17.6969 & 15.8621 & -5.55*** \\
\hline \multicolumn{4}{|l|}{Number of Minutes Library} \\
\hline \multicolumn{4}{|l|}{Number of Minutes Library} \\
\hline \multicolumn{4}{|l|}{Number of Minutes Library} \\
\hline Number of Filmstrips & 2.2099 & 1.7495 & -8.42*** \\
\hline Number of Audio Tapes & 1.4242 & 1.2457 & -3.00** \\
\hline Number of Audio fecordings & 0.4003 & 0.3870 & -5.08*** \\
\hline
\end{tabular}
\[
\begin{aligned}
& *--p<.05 \text { **-p<.01 ***--p<.001 } \\
& \text { a--Due to the large differences in school enrollment, variables } \\
& \text { were controlled by dividing measures by the school s enrollment } \\
& \text { to obtain per student values. }
\end{aligned}
\]

Table 29: (continued)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Variable \\
Name \({ }^{\text {a }}\)
\end{tabular} & Indian Mean & Non-Indian Mean & t-ratio \\
\hline Number of Video Tapes & 0.0015 & 0.0004 & -4.14*** \\
\hline Number of Software frograms & 0.0296 & 0.0372 & . 84 \\
\hline Number of Slides & 0.7414 & 0.6282 & -2.59** \\
\hline Number of Transparencies & 0.4205 & 0.5153 & 1.27 \\
\hline Number of instructional kits & 0.1650 & 0.1408 & -2.19* \\
\hline Number of Film Loops & 0.0484 & 0.0315 & -2.98** \\
\hline Number of Globes & 0.0058 & 0.0097 & 3.16** \\
\hline Number of Madels & 0.0325 & 0.0162 & -7.66*** \\
\hline Number of Audio Visual Materials & 5.5322 & 4.6963 & \(-5.04 * * *\) \\
\hline Number of Magazine Subscriptions & 0.0250 & 0.0178 & \(-5.13 * * *\) \\
\hline Number of Certified Librarians & 0.0000 & 0.0001 & 2.53** \\
\hline \begin{tabular}{l}
Number of Faid \\
Library Aides
\end{tabular} & 0.0002 & 0.0000 & \(-5.68 * * *\) \\
\hline Number of Library Assistants & 0.0034 & 0.0024 & \(-5.71 * * *\) \\
\hline Average Daily Number of Student Library Aides & 0.0022 & 0.0037 & 3.81*** \\
\hline Weekly Avarage Circulation & 1.6901 & 1.5226 & -3.07** \\
\hline Weelly Avarage Student Use & 1.2675 & 0.8762 & -3.54*** \\
\hline
\end{tabular}
```

*--p<.05 **--p<.01 ***--p<.001
a--Due to the large differences in school enrollment, variables
were controlled by dividing measures by the school's enrollment
to obtain per student values.

```
```

characteristics per student. Of these, nineteen (76%) had negative
t-ratios, which meant that Indian students had a statistical advantage
in those factors. In looking at the si% variables for which Indian
and non-Indian students were not statistically different, Indian
students also tended to have the advantage on three of the factors:
number of encyclopedia sets in classrooms, percentage of books added,
and the number of minutes the library was open after school; and
non-Indian students had the advantage on the other three variables:
percentage of books discarded, number of software programs, and number
of transparencies.
The results (Table 29) indicated that Indian students tended to
attend schools that had statistically significantly more of the
foilowing library characteristics per student than schools typically
attended by non-Indian students:
1) Number of encyclopedia sets in the library
2) Number of encyclopedia sets missing volumes
3) Fercentage of books lost in 1983-84
4) Total library books in 1982-83
5) Number of minutes the library was open during lunch
6) Number of filmstrips
7) Number of audio tapes
8) Number of audio recordings
9) Number of videa tapes
10) Number of slides
11) Number of instructional kits
12) Number of film loops
13) Number of models
14) Number of audio/visual materials
15) Number of magazine subscriptions
16) Number of paid library aides
17) Number of library assistants
19) Weekly average circulation of library books
19) Neefly average student use of library

```
```

In contrast, schools more likely attended by non-Indian students had
statistically significantly more of the following library
characteristics:
1) Total number of encyclopedia sets in 1982-83
2) Total number of encyclopedia sets in 1983-84
3) Number of minutes the library was open before school
4) Number of globes
5) Number of certified librarians
6) Average daily number of student library aides
However, some of these differences were not necessarily substantively
large. For e%ample, it was not too important to know that schools
most likely attended by Indian students had nine more video tapes for
every 10,000 students (or . 0009 per student more) or twelve more
slides for every 100 students (or . }12\mathrm{ per student more) than schools
more often attended by non-Indian students.
The observations that Indian students tended to go to schools with
more books per student and with a library that was open longer per
student over the lunch hour, and that schools most often attended by
non-Indian students were open longer (per student) before school, were
the most substantively interesting results. More specifically, it was
found that Indian students attended schools that had nearly four more
library bool:s per student, and that the libraries at these schools
were open three minutes per student more during the lunch hour than at
other schools. In contrast, the libraries of schools less likely to
be attended by Indian students were open two minutes per student
longer before school began. Accordingly, nearly one-half of the
non-Indian students, in comparison to less than one-fourth of the
Indian students, attended schools with libraries open before school.

```

In contrast, over three-fourths of the schools attended by Indian students were open during lunch, but less than one-half of the schools non-Indian students were likely to attend were open over the lunch period when students would have been less likely to use the library. 26 It was also noted that the weakly average circulation of books and the student use of the library were substantially greater at schools most likely attended by Indian students. This, however, was to be expected in light of the results that indicated there were more books in the library and that it was open longer over the lunch hour. Some other interesting results concerned library personnel. Although it was found (Table 29) that the mean number of personnel was zero for both Indian and non-Indian students, the t-ratios were statistically significant. Examination of frequency data helped to clarify this situation. First, it was found that Indian students did not go to schools that had certified librarians, which was statistically significantly ( \(x^{2}=4.67, p\) (.05) less than for non-Indian students, although only \(3 \%\) of the non-Indian students attended schools with certified librarians. Conversely, Indian students were significantly more likely to attend schools with paid aides and other library assistants. Dverall, most school libraries did not have paid aides (i.e., \(93 \%\) ) but very few students attended a school with no type of library assistant ( \(6 \%\) ). Again the low frequencies probably caused these results. Lastly, with respect to student library aides, frequency counts indicated that significantly more \((45 \%)\) of the non-Indian students than Indian students (32\%) went
```

to schools with one or more student aides. While it was found that
only 10% of the Indian students, in comparison to 23% of the
non-Indian students, went to schools with three or more student aides,
this may have been because they were also more likely to go to smaller
schools. It was also interesting that libraries at schools most
likely attended by Indian students had significantly mare books
checked out per week, although the mean differences were not
substantively large (i.e., only 17 more books per hundred students).
Student and faculty characteristics. Table 30 presents the
results of the mean comparisons for student and faculty differences,
while Table 31 presents the results for special faculty and staff
comparisons. The results concerning numbers of students and teachers
(Table S0) indicated that seven of the sixteen (44%) comparisons were
statistically significant, and that non-Indian students attended
schools with more students and teachers, both by grade level and for
the school in general (which was already known). The greatest
differences were in the number of students by grade level. That is,
non-Indian students were significantly more likely to attend schools
with more first, second, third, and fourth grade students. Not
surprisingly, these schools also had significantly more first and
third grade teachers. Interestingly, the student teacher ratios at
all schools were nearly equal, yet 5chools most ljkely attended by
non-Indian students had statistically more students, but not
significantly more teachers.

```

\title{
Table So: Mean Comparisons of Indian and Non-Indian Students For Student and Faculty School Environment and Learning Context Characteristics
}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Variable } \\
\text { Name } \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Indian \\
Mean
\end{tabular} & Non-Indian Mean & t-ratio \\
\hline \multicolumn{4}{|l|}{Number of Students in} \\
\hline Kindergarten & 52.75 & 53.78 & 0.56 \\
\hline \multicolumn{4}{|l|}{Number of Students in} \\
\hline First Grade & 62.54 & 69.16 & 2.51** \\
\hline \multicolumn{4}{|l|}{Number of Students in} \\
\hline Second Grade & 53.42 & 59.89 & 2.85** \\
\hline \multicolumn{4}{|l|}{Number of Students in} \\
\hline Third Grade & 51.44 & 58.40 & 3.76*** \\
\hline \multicolumn{4}{|l|}{Number of Students in} \\
\hline Fourth Grade & 52.05 & 57.44 & 2.69** \\
\hline \multicolumn{4}{|l|}{Number of Students in} \\
\hline \multicolumn{4}{|l|}{Number of Students in} \\
\hline Sixth Grade & 57.45 & 60.85 & 1.39 \\
\hline Total Number of Students & 389.17 & 418.20 & \(2.15 \%\) \\
\hline \multicolumn{4}{|l|}{Number of kindergarten} \\
\hline Teachers & 1.07 & 1.07 & 0.02 \\
\hline \multicolumn{4}{|l|}{Number of First Grade} \\
\hline Teachers & 2.51 & 2.72 & 2.31* \\
\hline \multicolumn{4}{|l|}{Number of Second Grade} \\
\hline Teachers & 2.23 & 2.33 & 1.22 \\
\hline \multicolumn{4}{|l|}{Number of Third Grade} \\
\hline \multicolumn{4}{|l|}{Number of Fourth Grade} \\
\hline Teachers & 2.09 & 2.15 & 0.93 \\
\hline \multicolumn{4}{|l|}{Number of Fifth Grade} \\
\hline \multicolumn{4}{|l|}{Number of Sixth Grade} \\
\hline Teachers & 2.18 & 2.26 & 0.50 \\
\hline Total Number of Teachers & 14.26 & 14.85 & 1.42 \\
\hline
\end{tabular}
\[
*--p<.05 \quad * *--p<.01 \quad * * *--p<.001
\]

Table ミ1: Mean Comparisons of Indian and Non-Indian Students For Student and Faculty School Environment and Learning Context Characteristics Fer Student
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Variable \\
Name \({ }^{\text {a }}\)
\end{tabular} & Indian Mean & Non-Indian Mean & t-ratio \\
\hline Number of Kindergarten Aides/Assistants & 0.0002 & 0.0005 & 1.66 \\
\hline Number of First Grade Aides/Assistants & 0.0006 & 0.0006 & 0.18 \\
\hline Number of Second Grade Aides/Assistants & 0.0013 & 0.0010 & \(-1.42\) \\
\hline Number of Third Grade Aides/Assistants & 0.0002 & 0.0004 & 0.93 \\
\hline Number of Fourth Grade Aides/Assistants & 0.0002 & 0.0002 & 0.24 \\
\hline Number of Fifth Grade Aides/Assistants & 0.0002 & 0.0003 & 1.34 \\
\hline Total Number of Aides/Assistants & 0.0005 & 0.0006 & 1.16 \\
\hline Number of Special Education Students, Kindergarten & 0.0034 & 0.0139 & 2.69** \\
\hline Number of Special Education Students, First Grade & 0.0546 & 0.0344 & -5.01*** \\
\hline Number of Special Education Students, Second Grade & 0.0558 & 0.0556 & \(-8.13 * * *\) \\
\hline Number of Special Education Students, Third Grade & 0.0911 & 0.0780 & -2.75** \\
\hline Number of Special Education Studerits, Fourth Grade & 0.1024 & 0.0994 & -0.51 \\
\hline Number of Special Education Students, Fifth Grade & 0.0681 & 0.0811 & 2.29* \\
\hline Total Number of Special Education Students & 0.0660 & 0.0616 & \(-1.39\) \\
\hline
\end{tabular}
*--p<.05 **--p<.01 ***--p<.001
a--Due to the large differences in school enrollment, variables were controlled by dividing measures by the school s enrollment to obtain per student values.

Table 31: (continued)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Variable } \\
\text { Namea }
\end{gathered}
\] & Indian Mean & Non-Indian Mean & t-ratio \\
\hline Number of ESL Students, Kindergarten & 0.0020 & 0.0038 & 0.83 \\
\hline Number of ESL Students, First Grade & 0.0156 & 0.0154 & 0.18 \\
\hline Number of ESL Students, Second Grade & 0.0134 & 0.0171 & 1.03 \\
\hline Number of ESL Students, Third Grade & 0.0092 & 0.0135 & 1.64 \\
\hline Number of ESL Students, Fourth Grade & 0.0090 & 0.0114 & 0.85 \\
\hline Number of ESL Students, Fifth Grade & 0.0052 & 0.0125 & 1.24 \\
\hline Total Number of ESL Students & 0.0095 & 0.0121 & 1.00 \\
\hline Number of Library/ Resource Teachers & 0.0041 & 0.0042 & 1.33 \\
\hline Number of Federal Emplayees & 0.0017 & 0.0007 & -7.44*** \\
\hline Number of Counselors & 0.0019 & 0.0011 & -6.49*** \\
\hline Total Staff & 0.0563 & 0.0493 & -7.49*** \\
\hline
\end{tabular}
```

*--p<.05 **--p<.01 ***--p<.001
a--Due to the large differences in school enrollment; variables
were controlled by dividing measures by the school's enrollment
to obtain per student values.

```

\begin{tabular}{|c|}
\hline additional staff person per one hundred students. The results (Table \\
\hline 31) concerned with counselors in the Washoe County School District, \\
\hline Which indicated that there were nearly two counselors for every 1000 \\
\hline students (or . 0019 per students) at schools most likely attended by \\
\hline Indian students and only one for every 1000 students (or . 0011 per \\
\hline student) at schools attended more often by non-Indian students, were \\
\hline somewhat surprising, since it was commonly believed by personnel in \\
\hline the district that the opposite was true. However, these figures were \\
\hline substantively meaningless, as no school had a thousand students. \\
\hline Table 32 presents the observed student frequencies in the study \\
\hline sample by grade level. Statistical analyses indicated that \\
\hline significant ethnic distributional differences did not exist by grade \\
\hline level in the study sample, although statistical differences for the \\
\hline total sample had been (Table 31) found. Thus, no fewer Indian \\
\hline students than expected were included in the various grade level \\
\hline samples of thjs study, although simple percentage differences did \\
\hline occur. This meant that the samples were comparabie, despite the large \\
\hline transiency problem. Nonetheless, these results (i.e., the observed \\
\hline differences in actual numbers) underscored the necessity to weight the \\
\hline non-Indian sample so that advanced data analyses were not biased by \\
\hline these sampling differences. \\
\hline One final note, it was observed (Table 32) that about one percent \\
\hline of the sample had been retained a grade level. Eecause the sample was \\
\hline estricted to students who had been in the district, and recejved \\
\hline ades, for two consecutive years, all kindergarten and first grade \\
\hline
\end{tabular}

\section*{Table 32. Sample Differences Between Indian and Non-Indian Students by Grade Level}
\begin{tabular}{|c|c|c|c|c|}
\hline Variatle/value & & Indians & Non-Indians & Total \\
\hline \multicolumn{5}{|l|}{Grade Level} \\
\hline 1st Grade & \[
f
\] & \[
\begin{array}{r}
2 \\
(1.0)
\end{array}
\] & \[
\begin{gathered}
4 \\
(1.5)
\end{gathered}
\] & \[
\binom{\frac{6}{3}}{(1.3}
\] \\
\hline 2nd Grade & f
\(\%\) & \[
\begin{gathered}
32 \\
(15.9)
\end{gathered}
\] & \[
\begin{gathered}
61 \\
(23.6)
\end{gathered}
\] & \[
\begin{gathered}
93 \\
(20.3)
\end{gathered}
\] \\
\hline 3rd irade & \(\%\) & \[
\begin{gathered}
37 \\
(18.4)
\end{gathered}
\] & \[
\begin{gathered}
59 \\
(22.9)
\end{gathered}
\] & \[
\begin{gathered}
96 \\
(20.7)
\end{gathered}
\] \\
\hline 4th Grade & 4
\(\%\) & \[
\begin{gathered}
41 \\
(20.4)
\end{gathered}
\] & \[
\begin{gathered}
43 \\
(16.7)
\end{gathered}
\] & \[
\begin{gathered}
84 \\
(18.3)
\end{gathered}
\] \\
\hline Eth Grade & \% & \[
\begin{gathered}
50 \\
(24.9)
\end{gathered}
\] & \[
\begin{gathered}
52 \\
(20.1)
\end{gathered}
\] & \[
\begin{gathered}
102 \\
(22.2)
\end{gathered}
\] \\
\hline bth Grade & \% & \[
\begin{gathered}
39 \\
(19.4) \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
39 \\
(15.1) \\
\hline
\end{array}
\] & \[
\begin{gathered}
78 \\
(17.0) \\
\hline
\end{gathered}
\] \\
\hline Total & & 201 & 258 & 459 \\
\hline & & \(x^{2}=\) & \(88 \quad p=n .5\) & \\
\hline
\end{tabular}
```

students should have been eliminated from the study. The si: first
graders in this study, therefore, represented students in the first
grade both years--that is, these students had been retained. Although
only one percent of each group was retained, it has been noted that
one-third of the retained students in the sample were in fact Indian
students.

```
Summary. Data on eighty-one school environment and learning
context variables were analyzed. The results of these analyses
indicated that Indian students tended to go to schools that were
significantly different from schools most often attended by non-Indian
students. In regards to school facilities, Indian students were more
likely to attend schools that had significantly lower median family
incomes fwhich were also more positively skewed), lower enrollments,
more improvements per student, more rooms per student, more square
footage per student, and larger school yards per student. fecause of
the tremendous variances in school sizes, it was controlled for on
most of the school environment and learning context variables. when
controlled for by enrollment, the results were much different. for
example, analyses without controlling for enrollment found that Indian
students attended schools with significantly less square footage,
rather than significantly more square footage (per student) when
school size was controlled. fhe libraries at those schools Indian
students were most likely to attend were also different in that they
had per student significantly more encyclopedia sets in their
libraries, more encyclopedia sets missing volumes, larger percentages
```

of books lost in the 1983-84 school year, more total books, more
films, audio recordings, video tapes, slides, instructional kits, film
loops, instructional models, total audio visual materials, more
library ajdes and assistants, greater library circulation and student
use, and longer hours of operation over the lunch hour. Conversely,
these same schools had per student significantly fewer total sets of
encyclopedia sets during both years of study, fewer globes, no
certified librarians, fewer student library aides; and shorter hours
for the library to be open before school. With regard to school staff
and student body structure, the schools most often attended by Indian
students had per student significantly more special education students
in the first, second and third grades, more federal emplovees, more
counselors, and more total staff; although not all of these were
substantively different. Overall, then, schools most likely attended
by Indian students statistically significantly differed from schools
most likely attended by mon-Indian students on forty-six of the
eighty-one (57%) variables. Of these, the schools attended by Indian
students had the statistical advantage on twenty-ejght (61%) of the
forty-si% statistically significant differences. In contrast, the
schools were not statistically significant on thirty-five (4J%) of the
eighty-one variables, but these schools attended by Indian students
had the advantage on only seven (20%) of thirty-five nonsignificant
differences. These results, therefore, suggested that statistically
significant differences between schools most likely attended by Indian
students and those most likely attended by non-Indian students did

```
```

exist and that Indian students tended to enjoy an advantage on a per
student basjs (although not on a per school basis).

```

\section*{Conclusions}

\begin{abstract}
The results of the data analyses from the first cycle of the research project presented in this chapter have provided both descriptive and comparative characteristics of academic achievement in the Washoe County School District for Indian students and their classmates. Data were inductively collected on a variety of factors, 50me of which had not been previously studied in conjunction with educational achievement, and deductively gathered on variables that were identified as potentially important to achievement in the literature. All data, regardless of the data collection procedures, were analyzed with univariate and bivariate descriptive and comparative statistics.
\end{abstract}

\section*{Student Characteristics of Education}
Discussion concerning the type and degree of relationship between
student characteristics will be discussed in Chapter 4 , as these
results were methodologically important to the advanced data analyses
of the second research cycle discussed in that chapter, That is,
although such a discussion would certainly, at this point, more
adequately answer the first research question concerning what student
characteristics are related to education, it will be both
theoretically andeditorially more parsimonious to present the
```

presentation of redundant correlates; that is, reporting two variables
that correlate with academic achievement test scores, but also
correlate with each other. Henca, the discussion in Chapter 4 will be
limited to those variables that were theoretically and/or empirically
correlated with test scores.
The results presented in this chapter have provided initial
evidence of which characteristics may or may not be related to
educational achievement in the Washoe County School District. These
results have indicated those variables for which there was very little
or no variance among students in the sample, and presumably within the
district population.

```

\section*{Indian and Non-Indian Differences}

In regards to academic achievement, the empirical evidence showed that indian students were achieving at statistically significantly lower levels than their classmates. They were, however, relatively successful in comparison to national norms. The largest significant differences in the ten measured areas of achievement tended to be found at individual grade levels, although such differences were minimal at the third and fourth grade levels. As such, these results supported the acceptance of the first research hypothesis:
\(H_{1}:\) Standardized achievement test scores for Indian students are significantly lower than test scores for non-Indian students in the Washoe County School District.

Analyses of class grades and other characteristics of prior achievement found that Indian students were statistically significantly less successful than their classmates in all measured
```

areas except the number of days present during the 1982-83 school year
and the number of days not enrolled for both the 1982-83 and 1983-84
school years. That is, during both years analyzed, Indian students
achieved significantly lower grade point averages and class grades in
arithmetic, language, reading, science/health, social studies, and
spelling. Indian students were absent statistically significantly
more days than non-Indian students both years, but were present more
days in 1982-83 and were slightly more likely to have taken the
standardized achievement tests in 1984; that is, they were present
those days to take them. Since eighteen of the twenty-one (}86%\mathrm{)
measured prior achievement characteristics were statistically
different for Indian students than their classmates, the second
research hypothesis is accepted:
H2: Class grades, attendance, and other measures of previous
achievement are significantly different for Indians and
non-Indians in the Washoe County School District.
With respect to teacher evaluations, Indian students were
statistically significantly different only in terms of citizenship
grades for bath 1982-83 and 1983-84. However, Indian students were
substantively different from their classmates in terms of their
participation in the gifted student program and having been retained
one or more times. That is, non-Indian students were more than twice
as likely to participate in the gifted student program while, in
contrast, Indian students were more likely to have been retained one
or more grades. While not as strong of evidence existed concerning
the third research hypothesis as for the first two hypotheses \i.e.,

```
```

only 40% of the differences were significantl, the results still
tended to confirm the third research hypothesis (particularly with
regard to citizenship grades):
Hz: Teacher evaluations are different for Indian and non-Indian
students in the Washoe County School District.
In analyzing personal and familial background characteristics of
students in the Washoe County School District, it was found that
Indian students were statistically significantly different from
non-Indian students in terms of socioeconomic status (as measured by
both median family income and participation in the federal lunch
program), home environment, school-related, ano personal background
measurements. Specifically, Indian students' families had
significantly lower family incomes, were more likely to participate in
the federal lunch program, and were more likely to have a father or
both parents unemployed. Indian students' home environments were
significantly more likely to have one or both parents absent, and were
also more likely to have a father who was a stepfather, guardjan, or
deceased. Indian students were more likely to have a rural residence,
to not have a telephone number listed at their school, to have been
born in-state (Nevada), and to have been older than their classmates.
In contrast, Indian students were significantly different from
non-Indians on only one (or 20%) of the measures of school-related
background characteristics. Only the variable concerning the listing
of an emergency phone number at the school office was significant,
with Indian students being twice as likely not to have one listed.
Overall, 60% of the observed differences were statistically

```
```

significant, which provided for the acceptance of the fourth research
hypothesis:
H4: Fersonal and familial background characteristics are
significantly different for Indian and non-Indian students in
the Washoe County School District.
The last set of variables analyzed were school environment and
learning context characteristics. These results demonstrated that
Indian students were statistically significantly different in regards
to most of the school's socioeconomic status measurements, which
included the school's median family income, enrollment, age,
improvements, size, and total cost of construction and subsequent
improvements; that is, six of eight, or 75%, of the variables had
significant statistical comparisons. Indian students were more likely
to attend schools that had a significantly lower median family income
and student enrollment, but that had per student significantly more
square footage, more rooms, more improvements, and more school acreage.
The schools most likely attended by Indian students were per
student significantly more likely to have libraries that were open
less before school but open more during lunch, had no certified
librarians but more paid aides and monpaid assistants, greater student
use and circulation, fewer student aides, more encyclopedias in the
library but fewer in the school overall, more encyclopedias missing
volumes, and generally more audio/visual materials.
Indian and non-Indian students were not, generally, statistically
significantly different with respect to student and faculty
characteristics. Indian students were, however; found to be

```
```

significantly more likely to attend schools with fewer students in the
first, second, third, and fourth grades, along with having Emaller
total enrollments, per student. These schools also had per student
more special education students in first, second and third grades (but
fewer in kindergarten and fifth grade) and fewer classroom teachers in
the first and third grades. The schools most likely attended by
Indian students also had per student statistically more federal
employees, counselors, and total staff. Since forty-six of the
eighty-five (57%) school environment and learning context variables
were statistically significant the results tended to also verify the
fifth research hypothesis:
$H_{5}: S c h o o l$ environment and learning context variables are different for Indian and non-Indian students in the Washoe County School District.
In sum, it was concluded that Indian students were significantly different from non-Indian students in the Washoe County School District with respect to previous class achievements, teacher evaluations, personal and familial background characteristics, and school environment and learning context factors. More importantly, Indian students' academic achievement in the Washoe Ccunty School District was statistically and substantively significantly lower than that of their non-Indian classmates. Taken together, these results suggested that there existed unintended, latent, structural discrimination in relationship to Indian student success in the Washoe County School District. 27 Overall, Indian students were significantly different from their classmates in 61% of the measured antecedent

```
```

variables of the standardized achievement tests. These conclusions
suggested the hypothesis that these antecedents were likely to be
correlated with test scores and were probably predictors of academic
achievement. Moreover, these conclusions inductively corroborated the
synthesis of the literature discussed in Chapter 1, which deductively
led to the sixth and seventh research hypotheses:
H6: Grade level is an antecedent predictor of standardized
achievement test scores in the Washoe County School District.
H7: Ethnicity is an antecedent predictor of SAT scores in the
Washoe County School District.

```

\section*{Implications}

The first cycle of this study, then, provided both inductive descriptions and deductive test results in response to the first two research questions:
1. What student characteristics are related to education?
2. Do Indian students differ from other students? Two sets of research processes (see Figure 2) were followed in finding empirical evidence to answer these questions. The first set of processes involved framing the literature to identify potential factors not previously studied and observing the existing records of the Washoe County School District to further identify potential characteristics related to education. Data were then collected and descriptively analyzed, which provided initial responses to the first question (Note: Correlates of Academic Achievement will be discussed in Chapter 4). The second set of procedures led to the deduction of the first five hypotheses concerning the second researcin question, as
```

well as the remaining three research hypotheses. As discussed above,
the empirical evidence of this study has supported these hypotheses,
which in turn provided a tentative answer to the second research
question. More importantly, knowing what characteristics seemed to be
related to education and that Indian students differed from non-Indian
students on most of these characteristics, has provided the parameters
and empirical support to continue on with the second cycle (Figure J)
of this study and explore answers to the third and fourth research
questions. Thus, while the primary focus of this cycle of research
Was to inductively draw generalizations from empirical observations
concerning the following two questions, a parallel deductive test
(signified by the dotted line in Figure s) of the sixth and seventh
research hypotheses was also made as supportive evidence for the
research questions:
3. What variables--both manipulable and non-manipulable by the school system--are antecedent predictors of achievement?
4. Is ethnicity a determinate antecedent predictor of achievement?
In sum, the results of this first cycle of research have verified the need for further research, as was predicted in Chapter 1. That is, in Chapter 1 it was suggested that answers to the first two questions would pose parameters or implications for further analyses to enswer the third, fourth and preceding research questions. Thus, [hapter 4 wil] first discuss the results of the simple correlations between theoretically and/or methodologically relevant independent variables and the dependent academic achievement test variables, and then analyze those correlates to determine which variables were

```
```

antecedent predictors of achievement test scores and whether ethnicity
and/or grade level were predictive of academic achievement. The first
process will more definitively answer the first research question and
the second will answer the third and fourth research questions.

```

\section*{CHAFTER 4}

\section*{FOFMULATIDN OF ACADEMIC ACHIEVEMENT MODELS}
This study began with a synthesis of previous research that led to
the formulation of two initially distinct sets of research processes;
fsee figure 2 for flow of both sets of those research processes). The
first set involved the inductive processes of framing the literature
to identify factors that had not previously been studied. This
provided a set of factors, some of which had previously been studied
and others had not, on which data were then collected and inductively
or descriptively analyzed, as reported on in Chapter z. The results
of these enploratory observations demonstrated tremendous variation
among most variables. The results suggested a number of conclusions,
from which it was determined that additional research was desired.
That is, how and to what degree were these variables related to
achievement? what variables were predictors of achievement? fnd,
more specifically, was ethnicity a predictor of achievement? The
second set of processes (in the first research cyclel involved
synthesizing the conclusions of previous research on academic
achievement and deriving hypotheses that were then tested with the
data from the washoe county school pistrict. fhis process dictateda
```

set of factors on which data were collected, simultaneously with data
collection of the first set of processes, and dedurtively analyzed as
reported in Chapter S. The results of these analyses found
considerable differences between Indian and non-Indian students in
regards to both academic achievement and other student
characteristics. Again, this suggested that further research would be
fruitful, and that the deduced hypotheses that ethnicity and grade
level were predictors of achievement were theoretically and
empirically relevant.

```

\section*{Methodoloqical Clarification}


\section*{Data Collection Frocedures}
```

The procedures of the second cycle of this study sought to find answers to ine following research questions:

1. What student characteristics are related to education?
2. What variables--both manipulable and non-manipulable by the school system--are antecedent predictors of achievement?
3. Is ethnicity a determinate antecedent predictor of achievement?
Additionally, the procedures attempted to verify or refute the following research hypotheses, which were formed on the bases of the literature review of previous studies:
H_{6} : Grade level is an antecedent predictor of standardiaed achievement test scores in the Washoe County School District.
H7: Ethnicity is an antecedent predictor of standardized achievement test scores in the Washoe County School District.
The first step involved theoretically clarifying the concepts antecedent and predictors. Antecedent was defined in this study as anything occurring prior to the administration of the standardized achievement tests on April 2, 1984. Hence, all factors that occurred prior to these enams were defined as being antecedents of them. Predictors were defined as those factors that explajned some part of the observed variances in achievement test scores when other endogenous variables were held constant. Antecedent predictors, therefore, were defined as those variables that chronologically occurred prior to, and that partially explained the variance in, the standardized achievement test scores.
```
```

Following this step of theoretically establishing the context of the research cycle, all the variables in the existing systems data
file were categorized as follows:
1. Dependent Variables (SAT scores)
2. Independent Variables
a. Antecedent Independent Variables
1) Frevious Student Achievements (e.g., reading grade for
1982-83)
2) Previous Teacher Evaluations (e.g., participated in
the gifted student program during 1082-8S)
3) Fersonal and Familial Fackground Characteristics
(e.g., student's age; father's status)
4) School Environment and Learning Context
Characteristics (e.g., school's age; number of books
in the library for 1982-83)
b. Fostcedent Independent Variables
1) Student Achievements (e.g., reading grade for 1983-84)
2) Teacher Evaluations (e.g., citizenship grade for
1983-84)
3) School Environment and Learning Context
Characteristics (e.g., the number of books in the
library for 1983-84)
3. Control Variables (e.g., moved intolout of the district)
A new systems file was then created, consisting of the dependent and
antecedent independent variables. Fostcedent independent variables
were not used because they occurred either simultaneously with or
after the administration of the achievement tests. Nominal scale data
were also recoded into binary (or "dummy") variables.

```
Data Analysis frocedures
    Once the data had been collected, that is, re-instrumented into a
new systems file, the nert process of the second cycle involved
analyzing the data for relationships between variables 50 as to
estabilish preliminary models of academic achievement. Simple
correlations were computed between all variables in the systems file,
```

which were then systematically reviewed in both theoretical and
methodological contexts. Specifically, variables with large
correlation coefficients were first identified, along with those
variables that were conceptualized to be theoretically relevant to the
study. That is, factors that were considered potential predictors of
achievement, as a result of reviewing previous studies. Secondly, it
was theoretically desired to retain some measure from each of the four
types of antecedent variables (listed above) for the analyses.
This set of variables was then theoretically and methodologically
reevaluated. That is, variables were theoretically evaluated to
determine if certain variables were measuring {equally) the same
thing. For example, total teachers was theoretically as well as
methodologically the same thing as total teachers for each of the
sub-category variables; that is, first grade teachers, second grade
teachers, and so forth. Similarly, total staff should theoretically
include total teachers, aides, English as a Second Language teachers,
special education teachers, federal employees, counselors, and
admimistrators. Methodologjcally, intercorrelations were evaluated to
determine those measures that would duplicate explanation of the
variance among all variables. It was found that the intercorrelations
among various subject area grades were substantial enough to warrant
limiting further analyses to just one measure of the
"teacher-evaluated student achievement" factors.
Eased upon these initial data analyses, thirty-one antecedent
variables were selected for further study in conjunction with the more

```
```

sophisticated and statistically powerful techniques of multiple
regression in an attempt to answer the third and fourth research
questions:
3. What variables--both manipulable and non-manipulable by the school system--are antecedent predictors of achievement?
4. Is ethnicity a determinant antecedent predictor of achievement?
And to test the sixth and seventh research hypotheses:
H_{b} : Grade level is an antecedent predictor of standardized achievement test scores in the Washoe County School District.
H_{7} : Ethnicity is an antecedent predictor of standardized achievement test scores in the Washoe County School District.
It was methodologically and theoretically determined that the grade point average for 1983 was the best correlate of the math and science dependent variables (Math Concepts, Math Test Total, and Science knowledge), while the reading grade for 1983 was found to account for greater variance in the other dependent variables (word Study Skills, Reading Comprehension, Reading Test Total, Vocabulary Knowledge, Listening Comprehension, Auditory Test Total, and Spelling). Eecause the 1983 reading grade and 1983 grade point average were not used together in predicting each of the dependent measures of academic success, due to their very high intercorrelation, a cotal of thirty antecedent variables were used for the stepwise multiple regression analyses (with means substitution for missing datal to statistically isolate the strongest factors from these antecedent variables. As a result of these analyses, two general predictor models were created.

```

\section*{Correlates of Academic Achievement}
```

Before praceeding to the results of the more rigorous stepwise multiple regression data analysis techniques, the analyses of the simple correlations for the thirty-one independent variables, or potential predictors, with each of the ten dependent variables need to be discussed. All correlation coefficients were tased upon the weighted sample. That is, correlation analyses were made after the non-Indian student data had been properly weighted for greater representation of that group's characteristics as would be expected in the elementary school population. Of the possible thirty-one
correlation coefficients for each dependent variable, the results
reported in Table E-1 (Appendi* E: see Appendi* E for variable name
translations) indicated that:

1) twenty-four (77\%) of the potential predictors were statistically correlated to reading word study skills;
2) twenty-three (74%) of the potential predictors were statistically correlated to reading comprehension;
3) twenty-seven (87%) of the potential predictors were statistically correlated to reading test total;
4) twenty-four (77\%) of the potential predictors were statistically correlated to vocabulary knowledge;
5) twenty-three (74%) of the potential predictors were statistically correlated to listening comprehension;
6) nineteen (61%) of the potential predictors were statistically correlated to auditory test total;
7) twenty-four (77\%) of the potential predictors were statistically correlated to spelling;
8) twenty-five (81\%) of the potential predictors were statistically correlated to math concepts;
```

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
```

 7) twenty-four (77%) of the potential predictors were
 statistically correlated to math test total; and
 10) twenty-si% (84%) of the potential predictors were
 statistically correlated to science knonledge.
 Overall, 239 of the 310 correlation coefficients (77%) were
statistically correlated to the respective dependent variables,
whereas only sixteen significant correlations would have been expected
by chance alone.

```

\section*{Frevious Academic Achievement}
```

Three measures of previous academic achievement variables were included, although the two previous grade variables (1983 reading grade and 1983 grade point average) were used independently in the regression analyses. As would be expected, the correlations between previous grades and achievement test scores were all positive and statistically significant. It was surprising, however, that the degree or strength of those relationships were only moderate (i.e., between $\underline{r}=.38$ and $\underline{r}=.55)$; that $i s, i t$ was expected that previcus grades would have been much more strongly correlated with academic achievement test scores. The coefficients (Table E-l) also indicated that the 1983 grade point average correlated more with the math and science variables, while the 1983 reading grade correlated better than giade point average with reading, auditory, and spelling test scores.
Although most previous research has suggested, and most school districts have presumed, that absenteaism was strongly related to academic achievement, the simple correlation results for this data have not supported thjs generalization. Indeed, it was found that

```
```

absenteeism was positively, not inversely, associated with all
measures of achievement except math test total (r = -.01). Noreover,
the strongest correlation, which was between absenteeism and
vocabulary knowledge, was only r = . 10; conversely, science had a
coefficient of zero and math test total had a coefficient of only
-.01. A5 a result, twenty-two of the thirty (73%) correlation
coefficients between previous achievement and academic achievement
test scores were statistically significant.

```

\section*{Student Evaluations}

There were also three measures of previous teacher's evaluations of students that had been retained for further analyses. All thirty correlation coefficients were statistically significant, albeit none indicated very strong relationships. Eoth previous (1983) citizenship grades and participation in the gifted program were positively associated with test scores. That is, students with high previous citizenship grades scored higher on later achievement test scores, and participation in the gifted program was related to higher academic achievement test scores.

A fairly common policy within school districts, including the Washoe County School District, has been to retain students at a particular grade level to increase their competency at that grade in hopes that they could better handle the curricula of the next grade level. The presumption being that the teacher's evaluation to retain the student would increase academic achievement through repetition of the curriculum. It was beyond the scope of this study to evaluate the
```

success of retaining students to increase their academic achievement.
Hence, analyses were not made by first controlling for 1983
achievement scores. However, simple correlations were made between
retention and 1984 achievement scores. These results indicated (Table
E-1, Appendi: E) that an inverse or negative relationship existed
between retention and achievement test scores. Thus, in the Washoe
County School District, retention was found to be related to lower
achievement.

```

\section*{Backqround Characteristics}

Eleven of the thirty-one variables were concerned with personal and familial background characteristics of students. As suggested in Chapter 1 , such characteristics were not expected to be very related to student academic achievement, despite the fact that the dominant theory suggested that they were. In fact, only 70 of the \(110(64 \%)\) correlation coefficients were found to be statistically significant. Moreover, the strongest relationship, which was between the student's age (in months) at the time of the test and science knowledge, was only \(\underline{r}=.24\). Indeed, five of the eleven variables were found to account for most of these significant relationships:
1) whether an emergency telephone number was listed with the school office was positively related with all dependent variables except spelling;
2) whether a student participated in the federal lunch program was negatively related to all dependent varjables except spelling and word study skills;
3) whether the student was ethnically identified as Indian was negatively associated with all dependent variables except spelling;
```

 4) whether a home telephone number was listed with the school
 office was positively related to all ten dependent variables:
 and
 5) the change of schools a student had made was positively
 associated with all dependent variables except word study
 skills.
 Of these five, ethnicity and participation in the federal lunch
 program (as a type of measure of socioeconomic status) were
sociologically the most interesting. (It should be noted that the
positive correlations between a change in schools and achievement test
scores meant that those students who had remained at the same school
for both the 1082-8S and 1983-84 school years had higher test
scoresi. That is, these two factors have often been sociologically
viewed as predictors of achievement. It was observed that both
ethnicity and participation in the federal lunch program correlated
strongest with the student's vocabulary knowledge subtest scores,
which suggested a possible intercorrelation between the two
independent measures. The coefficient for the relationship between
ethnicity and participation in the lunch program, although not very
strong (r = .11, p <.01), was positive: (see Chapter 5 for further
discussion of the intercorrelations between predictors).
Other correlation coefficients for personal and familial
background characteristic factors, while not necessarily statistically
significant or strong, have suggested the following relationships:
1) generally, the older students (in months) had higher
achievement test scores, particularly for math and science;
2) the availability of an emergency telephone number was
associated with higher test scores;

```
3) having either both parents or just the father employed was associated with higher achievement, while having just the mother employed or both parents unemployed was related to lower achievement;
4) having a natural father was associated with higher reading, spelling, math, and science achievement, but lower language scores, while having a stepfather, legal guardian, or no father was related to lower reaising, spelling, math, and science achievement, but higher language achievement;
5) lower family income, as measured by participation in the federal lunch program, was associated with lower achievement (i.e., as participation increased, grades dropped; or vice ver5a);
6) having one or both parents absent from the family home was associated with lower achievement test scores;
7) being self-identified as Indian was associated with lower test scores;
8) residing in the Reno-Sparks area and in the feno-Sparks Indian Colony was associated with higher achievement, while living outside the Reno-Sparks area and on the Fyramid Lake Indian reservation was associated with lower achievement test scores; and,
7) being female was associated with higher word study skills, reading comprehension, reading test total, listening comprehensjon, spelling, and math test total test scores, while being male was associated with higher vocabulary, auditory test total, math concepts, and science test scores.

\section*{School Environment and Learning Contexts}

A logical deduction from analyzing observed differences in student academic achievement between schools has been that the schools also differed in terms of their school environment and learning contexts. However, as discussed in Chapter 1, most well known studies (e.g., Coleman et al., 196t; Jencks et al., 1972) have concluded that most school environment and learning context factors, which would be potentially manipulable by the school system, were not predictive of
```

academic achievement, Conversely, it was also pointed out in Chapter
1 that other studies (e.g., Brod, 1976b; Futter et al., 1979) have
shown that manipulable school environment and learning context
variables were indeed predictive of student academic achievement. The
bivariate results of this study have tended to support the latter
claim, as 117 of the 140 (84%) correlation coefficients (Table E-2,
Appendi% E) for school environment and learning conte%t variables were
statistically significant. Df the fourteen school environment and
learning context variables retained for further analyses in this
study, seven were statistically significantly associated with all ten
dependent variables:
1) school's median income was positively correlated with
achievement;
2) school acreage per student was inversely correlated with
achievement;
3) library circulation per student was inversely correlated with
achievement;
4) the number of encyclopedia sets in the school per student was
positively correlated with achievement;
5) the number of magazine subscriptions (in the school's library)
per student was inversely correlated to achievement;
6) the number of second grade special education students in the
school per student was inversely correlated to achievement;
and,
7) the number of total staff in the school per student was
inversely correlated to achievement.
Although such coefficients were statistically and substantively
significant, they were not all that strong (i.e., no coefficient was
larger than r = .30).

```
```

Thus, larger school average median family incomes and more encyclopedia sets in the school in 1983 were consistently significantly (positively) associated with higher 1984 academic achievement test scores. This meant that either (1) school's average median family income and the number of encyclopedia sets in the school were a function of student academic achievement, or (2) 1984 academic achievement test scores were a function of the school's median family income and the number of encyclopedia sets. It will be recalled that it was suggested in Chapter 3 that these school variables may be reflecting a type of school ethos (Fiuter et al., 1979). Thus, these rasults have indirectly suggested that achievement was a function of Echool ethos or vice versa.
In contrast, five of the school environment and learning content variables consistently were significantly inversely related with 1984 academic achievement test scores. This meant that lower student academic achievement test scores, in the Washoe County School District, were associated with: 1) larger school grounds or acreage per student; 2) more library books being checked out per student; 3) more magazine subscriptions per student; 4) more second grade special education students in the school per student; and 5) larger staffs per Etudent. Again, achievement could have been a function of these factors, or these quantitative school resource factors may have been a function of achievement. That is, lower achievement test scores in particular schools may have led to the school system increasing the number of resources available at those schools in hopes of increasing

```
```

achievement (or larger amounts of these school resources may have
resulted in lower achievement.).
Consequently, despite the fact that the coefficients were
generally not very large, these results strongly suggested that the
quantity of some resources did not make up for the quality of those
resources, Thus, the schools with larger staffs, more magazine
subscriptions, and more books being circulated may also have had more
inefficient staffs and more inappropriate types of books and
magazines. Moreover, the strongest correlations between achievement
and school environment and learning context factors were the riegative
coefficients for school acreage and achievement test scores. Several
of these factors were al50 inferred (in Chapter \Xi () to be measures of a
school ethos, but these bivariate results have suggested that the
school's ethos may not necessarily be a function of quantity as much
as of quality. Hence, these results have sugqested that larger
playgrounds and the inclusion of larger numbers of special education
students in the school per student may have been associated with a
school ethos of play and underachievement rather than work and
achievement.

```

\section*{Summary}

Thirty-one independent variables, which occurred prior to the administration of the standardized achievement tests (dependent variables), were initially selected based upon their theoretical and methodological relevance. Overall, 239 of the 310 correlation coefficients (77\%) were statistically significant, while 22 of 30
```

correlation coefficients (7%%) for previous academic achievement
variables, all SO correlation coefficients (100%) for previous teacher
evaluation variables, 70 of 110 correlation coefficients (b4%) for
personal and famjlial characteristic variables and 117 of 140
correlation coefficients (84%) for school environment and learning
context variables were statistically significant. Thus, in terms of
significant associations with }1984\mathrm{ academic achievement, previous
teacher evaluations, and school environment and learning context
variables were most often related.
As expected, measures of previous academic achjevement were
positively related to 1984 academic achigvement. Although previous
grades had the strongest correlations, none were very strong (i.e., r
(.75). Moreover, while all correlation coefficients between previous
teacher evaluation variables and achievement test scores were
significant, all of the associations were relatively weak (i.e., r
\&.30). However, as expected, citizenship grades and participation in
the gifted program were positively associated and retention was
inversely related to achievement test scores. In contrast, the
largest coefficient between personal and familial background
characteristic factors was r = . 24 (between student's age in months
and science achievement). Some of the relationships between school
environment and learning context variables and achievement test scores
often suggested weak to moderate associations (i,e., r >. 20),
particularly for school acreage. Yet a number of the relationships
were inverse relationships, from which it was inferred that quantity

```
```

did not substitute for quality. Nonetheless, while these bivariate
results appeared to have been substantively, as well as statistically,
significant, it must be remembered that these results were based upon
simple, zero-order correlations.
On the whole, the results from the bivariate simple correlation
analyses have provided a definitive answer to the first research
question: What student characteristics are related to education?
Specifically, all factors listed in Table E-1 (Appendi% E) were found
to have been associated with student education in the jashoe County
School District. In general, previous grades, previous citizenship
grades, participation in the gifted program, the availability of an
emergency telephone number, the listing of a home telephone number,
the degree to which students remained at the same school, grade level,
the school's median family income, and the number of encyclopedia sets
in the school fer student were positively associated with 1984
academic achievement in the Washoe County School District. In
comparison, participation in the federal lunch program, ethnicity,
residence, school acreage, library circulation per student, number of
magazine subscriptions per student, the percentage of books added and
lost per student, the number of second grade special education
students in the school per student, and the number of staff in the
school per student were all inversely related to 1984 academic
achievement. Thus, these results further suggested the need for
employing more rigorous data analysis techniques, to more clearly
define the nature of these relationships.

```

\section*{Predicting Academic Achievement}
```

 The purpose of this research cycle, once again, was to identify
 What student characteristics and other factors were related to, and
predictive of, academic achievement in the Washoe County School
District. In particular, this research cycle sought to verify or
refute the hypothesis that ethnicity and grade level were antecedent
predictors of standardized achievement test scores.

```
Stepwise Multiple Fegression Frocedures
    In order to identify which antecedent variables were predictive
of, and thus related to, the dependent variables, sophisticated
multiple regression procedures were employed to analyze the data.
This technique of statistical data analysis made a number of important
assumptions about the data, two of which must be made explicit.
    First of all, multiple linear regression analysis assumed that, to
some degree, a linear relationship existed between the variables so
that for any case the value of the dependent variable could have been
predicted given the value of the independent variables. The second
assumption was that each dependent variable was a function of one or
more independent (predictor) variables and thus could have been
expressed as a generalized mathematical equation that was predictive
for most or all cases involved.
    The result of this type of data analysis was an equation for
predicting the dependent variable from the independent variables,
```

which mathematically described the relationship of the variables as a
function:
Dependent Variable = Independent Variablei + Independent
Variable2 + . . . Independent Variablen
or

```

```

 The multiple regression technique could have been accomplished
 using a number of different procedures. The most basic procedure,
sometimes referred to as simple multiple regression analysis, would
have involved entering each independent variable that qualified into
an analytical equation at one time. It would have selected the
variables with a probability-of-F value that was less than the study
criterion probability (p) value for inclusion (FIN-value). Thus, all
variables that met the tolerance tests for inclusion would have been
entered into the equation.
The resulting equation would have included an a coefficient, which
was a constant or intercept value, and b coefficients, which were
measures of the amount and direction of change in the dependent (Y)
variable for each unit of change in the independent variable (x); in
other words, the partial regression coefficient (b) was the slope of
the regression line. Alternatively, the regression coefficients could
have been reported as beta (G) coefficients, which would have been
standardized partial regression (b) coefficients that were based upon
the partial correlations of the variables. The beta coefficient, as
discussed below, has been particularly useful in calculating the

```
amount of variance in the dependent variable that was explained or was predictable by the independent variable.

Ultimately, the end result of multiple regression analyses was to determine how much each independent predictor variable contributed to the joint prediction, or multiple \(\mathbb{R}^{2}\), of the dependent variable. Such information, however, was not provided in the results of the spssx procedures, which gave only the total table variance in the dependent variable (multiple \(\mathbb{F}^{2}\) ) accounted for by the predictors. That is, the multiple \(\underline{F}^{2}\) result from the SPSS* \(^{*}\) procedure did not explain how much of the variance was explained, or was predictable, by any one of the independent variables entering into the regression equation model. To determine the relative contribution each predictor variable made to the total explained variance, therefore, the simple zero-order correlation coefficient (r) between the predictor and dependent variable was multiplied by the beta (B) coefficient of the predictor variable (Williams, 1986:157). This coefficient of determination ( \(\underline{2}^{2}\) ), accounted for by the individual independent predictor variable, holding other predictors constant. Accordingly, the results of the multiple regression analyses provided both an equation for predicting the dependent variable (or a predictor model) and a means for assessing the amount of variance explained by each predictor variable.

In contrast, the stepwise multiple regression technique involved a series of procedures that both entered and eliminated variables one step at a time. Variables were selected or eliminated in the order of and on their ability to contribute to the overall variance ( \(\mathbb{R}^{2}\) ) or

\begin{abstract}
prediction. Thus, if the predictability of a variable already in the equation was diminished by the inclusion of another variable, the previously entered variable might be eliminated in the next step. The stepwise procedure thereby constructed a more powerful equation than the simple (simultaneous) multiple regression technique, because only the best predictors were entered and retained in the equation. More specifically, stepwise multiple regression proceeded by first examining the equation to determine if any variables should have been removed from the equation. This was done by comparing the probability of E values for each variable in the equation with an established criterion probability for removal value (FOUT). If the probability of Efor any variable in the equation was larger than the criterion FOUT-value it was eliminated from the equation. Once no other variables could be removed from the equation, all remaining predictors were examined for inclusion in the equation. The variable that passed the tolerance test with the smallest probability of F was entered into the equation if that value was smaller than the criterion probability for entry (FIN-value). Tolerance was the pioportion of the variable's variance not accounted for by other independent variables already in the equation. Dnce avariable was entered, all variables in the equation were reanalyzed for possible removal. This process continued until no more variables could be removed or entered. In this way, the most powerful predictors were entered into the equation, and reported in descending order. The criterion levels used in this study were as follows:
\end{abstract}
```

 1) the probability of F-to-enter (FIN) value was 0.05;
 2) the probability of E-to-remove (FOUT) value was 0.10; and
 3) tolerance was set at 0.50.
 Following these procedures, the data analyses resulted in models
 for each dependent variable that included both the statistics for
constructing a predictive regression equation and for calculating the
relative contributions of each predictor variable to the total
variance. Consequently, these models provided evjdence respective to
the research questions and hypotheses for this research cycle.

```

Models of Academic Achievement

The resultant models for the prediction/erplanation of academic achievement, as measured by standardized achievement test scores, are reported in Table \(F-1\) (Appendix \(F\) ). Each model included: (1) the preaictors of that dependent variable: (2) the simple correlation between each predictor and the dependent variable; (J) the regression coefficient (E), the standardized beta coefficient (EETA), its level of significance, and the standarderror of beta (SE BETA): (4) the percent of table (or total) variance accounted for by each predictor; and (5) the multiple \(\mathrm{F}_{\mathrm{y}} \underline{\mathrm{R}}^{2}\), and adjusted \(\underline{R}^{2}\) values, along with the standard error of the coefficient of determination ( \(\underline{E}^{2}\) ).
```

 Word study skills achievement. Taken together, five of the thirty
 independent variables (the grade point average variable was not used)
included in the stepwise multiple regression accounted for
approximately 23% (}\mp@subsup{R}{}{2}=.227) of the variance in the first dependent
variable, the word study skilis subtest. As erpected, previous

```
```

achievement, as measured by the 1983 reading grade, accounted for the
greatest amount of variance; but it only accounted for 13.8% of the
variance in word study skills. This meant that previous reading
grades did not measure much of the same domajn as this standardized
reading achievement subtest and, therefore, was a poorer predictor
than expected. The predictors and their (rounded) relative
contribution to the total explained variance in reading word study
skill achjevement were:
1. 1983 reading grade 13.8%
2. Acreage per student
4.6%
3. Student's 5ek
1.6%
4. Student's grade level 1.4%
3. Emergency telephone number listed 1.3%
These results demonstrated that word study skills achievement for
students in the Washoe County School District was primarily a function
of factors not included in this study. That is, over three-fourths
(77%) of the variance in word study skills achievement was left
unerplained by the thirty variables included in this cycle of the
present research. More importantly, these results have suggested that
factors such as family income, family environment, and previous
student achievement had very little direct effect on reading word
study skills.

```

Reading comprehension achievement. Six of the thirty independent variables included in the stepwise multiple regression analysis of the reading comprehension subtest measurement of achievement in the Washoe County School District accounted for about \(30 \%\left(\underline{R}^{2}=.302\right)\) of the variance. Again, previous reading grades made the largest relative
```

contribution to explaining the variance (20.7%), but was still much
less than was expected. As with reading word study slills, the neat
best predictor was the school site acreage per student variable
(5.1%). The other predictors of reading comprehension achievement
test scores were, however, different from those in the previous
model. The predictors and their (rounded) relative contribution to
the total explained variance in reading comprehension achievement
included:

```20.7\%
```

2. Acreage per student 5.1%
```3. Number of minutes per studentthat the library was open after school1.2\%
```

4. Farticipation in the gifted program 2. 0%
5. Cost of school construction per student $-.4 \%$
6. Change of schools 1.6%
These results indicated that, like word study skills, reading
```comprehension achievement for students in the Washoe County School
```

 1. 1983 reading grade
    ```
        1. 1983 reading grade
District was primarily a function of factors not included in this
District was primarily a function of factors not included in this
study. Over two-thirds (70%) of the variance in reading comprehension
study. Over two-thirds (70%) of the variance in reading comprehension
subtest scores was left unaccounted for by the model.
subtest scores was left unaccounted for by the model.
    An interesting predictor was the cost of school construction per
    An interesting predictor was the cost of school construction per
student variable, which actually suppressed [\mp@subsup{|}{}{2}}\mathrm{ through its negative
student variable, which actually suppressed [\mp@subsup{|}{}{2}}\mathrm{ through its negative
relative contribution to the explained variance. What the suppressor
relative contribution to the explained variance. What the suppressor
variable actually did was increase the relative predictiveness of the
variable actually did was increase the relative predictiveness of the
other predictors in the model, rather than reduce the explained
other predictors in the model, rather than reduce the explained
variance. That is, the other predictors would have explained even
variance. That is, the other predictors would have explained even
less of the total variance, thus lowering \mp@subsup{R}{}{2}, if the suppressor had
less of the total variance, thus lowering \mp@subsup{R}{}{2}, if the suppressor had
not been included in the regression analysis. In this particular
```

not been included in the regression analysis. In this particular

```
```

model the suppressor effect was very minimal (-.4%), and it might have
been indicative of the power of skewedness rather than association, as
the cost of school construction per student was positively skewed.
Reading test total achievement. Of the thirty independent
variables included in the stepwise multiple regression analysis, eight
were found to help predict the reading test total score variance.
Unlike the first two models, this model was able to explain a moderate
proportion of the dependent variable's variance. That is, the eight
predictors together accounted for 38% (每2 = . 380) of the variance in
the reading test total scores. While this still meant that 62% of the
variance remained unaccounted for, the model did explain over a third
of the variance.
Once again, the two best predictors were previous reading grades
(2b.0%) and the number of acres per student (6.6%). The predictors of
reading test total achievement, along with the (rounded) relative
contribution of each predictor to the total enplained variance, Here:
1. 1983 reading grade 26.0%
2. Acreage per student 6.5%
3. Number of minutes per student that
the library was open after school 1.2%
4. Student's se% 1.8%
5. Emergency telephone number listed 2.0%
6. Student's grade level . 8%
7. Father's status to student . . %
8. 1983 citizenship grade -1.4%
Vocabulary knowledqe achievement. Si% independent variables were
found to have contributed together to enplain 31% (\mp@subsup{R}{}{2}=.307) of the
observed variance in the vocabulary knowledge subtest scores. As

```
```

expected, previous grades was the best predictor, but much less so
tham erpected. The second best predictor was, however, quite
different from the previously discussed models. Instead of acreage
per student, the next best predictor of vocabulary knowledge was
participation in the federal lunch program, a familial economic
measure. The predictors and their (rounded) relative contribution to
the total explained variance in vocabulary knowledge achievement were:
1. 1983 reading grade 20.2%
2. Farticipation in lunch program 3.7%
3. Change of schools 2.0%
4. Emergency telephone number listed 1.5%
5. Student's grade level . 9%
6. Farticipation in the gifted programim
As with previous models, these results indicated that the best
predictors of vocabulary academic achievement were factors not
included in these multiple regression analyses. Hence, 69%, or over
two-thirds, of the variance in vocabulary knowledge test scores, for
students in the Washoe County School District, was left unerplained by
the model.

```

Listening comprehension achievement. A total of seven independent variables accounted for \(28 \%\left(\underline{R}^{2}=.282\right)\) of the total variance in listening comprehension subtest scores. While the previous grades variable was the best predictor, both grade level and change in schools were the nent best predictors in this regression model. Moreover, several independent variables that had not entered any of the previous models were found to be predictive of listening
```

comprehension. The predictors of listening comprehension achievement,
and the (rounded) relative contribution of each predictor, included:
1. 199S reading grade 16.7%
2. Student's grade level 3.4%
3. Change of schools
3. 1%
4. Number of magazine subseriptions per
student
1.5%
5. Farticipation in the lunch program 2.0%
b. Number of parents absent from home -.0%
7. Home telephone number listed 1.6%
Again, the regression model left 72%, or nearly three-fourths, of
the variance in listening comprehension unexplained. In regards to
the suppressor variable, the negative contribution was not caused by
association because the simple correlation between listening
comprehension and the variable concerning the number of parents absent
from the home was essentially zero.
Auditory test total achievement. Unlike the reading test total model, which accounted for a larger amount of the variance than either of the subtest models, the auditory test total regression model e:plained less variance than either subtest. Taken together, the five predictor variables of the auditory test total model accounted for only 23% ($\underline{E}^{2}=.231$) of the observed variance in scores. This meant that over three-fourths of the variance remained to be explained by variables outside those thirty variables included in the regression analyses. The predictors of auditory test total achievement, and their (rounded) relative contribution to the explained variance, were:

```
```

 1. 1983 reading grade 15.3%
 2. Emergency telephone number listed 2.3%
3. Farticipation in lunch program 1.9%
4. Farticipation in the gifted program 2.1%
5. Change of schools 1.5%
Spelling achievement. Taken together, seven of the thirty independent variables were able to account for $38 \%\left(\underline{R}^{2}=.384\right)$ of the variance in the spelling test variable. While this was the greatest amount of variance explained in any of the ten dependent measures, the model still left 62% of the variance unexplained. The predictors for the spelling achievement model, along with their (rounded) relative contribution to the total explained variance, were:
6. 108s reading grades 24.8\%
7. Student's residence 3.9%
8. Student's se\% 2.8\%
9. Acreage per student 2.7%
10. Encyclopedia sets per student 2.1\%
11. Fercentage of books lost fer student 2.0%
12. Number of parents employed -.0\%
Math concepts achievement. Thirty independent variatles the 1983 grade point average variable was used in place of the 1903 reading grade variablel were used in the stepwise multiple regression analysis of the math concepts dependent variable. Taken together, si\% of these variables were found to predict or explain $30 \%\left(\underline{R}^{2}=.304\right)$ of the observed variance in the math concepts subtest scores. As with previously discussed models, the best predictor of math concepts scores was previous grades. Although the 1983 grade point average was used in this analysis, the results indicated that previous grades were
```
```

still predictive of only one-fourth of the variance in math concepts
subtest scores.
The predictors of math concepts achievement, along with the
(rounded) relative contribution of each variable to the total
explained variance, were:
1. 1983 grade point average 26.6%
2. Farticipation in the gifted program 2.5%
3. Student's grade level
4. Percentage of books lost per student 1.5%
5. 1983 citizenship grade -1.3%
6. Home telephone number listed 1.4%
As with other models, these results demonstrated that math concept
achievement for students in the Washoe County School District was
primarily a function of factors not included in this study. That is,
seventy percent of the variance in math concepts achievement was left
unexplained by the thirty variables included in this cycle of the
present research.
Math test total achievement. Similar to the reading test total analyses, multiple regression analysis of the thirty independent variables for their ability to predict math test total scores, resulted in greater predictability of the test scores than the subtest scores. Four independent variables, taken together, accounted for 33% $\left(\underline{R}^{2}=.328\right)$ of the observed variance in the dependent variable. The 1983 grade point average variable was once again the best predictor. This time, however, previous grades were found to account for well over one-fourth of the variance (29. 6%). While this is still

```
```

considerably less than expected, it was the largest contribution to
any dependent variable by previous grades.
The predictors of math test total achievement, along with the
(rounded) relative contribution of each variable to the total
explained variance, were:
1. 1983 grade point average 29.6%
2. Participation in the gifted program 3.l%
3. Percentage of books lost per student 1.6%
4. 1983 citizenship grade - . .5%
These results indicated that two-thirds of the variance in math
test total scores was left unaccounted for. More importantly, it was
found that inclusion of the 1983 citizenship grade in the analyses
increased the accountability of the other predictors (i.e., it was a
suppressor variable).

```

Science knowledqe achievenent. Six of the thirty independent Variables analyzed were found to help predict \(30 \%\left(\mathbb{R}^{2}=.297\right)\) of the variance in science knowledge test scores. While the best predictor was previous grades, it made a relatively small contribution. The next best predictors were the student's age at the time of the test and, again, acreage per student. The predictors, along with their (rounded) relative contributions to the explained variance, for science knowledge achievement were:
1. 1983 grade point average \(17.2 \%\)
2. Age in months at the time of test \(4.7 \%\)
3. Hereage per student 4.2\%
4. Number of minutes per student that the litrary was open after school 1.1\%
5. Student's se\% .7\%
6. Farticipation in the gifted program \(1.7 \%\)
```

As with all the other models, the results of the stepwise multiple regression analyses showed that 70% of the observed variance in science knowledge was predictive by factors not included among the thirty variables used in this study.

```

```

achievement may have been due to the unusually low predictability of
previous achievement as measured by class grades. That is, 1993
reading grades/grade point averages only e%plained between 14% and 30%
(with an average of 21%) of the variance in the dependent variables.
That only an average of one-fifth of the variance in academic
achievement was explained by previous achievement was a surprising
result. The implication of this result was that either previous
grades or the standardized achievement tests (but most likely previous
grades) were not valid and reliable measures of academic achievament
in the Washoe County School District.

```

\section*{Develoging General Models of Academic Achievement}

Fiegardless of the amount of variance explained by the predictors, this knowledge of which predictors did enter the equations was of theoretical interest to this study. That is, this study sought empirical evidence to determine what student characteristics and other variables were related to, and predictive of, academic achievement in the Hashoe County School District. Hence, identification of those variables that had been found to be predictors of the various measures of academic achievement was equally important to that of explaining or accounting for the variance. Moreover, it was hypothesized that ethricity and grade level would be predictors of academic achievement. The ment stage of this research cycle, therefore, was to enamine the regression models to refute or verify this hypothesis.
```

Ethnicity and Achievement
Analysis of the stepwise multiple regression results (Table F-1,
Appendix F) documented that ethnicity treated as a variable was not a
predictor of academic achievement test scores for any of the dependent
variable regression models. Despite the observed significant
differences between Indian and non-Indian students with regards to the
various factors in the study and the statistically significant
correlations, the fact that some students were ethnically or
culturally identified as Indian or non-Indian was not a predictor of
academic achievement, as measured by test scores, in the Washoe County
School District.
Consequently, the results of this study refuted the seventh
research hypothesis:
H7: Ethnicity is an antecedent predictor of standardized
achievement test scores in the Washoe County School District.
More importantly, these results provided a definitive answer to the
fourth research question: Is ethnicity a determinate antecedent
predictor of achievement? Clearly, the results of this study
established that ethnicity was not a predictor of achievement in the
Washoe County School District. The next step, therefore, was to
evaluate the empirical results concerning the research hypothesis that
grade level was an antecedent predictor of standardized achievement
test scores in the Washoe County School District.

```
Grade Level and Achievement
    In evaluating the regression results in Table F-1 (Appendi: F),
```

the ability of a variable to predict academic achievement was
assessable in two different ways. Dne way was to determine the mean
amounts of variance explained, while another was to find which
variables most frequently appeared as predictors. Either way, grade
level was not the next best predictor. In terms of average amounts of
explained variance, acreage per student had explained the next largest
amount of variance. That is, the acreage variable accounted for an
average of 4.65% of the variance in achievement test scores. The next
best predictors were participation in the federal lunch program
(2.52%) and participation in the gifted student program (2.25%).
Indeed, grade level was one of the poorer predictors, accounting for
an average of only 1.64% of the variance. Grade level was, however,
the third best predictor in terms of occurrence.
The best predictor, of course, was the 178S reading grade/grade
point average variable, which accounted for an average of 21% of the
variance and entered all ten models. The second most frequently
cccurring predictor was participation in the gifted program, having
entered into si: of the ten equations. In particular, participation
in the gifted program was predictive of all three math and science
dependent variatles. Grade level was the next most frequent predictor
and appeared in five of the 10 regression equations. Hence, the
results of this study suggested that grade level was a moderate
predictor of achievement in the Washoe County Sshool District. As
such, these results provided support for the sior research hypotheses:
H_{6} : Grade level is an antecedent predictor of standardized achievement test scores in the Washoe County School District.

```
```

This result led to the decision to reanalyze the dependent variables with stepwise multiple regression techniques, after removing grade level from the list of independent variables. Removal of the grade level variable mould presumably have allowed other factors to enter into the equation thereby making the models more rigorous. This process of removing a predictor hinged upon the conceptualization that that variable might potentially have become a control measure for further analyses.
Accordingly, grade level was removed from consideration on the presumption that further analyses would include grade level by grade level analyses for each dependent variable. The results of this s€cand set of stepwise multiple regression analyses, without grade level, are reported in Table F-2 (Appendix F).
Of more interest, however, was how the multiple regression results without grade level compared with those when the variable was included. Table 3 presents the results for both sets of stepwise multiple regression results for comparative analyses. As can be seen, the removal of the grade level variable from the analyses had no effect on the five equations for which grade level had not been a predictor. In regards to the explained variance (\mathcal{R}^{2}), the removal of the grade level predictor slightly increased the explanatory power of the vocabulary $(t .5 \%)$ and math comprehension $(t .1 \%)$ models, while it decreased the accountabjlity of the word study skills (-. 4\%), reading test total $(-.7 \%)$, and listening comprehension (-. 8%) models. In conclusion, in no case did removal of grade level from the analyses

```

Table Z3. Comparison of Fegression Models
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Models With Grade Level} & \multicolumn{2}{|l|}{Models Without Erade Level} \\
\hline \multirow[b]{2}{*}{Fredictor} & \% of Table & & of Table \\
\hline & Variance & Predictor & Variance \\
\hline \multicolumn{4}{|c|}{Word Study Skills} \\
\hline 1983 Feading Grade (m) & 13.81 & 1583 Fieading Grade (m) & 14.07 \\
\hline Acreage Fer Student (m) & 4.60 & Acreage fer Student (m) & 4.65 \\
\hline Se\% ( \(\mathrm{r}_{\text {) }}\) & 1.59 & Se: ( O ) & 1.65 \\
\hline Grade Lavel (n) & 1.36 & & \\
\hline & & Age in Months at & \\
\hline & & Time of Test (n) & . 55 \\
\hline Emergency Telephone ( \(n\) ) & 1.31 & Emergency Telephone (f) & 1.36 \\
\hline Total & 22.67 & Total & 22.26 \\
\hline
\end{tabular}

\section*{Feadina Comprehension}
\begin{tabular}{|c|c|c|c|}
\hline 1793 Reading Grade (m) & 20.68 & 1935 Keading Grade (m) & 20.68 \\
\hline Acreage Fer Student (m) & 5.08 & Acreage Fer Student (m) & 5.08 \\
\hline Library Cpen fifter & & Library Open After & \\
\hline School Fer Student (m) & 1.16 & Sctioul Fer Student (ii) & 1.16 \\
\hline Gifted Student Frogram (im) & 2.00 & Gifted Student Frogrami (m) & 2.00 \\
\hline Cost of School & & Cost of School & \\
\hline Fer Student (m) & -. 35 & Fer student (m) & . 8.8 \\
\hline Changa of Schools (n) & 1.61 & Change of Schools (n) & 1.61 \\
\hline Total & 30.18 & Total & 30.15 \\
\hline
\end{tabular}
```

(ii)--Indicates variable that is manipulable by the school district.
(m)--Indicates variable that is not manipulable by the school
district.

```

Table 3s. (Continued)


Vocabulary Knouledqe
\begin{tabular}{|c|c|c|c|}
\hline 1983 Feading Erade (m) & 20.23 & 1983 Feading Grade (m) & 20.31 \\
\hline Free : Fieduced Lunch ( \(n\) ) & 3.67 & Free \& Fieduced Lunch ( \(n\) ) & 3.47 \\
\hline Change of Schools (n) & 2.05 & Change of Schools (n) & 1.76 \\
\hline Emergency Teleptione ( \(n\) ) & 1.78 & Emergency Telephone (n) & 1.65 \\
\hline Grade Level (n) & . 90 & & \\
\hline Gifted Frogram (m) & 2.09 & Gifted Frogram (m) & 1.86 \\
\hline & & Number of Days Absent
in 1582-1993 (m) & .83 \\
\hline & & Magazine Subscriptions Fer Student (m) & 1.15 \\
\hline Total & 30.70 & Total & 31.15 \\
\hline
\end{tabular}
(m)--indicates variable that is manipulable by the school district. (r)--Indicates variatle that is not manipulable by the school district.

Table S3. (Continued)

```

(m)--Indicates variable that is manipulable by the school district.
(n)--Indicates variable that is not manipulable by the school
district.

```
```

Table 33. (Continued)

```
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Models With Grade Level} & \multicolumn{2}{|l|}{Models Without Grade Level} \\
\hline & \% of Table & & \% of Table \\
\hline Fredictor & Variance & Predictor & Variance \\
\hline
\end{tabular}

\section*{Spelling}
\begin{tabular}{|c|c|c|c|}
\hline 1983 Feading Grade (m) & 24.82 & 1983 Feading Grade (m) & 24.82 \\
\hline Student's Residence ( \(n\) ) & 3.93 & Student's Fesidence (n) & 3.95 \\
\hline Se: ( \(n\) ) & 2.79 & Sex in) & 2.79 \\
\hline Acreage Fer Student (m) & 2.71 & Acreage fer Student (m) & 2.71 \\
\hline Encyclopedia Sets & & Encyclopedia Sets & \\
\hline Fer Student (m) & 2.13 & Fer student (m) & 2.15 \\
\hline Fercentage of Eooks & & Ferceritage of gooks & \\
\hline Lost Fer Student (m) & 2.00 & Lost Fier Student (m) & 2.00 \\
\hline Number of Farents & & Number of Farents & \\
\hline Employed ( \(n\) ) & -. 03 & Employed ( \(n\) ) & -.03 \\
\hline Total & 38.35 & Total & 88.35 \\
\hline
\end{tabular}

Math Concegts
\begin{tabular}{|c|c|c|c|}
\hline 198S Grade Foint & & 1593 Grade Foint & \\
\hline Average (iil) & 24.64 & Average (im) & 24.57 \\
\hline Gifted Frogram ( \(m\) ) & 2.54 & Gifted Frogiam (m) & 2.65 \\
\hline Grade Level ( \(n\) ) & 1.68 & & \\
\hline & & Age in Months at Time of the Test (n) & 1.41 \\
\hline Farcentage of Eooks & & Fercentage of Eooks & \\
\hline Lost Fer Student (m) & 1.48 & Lost Fer Student (m) & 1.52 \\
\hline 1牱 Citizenship Grade (m) & -1.34 & 198S Citizenship Erade (m) & -1.37 \\
\hline Home Fhone Listed ( \(n\) ) & 1.40 & Hone Fhone Listed ( \(n\) ) & 1.45 \\
\hline Total & 30.40 & Total & 30.52 \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { (m)--Indicates variable that is manipulable by the school district. } \\
& \text { (ri)--Inoicates variable that is not manifulatile by the school } \\
& \text { district. }
\end{aligned}
\]

Table 3s. (Continued)


Science knowledge
\begin{tabular}{|c|c|c|c|}
\hline 1983 Grade Foint & & 1583 Grade Foint & \\
\hline Average (ifi) & 17.22 & Ḣverage (m) & 17.22 \\
\hline Age in Honths at & & Age im Months at & \\
\hline Tinime of Test (n) & 4.68 & Time of Test ( n ) & 4.68 \\
\hline Acreage Fer Student (m) & 4.25 & Acreage Fer Student (m) & 4.25 \\
\hline Libiary Open After & & Library upen After & \\
\hline School Fer Student (m) & 1.15 & School Fer Student (m) & 1.15 \\
\hline Sex ( \(n\) ) & . 58 & EE: (n) & . 68 \\
\hline Gifted Fragram (m) & 1.70 & Gifted Frogram (m) & 1.70 \\
\hline Total & 29.60 & Total & 29.65 \\
\hline
\end{tabular}
```

(m)--Indicates variable that is manipulable by the school district.
(m)--Indicates variable that is nut manipulable by the school
district.

```
```

adversely affect the predictive power of the regression models.
In examining changes in the predictors themselves, it was observed
(Table S3) that several different predictors entered into the models
for vocabulary knowledge and listening comprehension, while the
student's age at the time of the tests essentially replaced grade
level in the word study skills and math concepts predictor models.
That the student's age variable replaced grade level was expected due
to the strong intercorrelation between these two independent
pradictors (r = .94), while the entry of the other variables was
unpredicted. The number of days absent (.8%) and the number of
magazine subscriptions per student (1.2%) took the place of grade
level in the vocabulary knowledge model, and in the process increased
the explanatory ability of the model just slightly (.5%). On the
other hand, the student's age at the time of the standardized
achievement tests (1.3%) and the student's residence (.9%) slightly
decreased the explanatory power (. B%) of the listening comprehension
model when those two variables took the glace of grade level. More
importantly, the results added to the pool of independent variables
that acted as predictors of academic achievement.

```

\section*{General Models of Academic Achievement}

The objectives for this stage of the second research cycle of this study was to present empirical evidence concerning the third research question:
3. What variables--both manipulable and non-manipulable by the school system--are antecedent predictors of achievement?
```

In answering this question, a general model (or models) was delineated, which could be used for further study as well. The results of the second set of stepwise multiple regression analyses provided the best regression equations or models, but without the explanatory power of the grade level variable. Thus, by pooling the predictors from each model together, a generalized model for explaining academic achievement was created. Such a model thereby provided a definitive answer to the research question. However, due to the fact that different previous grade variables have been used in the multiple regression analyses for the math concepts, math test total, and science knowledge dependent variables, two different general models were constructed. These general models of academje achievement are presented in Table 34. The first general model was designated the "Feading Model," because it included the predictors from the regression equations for word study skills, reading comprehension, reading test total, vocabulary knowledge, listening comprehension, auditory test total, and spelling. The second, or "Hath," model encompassed the predictors from the math concepts, math test total, and science knowledge multiple regression equations.

```

General reading model of achievenient. As presented in Table 34 , the general reading model was composed of predictors pertaining to student's previous academic achievement, teacher's evaluations, student and familial background characteristics, and school environment and learning contexts factors. Eleven of the twenty-one \((52 \%)\) antecedent predictors were factors that would be potentially
```

Table 34. Eeneral Models of Academic Achievement
in the Washoe County School District

```
General Fieading Model General Math Model
A. Academic Achievement
1. Number of Days Absent in 1982-1963 (m)
2. 1983 Feading Grade (m)
B. Student Evaluations
1. 1983 Citizenship Grade (m)
2. Gifted Frogram (m)
C. Eackoround Characteristics
1. Age in Months at

Time of Test ( \(n\) )
2. Change in Schools ( \(n\) )
3. Emerqency Telephone (m)
4. Father's Status (n)
5. Free \& Fieduced Lunch ( \(n\) )
t. Home Fhone Listed ( \(n\) ) 2. Home Fhone Listed ( \(n\) )
7. Number of Farents Absent (n)
8. Number of Farents Enployed (n)
7. Se\% ( \(n\) ) 3. Eex (n)
10. Student's fiesidence (in)
D. School Environment and

Learnina Contexts
1. Acreage Fer student (m)
2. Cost of School Fer Student (m)
3. Encyclopedia Sets

Fer Studerit (m)
4. Grade Level ( \(n\) )
5. Library Open After Schoul Fer Student (m)
6. Magazine Eubscriptions Fer Studerit (m)
7. Fercentage of Eooks Lost Fer Student (m)
A. Academic Achjevement
1. 1983 Grade Foint Average (m)
B. Student Evaluations
1. 1783 Citizenship Grade (m)
2. Gifted Frogram (m)
C. Eackaround Characteristics
1. Age in Months at

Time of Test (n)
D. School Environment and Learning Contexts
1. Acreage Fer Student (m)
ai)
```

manipulable (or changeable) by the school district, while ten (48%)
were mon-manipulable, gr beyond the influence of the school system.
In comparing this list of predictors (or the general reading
model) for reading, auditory and spelling achievement with the
original list of thirty independent variables; some interesting
results were found. Of the three independent variables of academic
achievement, both variables included in the multiple regression
analyses of the reading oriented models, the 1983 reading grade and
the number of days absent in 1982-83, were found to be predictors.
GThe third variable, 198S grade point average, was used only with the
three dependent variables found in the general math model of
achievement as discussed below).
The number of times a student was retained was not found to be a
predictor of academic achievement. The other two student evaluation
variables, however, were found to be predictors of achievement.
Indeed, participation in the gifted program, as discussed above, was
the third best predictor in terms of explained variance and the second
best predictor in terms of the number of different regression
equations that included it (i.e., entered si% of the equations). In
contrast, the other teacher evaluation, 1983 citizenship grade, was
found to be a suppressor of explained variance. That is, when the
1983 citizenship grade variable entered into an equation, it
contributed negatively to the explained variance. This meant that if
this teacher evaluation factor was not in the model, the other
variables would have been less predictive.

```
```

Ironically, the only antecedent background characteristic variable included in the stepwise multiple regression analyses that did not prove to be a predictor of academic achievement was ethnicity, which had been hypothesized to be a very good predictor of academic achievement in the Washoe County School District. The other ten persunal and familial antecedents were predictors of one or more of the dependent variables. Of these, participation in the federal lunch program, the change of schools, the listing of an emergency telephone number, and the student's se\% seemed to be the better predictors in terms of either frequency of appearance in equations or average amount of explained variance.
Only seven of the fourteen school environment and learning context variables were found to be predictors of reading oriented academic achievement in the Washoe County School District. Despite this, the acreage per student variable was found to be the second best predictor in terms of the amount of variance it explained, and second, with grade level, in frequency of appearance. Grade level, along with the percentage of books lost and the number of minutes per student that the library was open after school were the other fairly good predictors from the school environment and learning context category.
General math model of achievement. It was found (Table 34) that, except for the 1983 grade point variable that took the place of the 198.3 reading grade variable, all predictors in the general math model of achievement were also in the general reading model. The real differences between the two general models were in regards to the

```
```

number of predictors involved and the percentage of predictors that would be potentially manipulable by the washoe County School District. There were half as many predictors in the general math model of achievement, and $5 i x$ of the ten (60%) predictors were manipulable variables.
In comparison to those variables included in the regression analyses, the 1783 grade point average variable was the only previous academic achievement predictor; (the general reading model also included the number of days absent in 198.3. As with the general reading model, two of the three antecedent student evaluation variables, the 198 g citiaenship grade and participation in the gifted program, were found to be predictors of math oriented achievement. Unce again, the l9BJ citizenship grade variable was a suppressor variable. The general math model was dramatically different from the Qeneral reading model in terms of background characteristic predictors. Only three of the eleven antecedent variables entered as predictors of math or science achievement, suggesting that student and familial background characterjstics had less influence on math and science. With respect to school environment and learning contexts antecedent variables, four of the fourteen were found to be predictors of one or more of the three dependent variables in the general math model. On the whole, previous achievement and student evaluations fad been found to be more predictive of math oriented achievement than were personal, familial or school factors.

```
```

Summary. Evaluation of the stepwise multiple regression equations was accomplished by pooling the predictors from each of the ten separate regression equations into two general models of academic achievement. The first, which had a total of twenty-one predictors and was applicable for word study skills, reading comprehension, reading test total, vocabulary knowledge, listening comprehension, auditory test total, and spelling achievement, was the general reading model. The second model was the general math model, which was for the math concepte, math test total, and science knowledge achievement dependent variatles, and it included ten predictors.
The results of these analyses, then, provided an answer to the research question,
3. Hhat variables--both manipulable and non-manipulable by the school system--are antecedent predictors of achievement?
Specifically, the following manipulable and non-manipulable variables were found to have been antecedent predictors of academic achievement
(in the Washoe County School District):

1. Manipulable Antecedent Fredictors:
a. The number of days a student was absent the previous year (1982-85);
b. Frevious class grades (1983 reading grade; 1983 grade point average);
c. 1985 citizenship grade;
d. Farticipation in the gifted student program;
e. Having an emergency telephone number listed at the school office;
f. Having a home (or other) telephone number at which parents could be contacted for nonemergency matters;
g. The acreage of the school campus per student:
h. The cost of school construction per student;
i. The number of encyclopedia sets in school per student;
j. The student's grade level;
k. The number of minutes the school library is open after school per student;
```
```

 1. The number of magazine subscriptions per student; and
 m. The percentage of books lost per student.
 2. Non-manipulable Antecedent Fredictors:
a. The student's age in months at the time of the
standardized achievement test (April 2, 1984);
b. The father's status (e.g., natural, step) to the student;
c. Farticipation in the federal lunch program;
d. The number of parents absent from the home;
e. The number of parents employed;
f. The student's sex;
g. The student's residence (e.g., urban, rural), and
h. Whether the student has had a few change in schools.
```

\section*{Conclusions}
```

 The present chapter presented the results of the second research
 cycle in this study. The goal of the second research cycle was to
provide empirical evidence for the following research questions and
hypotheses:
1. What student characteristics are related to education?
3. What variables--both manipulable and non-manipulable by the
school system--are antecedent predictors of achievement?
4. Is ethnicity a determinate antecedent predictor of achievement?
H5: Grade level is an antecedent predictor of standardized
achievement test scores in the Hashoe County School District.
H7: Ethnicity is an antecedent predictor of standardized
achievement test scores in the Washoe County School District.
Data analyses were made to provide such empirical evidence to answer
or validate these questions and hypotheses. Eivariate (simple)
correlations were made first, which helped to answer the first
research question concerning what student characteristics were related
ta education. Stepwise multiple regression analyses were then made to
answer the other two research questions arid hypotheses. These results

```
```

demonstrated, in addition to which variables were predictors, that
ethnicity was not an antecedent predictor of academic achievement, but
that grade level was.
The results demonstrated that previous class grades or achievement were predictive of academic achievement tests, but that they contributed no more than 30% of the explained variance (with an average of only 21% when statistically evaluated with those variables included in the analyses. Moreover, the results showed that out of the thirty antecedent independent variables, twenty-one were predictore of achievement, but that these twenty-one variables, in different combinations, could contribute no more than 30% of the variance in any one of the dependent variables. This meant that between 62% and 85% (with an average of 71% of the variance in the dependent variables was not explained by variables included in this study. That is, standardized achievement test scores in the Washoe County School District were primarily a function of factors outside of this study.
In contrast, the study did identify two pools of predictors that were then conceptualized as general models of academic achievement. Moreover, that certain variables were identified as predictors was an important contribution to the current theoretical understanding of academic achievement. Moreover, the results answered several research questions concerning academic achievement.
An implication of these results was that academic achievement, as measured by standardized achievement tests, was not very predictable

```
```

by previous achievement or evaluations, personal or familial
characteristics, or school environment and learning context factors;
at least as they were measured in this study. The current study,
However, did not measure attitudinal (teacher, student, or family)
data, nor was it able to evaluate individual teacher performances as
predictors of achievement.
Conversely, this study did identify a number of variables that
were potentially manipulable by the school district that did have
some, albeit small, contribution to how well students did on
achievement tests. In particular, the school district could
standardize grading procedures. Erod (1975; 1976b) has shown that
grades were more the result of nonacademic, than academic,
achievements, and such was clearly the case in this study as well.
Second, a fairly clear result of these analyses was that previous
participation in the gifted program benefitted or enhanced student
academic achievement as measured by standardized achievement tests
even when holding constant previous achievemenc (198E grades).
Unfortunately, this was quite problematic because the washoe Eounty
School District used standardized achievement test scores to initially
identify students for the gifted program. A third variable that could
be potentially changed by the school system was the acreage per
student, which was inversely related to academic achievement. While
the cost of land would probably inhibit equalizing school sites,
awareness that larger tracts of land per student seem to encourage
less academic achievement could lead to policies that might

```
counterbalance this. Implications for the other manipulable variables would be similar to these just discussed.

Lastly, it should be noted that the results of these stepwise multiple regression results may be somewhat problematic in that larger numbers of independent variables in multiple regression could have decreased the standard error of the estimate. That is, each time a variable was added to the equation, a degree of freedom was lost from the residual sum of the squares and one was gained for the regression sum of the squares. This may have caused the standard error to increase when the decrease in the residual sum of squares was very slight, yet not have been sufficient to make up for the loss of a degree of freedom. This would have caused the \(E\) value for the test of the overall regression equation to decrease because the regression sum of squares did not increase as fast as the degrees of freedom for the regression.

Hence, including such a large number of variables has seldom teen a good deductive or theory testing strategy. At the same time, the goal of this research cycle was not that of theory testing, but rather that of theory or model building. As such, this exploratory research cycle had deliberately used a larger set of predictors. The result was the establishment of smaller pools of independent variables for predicting academic achievement in the population. In other words, an explicit objective of this research cycle was to establish a more concise pool of predictors, which could then be tested for building more explanatory, empirically based models.
```

 This research cycle, then, has eliminated variables that showed
 little relationship to, or too much co-linearity with predictors of,
standardized academic achievement tests. As shall be seen in Chapter
5, achievement variables tested with the smaller, general models of
antecedent predictors derived from this research cycle, accounted for
somewhat larger amounts of the variance in standardized achievement
tests. This was eractly what should have happened, given that a
reasonably good pool of predictors had previously been inductively
identified.

```

\section*{Chapter 5}

\section*{MODELS OF ACADEMIC ACHIEVEMENT}
```

 The study up to this point has been essentially e:ploratory in
 nature: univariate descriptive and bivariate correlation analyses of
student educational characteristics and multivariate regression
analyses to identify predictors of academic achievement in the Washoe
County School District. Farallel deductive tests cf research
hypotheses have also established that Indian elementary student
academic achievement was statistically lower than that of their
non-Indian classmates, and that grade level was a moderate predictor
of academic achievement.

```

\section*{Theoretical Clarification}
```

 The results of the first two research cycles of this study have
 provided empirical evidence for answering the following research
questions posed in Chapter 1:
1. What student characteristics are related to education?
2. Do Indian students differ from other students?

```
```

3. What variables--both manipulable and non-manipulable by the school system--are antecedent predictors of achievement?
4. Is ethnicity a determinant antecedent predictor of achievement? That is, exploratory data analyses have identified and discussed student and school characteristics that were related to education and demonstrated that Indian students' achievement did significantly differ from their classmates', but that ethnicity was not among the identified predictors of academic achievement in the Washoe County School District.
Moreover, the results of the first two research cycles have provided empirical evidence for testing the following research hypotheses which were originally suggested upon the basis of a review of the literature:
$H_{1}: \quad$ Standardized achievement test scores for Indian students are significantly lower than the scores for non-Indian students in the Washoe County School District.
```

``` are significantly different for Indian and non-Indian students in the Washoe County School District.
H: Teacher evaluations are different for Indian and non-Indian students in the Washoe County School District.
\(\mathrm{H}_{4}\) : Personal and familial background characteristics are significantly different for Indian and non-Indian students in the Washoe County School District.
\(H_{5}\) : School environment and learning context variables are different for Indian and non-Indian students in the Washoe County School District.
\(H_{6}\) : Grade level is an antecedent predictor of standardized achievement test scores in the Washoe County School District.
H7: Ethnicity is an antecedent predictor of standardized achievement test scores in the Washoe County School District.
```

```
Data analysis results verified the first si: hypotheses, but refuted
the seventh hypothesis that ethnicity was a predictor of academic
achievement.
 The results thus far have established parameters for seeking
answers to the remaining research questions and (implied) hypotheses.
That is, the empirical results to this point have demonstrated the
need for building upon those already discussed. Just as analyses
discussed in Chapter 3, with regards to the first two research
questions and the first five hypotheses, provided an emergent basis
for the amalyses in Chapter 4, so did the results from Chapter 4
concerning the si%th hypothesis and the third and fourth research
questions suggest the appropriateness of further analyses on the
remaining research questions:
 5. Are different factors antecedent predictors of achievement for
 Indian and non-Indian students?
 6. Are different factors antecedent predictors of achievement
 across different grade levels?
 7. Is residence (reservation, colony, urban) a determinant of
 Indian student achievement?
 8. Do factors applicable to Indian students only (e.g., tribal
 affiliation, preschool) affect the antecedent structural
 models of achievement?
 9. Do manipulable variables account for more of the total
 variance than non-manipulable variables?
 10. Do more manipulable than non-manipulable variables account for
 the explained variance?
As discussed in Chapter 1, previous studies have suggested a number of
hypotheses, two of which deal with the questions above. That is,
because numerous other studies have found such dramatic differences
```

```
between Indian and non-Indian achievement, it was impossible not to
draw certain hypotheses. It was the intent of this study, however, to
only test these hypotheses if the other results from this research
also suggested such hypotheses. Therefore, because the results have
indeed suggested the same conclusions, the last two previously deduced
research hypotheses will be tested:
 Hg: As compared to the general population, different antecedent
 factors are predictive of standardized achievement test
 scores for Indian students in the Washoe County School
 District.
 Hg: Different antecedents are predictive of standardized
 achievement test scores at different grade levels in the
 Washoe County School District.
 In addition to these two previously suggested hypotheses, which
have been corroborated by the results discussed in previous chapters,
the results of the first two research cycles have suggested the
following hypotheses as well:
 H10: Residence is not a determinant predictor of lndian students'
 achievement in the Washoe County School District.
 H11: The models of academic achievement are more predictive at
 certain grade levels than others in the Washoe County School
 District.
 H12: Manipulatle variables account for more total observed and
 explained variance in standardized achievement test scores
 than non-manipulable variables in the Washoe County School
 District.
 H13: More manipulable than non-manipulable variables account for
 the variances in standardized achievement test scores in the
 Washoe County School District.
These hypotheses were based upon the conclusions that:
1. Fiesidence entered only one time as a predictor of achievement.
2. Grade level was a predictor of academic achievement.
```

```
3. The best (i.e., accounted for the most variance) predictors of each dependent variable were those that were potentially manipulable by the Washoe County School District.
4. More manipulable than non-manipulable variables entered into the original stepwise multiple regression equations.
In order to test these hypotheses and answer these research questions, a third cycle of research was done.
```


## Methodological Clarifications

The third research cycle sought to answer and test the questions and hypotheses listed above. As in the second research cycle of this study, secondary data analysis techniques were used to collect or re-instrument the data for further statistical analyses. Lile the first research cycle, there were two sets of processes in the third cycle. The first set (Figure 4) dealt with deductively testing the general models of academic achievement for the population and Indian students (Chapters 5 and 6), and for the population and Indian students by grade level (Chapter 7). The second set of processes (Figure 4) were concerned with inductively evaluating these results in terms of their manipulability and the types of factors that were predictive. Thus, the two sets of processes were sequential rather than parallel, as they had been in the first research cycle.

## Data Collection Procedures

The first step was to create tho new systems files that consisted only of those variables previously identified as predictors for the general reading and math models of academic achievement (see Chapter
4). The first systems file included the twenty-one variables listed under the general reading model in Table 34 , while the second systems file was composed of the ten predictors presented in Table 34 under the general math model. Dtherwise all previous modifications and recodings remained intact. Thus, the two new systems files were the same as the ones used in the second research cycle, except that they contained only those variables necessary to continue the study. Following this, the procedure files were set up to analyze the newly created systems files.

In the second set of processes, the data results were recategorized using secondary data analysis techniques in terms of whether the variables were manipulable/non-manipulable, or whether they were achievement, evaluation, personal/familial, or school factors. All data collection, or recategorization, was done by hand.

## Data Analysis Frocedures

The first stage of the data analyses of the first set of processes in the third research cycle of this study was to construct correlation matrices for the predictors in each of the general models. Correiation coefficients were then evaluated to determine if there existed any large intercorrelations that did not make theoretical sense.

Following the evaluation of the intercorrelation coefficients, further multiple regression analyses were made. Because this study sought to determine what the most useful models of achievement were, the decision was made to make the analyses in the third research cycle

```
employing more rigorqus procedures; yet it was also desired to retain
the step-by-step information obtained from stepwise multiple
regression. It was decided, therefore, to sequentially use two
different regression procedures during the second and subsequent
stages of the analyses in the third research cycle. The stepwise
procedure was performed first, and then the forced entry multiple
regression procedure was used. While the first procedure produced the
statistically most rigorous model, the second procedure forced all
other eligible variables into the equation.
 The second stage of the first set of analyses in the third
research cycle, therefore, was to construct predictor models of
academic achievement for the (weighted) papulation and Indian
students, and then to compare the Indian models with the population
models ithat were, in a sense, criterion models for comparative
purposes). Thus, three groups of analyses were performed during this
stage of the first set of processes. The first group of analyses were
performed on the total weighted population sample, the second on just
the Indian students, and the third also on Indian students, but with
the additional variables applicable to Indian students onlv. In order
to perform the last group of analyses, two additional systems files
had to be created. This was done by simply copying the first two
systems files, and adding the variables that were applicable to Indian
students only.
 The third stage of the first set of analyses in the third research
cycle was to construct and compare predictor models of academic
```

```
achievement by grade levels for the weighted population and Indian students. Four groups of analyses were made during this stage of the first cycle. The first group of analyses were performed exactly as in the second stage, using stepuise and forced entry multiple regression in sequence, except that grade level was removed from the list of independent variables. These models were then compared with the models that included grade level as a predictor to determine structural and explanatory changes caused by the removal of grade level. Similarly, the second group of analyses weremade on just the Indian students, again without grade level, and compared with the Indian models produced in the second stage of this set of analyses. The third and fourth groups of analyses, then, constructed models of achievement for each grade level for the (weighted) population and Indian students respectively. Fiather than constructing new systems files for each group of analyses and for each grade level, the existing (reading and math oriented) systems files were simply modified by deleting the grade level variable from the predictor list and using the select procedure of SFSGX, The entire command file was then copjed four times so that the analyses for each grade level could be performed within the same procedural file and during the same computer run.
The second set of procedures in the third research cycle was accomplished through two stages. The first stage framed the results of the first set of procedures in terms of the variables themselves. Three groups of analyses were then made. The first group compared the
```

```
population and Indian reeding and math oriented predictor pools. The
second group of analyses compared predictors to determine whether more
manipulable or non-manipulable variables helped to predict various
dimensions of academic achievement. The third group compared types of
antecedent predictors to ascertain whether one type le.g., background
characteristics) predicted achievement better than the others. The
second stage encompassed exactly the same analyses, e%cept in terms of
explained variance rather than antecedent variables. The tests of
significance for these analyses involved the use of several
statistics, including the binomial test of proportions, chi-square,
and the t-test.
```


## Discussion of Fesearch Results

Owing to the vastness and complexity of the research results from the third research cycle, they will be reported in several distinct chapters. The actual findings from the first two stages in the first cycle, which created achievement models, will be reported in this chapter (Chapter 5), while these results will then be compared and discussed in Chapter 6 . Chapter 7 will report the results from the analyses made for the population and Indian students by grade level in the third stage, and Chapter 8 will compare these results. The results of the second set of analyses in this (third) research cycle will be discussed in Chapter 9. Additionally, Chapter 9 will discuss the conclusions of the third research cycle.

## Intercorrelations Among Predictor Variables

```
 Before discussing the results of the multiple regression analyses,
the interrelationships between the predictors of each general model
need to be discussed.
```

General Reading Model
Table E-2 (Appendi* E) shows the intercorrelations among the
twenty-one predictors (from the general reading model) of word study
skills, reading comprehension, reading test total, vocabulary
knowledge, listening comprehension, auditory test total, and spelling
achievement test scores. Inspection of the results indicated that 105
of the $210(50 \%)$ correlation coefficients were statistically
significant. With the exception of the correlations listed below, the
coefficients indicated low to moderate relationships between the
predictors:
1. Acreage per student and
a. Cost of school construction per student (r = . 51):
b. Number of magazine subseriptions per student ( $r=$
.49);
c. Fercentage of books lost per student ( $\underline{( }=.51$ );
d. Student's residence (r = .42);
2. Number of parents absent from the home and
a. Number of parents employed ( $\underline{r}=.47$ );
3. Student's age in months at the time of the test and
a. Student's grade level ( $r=.94$ ).
Of these rather high associations, the relationship between age and
grade level was most expected and understandable because students were
generally assigned to a specific grade level according to their
chronological age.

```
While the other fairly large correlations were not expected, they were not incomprehensible. First, with regards to the variables associated with school acreage per student, it would seem that schools in the Washoe County School District with more acreage also tended to be more rural, cost more to construct per student, have more magazine subscriptions per student, and lose more books per student. It must be recalled, however, that the three school variables were previously (Chapter 3) interpreted as possibly measuring some common factor like school ethos. These relatively large correlations seem to have further suggested this as well, although the percentage of books lost per student factor would be difficult to include. It may be that books being lost more frequently was a result of a negative school ethos, or that the more there was of something the more that got lost. Second, in the case of number of parents absent and number of parents employed, it may be that the variables indirectly measured the economic or social conditions of the Washoe County School District.
```


## General Math Model

```
Table E-3 (Appendi: E) presents the intercorrelations among the ten predictors (from the general math model) of math concepts, math test total, and science knowledge achievement test scores. Inspection of the results indicated that twenty-one of forty-five (\(47 \%\)) correlation coefficients were statistically significant. Most of the coefficients, however, indicated low to moderate associations, with the exceptions of the following predictor relationships:
```

```
 1. Acreage per student and
 a. Percentage of books lost per student (r = .51);
 2. Student's age in months at time of test and
 a. Student's grade level (r = .94).
Both of these relatively high correlations also were found in the
general reading model intercorrelations, and have been discussed above.
 Student Achievement in the Washoe County School District
Sophisticated multiple regression procedures were employed to test the utility of the general models of academic achievement established during the second research cycle (Chapter 4). Following the
establishment of population regression equation estimates for the
Washoe County School District population (weighted sample), models of
achievement were made for Indian students only in order to answer the
fifth research question:
5. Are different factors antecedent predictors of achievement for Indian and mon-Indian students?
Or, more specifically, the models would test the eighth hypothesis:
Hg: As compared to the general population, different antecedent factors are predictive of standardized achievement test scores for Indian students in the Washoe County School District.
Variables applicable to Indian students only were then added to answer
```

```
the eighth research question:
```

the eighth research question:
B. Do factors applicable to Indian students only (e.g., tribal affiliation, preschool) affect the antecedent structural models of achievement?
In order to test the research hypotheses and answer the research questions of this research cycle, population regression equations of

```
```

academic achievement in the Washoe County School District were
necessary. This was accomplished by making stepwise and forced entry
multiple regression analyses of each dependent variable using the
predictors from the appropriate general model. Once again, using both
procedures allowed for results that showed how the independent
variables would enter in stepwise fashion, but ultimately provided an
equation with all eligible variables forced into the equation at
once. That is, the forced entry procedure entered all variables that
satisfied the tolerance criterion. Variables were analytically
entered by the SPSSX procedure one at a time in order of decreasing
toisrance, but were ultimately treated as a single block for
computation of statistics. This resulted in all variables meeting ur
axceeding the tolerance criterion being simuitaneously forced into the
equation (or model). While this often reduced the signifjcance level
of the E-test for a number of entering variables and tne equation
itself, it also provided more comprehensive and useful models Dv
holding all independent variables constant.
Table is presents the (weighted) population predictor models of
academic achievement, as measured by standardized achievement tests,
for the Washoe County School District, and includes only those factors
that entered into the equation at or beyond the . 15 level along with
each variable's relative contribution to the total observed itatle)
variance of the dependent variable involved. Table G-1 (Appendi* G)
presents the technical results of the stepwise and forced entry
multiple regression anaiyses, giving the simple correlation betwean

```

Table 35. Fopulation Fredictor Models of Ácadeaic Achievesent
\begin{tabular}{|c|c|c|c|c|c|}
\hline Dependent Variables/
\(\qquad\) & & Kof Table Mariance & Dependent Variables/ Predictors & & \% of Table Variance \\
\hline \multicolumn{3}{|l|}{Hord Study Skills} & \multicolumn{3}{|l|}{Fieading Comorehension} \\
\hline 1983 Keading Grade (a) & & 14.3 & 1985 Keading Grade (1) & & 21.8 \\
\hline Acreage Fer Student (a) & & 4.9 & Ácreage Fer Student (0) & & 4.4 \\
\hline Sex (n) & & 1.9 & Library Open After & & \\
\hline Grade Level (n) & & 1.2 & School Fer Student (a) & & 1.0 \\
\hline Ewergency Telephone :mi & & 1.4 & Gifted Frogran (a) & & 1.5 \\
\hline Father's Status (n) & & .6 & Cost of School Per Student & & -. 3 \\
\hline 1993 Citizenstip Grade (\$) & & -. 9 & Change of Schools (n) & & 1.5 \\
\hline \multirow[t]{6}{*}{Other \({ }^{\text {a }}\)} & & 1.6 & \(5 \mathrm{E} \%\) (n) & & . 8 \\
\hline & Total & 24.8 & Energency Telephone (c) & & 1.1 \\
\hline & & & Free \& Fieduced Lunch (n) & & 1.1 \\
\hline & & & 1983 Citizenship Grade (a) & & \(-1.3\) \\
\hline & & & Other \({ }^{\text {a }}\) & & . 7 \\
\hline & & & & \multirow[t]{2}{*}{Total} & 32.4 \\
\hline \multicolumn{3}{|l|}{Reading Test Total} & \multicolumn{2}{|l|}{Vocabulary knouledge} & \\
\hline 1983 Fieading orade (\({ }^{\text {a }}\)) & & 25.7 & 1983 Reading brade (m) & & 20.7 \\
\hline Acreage Fer Student (a) & & 5.1 & Free \& Reduced Lunch (n) & & 3.0 \\
\hline Litrary Upen After & & & Charge of Schools (n) & & 1.5 \\
\hline School Fer Stucent (a) & & . 9 & Esergency Telephone (al & & 1.4 \\
\hline Sek (n) & & 1.8 & Grade Level (\(n\)) & & . 7 \\
\hline Esergency Telephone (a) & & 1.9 & Gifted Frogram (a) & & 1.6 \\
\hline Grade Level (n) & & . 7 & Litrary Open After & & \\
\hline Father: 5tatus (n) & & . 9 & School Fer Student (a) & & . 7 \\
\hline 1983 Citizenship Srade (in) & & -1.6 & Magazine Subscriptions & & \\
\hline \multirow[t]{5}{*}{Other \({ }^{\text {a }}\)} & & 3.7 & Fer Student (m) & & . 9 \\
\hline & Total & 39.2 & Nuaber of Days Absent
in 1992-83 (a) & & . 9 \\
\hline & & & Hoat Phone Listed in) & & 1.5 \\
\hline & & & Other \({ }^{\text {a }}\) & & . 9 \\
\hline & & & & Total & 34.0 \\
\hline
\end{tabular}
a--fredictars forced into equation, but not \(5 i\) gnificant at or beyond the . 15 level.
(a) --Indicates variable that is anipulable by the school district.
(n)--Indicates variable that is not manipulable by the school district.

Table 35 . (continued)
\begin{tabular}{|c|c|c|c|}
\hline Dependent Variables/
\(\qquad\) Predictors & \begin{tabular}{l}
\(\%\) of Table \\
Yariance
\end{tabular} & Dependent Varabies/ Predictors & \% of Table variance \\
\hline \multicolumn{2}{|l|}{Listening Comprehension} & \multicolumn{2}{|l|}{Auditory Test Tatal} \\
\hline 1993 Keading Grade (0) & 16.7 & 1985 Reading arace (0) & 16.5 \\
\hline Grade Level (n) & 3.0 & Emergency Telephone (a) & 2.0 \\
\hline Change of Schools (n) & 2.8 & Free \& Reduced Lunch (n) & 1.7 \\
\hline Magazine Subscriptions & & Gifted Frogram (a) & 1.5 \\
\hline Fer Student (a) & 1.4 & Change of Schoois (\(n\)) & 1.5 \\
\hline Free: Reduced Lunch (n) & 2.0 & Student's fresiderice (\(n\) ! & . 6 \\
\hline Number of Parents Absent (\(n\)) & -. 0 & Father's Status (n) & .3 \\
\hline Home fhone Listed (in) & 1.6 & Humber of Days Atsent & \\
\hline Library Open After & & in 1932-83 (9) & . 6 \\
\hline School Per Student (a) & . 1 & Nuaber of Parents mbsent (n) & -. 2 \\
\hline Eaergency Telephone (a) & 1.2 & Hose fhone Listed (i) & 1.3 \\
\hline Student's Residence (\(n\)) & . 9 & Other \({ }^{\text {a }}\) & . 4 \\
\hline Other \({ }^{\text {d }}\) & 1.0 & & Total 26.3 \\
\hline Total & 30.7 & & \\
\hline Spelling & \multicolumn{3}{|c|}{Mati Concepts} \\
\hline 1985 Keading Grade (m) & 24.7 & 1095 Grade Fount Average (a) & 23.9 \\
\hline Student 5 Residence (n) & 3.3 & Gifted Frogram (m) & 2.6 \\
\hline Seu (n) & 2.8 & Grade Level (a) & 1.3 \\
\hline Acreage Fer Student (m) & 2.9 & Perceritage of Pooks & \\
\hline Encyclopedia Sets & & Lost Fer Student !al & 1.4 \\
\hline Fer student (n) & 2.0 & 1983 Citizership Erade (io) & -1.2 \\
\hline Fercentage of Bocks & & Hoam fhone Listed (n) & 1.3 \\
\hline Lost Per Student (f) & 2.1 & Litrary Eipen hfter & \\
\hline Nuaber of Parents Employed (\(n\)) & -. 0 & School Fer Student (mi) & .6 \\
\hline 0 Other \({ }^{3}\) & 1.3 & Other \({ }^{\text {a }}\) & . 8 \\
\hline Total & 39.6 & & Total 31.2 \\
\hline
\end{tabular}
a--Predictors forced into equation, but not significant at or beyond the . 15 level.
(a)--Indicates variable that is manipulable by the school district.
(n)--indicates variable that is not a minipulable by the school district.

Table 35. (continued)

a--fredicturs foried into equation. Eut not shanificant at or beyond the aj level.
(m!--indicatas variadie that is manipulable oy she sthool district.

as "Other." Hence, not all reported predictors in the population models of achievement entered with the same degree of significance as those in the original stepwise regression (only) models (Table F-1, Appendix F), in which all entering predictors were statistically significant at or beyond the .05 level. That is, because the forced entry procedure was used to force "other" variables into the equation, all levels of significance were increased. Again, the purpose for this was to obtain academic achievement models with the greatest lyet somewhat statistically rigorous) scope of predictors possible.

Table 36 compares (see Appendi: \(G\) for a model by model discussion of these comparisons) the population models with the original stepwise equations (Table \(F-1\), Appendi; F), which were enploratorily developed using the larger set of (thirty-one) independent variables (see Chapter 3). Only slightly more variance in the dependent variables was explained by the new population models. That is, the explained varjance (\(\underline{\mathrm{F}}^{2}\)) increased only between . \(1 \%\) and \(3.3 \%\), with an average increase of \(.9 \%\) across the ten models. A primary interest in these analyses for setting up population models, however, was to find the structurally most explanatory models. As expected the stepwise and forced entry multiple regression analyses produced new population models that generally included one to five more predictors of academic achievement test scores, although there were no structural changes in the reading test total, spelling, and sciance knowledge models.

Accounting For the Variance
As expected, previous grades (either the 1983 reading grade or the

\section*{Table 3t. Comparison of Original and Fopulation Fiegression Models}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Original Stepwise Madels} & \multicolumn{2}{|l|}{Fopulation Stepwise/Forced Entry Models} \\
\hline & \% of Table & \% & Table \\
\hline Predictor & Variance & Predictor Va & ance \\
\hline \multicolumn{4}{|c|}{Word Study 5kills} \\
\hline 1983 Reading Grade (m) & 13.81 & 1983 Reading Grade (m) & 14.32 \\
\hline Acreage Fier Student (m) & 4.60 & Acreage Fer Student (m) & 4.89 \\
\hline 5ex (n) & 1.59 & Sex (n) & 1.76 \\
\hline Grade Level (\(n\)) & 1.36 & Grade Level (\(n\)) & 1.17 \\
\hline Emergency Telephone (m) & 1.31 & Emergency Telephone (m) & 1.44 \\
\hline & & Father s Status (\(n\)) & . 56 \\
\hline & & 1983 Citizenship Grade (m) & -. 92 \\
\hline & & Othera & 1.62 \\
\hline Total & 22.67 & Total & 24.84 \\
\hline
\end{tabular}

\section*{Feadina Comprehension}
\begin{tabular}{|c|c|c|c|}
\hline 1983 Feading Erade (m) & 20.68 & 1783 Feading Grade (im) & 21.85 \\
\hline Acreage Fer Student (in) & 5.08 & Acreage Fer Student (m) & 4.38 \\
\hline Library Open After & & Library Upen After & \\
\hline School Fer Student (m) & 1.16 & School Fer Student (m) & . 97 \\
\hline Gifted Student Frogram (im) & 2.00 & Gifted Student Frogram (m) & 1.52 \\
\hline Cost of School & & Cost of School & \\
\hline Fer Student (m) & -. 35 & Fer Student (m) & -. 27 \\
\hline Change of Schools (n) & 1.61 & Change of Schoois (i) & 1.52 \\
\hline & & Se\% (\(\quad\)) & . 77 \\
\hline & & Emergency Telephone (m) & 1.14 \\
\hline & & Free \& Feduced Lunch (\(n\)) & 1.14 \\
\hline & & 1983 Citizenship Grade (m) & -1.26 \\
\hline & & Othera & . 68 \\
\hline Total & 30.18 & Total & 32.42 \\
\hline
\end{tabular}

\section*{a--Fredictors forced into equation, but not significant at or} beyond the . 15 level.
(m)--Indicates variable that is manipulable by the school district.
(n)--Indicates variable that is not manipulable by the school district.

Table Et．Vontanued

Yocabulary froumledge
\begin{tabular}{|c|c|c|c|}
\hline 17ES Feading Grade（m） & 20.23 & 1鸟SREading Grase（m） & 20.70 \\
\hline Free \＆Fieduced Lunch（n） & 3.57 & Free firduceo Lunch in： & 2.57 \\
\hline Change of Schools（r） & 2.95 & Cnange of Schoois inl & 1． 50 \\
\hline Emergency teleghone（m） & 1.78 & Enerqency Teiaphone imy & 1． 4 \\
\hline Grade Level（n） & ． 80 & Grade Levei in： & ． 5 \\
\hline Gifted Frogram（mi） & 2.97 & Gufted Frocram（而） & 1．を． \\
\hline & & Library upen atter Echool Fer Etudent im； & ． 74 \\
\hline & & Madazine Subscriptions Fer Student（in； & ． 3 \\
\hline & & Number of Live hbsent \(1 \pi 1982-158 \mathrm{~g}\)（m） & ． 59 \\
\hline & & Home Fhone Listed trit & 1.35 \\
\hline & & Utinera & \(\underline{.7}\) \\
\hline Total & 80.70 & Total & 54.92 \\
\hline
\end{tabular}
```

    a--Frejucturs forced into equatjen, but not sigrificamt at ur
        beyond the , l5 level.
    (m)--Indacates variable that is mamipujatie cv tne Echool aljerlet.
    (n)--Indicatas variatule that ls not manaoulable by the scnsul
        district.
    ```

Table 36. (Continued)

\section*{Auditory Test Total}
\begin{tabular}{|c|c|c|c|}
\hline 1ggs Feading Grade (m) & 15.28 & 1783 Feading Grade (m) & 14.46 \\
\hline Emergency Telephone (m) & 2.28 & Emergency Telephone (m) & 2.03 \\
\hline Free : Reduced Lunch (n) & 1.94 & Free : Fieduced Lunch (n) & 1.71 \\
\hline Gifted Frogram (m) & 2.08 & Eifted Frogram (ii) & 1.48 \\
\hline Change of Echools (n) & 1.47 & Change of Schools (\(n\)) & 1.55 \\
\hline & & Student's Fiesidence (\(n\)) & . 59 \\
\hline & & Father's Status (n) & . 32 \\
\hline & & Number of Days Absent in 1982-1983 (m) & . 62 \\
\hline & & Number of Farents Absent & -. 19 \\
\hline & & Home Fhone Listed (\(n\)) & 1.35 \\
\hline & & Other \({ }^{\text {a }}\) & . 39 \\
\hline Total & 23.05 & Total & 26.25 \\
\hline
\end{tabular}
a--Fredictors forced into equation, but not significant at or beyond the . 15 level.
(m)--Indicates variable that is manipulable by the school district.
(n)--Indicates variable that is not manipulable by the school district.

Table उt. (Continued)
Original Stepwise
Models

\section*{5pgling}
```

175: Feading Grade (im)
Student s Residence (m)
Se: (n)
Acreage Fer Student (m)
Encyclopedia Sets
Fer Student (m)
Fercentage of Eools
Lost Fer Student (ili)
Numoer of Farents
Employed (n)
Total

```
24.32 1983 Feading Grade (a)
24.72
 \(\begin{array}{lll}3.75 & \text { Student } 5 \text { Fesidence (} n \text {) } & \text { E. E4 } \\ 2.79 & \text { Se\% (} n \text {) }\end{array}\)
 2.79 Eex (\(n\)) 2.3i
 2.71 Acreage Fer Student (m) 2.5i
 Encyclopedia Sets
 2.13 Fer student (im) 1.98
 Fercentage of Eooks
 2.00 Lost Fer Student (ii) 2.13
 Numider of Farents
 -.03 Emploved (\(n\)) -.04
3 Uther
\(\frac{1.25}{50.61}\)

\section*{Matr Concepts}
\begin{tabular}{|c|c|c|c|}
\hline 1935 Grade Foint & & 1755 Grade Foint & \\
\hline Average (m) & 24.64 & Average (iil) & 23.86 \\
\hline Gifted Frogram (m) & 2.54 & Gifted Frogram (m) & 2.54 \\
\hline Grade Level (m) & 1.68 & Grade Levej (\(n\)) & 1.75 \\
\hline Fercentage of Eooks & & Fercantage of Rooks & \\
\hline Lust Fer Student (m) & 1.48 & Lost Fer Student (mi) & 1.41 \\
\hline 1983 Citizenshio Grade (in) & -1.34 & 1983 Citizenship Grade imi & -1.15 \\
\hline Howe Fhone Lasted (n) & 1.40 & Home Fhone Listed (if) & 1.37 \\
\hline & & Lubrary Open After School Fer Student (in) & . 05 \\
\hline & & Uthera & .75 \\
\hline Total & 30.40 & Total & 31.10 \\
\hline
\end{tabular}
```

    a--Fredictors forced into equation, but not significant at or
    beyond the .is level.
    (m:-Indacates variable that is maripulable bv the schooj district.
(a)--Indicates variade that is not manloulable oy tne schooi
district.

```
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Original Stepwise Models} & \multicolumn{2}{|l|}{Fopulation Stepwise/Forced Entry Models} \\
\hline \multicolumn{2}{|r|}{\% of Table} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Fredictor \(\quad\) \% of Tatle}} \\
\hline Fredictor & ance & & \\
\hline \multicolumn{4}{|c|}{Math Test Total} \\
\hline 1983 Grade Foint & \multicolumn{3}{|c|}{1983 Grade Point} \\
\hline Average (m) & 29.60 & Average (m) & 28.26 \\
\hline Gifted Frogram (m) & 3.07 & Gifted Frogram (m) & 3.07 \\
\hline Fercentage of Eooks & & Fercentage of Books & \\
\hline Lost Fer Student (m) & 1.67 & Lost Fer Student (m) & 1.65 \\
\hline 1983 Citizenship Grade (m) & \(-1.54\) & 1983 Citizenship Grade (m) & -1.47 \\
\hline & & Age in Months at & \\
\hline & & Time of Test (\(\mathrm{n}_{\text {) }}\) & . 89 \\
\hline & & Library Open After & \\
\hline & & School Fer Student (m) & . 61 \\
\hline & & Other \({ }^{\text {a }}\) & 1.21 \\
\hline Total & 32.82 & Total & 34.20 \\
\hline
\end{tabular}

Science knowledge
\begin{tabular}{|c|c|c|c|}
\hline 1983 Grade Foint & \multicolumn{3}{|c|}{1983 Grade Foint} \\
\hline Average (m) & 17.22 & Average (m) & 17.80 \\
\hline Age in Months at & & Age in Months at & \\
\hline Time of Test (n) & 4.68 & Time of Test (n) & 4.61 \\
\hline Acreage Fer Student (m) & 4.25 & Acreage Fer Student (m) & 4.47 \\
\hline Library Dpen After & & Litrary Open After & \\
\hline School Fer Student (m) & 1.15 & Schaol Fer Student (m) & 1.07 \\
\hline Sex (\(n\)) & . 68 & Sex (\(n\)) & . 60 \\
\hline Gifted Frogram (m) & 1.70 & Gifted Frogram (m) & 1.62 \\
\hline & . & Othera & -. 33 \\
\hline Total & 29.60 & Total & 29.84 \\
\hline
\end{tabular}
a--Predictors forced into equation, but not significant at or beyond the . 15 level.
(m) --Indicates variable that is manipulable by the school district.
(n)--Indicates variable that is not manipulable by the school
district.

Table 37. Step of Entry for Predictor ay Acadenic Achieveaent Model for Student Population
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Predictors} & \multicolumn{5}{|c|}{Model 5} \\
\hline & \[
\begin{gathered}
\text { hord Study } \\
\text { Skills } \\
\hline
\end{gathered}
\] & fieading Comprehension & \begin{tabular}{l}
Keading \\
Test Total
\end{tabular} & Vocabulary Knowledge & Listening Coaprehension \\
\hline \multicolumn{6}{|l|}{Acadenic Achievement} \\
\hline 1983 Reading Grade (a) & 1 & 1 & 1 & 1 & 1 \\
\hline \multicolumn{6}{|l|}{1983 Grade Foint Averag̣e (\({ }^{\text {) }}\)} \\
\hline \multicolumn{6}{|l|}{NuFber of Days fbsent} \\
\hline in 1982-1983 (a) & & & & 9 & \\
\hline \multicolumn{6}{|l|}{Student Evaluations} \\
\hline 1983 Citizenship Grade (4) & 7 & 10 & 8 & & \\
\hline Gifted Frogram (a) & & 4 & & 6 & \\
\hline \multicolumn{6}{|l|}{Backoround Characternstics} \\
\hline \multicolumn{6}{|l|}{Age in Months at Tine of Test (n)} \\
\hline Change of Schools (n) & & \(s\) & & 3 & 3 \\
\hline Emergency Telephone (wi & 5 & 9 & 5 & 4 & 9 \\
\hline Father's Status (n) & 6 & & 7 & & \\
\hline Frae \& Redured Lurich (in) & & 9 & & 2 & 5 \\
\hline Home Phone Listed (n) & & & & 10 & 7 \\
\hline Nuaber of Farents Absent (n) & & & & & 6 \\
\hline \multicolumn{6}{|l|}{Nuaber of Parents Enploved (n)} \\
\hline Sex (n) & 3 & 7 & 4 & & \\
\hline Student 5 Residence (\(n\)) & & & & & 10 \\
\hline \multicolumn{6}{|l|}{School Environaent and} \\
\hline \multicolumn{6}{|l|}{Learring Contexts} \\
\hline Acreage Per Student (a) & 2 & 2 & 2 & & \\
\hline Cost of School Fer Student (0) & & 5 & & & \\
\hline \multicolumn{6}{|l|}{Encyclopedia Sets Fer Student (\({ }_{\text {(}}\))} \\
\hline Grade Level (\(n\)) & 4 & & b & 5 & i \\
\hline \multicolumn{6}{|l|}{Library Open After} \\
\hline School Per Student (a) & & 3 & 3 & 7 & 8 \\
\hline \multicolumn{6}{|l|}{Magazine Subscriptions} \\
\hline Fer Student (m) & & & & 8 & 4 \\
\hline Fercentage of Books & & & & & \\
\hline
\end{tabular}
(a)-Indicates variable that is potentially manipulable by the school district.
(n)--Indicates variable that is not anipulable by the school district.

\section*{Table 37 . (Continued)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Fiedictors} & \multicolumn{5}{|c|}{Modej 5} \\
\hline & \begin{tabular}{l}
Aluatory \\
Test Total
\end{tabular} & Spellinq & Math Concepts & Math Test Total & \begin{tabular}{l}
Science \\
knowledge
\end{tabular} \\
\hline \multicolumn{6}{|l|}{Acadenic Achievement} \\
\hline 1963. Feading Grade (10) & 1 & 1 & & & \\
\hline 1983 Grade Point Average (a) & & & 1 & 1 & 1 \\
\hline \multicolumn{6}{|l|}{Nusber of Days fibsent} \\
\hline in 1982-1983 (a) & 6 & & & & \\
\hline \multicolumn{6}{|l|}{Student Eraluations} \\
\hline 1983 Citizenship frade (m) & & & 5 & 4 & \\
\hline Gifted Frogram (a) & 4 & & 2 & 2 & d \\
\hline \multicolumn{6}{|l|}{Backoround Characteristics} \\
\hline \multicolumn{6}{|l|}{Age in Months at} \\
\hline Change of Schools (n) & 5 & & & & \\
\hline Emergency Teleptione (m) & 2 & & & & \\
\hline Father 5 Status (n) & 7 & & & & \\
\hline Free \& Fieduced Lunch ini & 3 & & & & \\
\hline Home Fhone Listed (n) & 10 & & 6 & & \\
\hline Number of Parents Absent (a) & 9 & & & & \\
\hline Nuaber of Parents Employed (n) & & 7 & & & \\
\hline Sea (in) & & 3 & & & 5 \\
\hline Student's Kesidence (n) & \(s\) & 2 & & & \\
\hline \multicolumn{6}{|l|}{School Environment and} \\
\hline \multicolumn{6}{|l|}{Learning Contexts} \\
\hline Acreage Fer Student (a) & & 4 & & & 3 \\
\hline \multicolumn{6}{|l|}{Cost of School Fer Student (0)} \\
\hline Encyclopedia Sets Per Student & & 5 & & & \\
\hline Grade Level (n) & & & 3 & & \\
\hline \multicolumn{6}{|l|}{Library Upen After} \\
\hline School Fer Student (m) & & & 7 & \(t\) & 4 \\
\hline \multicolumn{6}{|l|}{Magazine Subscriptions} \\
\hline \multicolumn{6}{|l|}{Per Student \面〉} \\
\hline \multicolumn{6}{|l|}{Fercentage of 5ooks} \\
\hline Lost Fer Student (in) & & 6 & 4 & 3 & \\
\hline
\end{tabular}
(\(\mathbf{(})\)--indicates variable that 15 potentially manipulate by the school district. (ri)--indicates variable that is not manipulable by the school district.
```

student. Following acreage, the next best predictors were student's
age, grade level, and participation in the gifted student program.
In considering just the seven reading oriented models, the second
best structural predictor was, again, the emergency telephone listing
variable. The ne%t best predictors were acreage, student's sex, grade
level, number of minutes that the library was open after school per
student, the student's change of schools, and participation in the
federal lunch program, each of which entered into four equations.
In comparison, when considering just the three math oriented
models, it was found that two of the variables, the number of minutes
that the library was upen after school per student and participation
in tte gifted program, entered into all three of the models. The
percentage of books lost per student, 198S citizenship grade, and
student's age all entered into two of the three math models.
Structuraliy, then, the best predictors for the math oriented models
after previous grades mere library hours and participation in the
gifted student program.

```

\section*{Suppressor Variables}

In looking back at Table 35 and Table 36 , it was observed that a number of the predictors in the models acted as suppressor variables. Again, this meant that the inclusion of the suppressor variable increased the explanatory power of the other variables in the model by negatively contributing to the total explained variance. Of particular interest here, was the finding that by forcing all possible variables into the equation that did not enter in the stepwise
```

regression analysis, the amount of explained variance (multiple \mp@subsup{\mathbb{R}}{}{2})
was slightly increased in one model. That is, all variables entering
into the equation during forced entry multiple regression analysis,
but not having statistical significance (reported as "Other"),
contributed negatively or suppressed the amount of explained variance
(-3%) in the population science models. However, because the
percentage was so small, it was probably due more to statistical
artifact than anything else.
It was also found (Table 35) that the 1983 citizenship grade
variable was a consistent and, relatively speaking, strong
suppressor. Again, this meant that inclusion of this variable
enhanced the model's predictability. Other suppressors were cost of
school per student, number of parents absent, and number of parents
employed. While these other three variables consistently acted as
suppressors when they entered, their contribution was much less, and
more likely due to chance, or statistical error than to real
suppression effects.

```
Manipulable and Non-Manipulable Variables
```

    A primary interest of this research was to identify factors that
    would be potentially manipulable by the school system, so that they
could alter test score variance and, thereby, improve student
achievement. Thus, the multiple regression analyses were further
evaluated for manipulability by the school system. In looving at the
variables that entered most often, it was found that many antecedent
predictors of academic achievement, as measured by standardized

```
```

achievement test scores, were indeed potentiaily manipulable by the
Washoe County School [istrict.
Table \#% presents the percentages of manipulable and
non-manipuladle variables for each dependent variable (test) for both
the original and the population models of academic achlevement in the
Washoe County School District. In comparing the original and
population models it was found that they differed by between 0% and
20% in terms of the persentages of manifulable/non-manapulable
variatles in the models. Across the ten models, however, the
population models averaged 5% fewer manipulable predictors than trie
original models. In contrast, there was only a 1% average difference
for the seven reading models, but a Q% average difference for the
three math models of academic achizvement.
Looling at specific models (Table 38), comparisons inoicated that
there ware no differences between the original and population reading
test totai, Epelling, amd science knowiedge models of achievement with
respect to the percentages of manipulabie and non-manipulable
variatles entering the respective models. It was also found through
comparlsons (Table 39) that for four of the other seven models, the
population model included a smaller percentage of ootentially
manipulable variables than the original model.
The greatest difference (20%) was for the auditory test total
model, which had b0% manipulable variables in the original model, but
only 40% in the population model. That is, the smaller set of
antecedent predictors and the forced entry procedures resulted in a

```

Table 30. Conparison of Fercentages of Manipuiabie and Mon-Hanipulable Varlables for the Original and Fopulation Models
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Dependent Yariables} & \multicolumn{4}{|c|}{Oriqinal Models} & \multicolumn{4}{|c|}{Population Models} \\
\hline & \multicolumn{2}{|l|}{Manipulabie} & \multicolumn{2}{|l|}{Nan-Manipulable} & \multicolumn{2}{|l|}{Manipulable} & \multicolumn{2}{|l|}{Non-Manıulable} \\
\hline & \(f\) & \% & \(t\) & \(\%\) & \(f\) & \(\%\) & \(f\) & 4 \\
\hline & \multicolumn{8}{|c|}{Feading Oriented Models} \\
\hline Word Study Skills & \(3 / 5\) & 50 & \(2 / 5\) & 40 & \(4 / 7\) & 57 & 3/7 & 43 \\
\hline Heading Comprehensaun & \(5 / 6\) & 83 & \(1 / 6\) & 17 & 7/10 & 70 & \(3 / 10\) & 30 \\
\hline Heasing Test Total & \(5 / 9\) & 52 & 3.9 & 38 & 5/9 & 62 & 3/8 & 40 \\
\hline Vocabulary knowledge & \(3 / 6\) & 50 & 3/6 & 50 & \(6 / 10\) & 60 & 4/10 & 40 \\
\hline Listening Coaprehension & 217 & 29 & \(5 / 7\) & 71 & 4/10 & 40 & 610 & 30 \\
\hline Auditory Test Iotal & 315 & 60 & \(2 / 5\) & 40 & \(4 / 10\) & 40 & \(6 / 10\) & 60 \\
\hline Spelling & 4/7 & 57 & 317 & 43 & 4/7 & 57 & \(3 / 7\) & 43 \\
\hline Average & 4,7 & 51 & \(3 i 7\) & 4.3 & \(5 / 9\) & \(5 t\) & 4/9 & 44 \\
\hline
\end{tabular}

Matn Or iented Models
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Math Concepts & 4/6 & 67 & 216 & 33 & 57 ? & 71 & 217 & 29 \\
\hline Math Test Total & 4/4 & 100 & 1/4 & 0 & 5\% & 83 & 116 & 17 \\
\hline Science knowledge & \(4 / 6\) & 67 & 216 & 33 & 4/0 & 67 & 26 & 33 \\
\hline Aver age & 4/5 & 80 & 1/5 & 20 & 5/7 & 31 & 217 & 29 \\
\hline & & & & 411 & & & & \\
\hline Àverage & 4/6 & 67 & 2/6 & 33 & 5/8 & 62 & 3/8 & 38 \\
\hline
\end{tabular}
```

model of auditory test total achievement that was substantively less
potentially manipulable by the school system than when the larger set
of independent variables was used (Chapter 4). Frevious results
(Table 36) have indicated that there were five more (or twice as many)
variables in the auditory test total population model than in the
original, and that four of these were not potentially manipulable by
the school system. The second largest difference (17%) was between
the two math test total models. This was probably due to statistical
probability or a regression effect that reduced the percentage of
potentially manipulable factors from 100% to 82%. That is, because
the number of variables involved was small and involved no
mon-manjpulable anteeedents in the origimal math test total model, the
inclusion of just one non-manipulable predictor in the population
model had a large effect on the percentage differences. The next
largest difference (15%) also involved fewer potentially manipulable
variables in the population reading comprehension model, where half of
the additional four variables in the population model were
non-manjpulable. The last of the four comparisons that showed a
smaller percentage (3%) of manipulable variables in the population
model mas for word study skills. Again this difference was
attributable to statistical procedures.
In looking at the three models where the population model had a
larger percentage of manipulable variables than the original, it was
found that the differences were somewhat less. The largest
differences were for listening comprehension (11%) and vocabulary

```
knowledge (\(10 \%\)), and the least for math concepts (\(4 \%\)). Also, listening comprehension was the only one of the original models Table 38) where there were fewer manipulable than non-manipulable variables, while listening comprehension and auditory test total both had fewer manipulable than non-manipulable factors in the population (or criterion) models. Thus, despite these observed differences between specific models, the population models generally were more stable (i.e., exhibited less differences in the percentages of potentially manipulable variables: \(40 \%-83 \%\) versus \(29 \%-100 \%\) and, on the average, were quite similar to the original models.

Summary
Stepwise and forced entry multiple regression analyses were made
for each of the ten dependent variables (or standardized achievement
tests) to establish population models of student academic achievement
in the Washoe County School District. Since more variables were
entered, it was expected that these procedures would produce
structurally expanded predictor models and explain slightly more of
the dependent variable variance (multiple \(\underline{R}^{2}\)), although three of the
models were not altered, An unanticipated result was that the forced
entry of the other predictors suppressed, or negatively affected, the
total variance, thereby enhancing the overall contribution of the
other predictors, in the science model, With respect to the
composition of the models in regards to factors potentially
manipulable by the school district, the enpanded population models
```

were not altered to any significant degree by the iriciusion of the
additional predictors.

```

\section*{Indian Achievement in the Washoe County School District}

Once the stepwise and forced entry multiple regression analyses were completed for the Hashoe County School District (weighted) population, similar analyses were made for Indian students onive Methodologically, the systems file was modified ty simply adding a select procedure 50 that Indian studente only (n = 201) were analyzed. These amadyses resulted in ten models of academic achievement for Indian students in the washoe County School District, which are technically reported in Table \(H-1\) (Appendi: \(H\)), and summarized in Table 39 (for a model by model discussion of tie structural characteristics, see Appendi: \(H\) as well).

Accounting For the Variance

As found in analyses for the weighted population ior criterion modelsi, previous grades (either the 1983 reading grade or the 173 g grade point average) accounted for the greatest amount of the variance in the Indian student models of achuevement itable sif, ranging from a low of \(15 \%\) in the distening comprehension miojel to a high of \(37 \%\) in the reading test total model. Once ay̧ain, while previous grades were expected to be the best predictors, it was also ariticipated that such previous measures of achapement would acceurt fer a much larger percentage of the variance than found in these analyses, As with the population models, these results corroboratad

Table 39. Fredictor Hodels of Indian ficaceaic Achaevement
\begin{tabular}{|c|c|c|c|}
\hline Dependent Variables/
\(\qquad\) & \% of Table Variance & Qependent Variables; Predictors & \(\%\) of Table yartance \\
\hline Hord Study Skills & & Kieading Comprehension & \\
\hline 1983 Reading Grade (in) & 18.7 & 1983 Keading Grade (im) & 31.5 \\
\hline Father's Status (\(n\)) & 4.4 & Encyclopedia 5ets & \\
\hline Grace Levei (\(n\)) & 1.3 & Fer Student (n) & 3.9 \\
\hline Magazine Subscriptions & & Gifted Program (a) & 2.3 \\
\hline Fer Student (a) & 4.1 & Other \({ }^{\text {d }}\) & . 5 \\
\hline Emergency Telephone (m) & . 2 & & Total 32.3 \\
\hline \multirow[t]{2}{*}{Uther \({ }^{\text {d }}\)} & 4.1 & & \\
\hline & Total 32.7 & & \\
\hline \multicolumn{2}{|l|}{Reading Test Total} & Vocabulary mioniedue & \\
\hline 1997 Reading Grade (a) & 37.2 & 1983 Reading Erade (a) & 20.6 \\
\hline Magazine Subseriptions & & Grade Level (if) & . 4 \\
\hline Fer Student (i) & 3.2 & Efruclopedia Sets & \\
\hline Grade Level (n) & -. 2 & Fer Student (ix) & 1.9 \\
\hline Emergency ielephorie inl & . 2 & Other \({ }^{\text {a }}\) & 4.3 \\
\hline Father 5 Status ini & 1.3 & & iotal 27.2 \\
\hline Gifted frogram (in) & 2.5 & & \\
\hline cither \({ }^{\text {d }}\) & 2.7 & & \\
\hline & Tutai 44.8 & & \\
\hline \multicolumn{2}{|l|}{Listeminy Lumprenension} & \multicolumn{2}{|l|}{Auditurv Test Tutal} \\
\hline [983 Reaciricy Grase (a) & 14.8 & 1983 heading frade (0) & 21.2 \\
\hline Percentage of Eocks & & Fercertage of gooks & \\
\hline Lost Per Student (m) & 2.8 & Lost Per Stidaent (a) & 2.4 \\
\hline Father's Status (in) & 1.3 & Gifted Prograin : \({ }^{\text {a }}\)) & 3.2 \\
\hline Encyclopedia Sets & & Encreiopedia Eets & \\
\hline Fer Student (in) & 2.3 & Per Student (a) & 2.4 \\
\hline Student 5 Fesidence (\(n\)) & 1.6 & Grade Level (n) & . 0 \\
\hline \multirow[t]{2}{*}{Other \({ }^{\text {d }}\)} & 1.9 & 0 ther \({ }^{\text {a }}\) & 1.4 \\
\hline & Total 24.6 & & Total 3 \\
\hline
\end{tabular}
a--fredictors forced into equation, but not sionificant at or bevond the . 15 level.
(a)--Indicates variatie that is manipulable by the school district.
(\(n\))--Indicates variable that is nit manipulable by the school district.

Table 39. (continued)

a--Fredictors forced into equation, but not significant at or beyond the . 15 level.
(\(\mathbf{1}\))-Indicates variable that is manipulabie by the scriool district.
(in)--Indicates variable that is not manipulable by the school district.
```

the assumption that the model of academic achievement success was
dependent upon what measure was used. That is, most models of
achievement were different from the others.
Table 40 presents the crosstabulation of the predictors with the
dependent variables. The results (Table 40) indicate that
participation in the gifted student program was structurally the
second best predictor of Indian student achievement, entering into
four of the seven reading and all three of the math oriented
equations; or seven of the ten models. The ne%t best structural
predictors were percentage of books lost per student and grade level,
both of which entered into five of the ten models. While grade level,
father's status, participation in the gifted program, and the number
of encyclopedia sets per student were the best predictors of reading
oriented tests for Indian students, the percentage of books lost per
student and participation in the gifted program were the best
predictors in math oriented models after previous grades. With
respect to the amount of contributed variance, there was no predictor
that was clearly the next best after previous grades. Eoth
participation in the gifted program and percentage of books lost per
student were fairly consistent (2-4%), but other variables (e.g.,
father's status) also contributed similar amounts of explained
variance when they entered into equations.
It was also observed (Table 39) that other variables being forced
into the word study skills and vocabulary knowledge equations, despite
their level of statistical significance (reported as "Other"),

```

Tabia 4ú．Step of Entry for Credictor by Acadeaic áchieveatent Model fer Indian Students
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Predictors} & \multicolumn{5}{|c|}{Hojel 5} \\
\hline & \[
\begin{gathered}
\text { Hord 5tudy } \\
\text { Shilis }
\end{gathered}
\] & \[
\begin{gathered}
\text { heaolng } \\
\text { Comprehension }
\end{gathered}
\] & \begin{tabular}{l}
Fieadring \\
Iest iotai
\end{tabular} & Vocautary nnowleage & Listenang Comprehension \\
\hline \multicolumn{6}{|l|}{Acadeaic Achieveaent} \\
\hline 1983 Keading Srade（mi） & 1 & \(!\) & 1 & 1 & 1 \\
\hline \multicolumn{6}{|l|}{1993 Grage Foint Average（1）} \\
\hline \multicolumn{6}{|l|}{Number of Lavs âtsent} \\
\hline \multicolumn{6}{|l|}{101985－1983（ai）} \\
\hline \multicolumn{6}{|l|}{Etujent Evaluations} \\
\hline \multicolumn{6}{|l|}{1983 Cutizenship Grade（a）} \\
\hline \multicolumn{2}{|l|}{Gifted Frograim（ifi）} & 3 & 6 & & \\
\hline \multicolumn{6}{|l|}{Sackuround tharactaristucs} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{rige \(1 \pi\) Months at Time of Test（m）}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{Change of Schools in）} \\
\hline Emergency Telephorie（fit & 5 & & 4 & & \\
\hline Father 5 Status （ni） & 2 & & j & & \(j\) \\
\hline \multicolumn{6}{|l|}{Free \＆ i educed Lunch（n）} \\
\hline \multicolumn{6}{|l|}{Home fimone Listes ini} \\
\hline \multicolumn{6}{|l|}{Number of Farents Absent int} \\
\hline \multicolumn{6}{|l|}{Number of Farents Employed（n）} \\
\hline \multicolumn{6}{|l|}{SEM（in）} \\
\hline \multicolumn{6}{|l|}{Student 5 Fesidence（a）} \\
\hline \multicolumn{6}{|l|}{School Environsent anc} \\
\hline \multicolumn{6}{|l|}{Learnina Coniexts} \\
\hline \multicolumn{6}{|l|}{Acreage Fer Sturent（a）} \\
\hline \multicolumn{6}{|l|}{Cost of School Fer Student（9）} \\
\hline Encyclopedia Sets Per Studerit & （a） & 2 & & 3 & 4 \\
\hline Grade Level（n） & j & & 3 & 2 & \\
\hline \multicolumn{6}{|l|}{Library Open After} \\
\hline \multicolumn{6}{|l|}{School Per Student（⿴囗⿰丨丨⿱一土口} \\
\hline \multicolumn{6}{|l|}{Magazine Sutscriptions} \\
\hline Fer Student ： \(\mathrm{ml}^{\text {a }}\) & 4 & & 2 & & \\
\hline \multicolumn{6}{|l|}{Fercentage of Eooks} \\
\hline Lost Par Student（im） & & & & & 2 \\
\hline
\end{tabular}
（a）－－lndicates variable that is potentially manipuiaule by the school district．
（n）－－Indicates variable that is not anipuiable by the sthool jistrict．

Table 40. (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Predictors} & \multicolumn{5}{|c|}{Models} \\
\hline & \begin{tabular}{l}
Ruditory \\
Test Total
\end{tabular} & Spelling & Math Concepts & \begin{tabular}{l}
Math \\
Test Total
\end{tabular} & Science knowledge \\
\hline \multicolumn{6}{|l|}{Ácaderic Achievement} \\
\hline 1983 Reading Grade () & 1 & 1 & & & \\
\hline 1983 Grade Foint Average (1) & & & 1 & 1 & 1 \\
\hline \multicolumn{6}{|l|}{Nuaber of Days Absent} \\
\hline \multicolumn{6}{|l|}{Student Evaluations} \\
\hline 1983 Citizenship Grade (m) & & & & & 5 \\
\hline Sifted Pragra (a) & 3 & 4 & 4 & 3 & 4 \\
\hline \multicolumn{6}{|l|}{Backaround Characteristics} \\
\hline \multicolumn{6}{|l|}{Age in Months at Tiae of Test (\(n\))} \\
\hline \multicolumn{6}{|l|}{Change of Schools (\(n\))} \\
\hline Energency Telephone (a) & & 6 & & & \\
\hline Father's Status (n) & & 3 & & & \\
\hline Free \& Fieduced Lunch (in) & & 7 & & & \\
\hline \multicolumn{6}{|l|}{Hose Phone Listed (n)} \\
\hline Number of Farents Absent (n) & & 5 & & & \\
\hline Number of Parents Eaployed in & & 7 & & & \\
\hline Sex (n) & & & 3 & & \\
\hline Student's Residence (\(n\)) & & 9 & & & \\
\hline \multicolumn{6}{|l|}{School Enviranment and} \\
\hline \multicolumn{6}{|l|}{Learning Contexts} \\
\hline \multicolumn{6}{|l|}{Acreage Per Student (a)} \\
\hline \multicolumn{6}{|l|}{Cost of School Fer Student (a)} \\
\hline \multicolumn{6}{|l|}{Encyclopedia Sets Fer Student (a) 4} \\
\hline Grade Level (\(n\)) & 5 & & & & 3 \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Library Open After \\
School Per Student (a)
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Magazine Subscriptions \\
Per Student (a)
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Percentage of Books} \\
\hline Lost Per Student (a) & 2 & & 2 & 2 & 2 \\
\hline
\end{tabular}
(a)--indicates variable that is putentially annpulable by the school district. in)--Indicates variable that is not anipulable by the school district.
```

contributed nearly as much to the total variance as the predictor
variables in the equation. Secondly, it was found (Table 39) that
variables acted as suppressors in only three of the models. In the
reading test total and math test total models, the suppressor effect
was quite 5mall, and probably due to statistical error, distribution,
or chance. The suppressing effect of the 198J citizenship grade on
Indian student's science achievement was, on the other hand,
significant. Inclusion of this variable in the equation, therefore,
enhanced the accountability of science achievement variance for Indian
students by adding to the overall explanatory power of the other
predictors. More importantly, however, was the implication of this
suppressing effect. That is, citizenship was initially found to
correlate positively with subsequent academic achievement, vet when
other things were held constant this relationship reversed, so that
having a high citizenship grade resulted in subsequent lower Indian
student's science achievement.

```

\section*{Manipulable and Non-Manipulable Variables}

Table 41 summarizes the percentage of manipulable and non-manipulable variables that entered into each of the medels of academic achievement for Indian students. The results indicated that for the most part, entering predictors of the various areas of achievement were indeed variables that were by and large subject to change or manipulation by the school district. Interestingly, the one achievement area least subject to school district manipulation was spelling. This result was particularly intriguing because spelling
```

Table 41. Fercentages of Manipulable and Non-Manipulable
Variables Entering Indian Models

```
\begin{tabular}{|c|c|c|c|c|}
\hline Dependent Variables & \multicolumn{2}{|l|}{\begin{tabular}{l}
Manipulable \\
f
\end{tabular}} & \multicolumn{2}{|l|}{Non-Manipulable
\(\ddagger\)} \\
\hline \multicolumn{5}{|c|}{Fieading Oriented Models} \\
\hline Word Study Skille & 3/5 & 60 & 215 & 40 \\
\hline Fieading Comprehension & \(3 / 3\) & 100 & \(0 / 5\) & 1) \\
\hline Reading Test Total & \(4 / 6\) & 67 & 216 & 33 \\
\hline Vocabulary knowledge & 2/3 & 67 & \(1 / 3\) & 33 \\
\hline Listening Comprehension & 3/5 & 60 & \(2 / 5\) & 40 \\
\hline Auditory Test Total & 4/5 & 80 & 1/5 & 20 \\
\hline Spelling & 4/9 & 44 & \(5 / 9\) & 56 \\
\hline Àverage & 3/5 & 60 & \(2 / 5\) & 40 \\
\hline \multicolumn{5}{|c|}{Math Oriented Models} \\
\hline Math Concepts & 3/4 & 75 & 1/4 & 25 \\
\hline Math Test Tetal & 3/3 & 100 & \(0 / 3\) & 0 \\
\hline Science knowledge & 4/5 & 80 & 1/5 & 20 \\
\hline Average & 314 & 75 & \(1 / 4\) & 25 \\
\hline \multicolumn{5}{|c|}{All Ten Models} \\
\hline Average & 3/5 & 60 & \(2 / 5\) & 40 \\
\hline
\end{tabular}
```

has often been cited in the literature as the area Indian students
have consistently done best in. The logic used to explain this
phenomena (which was also alluded to in Chapter s) has been that the
schools have much more control over this curriculum area. Yet these
results have suggested that such a conclusion has been incorrectly
made.
The results (Table 41$)$ also demonstrated the variability between the models with regards to the number of predictors that were manipulable by the school system. In some cases (reading comprehension and math test total) all entering predictors were manipulable. Conversely, in no case were all entering variables non-manipulable. Moreover, it was noted that the math oriented models were much more susceptible to school manipulation $(75 \%)$ than the reading uriented models (so\%).

```

Summary
Stepuise and forced entry multiple regression analyses were made for each of the ten dependent variables to establish models of academic achievement for Indian students in the Washoe Courity School District. The results, like those made for the washoe County school District population (and the original models), were much less explanatory than experted. That is, no model explained more than \(47 \%\) of the total variance; which meant that more than half of the variance in Indian student achievement was due to factors not included in these analyses. As expected, previous grades were found to be the most Explanatory factors for Indian students. No other variable, however, stood out as the next best predictor. The results substantiated that
```

each measure of academic achievement was generally subject to a
completely different set of predictors, but that they were often
factors that would be potentially manipulable by the school system.
These results have raised several questions: 1) How do the models
of academic achievement for Indian students compare with the
population models? and 2) How would these models of Indian student
achievement compare to models constructed when including additional
factors appropriate to Indian students only? To answer these
questions, comparative analyses of the population/criterion and Indian
student regression models were made and another group of analyses were
made, after including such variables applicable to Indian students
only among the predictors, as reported in Chapter 6.

```

\section*{Chapter 6}

COMFARISONS DF ACADEMIC ACHIEVEMENT
```

    The first two stages of this set of processes in the third
    research cycle have resulted in ten models of academic achievement for
both the (weighted) Washoe County School District population and
Indian students only. The main objective of this chapter, therefore,
is to comparatively discuss the results from the first two stages and,
secondarily, to compare the Indian models with models modified by the
addition of antecedent variables unique to Indian students. Such
discussion will provide empirical evidence towards the following
research hypotheses:
He: As compared to the general population, different antecedent
factors are predictive of standardized achievement test
scores for Indian students in the Washoe County School
District.
H10: Fesidence is not a determinant predictor of Indian students'
achievement in the Washoe County School District.
The comparisons of the Indian and Indian modified models of
achievement will, hopefully, provide a partial answer to the eighth
research question:
8. Do factors applicable to Indian students only (e.g., tribal
affiliation, preschool) affect the antecedent structural
models of achievement?

```

\begin{abstract}
To facilitate comparative analyses of Indian student and district population models of achievement, Table 42 was constructed in such a way as to visually compare both the structure and each individual predictor's contribution to both the total (table) and explained variances of each dependent variable of academic achievement, as measured by standardized achievement tests. The most immediate and obvious conclusion (Table 42) was that different antecedent variables were, indeed, predictive of Indian student achievement than were predictive for the Washoe County School District in general. Secondly, most models of Indian student achievement had substantially fewer antecedent predictors than for the district population models. Moreover, predictors tended to account for more of the table variance in Indian student achievement than in the achievement of students in general. That is, in comparison to the Washoe County School District population models of achievement, the Indian student models were much more parsimonious.

The Indian student models were found to explain more of the total variance than the population word study skills, reading comprehension, reading test total, auditory test total, math concepts, and math test total achievement models. A final general observation was that previous grades appeared to be more explanatory for Indian student word study skills, reading comprehension, reading test total, auditory test total, math concepts, and math test total achievement, than for the Washoe County School District population.
\end{abstract}

Table 42. Comparison of Pooulation and
Indian Fegression Models
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Fopulation Stepwise/Forced Entry Models
\(\qquad\)} & \multicolumn{3}{|l|}{Indian Stepuise/Forced Forced Entry} \\
\hline Predictor & & 2 of Explained Variance & Predictor & & \(\%\) of Explained Variance \\
\hline \multicolumn{6}{|c|}{Word Study Ekille} \\
\hline 1983 Reading Grade (m) & 14.32 & 58 & 1993 Reading Grade (0) & 18.67 & 57 \\
\hline Acreage Fer Student (a) & 4.89 & 20 & & & \\
\hline Sex (\(n\)) & 1.75 & 7 & & & \\
\hline Grade Level (\(n\) ! & 1.17 & 5 & Grade Level (n) & 1.28 & 4 \\
\hline Emergency Telephone (im) & 1.44 & 6 & Emergency Telephorie (i⿴囗 & . 19 & 1 \\
\hline Father 5 Status (in) & . 56 & 2 & Father's 5tatus (n) & 4.40 & 13 \\
\hline 1993 Citizenship Grade (m) & -. 92 & -4 & & & \\
\hline & & & Magazine Subscriptionis & & \\
\hline & & & Fer Student (0) & 4.08 & 12 \\
\hline Other \({ }^{\text {a }}\) & 1.62 & ¢ & Other \({ }^{\text {a }}\) & 4.07 & 12 \\
\hline Total & 24.34 & 100 & Totai & 32.67 & 99 \\
\hline
\end{tabular}

\section*{Readino Cogpretension}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1993 Reading Grade (a) & 21.85 & 67 & 1995 Keading Grade (0) & 31.46 & 84 \\
\hline Acreage Fer Student (m) & 4.38 & 14 & & & \\
\hline \multicolumn{6}{|l|}{Library Cperi fiter} \\
\hline School Fer Student (a) & . 97 & 3 & & & \\
\hline Gifted Frogram (im) & 1.52 & 5 & Gifted Fregram \({ }^{\text {a }}\) (a) & 2.30 & 6 \\
\hline \multicolumn{6}{|l|}{Cost of School} \\
\hline Fer Student (0) & -. 29 & -1 & & & \\
\hline Change of Schoois (n) & 1.52 & 5 & & & \\
\hline Sex (\(n\)) & . 77 & 2 & & & \\
\hline Emergency Telephone (a) & 1.14 & 4 & & & \\
\hline Free \& Fieduced Lunch (n) & 1.14 & 4 & & & \\
\hline \multirow[t]{3}{*}{1983 Citizenship Grade (a)} & \(-1.26\) & -4 & & & \\
\hline & & & Encyclopedia Sets & & \\
\hline & & & Fer Student (m) & 3.65 & 8 \\
\hline Other \({ }^{\text {a }}\) & . 68 & 2 & Qther \({ }^{\text {a }}\) & . 46 & 1 \\
\hline Total & 32.42 & 101 & Total & 37.27 & 99 \\
\hline
\end{tabular}
a--fredictors forced 3 nito equation, but not significant at or beyond the .15 level. (a)--Indicates variable that is aanipulable by the school district. (a)--Indicates variable that is not aanipulable by the school district.

Table 42. (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Fopulation Stepwise/Forced
\(\qquad\) Entry Hodels} & \multicolumn{3}{|l|}{Indian Stepwise/Forced Forced Entry} \\
\hline Predictor & & \(\%\) of Explained Variance & Predictor & \[
\begin{gathered}
\text { \% of } \\
\text { Table } \\
\text { Variance }
\end{gathered}
\] & \[
\begin{gathered}
\text { \% of } \\
\text { Explained } \\
\text { Variance }
\end{gathered}
\] \\
\hline \multicolumn{6}{|c|}{Reading Test Total} \\
\hline 1983 keading brade (a) & 25.74 & 66 & 1983 Fieading Girade (\({ }^{\text {(}}\) & 37.23 & 80 \\
\hline Acreage Per Student () \(^{\text {) }}\) & 5.08 & 13 & & & \\
\hline Library Open After Gchool Fer Student (a) & . 94 & 2 & & & \\
\hline Sex (n) & 1.80 & 5 & & & \\
\hline Eaergency Telephone (c) & 1.87 & 5 & Esergency Telephone (i) & . 15 & 0 \\
\hline Grade Level (\(n\)) & .73 & 2 & Grade Level \(\langle\mathrm{n}\)) & -. 22 & -1 \\
\hline Father's Status (in) & . 90 & 2 & Father's Status (a) & 1.01 & 2 \\
\hline 1997 Citizenship Grade (a) & -1.57 & -4 & & & \\
\hline & & & Magazine Subscriptions & & \\
\hline & & & Per Student (a) & 3.23 & 7 \\
\hline & & & Gifted Progras (a) & 2.61 & 6 \\
\hline Other \({ }^{\text {a }}\) & 3.69 & 9 & Other \({ }^{\text {a }}\) & 2.74 & 6 \\
\hline Total & 39.18 & 100 & Total & 45.75 & 100 \\
\hline
\end{tabular}
an-Fredictors forced into equation, but not sagnificant at or beyond the .15 level.
(a)--Indicates variable that is manipulable by the school district.
(n)--Indicates variable that is not manipulable by the school district.

Table 42．（Continued）
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Population Stepwise／Forced Entry Models} & \multicolumn{3}{|l|}{Indian Stepwise／Forced Forced Entry} \\
\hline Predictor & \[
\begin{gathered}
\text { Y of } \\
\text { Table } \\
\text { Variance } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\% \text { of } \\
\text { Explained } \\
\text { Variance } \\
\hline
\end{gathered}
\] & Predictor & \begin{tabular}{l}
\(\%\) of \\
Table \\
Variance
\end{tabular} & i．of
Enplained
Variance \\
\hline \multicolumn{6}{|c|}{Vocabulary Knowledge} \\
\hline 1583 Keading Grade（a） & 20.70 & 61 & 1983 Keading Grade（ \({ }^{\text {（ }}\) ） & 20.59 & 76 \\
\hline Free \＆Reduced Lunch（n） & 2.97 & 9 & & & \\
\hline Change of Schools（n） & 1.50 & 4 & & & \\
\hline Energency Teleptione（a） & 1.45 & 4 & & & \\
\hline Grade Level（ \(n\) ） & ． 69 & 2 & Grade Level（ \(n\) ） & ． 40 & 1 \\
\hline Gifted Frogram（a） & 1.63 & 5 & & & \\
\hline Library Dpen After School Per Student（ \(⿴ 囗 十\) ） & ． 74 & 2 & & & \\
\hline Magazine Subscriptions & & & & & \\
\hline Per Student（m） & ． 92 & 3 & & & \\
\hline Nuaber of Days & & & & & \\
\hline Absent in 1982－1983（0） & ． 90 & 3 & & & \\
\hline Hose Phone Listed（ n ） & 1.59 & 5 & & & \\
\hline & & & Encvelopedia Sets & & \\
\hline & & & Per Student（ \({ }^{\text {（ }}\) & 1.86 & 7 \\
\hline Other \({ }^{\text {a }}\) & ． 93 & 3 & Other \({ }^{\text {a }}\) & 4.30 & 16 \\
\hline Total & 34.02 & 101 & Total & 27.15 & 100 \\
\hline
\end{tabular}
a－－Predictors forced into equation，but not significant at or beyond the .15 level． （a）－－Indicates variable that is aanipulable by the school district． （n）－－Indicates variable that is not anipulable by the school district．

Table 42. (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Population Stepwise/Forced Entry Models} & \multicolumn{3}{|l|}{Indian Stepwiseiforced
\(\qquad\)} \\
\hline Predictor & & \(\%\) of Explained Variance & Predictor & \begin{tabular}{l}
\[
\therefore \text { of }
\] \\
Table \\
Variance
\end{tabular} & : of Explained Variance \\
\hline \multicolumn{6}{|c|}{Listening Coaprehension} \\
\hline 1983 neading Grade (a) & 16.67 & 54 & 1983 Keading Grade (a) & 14.75 & 60 \\
\hline Grade Level (n) & 3.04 & 10 & & & \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{Change of Schools (n) Magazine Subscriptions}} \\
\hline & & & & & \\
\hline Fer Student (m) & 1.43 & 5 & & & \\
\hline Free \& Keduced Lunch in & 2.03 & 7 & & & \\
\hline Number of Parents A Mbsent & (n) -.04 & 0 & & & \\
\hline Hoae Fhone Listed (n) & 1.55 & 5 & & & \\
\hline \multicolumn{6}{|l|}{Litrary Dpen After} \\
\hline Sctioul Per Student (a) & . 09 & 0 & & & \\
\hline Emergency Telephone (a) & 1.24 & 4 & & & \\
\hline \multirow[t]{5}{*}{Student's Residence (n)} & . 91 & 3 & Student's Residence (\(n\)) & 1.55 & \(t\) \\
\hline & & & Fercentage of Books & 2.82 & 11 \\
\hline & & & Father's Status (n) & 1.31 & 5 \\
\hline & & & Encyclopedia Sets & & \\
\hline & & & Fer Student (a) & 2.30 & 9 \\
\hline Other \({ }^{\text {a }}\) & 1.04 & 3 & Other \({ }^{\text {d }}\) & 1.40 & 8 \\
\hline Total & 30.72 & 100 & Total & 24.63 & 99 \\
\hline
\end{tabular}
d--Fredictors forced into equation, but not significant at or beyond the . 15 level.
(a)--Indicates variable that is a anipulable by the school district.
(\(n\)) --Indicates variable that is not annipulable by the school district.

Table 42. (Continued)

\(\qquad\)
a--Fredictors forced into equation, but not significant at or beyond the . is level.
(a)--Indicates variable that is amipulable by the school district.
(n)--Indicates variable that is not manipulable by the school district.

Table 42. (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Population Stepuise/Forced Entry Model 5} & \multicolumn{3}{|c|}{Indian Stepwise/Forced Forced Entry} \\
\hline & \(\%\) of & \(\%\) of & & \(\%\) of & \(\%\) of \\
\hline & Table & Explained & & Table & Explained \\
\hline Predictor & Variance & Variance & Predictor & Variance & Variance \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1983 Keading Grade (m) & 24.72 & 62 & 1983 Keading Grade (m) & 21.02 & 58 \\
\hline Student's Residence (n) & 3.84 & 10 & Student's Residence (n) & . 08 & 0 \\
\hline Sex (n) & 2.82 & 7 & & & \\
\hline Acreage Per Student (a) & 2.91 & 7 & & & \\
\hline Encyclopedia Sets & & & & & \\
\hline Fer Student () \(^{\text {c }}\) & 1.98 & 5 & & & \\
\hline Fercentage of Books & & & & & \\
\hline Lost Fer Student (in) & 2.13 & 5 & & & \\
\hline Number of Parents & & & Nuaber of Parents & & \\
\hline Employed (\(n\)) & -. 04 & 0 & Employed (\(n\)) & -. 61 & -2 \\
\hline & & & Nuaber of Days Absent & & \\
\hline & & & in 1982-1983 (0) & 4.17 & 11 \\
\hline & & & Father's Status (n) & 1.63 & 4 \\
\hline & & & Gifted frogran (\({ }_{\text {a }}\)) & 3.55 & 10 \\
\hline & & & Nuaber of Parents Absent & (n)2.45 & 7 \\
\hline & & & Emergency Telephone (m) & . 36 & 1 \\
\hline & & & Free \& Keduced Lunch (n) & 2.03 & 6 \\
\hline Other \({ }^{\text {a }}\) & 1.25 & 3 & Other \({ }^{\text {a }}\) & 1.86 & 5 \\
\hline Total & 39.61 & 99 & Total & 36.54 & 100 \\
\hline
\end{tabular}
a--Predictors forced into equation, but not significant at or beyond the . 15 level. (\(\mathbf{(})\)--Indicates variable that is anipulable by the school district. (n)--Indicates variable that is not a anipulable by the school district.

Table 42. (Continueo)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Population Stepwise/Forced Entry Models} & \multicolumn{3}{|c|}{Indian Stepwise/Forced Forced Entry} \\
\hline & \% of & \% of & & \% of & \% of \\
\hline & Table & Explained & & Table & Explained \\
\hline Predictor & Variance & Variance & Fredictor & Variance & Variance \\
\hline
\end{tabular}

Math Concepts
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1993 Grade Point & & & 1933 Grade Foint & & \\
\hline Average (a) & 23.86 & 76 & Average (b) & 30.57 & 81 \\
\hline Gifted Program (& 2.59 & 8 & Gitted Frogra (0) & 2.55 & 7 \\
\hline Grade Level (n) & 1.75 & 6 & & & \\
\hline Fercentage of Books & & & Percentage of Books & & \\
\hline Lost Per Student (a \(^{\text {a }}\) & 1.41 & 4 & Lost Fer Student (a) & 3.34 & 9 \\
\hline 1983 Citizenship Grade (\({ }_{\text {() }}\) & -1.91 & -6 & & & \\
\hline Howe Fhone Listed (n) & 1.34 & 4 & & & \\
\hline Library Open After & & & & & \\
\hline School Fer Student (m) & . 65 & 2 & & & \\
\hline & & & Sex (\(n\)) & . 71 & 2 \\
\hline Other \({ }^{\text {a }}\) & 1.48 & 5 & Other \({ }^{\text {a }}\) & . 28 & 1 \\
\hline Total & 31.17 & 99 & Total & 37.55 & 100 \\
\hline
\end{tabular}
a--Predictors forced into equation, but not significant at or beyond the . 15 level.
(a)-Indicates variable that is manipulable by the school district.
(n)--Indicates variable that is not manipulable by the school district.

Table 42. (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Fopulation Stepwise/Forced Entry Models} & \multicolumn{3}{|l|}{Indian Stepwise/Forced Forced Entry} \\
\hline Predictor & \(\%\) of Table Variance & \% of Explaine Variance & Predictor & \begin{tabular}{l}
4 of \\
Table \\
Variance
\end{tabular} & 4. of Explained Variance \\
\hline \multicolumn{6}{|c|}{Math Test Total} \\
\hline 1993 Grade Point & & & 1983 Grade Foint & & \\
\hline Average (\%) & 28.26 & 83 & Average (\({ }^{\text {(}}\) & 32.77 & 85 \\
\hline Gifted Frogram (m) & 3.07 & 9 & Gifted Frogras (a) & 2.75 & 7 \\
\hline Fercentage of Books & & & Percentage of Books & & \\
\hline Lost Per Student (a) & 1.65 & 5 & Lost Per Student (a) & 3.46 & 9 \\
\hline 1983 Citizenship Grade (a) & -1.49 & -4 & & & \\
\hline Age in Honths at & & & & & \\
\hline Tias of Test (n) & . 89 & 3 & & & \\
\hline Library Open After & & & & & \\
\hline School Per Student (m) & . 61 & 2 & & & \\
\hline Other \({ }^{\text {a }}\) & 1.21 & 3 & Other \({ }^{\text {a }}\) & -. 30 & -1 \\
\hline Total & 34.20 & 101 & Total & 38.68 & 100 \\
\hline
\end{tabular}

\section*{Science Knowledge}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{1993 Grade foint} & \multicolumn{3}{|l|}{1993 Grade Foint} \\
\hline Average (0) & 17.80 & 60 & Average (m) & 16.81 & 59 \\
\hline \multicolumn{6}{|l|}{Age in Months at} \\
\hline Tiae of Test (n) & 4.61 & 15 & & & \\
\hline Acreage Per Student (a) & 4.47 & 15 & & & \\
\hline \multicolumn{6}{|l|}{Library Open After} \\
\hline School Per Student (a) & 1.07 & 4 & & & \\
\hline Sex (\(n\)) & . 60 & 2 & & & \\
\hline \multirow[t]{5}{*}{Gifted Frogran (a)} & 1.62 & 5 & Gifted Program (\(\mathbf{a}^{\text {) }}\) & 3.99 & 14 \\
\hline & & & Percentage of Books & & \\
\hline & & & Lost Per Student (m) & 5.78 & 20 \\
\hline & & & Grade Level (n) & 2.69 & 10 \\
\hline & & & 1983 Citizenship Grade (1) & -1.58 & -6 \\
\hline Other \({ }^{\text {a }}\) & -. 33 & -1 & Other \({ }^{\text {d }}\) & . 72 & 3 \\
\hline Total & 29.84 & 100 & Total & 28.41 & 100 \\
\hline
\end{tabular}
a--Fredictors forced into equation, but not significant at or beyond the . 15 level.
(a)--Indicates variable that is a anipulable by the school district.
(n)--Indicates variable that is not manipulable by the school district.

\section*{Word Study Skills}

In comparing the models for word study skills (Table 42), it was found that overall the antecedent predictors entering the equations
\begin{tabular}{|c|}
\hline County School District population model. The best predictor for both \\
\hline was previous class (reading) grades, with each having about the same \\
\hline amount of variance explajned by previous grades. Interestingly, \\
\hline previous grades explained \(4 \%\) more of the total variance in the Indian \\
\hline model, but \(1 \%\) less of the explained variance. This meant that in \\
\hline comparison to the other predictors in the word study skills model for \\
\hline Indian students, this larger amount of total variance accounted for by \\
\hline previous grades was essentially the same \((1 \%\) less) as the relative \\
\hline contribution of previous grades to the population model. \\
\hline Uther predictors entering into both the population and Indian word \\
\hline study skills models of achievement were grade level, emergency \\
\hline telephone listing, and father's status. That is, being in an upper \\
\hline grade level and having a natural father were predictive of higher \\
\hline achievement for both the population and Indian students. However, \\
\hline having an emergency telephone number listed at the school office (r = \\
\hline . 15) predicted higher achievement for the population, while not having \\
\hline one listed (\(\quad=-.02\)) apparently predicted higher achievement for \\
\hline Indian students. Grade level contributed nearly equally to both \\
\hline models, but emergency telephone listing accounted for seven times more \\
\hline of the variance in the population model than in the Indian model, \\
\hline while father's status (i.e., having a natural father or not) explained \\
\hline eight times more in the Indian model than the population model. More \\
\hline importantly, father's status made the second largest contribution to \\
\hline Indian word study skills achievement, but had minimal contribution to \\
\hline
\end{tabular}
```

the population model. Conversely, the emergency telephone listing
variable made the smallest contribution to the Indian word study
skills model, and only a moderately small contribution to the
population model.
The school's acreage per student was the second largest
contributor (5%) to the word study skills variance in the Washoe
County School District population model, but was not a predictor in
the Indian model. Specifically, less acreage per student (r = -. 25)
was significantly predictive of word study skills achievement ffor a
discussion of this, see the section on "Accounting For the Variance"
below). Dther antecedents entering only the population model were
student'= 5E% (2%) and student's 1983 citizenship grade (-1%). Thus,
being female (r = .1J) and having good citizenship grades (r = . IJ)
Were predictive of higher word study skills achievement. The one
variable entering into the Indian model, but not into the fopulation
model, was {he number of magazine subscriptions per student (4%),
which interestingly meant that having fewer magazines per student (r =
-.19) was predictive of higher word study skills achievement for
Indian students. In regards to variables forced into the equation,
but not statistically significant at or beyond the . 15 level, it was
found that these other factors contributed twice as much to the total
variance in the Indian model (4%) as in the hashoe County School
District population model (2%).

```

\section*{Reading Comprehension}

The Indjan model of achievement accounted for \(4.8 \%\) more of the
```

total reading comprehension variance than did the Washoe County School
District population model. Previous grades were the best predictor of
reading comprehension for both models, but the 1983 reading grade
accounted for 9.6% more of the total variance (and contributed 17%
more to the explained variance) in the Indian student model. The only
other factor entering both models was participation in the gifted
program, where participation predicted higher reading comprehension
achievement for both the population (r = . 22) and Indian students (r =
.23). The participation in the gifted program variable accounted for
more of the total variance in the Indian student model (2%) than in
the population model (1%), but both contributed about the same
percentage to the explained variance.
The second best predictor of reading comprehension achievement,
after previous grades, in the Washoe County School District population
model was once again the school's acreage per student (4%); that is,
smaller school grounds promoted or predicted nigher reading
comprehension achievement for the population but not for Indian
students. Dther antecedents in the population model, but not in the
Indian student model, were how long the library was open after school
per student (1%), the cost of the school per student (-.3%), the
change of schools made by the student (2%), the student's se% (1%),
whether an emergency telephone number was listed (1%), whether the
student was in the federal lunch program (1%), and the student's 1983
citizenship grade (-1%). In other words, having libraries open longer
after school (r = . 10), having less expensive schools (r = -.0ミ),

```
```

remaining at the same school for consecutive years (r = . 18), being
female (r = .0\&), having an emergency telephone number listed with the
school (r = . 15), not being in the federal lunch program (r = -. 1b),
and having good citizenship grades (r = .13) were all predictive of
higher reading comprehension achievement in the Washoe County School
District population. In contrast, the only predictor, which was also
the next best predictor after previous grades, in the Indian student
model, but not the population model was the number of encyclopedja
sets per student, where having more sets (r = . 20) predicted higher
reading compretiension achievement and explained 3% of the total
variance, but contributed 8% of the explained variance. The other
variables forced into the equation that were not statistically
significant were not very good predictors either, as they accounted
for less than 1% of the total variance in both models.

```

\section*{Feading Test Total}

```

(r = .18) was predictive of higher reading test total achievement in
the population, but not having one listed (r = -.01) was seemingly
predictive of higher reading test total achievement for Indian
students. Father's status contributed equally (2%) to the explained
variance in the models, but did account for a little more (.1%) of the
total table variance jn reading test total achievement for Indian
students. Thus, having a natural father was predictive of higher
reading test total achievement for both the population (r = . 11) and
Indian students (r = . 10). Interestingly, grade levei was found to
negatively contribute (-1%) to the explained variance for Indian
students, while it positively added (2%) to the population model.
This was caused by the fact that being in a lower grade level ir =
-.02), rathar than a higher grade level, was predictive of higher
reading test total achievement for Indian students, while being in a
higher grade (r = . 10) was predictive of higher achievement in the
population. This, grade level had divergent effects in the population
and for Indian students in the area of reading test total achievement;
that is, being in a higher grade level acted as a suppressor variable
in the Indian model as well as predicting lower reading test total
achievement rather than higher achievement for the Indian students.
As with the previous two models, which were concerned with
subtests of reading achievement, the second best predictor of reading
test total achievement after previous grades in the Washoe County
School District (but not for Indian students only) was school acreage
per student (5%), which contributed 13% of the explained variance.

```

Thus, going to schools with less acreage (\(\underline{-}=-28\)) was predictive of higher reading test total achievement for the population. Other factors accounting for the total variance in only the population model were how long the library was open after school per student (1\%), student's 5e\% (\(2 \%\)), and 1983 citizenship grade (-2\%). In other words, going to schools where the library was open longer after school (r = . 10), being female (\(r=.13\)), and having higher citizenship grades (r \(=\). 15) were all predictive of higher reading test total achievement in the population, but not for Indian students. The two predictors of Indian reading test total achievement that did not enter the population model were the number of magazine subscriptions per student (3\%) and participation in the gifted program (3\%). That is, having fewer magazines per student in the school library (r = -.17) and participating in the gifted program (r = . 26) were predictive of higher reading test total achievement for Indian students but not the population in general.

With regards to the other variables that entered the equation as a result of the forced entry data analysis procedure, but were not statistically significant (i.e., p \(\quad .15\)), it was found that they accounted for \(4 \%\) of the total variance in the population model and \(3 \%\) of the total variance in the Indian student model, which was \(6 \%\) of the explained variance in both the population and Indian models of reading test total achievement.

\section*{Vocabulary Knowledqe}

In contrast to the other areas of achievement discussed so far,
```

the Washoe County School District population model (34%) accounted for
more variance in vocabulary knowledge (Table 42) than the Indian model
(27%). The 1983 reading grade, the best predictor, accounted for 20%
of the total variance in both the population and Indian vocabulary
models, but contributed 15% more of the explained variance in the
Indian (76%) model than in the population model (61%). The only other
antecedent that entered into both equations was grade level, but in
neither case did the variable account for much of the total variance
\less than 1%). However, being in a higher grade level was predictive
of higher vocabulary achievement for both the population (1. = . 10) and
the Indian students (r = 0S).
Eight antecedent variables of vocabulary knowledge were predictors
of the observed variance in the population model of vocabulary
achievement, but were not in the Indian model. Farticipation in the
federal lunch program (3%), change of schools (2%), emergency
telephone listing (1%), participation in the gifted program (2%),
length of time the library was open after school per student (1%),
number of magazine subscriptions per student (1%), number of days
absent in 1982-85 (1%), and whether a home phone was listed (2%)
together accounted for 12% of the population vocabulary knowledge.
That is, not being in the federal lunch program (r = -. 23), not
changing schools (r = . 20), having an emergency telephone number
listed (r = .17), participation in the gifted program (r = . 2J),
attending a school where the library was open longer after school per
student (r = .11), having fewer magazines (r = -.14), being absent

```
```

more days (r = .09), and the listing of a home telephone number (
.18) were all predictive of higher vocabulary achievement in the
Washoe County School District population, but not for Indian students
only. The number of encyclopedia sets per student, which accounted
for 2% of the total variance, was the only predictor that was in the
Indian model and not the population model of vocabulary knowledge.
Thus, having more encyclopedias per student (r = .18) was predictive
of Indian, but not population, vocabulary achievement.
There was considerable difference between the models with respect
to the amount of table and explained variance contributed by the other
variables forced into the respective models. Those entering variables
which were not statistically significant (i.e., p >.15) accounted for
1% of the total (and 3% of the enplained) variance in the population
model, but they accounted for 4% of the total (and 16% of the
explained) variance in the Indian model, of vocabulary knowledge. In
Other words, those variables forced into the Indian model of
vocabulary knowledge by statistical procedures made a substantively
larger contribution to both the table and explained variances.

```

\section*{Listening Comprehension}
```

As with the vocabulary knowledge models, considerable differences between the Washoe County School District population model and the Indian model of listening comprehension achievement were found (Table 42). Of the ten antecedent factors in the population model, only two were found to be also predictive of Indian listening comprehension. Moreover, the population model accounted for more variance (31\%) in

```
```

listening comprehension test scores than the Indian model (25%).
Frevious grades accounted for 17% of the total variance and 54% of the
explained variance in the population model, while they accounted for
15% of the total variance, but 60% of the explained variance, in the
Indian model of listening comprehension. Student's residence was the
only other common predictor, which explained 1% and 2% in the
population and Indian models of listening comprehension respectively.
Interestingly, the predictive association between residence and
listening comprehension was different for the population and Indian
students. While living in the urban Reno-Sparks (and Colony) area (r
= -.10) was predictive of higher listening comprehension achievement
in the Washoe County School District population, living on the Fyramid
Late Indian fieservation {and in the rural Washoe County area) (r =
.11) was predictive of higher listening comprehension achievement for
Indian students.
The eight antecedents of the Washoe County School District
population model of listening comprehension, which did not contribute
to understanding Indian student listening comprehension, were grade
level (3%), change of schools (3%), number of magazine subscriptions
per student (1%), participation in the federal lunch program (2%),
number of parents absent ( }0%\mathrm{ ), home telephone listing (2%), how long
the library was open after school per student (0%), and emergency
telephone listing (1%). In other words, being in a higher grade level
(r = .18), having not changed schools (r = . 20), having fewer
magazines per student in the school library (r = -. 1b), not

```
```

participating in the federal lunch program (r = -.18), having both
parents present at home (r = -.00), having a home telephone number
listed at the school (r = . 16), attending a school where the library
was open longer after school per student (r = . 12), and having an
emergency telephone number listed at the school (r = .15) were all
predictive of higher listening comprehension achievement for the
population, but not the Indian students. In contrast, the percentage
of books lost per student (3%), the father's status to the student
(1%), and the number of encyclopedia sets per student (2%) were
predictors of Indian student listening comprehension achievement, but
not for the whole Washoe County School District population. Thus,
attending schools where fewer books fer student were lost (r = .13),
having a stepfather, legal guardian, or father missing (r = .12), and
going to schools with more encyclopedia sets per person (r = . 20)
predicted higher listening comprehension achievement for Indian
students, but not for the population.
Once again, the other variables forced into the models accounted
for more total variance in the Indian model (2%) than in the
population model (1%). These other variables, however, did contribute
twice as much explained variance in the Indian model (8%) as in the
population model (3%).

```
Auditory Test Total
 It was interesting to have found that the auditory test total
model (Table 4Z) accounted for more total variance in achievement test
scores for the Indian students (31\%) than for the population (26\%),

```

federal lunch program (r = -. 17), staying at the same school (r =
.17), living in the urban Reno-Sparks (and Colony) area (r = -.06),
having a stepfather, legal guardian, or no father (r = .0S), being
absent more days (r = .08), having both parents present at home (r =
-.02), and having a home telephone listed (r = . 15) were all
predictive of higher auditory test total achievement for the
population, but not for Indian students only. The percentage of books
lost per student (2%), the number of encyclopedia sets per student
(2%), and grade level (0%) variables accounted for 4% of the total
variance in the Indian model, which were not in the Washoe County
School District population model, of auditory test total achievement.
Thus, attending a school where fewer books were lost per student (r =
-.14), having more encyclopedia sets per student (r = . 20), and being
in a higher grade (r = .00) were all predictive of auditory test total
achievenent for Indian students, but not the population. Unce again,
the other variables forced into the models accounted for more variance
in the Indian model (1%) than in the population model (0%).

```

\section*{Spelling}
```

    Fredictors entering into the Washoe County School District
    population model of spelling accounted for 40% of the observed
variance in achievement, while those entering into the Indian model
erplained St% of the table variance (Table 42). Frevious grades, tha
strongest predictor in both models, accounted for slightly more
variance in the population model (25%) than in the Indian model
(21%). Student's residence and number of parents employed also

```

```

father's status (2%), participation in the gifted program (4%), number
of parents absent (2%), emergency telephone listing (0%), and
participation in the federal lunch program (2%) all together explained
14% of the total variance and contributed 39% of the explained
variance. That is, being absent fewer days (r = -. 27), having a
natural father (r = -.13), participating in the gifted program (r =
.26), having both parents at home (r = -.13), not having an emergency
telephone number listed with the school (r = -.03), and not
participating in the federal lunch program (r = -.16) were all
predictive of higher spelling achievement for Indian students only,
and not the population. Other variables forced to enter into the
respective models contributed 1% of the total variance in the
population and 2% in the Indian models of spelling achievement.
Math Concepts
Taken together, all antecedents entering into the equations for
math concepts achievement (Table 42) accounted for 31% of the variance
in the Washoe County School District population model and 38% of the
variance in the Indian model. Although the 1983 grade point average
accounted for 7% more total variance in the Indian model (31%) than in
the population model (24%), there was only a 5% difference in their
relative contributions to the enplajned variances. Two other
antecedents were also found to enter into both models of math concepts
knowledge. Farticipation in the gifted program accounted for 3% of
the total variance in both, while contributing 7% of the e%plained
variance in the lndian model and 8% in the population model.

```

```

Math Test Total
Of all the models of academic achievement, the math test total
models exhibited the greatest structural congruency in the sense that
there were mo predictors in the Indian model that were not also in the
Washoe County School District population model (Table 42). Despite
the fact that three of the antecedents in the population model did not
enter the Indian model of math test total achievement, the Indian
model still explained 39% of the total variance, in comparison to only
34% explained by the population model. The 1983 grade point average
was the strongest predictor, contributing over 80% of the explained
variance in both the population (83%) and Indian (85%) models.
Frevjous grades, however, accounted for 5% more of the total variance
in the Indian model (33%) than in the population model (2E%).
Participation in the gifted program was the second best predictor in
the population model (3%), and the third antecedent of the Indian
model (3%). Conversely, the percentage of books lost per student was
the second best predictor in the Indian model (3%) and the third
antecedent of the population model (2%). Both participation in the
gifted program {re = .25; rI = .28) and attending schools where fewer
books were last per student (rp = -.12; II = -.17), therefore, were
predictive of higher math test total achievement for both the
population and the Indian students.
Two of the three predictors that entered just the population model
added positively to the explained variance, while 1983 citizenship
grade acted as a suppressor (-1%). The other two variables, age in

```
```

months at the time of the test ( $1 \%$ ) and how long the library was open after schoal per student (1\%) positively explained another $2 \%$ of the variance in math test total achievement. Nonetheless, higher citizenship grades ( $\underline{-}=.13$ ), being older (in months) ( $\underline{\sim}=.12$ ), and attending a school where the library was open longer after school per stedent ( $\underline{( }=.08$ ) were predictive of high math test total achievement for the population, but not for Indian students only. Thus, those variables not entering the Indian model, but entering the population model, were structurally rather than statistically important. In looking at the other variables forced into the equations, it was found that these other variables accounted for $1 \%$ of the total for $3 \%$ of the explained) variance in the population model, while negatively explaining or suppressing less that $1 \%$ of the total sor $-1 \%$ of the explained) variance in the Indian model of achievement.

```

\section*{Ecience Knowledqe}

With respect to the percentage of total variance accounted for by the models, the least observed differences between the Washoe County School District population model and the Indian model were found for science knowledge achievement (Table 42). Si\% variables accounted for \(30 \%\) of the total varjance in the population model, while five factors accounted for \(28 \%\) of the total variance in the Indian model of science achievement. The 1983 grade point average, again the best predictor, accounted for \(18 \%\) of the total (or \(50 \%\) of the explained) variance in the population model, and \(17 \%\) of the total (or \(5 \% \%\) of the explained) variance in the Indian model. The other antecedent common to both
```

models, participation in the gifted program, was more than twice as
predictive in the Indian model (4%) as in the population model (2%),
and contributed nearly three times the amount of explained variance.
Farticipation in the gifted program (rf = .19; II = . 30), then, was
predictive of science achievement for both the population and Indian
students only.
Eoth the age in months at the time of the test (5%) and the
acreage per student (4%) variables made substantive contributions to
the explained variance in the population model, but were not part of
the Indian model. Conversely, the percentage of books lost per
student (6%) and grade level (3%) made substantive contributions to
the explained variance in the Indian model, but did not enter into the
population model. Together, how long the library was open after
school per student (1%) and the student's se: (1%) accounted for
another 2% of the total variance in the population model, while the
19BS citizenship grade acted as a suppressor in the Indian model (-2%)
of science knowledge achievement. In other words, being older i[ =
.24), attending schools with less acreage (r = -.21), attending
schools that had a library open longer after school per student (r =
.10), and being male (r = -.07) were all predictive of higher science
achievement for the population model, but not for the Indian students
only. On the other hand, attending a school with fewer books lost per
student (I = -.22), being in a higher grade level (r = .12), and
having higher citizenship grades (r = . 13) were all predictive of
science achievement for Indian students only, and not for the

```
```

population. With respect to the other variables, it was found that
the variables acted as a suppressor (0%) in the population model and
added an additional 1% to the amount of variance explained by the
Indian model of science achievement.

```
Accounting For the Variance
 As discussed above, previous grades were the single best prodictor
of academic achievenent for both students in the Washoe County Erhool
District in general, and for Indian students more specifically.
Despite this result, it was also found that previous grades, on the
average, accounted for only \(21 \%\) of the variance in achievement for the
population and \(25 \%\) of the variance \(1 n\) achievement for Indian
三tudent \(\overline{\text {. }}\) This meant that three-fourths or more of a students
academae achavement, as measured by standardized test scores, was
attributable to phenomema other than previous academic performance.
This raises the issue of how well other predictors accounted for the
variance. Table 43, therefore, comparatively summarizes these factors
found to be predictive of the various measures of acadenic acmievement
for the district and the Indian student population.
 It was found (Table 4\%) that the other antecedent measure of
previous academic success used in this study, the number of days
absent in 1982-83, was an even poorer predictor than grades. The
variable accounted for less than \(1 \%\) of the variance in the population
vocabulary knowledge and additory test total models, and \(4 \%\) of the
variance 10 the \(\operatorname{lndian~spelling~model.~Except~for~helping~to~explain~}\)
variance in Indian student's spelling achicvement, attendance was

Table 4.3. Comparison of Predictor Contritutions to Models

a--Population Models. D--Indian Models.
E--Value is total father than mean 5nace there was oniy one occurrence of this factor.
(a)--Indicates variable that 15 ootentially amipulable by the sinool district.
ini--lindicates variable that is not manipuiable by the school district.

Tabie 43. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
Liste \\
Comprah
\end{tabular} & \[
\begin{aligned}
& \text { ing } \\
& \text { nsion }
\end{aligned}
\] & & ory & Spel & inq & \begin{tabular}{l}
Keading \\
Rver
\end{tabular} & \begin{tabular}{l}
Model \\
ge
\end{tabular} \\
\hline & \(\mathrm{F}^{\text {a }}\) & \(I^{6}\) & \(F\) & 1 & - & 1 & F' & I \\
\hline Predictors & \% & \% & \(\%\) & \% & \(\%\) & \% & \(\%\) & \% \\
\hline Academic Achieveaent & & & & & & & & \\
\hline Nuaber of Days Absent & & & & & & & & \\
\hline in 1982-1983 (a) & & & . 5 & & & 4.17 & . 76 & 4.176 \\
\hline Subtotal & & & . 62 & & & 4.17 & . 76 & \(4.17^{6}\) \\
\hline Student Evaluations & & & & & & & & \\
\hline 1983 Citizenship Grade (0) & & & & & & & -1.25 & \\
\hline Gifted Frogram (0) & & & 1.48 & 3.18 & & 3.55 & \(\underline{1.54}\) & 2.91 \\
\hline Subtotal & & & 1.48 & 3.18 & & 3.55 & . 18 & 2.91 \\
\hline Gackeround Characteristics & & & & & & & & \\
\hline Age in Months at Time of Test (n) & & & & & & & & \\
\hline Change of Schools (n) & 2.76 & & 1.55 & & & & 1.83 & \\
\hline Emergency Telepnone (a) & 1.24 & & 2.03 & & & . 35 & 1.53 & . 23 \\
\hline Father's Status (n) & & 1.31 & . 32 & & & 1.63 & . 59 & 2.09 \\
\hline Free \& Feduced Lunch (\(n\)) & 2.03 & & 1.71 & & & 2.13 & 1.96 & 2.036 \\
\hline Howe Phone Listed (n) & 1.50 & & 1.33 & & & & 1.49 & \\
\hline Nusber of Parents Absent (in) & -. 04 & & - . 17 & & & 2.45 & -. 11 & 2.455 \\
\hline Number of Farents Employed (n) & & & & & -. 04 & -. \({ }^{2}\) & -. \(044^{4}\) & -. \(611^{6}\) \\
\hline Sex (n) & & & & & 2.82 & & 1.79 & \\
\hline Student 5 Fesidence (in) & . 71 & 1.55 & . 59 & & 3.34 & . 619 & \(\underline{1.75}\) & . 8 i \(i\) \\
\hline Subtota! & 8.45 & 2.56 & 7.34 & & 6.62 & 5.94 & 6.12 & 3.64 \\
\hline School Environaent and Learrina Contay & ontests & & & & & & & \\
\hline Acreage Fer Student (a) & & & & & 2.91 & & 4.32 & \\
\hline Cost of School fer Student (1) & & & & & & & -.296 & \\
\hline Encyelopedia Sets Fer Student (m) & & 2.30 & & 2.37 & 1.48 & & 1.98 C & 2.40 \\
\hline Grade Level (n) & 3.14 & & & . 00 & & & 1.41 & . 36 \\
\hline Library Open After & & & & & & & & \\
\hline Sthool Per Student (if) & 0.09 & & & & & & . 67 & \\
\hline Magazine Subscriptions & & & & & & & & \\
\hline Fer Student (a) & 1.43 & & & & & & 1.18 & 3.66 \\
\hline Percentage of Books & & & & & & & & \\
\hline Lost Fer Student (n) & \(\cdots\) & 2.82 & & 2.45 & 2.15 & & \(2.13^{\text {C }}\) & 2.62 \\
\hline Subtotal & 4.56 & 5.12 & & 4.80 & 7.02 & & 5.30 & 3.90 \\
\hline Total & 13.01 & 7.98 & 9.44 & 7.98 & 13.54 & 13.66 & 11.00 & 7.71 \\
\hline
\end{tabular}
a--Fopulation Models. E--Indian Models.
c--Value is total rather than mean sance there was only one occurrence of thas factor.
(a)--Indicates variable that is potentially manipulable by the school district.
(n)--Indicates variable that 15 not manapulable or the school alstrict.

Tabie 43. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{2}{|c|}{Math} & \multicolumn{2}{|c|}{Math} & \multicolumn{2}{|l|}{Staence} & \multicolumn{2}{|l|}{Matí Model} \\
\hline & \multicolumn{2}{|l|}{Concepts} & \multicolumn{2}{|l|}{Test iotal} & \multicolumn{2}{|l|}{Knowledge} & \multicolumn{2}{|l|}{Average} \\
\hline & F & \(i^{6}\) & F & i & F & 1 & \(\overline{\mathrm{F}}\) & I \\
\hline Fredictors & 4 & \(\%\) & \(\%\) & \% & \(\%\) & 2 & \(\%\) & \% \\
\hline
\end{tabular}

Academic Áhrieverient
 Huaber of Days Absent
 in 1982-1983 (in)
 Subtotal

Student Evaluations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1783 Citizenishto Grade mi & -1.19 & & -1.47 & & & -1.53 & -1.34 & -1.536 \\
\hline Gifted frogran (a) & 2.5 & 2.65 & 3.67 & 2.75 & 1.62 & 3.99 & 2.43 & 3.13 \\
\hline Subtotal & . 6 & 2.65 & 1.58 & 2.75 & 1.62 & 2.41 & 1.98 & 2.60 \\
\hline
\end{tabular}

Baikoround characteristics
fige in months at
Tiax of lest (m)
Hone Fhone Listed (n)
GE: (m)
Sibtotal
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & . 34 & 4.61 & 2.75 & \\
\hline 1. & & & & 1.345 & \\
\hline & . 71 & & . 510 & . 5 年 & . \(711^{2}\) \\
\hline 1.34 & . 71 & . 39 & 5.21 & 2.45 & . \(711^{6}\) \\
\hline
\end{tabular}

Ethoul Eripirurinent and
Learning Contexts

a--Population Models. O--Indian Models.
C--Value 15 total rather than mean sance there was only one occurfence of this factor. (a)--lnolcates variable that is octentially manipuiable by the school oistrict. (m)--Indicates variable that is not mampulade bu the scriod district.
```

found to be a poor predictor of achievement. More to the point,
attendance was not a predictor of word study skills, reading
comprehension, reading test total, listening comprehension, math
concepts, math test total, or science knowledge for either the washoe
County School District elementary students in general or the Indian
elementary students in particular. Nor was attendance a predictor of
vocabulary knowledge or auditory test total achievement for Indian
students. Structurally, attendance was a better predictor for the
Washoe County School District population in general than for Indian
students only, while in terms of total accountability attendance was a
good predictor of spelling achievement only.
In looking at the student evaluation predictors (Table 4Z) several
patterns stood out. Foremost was that participation in the gifted
program was, both in terms of structure and accountability, a
consistent predictor of achievement, particularly for the math
oriented models. This meant that in the Washoe County School
District, where participation in the gifted program was based upon
previdus demonstrated achievement and previous achievement (grades)
was accounted for, the gifted program enhanced or compounded student
achievement--the achievers become even better achievers. With respect
to just the reading models, the gifted program antecedent entered into
four of the Indian models, as compared to three of the population
models. More importantly, participation in the gifted program
accounted for, on the average, mearly twice as much of the total
variance in the Indian reading oriented models (2.9%) as in the

```


\begin{abstract}
That is, taken together, these variables entered thirty of a possible seventy times in the population reading oriented models, and four out of nine times in the population math models. In contrast, background variables entered only twelve of seventy, and one of nine, times in the Indian reading and math models, respectively. Individually the predictors that accounted for more than \(2 \%\) of the total variance were father's status in the Indian word study skills model (\(4 \%\)), participation in the federal lunch program in the population vocabulary knowledge (3\%) and listening comprehension (\(2 \%\)) models and the Indian spelling (\(2 \%\)) model, the change of schools in the population listening comprehension (\(3 \%\)) model, emergency telephone listing in the population auditory test total (2\%) model, student's se\% (3\%) and student's residence (4\%) in the population spelling model, the number of parents absent in the Indian spelling (\(2 \%\)) model, and the student's age in the population science knowledge (5\%) model. On the average, all background variables accounted for \(6 \%\) of the total variance in population reading oriented models, which contrasted with 4\% of the total variance in Indian reading oriented models. More dramatically, background characteristiss accounted for over \(2 \%\) of the total variance, on the average, in the Washoe County School District population math oriented models, but less than \(1 \%\) in the Indian models. Overall, then, background characteristics were fair predictors, particularly structurally, for the district students in general, but were poor predictors of Indian student achievement.
\end{abstract}
```

Ferhaps of greatest interest to this study was how the models compared (Table 4J) with respect to school environment and learning context antecedents of academic achievement. Structurally, the most consistent predictor of achievement was grade level, although the amount of variance explained by this factor was negligible. The percentage of books lost per student was also a consistent predictor for the math oriented models. When comparing amounts of variance explained by the various contextual variables, it was found that they explained more variance, on the average, in the washoe County School District reading oriented population models (5.3\%) than in the same Indian models $(3.5 \%)$, but they explained more in the Indian math oriented models (5. $1 \%$ ) than in the same population models (3. $9 \%$ ). Overall, then, these contentual antecedents were found to be fairly good predictors of achievement, and certainly better than student background characteristics.
In comparing the relative average contributions to the washoe County School District population and Indian models of achievement (Table 43 ) by various measures of previous achievement, student evaluation, student and familial background characterisiics, and school contextual factors, it was found that background characteristics accounted for the greatest amount of variance in reading oriented academic achievement (after previous grades) for students in general in the district. In contrast, it was found that school contextual factors accounted for the largest average amount of variance for Indian students. IIt should be noted that the largest

```
```

average percentage shown in Table 43 for Indian models was for the
number of days absent, but that figure was not a true average since it
was based on a frequency of only one appearancel. It was also found
that schoul contextual factors accounted for the largest average
variance in math oriented models for both the population in general
and for Indian students.
Similar results were obtained when structural occurrences of the
four types of antecedents were compared. That is, in looking at just
the reading oriented models first, it was found that, relative to the
district population models, substantively more school contextual and
student evaluation predictors were part of the Indian models. The
ratios for population to Indian occurrences of predictors were as
follow5:
1) Academic Achievement 2/7:1/7
2) Student Evaluation
6/14: 4/14
3) Fackground Characteristics 30/70: 12/70
4) School Environment and Learning Conte:ts 17/49 : 12/49
Thus, relative to the typical student in the Washoe County School
District, background characteristics were structurally much less
predictive, and previous student evaluations by teachers and school
contextual characteristics comparatively more predictive, for Indian
students in the district.
The same pattern was found for the math oriented models as well,
where the ratios for population to Indian occurrences of predictors
were:

```
```

    1) Academic Achievement
    (no occurrences)
    2) Student Evaluation
    3) Background Characteristics
    4) School Environment and Leariiing Contexts
        5/6:4/6
        4/9:1/9
        7/12:4/12
    Lastly, it was found that, on the average, all predictors, except
    previous grades, accounted for 11% of the total variance in the washoe
County School District reading oriented population models and }8%\mathrm{ in
the same Indian models. Dn the other hand, it was found that all
predictors, except previous grades, accounted for essentially the same
amounts of variance (8%), on the average, in both the populatiun and
Indian math oriented models.

```

\section*{Suppressor variables}

Five variables were observed to act as suppressor variables in one or more of the population and Indian models of academic achievement. That is, these variables suppressed the explained variance (fi2), so that when the variables were held constant in the analysis, they contributed negatively to the variance in achievement (as measured by the particular dependent variable). Again, in doing so, these antecedent predictors increased the importance, or predicting power, of the other variables in the model. Thus, without the structural presence of the suppressor variable, the predictive power of the other antecedents would have been less by that percentage.

Of the five variables acting as suppressors, only the 1983 citizenship grade was of much erplanatory consequence, adding an averaga of \(1.5 \%\) to the accountability of models. In all cases where the citizenship grade variable was included, it was a suppressor
```

variable. Both cost of school per student and the number of parents
employed were found to be consistent suppressors, and made an average
contribution to the total variance of 1% or less. Eoth grade lavel
and number of parents absent acted as inconsistent suppressors. Grade
leval entered as a suppressor in only one model (Indian reading test
total), whereas number of parents absent entered two population models
as a suppressor. Again, the amount of explained variance was less
than 1%. The interesting result, in contrast, was when the number of
parents absent entered into one of the Indian models of achievement it
made a positive rather than neqative contribution to the erplained
variance, Generally speaking, then, suppressor variables had a
greater effect upon the Washoe County School District population
models than on the Indian models of academic achievement.

```

\section*{Manipulable and Non-Manjpulable Variables}

Table 44 compares the percentages of manipulable and non-manipulable antecedent predictors entering into the population and Indian models of academic achievement. Only two Indian models contained more than one-third non-manipulable variables, but seven of the population models had more than one-third mon-manipulable variables. More importantly, three of the models actually had over one-half non-manipulable variables: the population listening and auditory test total models both had \(60 \%\) non-manipulable predictors, and the Indian spelling model contained \(5 s \%\) non-manipulable factors. In contrast, five of the Indian models had \(75 \%\) or more manipulable variables, while only one of the population models contained \(75 \%\) or
```

Table 44. Comparison of Fercentages of Manipulable
and Non-Manipulable Variables for the
Fopulation and Indian Models

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Type of Variable & \multicolumn{2}{|l|}{Fopulation f \(\%\)} & \multicolumn{2}{|r|}{Indian} & \multicolumn{2}{|l|}{Fopulation} & \multicolumn{2}{|r|}{Indian} \\
\hline & \multicolumn{4}{|r|}{Word Study Skills} & \multicolumn{4}{|l|}{Feadina Comprehension} \\
\hline Manipulable & 4 & 57 & 3 & 30 & 7 & 70 & 3 & 100 \\
\hline Non-Manipulable & 3 & 43 & 2 & 40 & 3 & 30 & 0 & 0 \\
\hline & \multicolumn{4}{|c|}{Feading Test Total} & \multicolumn{4}{|r|}{Vocabulary knowlecige} \\
\hline Manipulable & 5 & 52 & 4 & 67 & 6 & 60 & 2 & 67 \\
\hline Non-Manipulable & 3 & 38 & 2 & 33 & 4 & 40 & 1 & 33 \\
\hline & \multicolumn{4}{|l|}{Listening Comprehension} & \multicolumn{4}{|r|}{Auditory Test Total} \\
\hline Manipulable & 4 & 40 & 3 & 60 & 4 & 40 & 4 & 80 \\
\hline Hon-Manipulatle & 6 & 60 & 2 & 40 & 6 & 60 & 1 & 20 \\
\hline & \multicolumn{4}{|c|}{Spellina} & \multicolumn{4}{|c|}{Math Concepts} \\
\hline Manipulable & 4 & 57 & 4 & 44 & 5 & 71 & 3 & 75 \\
\hline Non-Manipulable & 3 & 43 & 5 & 56 & 2 & 29 & 1 & 25 \\
\hline & \multicolumn{4}{|c|}{Math Test Total} & \multicolumn{4}{|r|}{Science knowledqe} \\
\hline Manipulable & 5 & 83 & 3 & 100 & 4 & 67 & 4 & 80 \\
\hline Non-Manipulable & 1 & 17 & 0 & 0 & 2 & 35 & 1 & 20 \\
\hline
\end{tabular}
more manipulable predictors. Indeed, on the average, the population models had \(59 \%\) manipulable variables, while the Indian models had \(69 \%\) manipulable variables. Indian student achievement, as structurally compared to that of their classmates, then, involved considerably more manipulable factors. That is, Indian student achievement in the Washoe County School District was apparently structurally subject to much greater control or manipulation by the school system than was the academic achievement of district students in general.

These comparisons of percentages of manipulative and non-manipulative factors, however, did not take into consideration the amounts of variance actually accounted for by the various variables. Table 45 , therefore, compares the population and Indian models for the percentages of both table (or total) and explained variances accounted for by manipulable, non-manipulable, other, and all predictors entering into the models of academic achievement. From the results Fiesented in Table 45, it was obvious that, of both the total and explained variance, the preponderance of the variance was potentially manjpulable by the school system. In all cases, over \(60 \%\) of the explained variance was attributable to manipulable variables. It was found that, on the average (Table 45), manipulable factors accounted for \(26 \%\) of the total (or \(81 \%\) of the enplained) variance in the population models and \(30 \%\) of the total (or \(89 \%\) of the explained) variance in the Indian models of academic achievement. In other words, manipulable variables accounted for five times as much variance as non-manipulable variables in the population models and fifteen

\section*{Table 45. Coaparison of Table and Eaplained Variances Accounted for oy Manipulable and Mon-Manupulable Varaables}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Fopulation Models} & \multicolumn{2}{|l|}{Indian Models} & \multicolumn{2}{|c|}{Average} \\
\hline & \[
\begin{gathered}
\text { \% of } \\
\text { Tabie } \\
\text { Variarice }
\end{gathered}
\] & \[
\begin{gathered}
\text { bof } \\
\text { Eaplained } \\
\text { variance }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { \% of } \\
\text { Table } \\
\text { Hari ance }
\end{gathered}
\] & \(\%\) of Explained Yariance & \[
\begin{gathered}
\text { \% of } \\
\text { Table } \\
\text { Variance } \\
\hline
\end{gathered}
\] & \(\%\) of Eyplained Variance \\
\hline \multicolumn{7}{|l|}{Hord Study Skills} \\
\hline Manipulable & 19.73 & 79 & 22.94 & 70 & 21.34 & 74 \\
\hline Non-Manipulable & 3.49 & 14 & 5.63 & 17 & 4.59 & 16 \\
\hline Other \({ }^{\text {d }}\) & 1.62 & b & 4.617 & 12 & 2.94 & 10 \\
\hline Total & 24.94 & 99 & 32.69 & 99 & 28.76 & 100 \\
\hline \multicolumn{7}{|l|}{Meading Comprehension} \\
\hline Mampulable & 29.31 & 87 & 36.81 & 99 & 32.56 & 93 \\
\hline Non-Manipulable & 3.43 & 11 & 0.00 & 0 & 1.72 & 5 \\
\hline Other \({ }^{\text {a }}\) & . 0 E & 2 & . 46 & 1 & . 57 & 2 \\
\hline Totai & 32.42 & 100 & 37.27 & 100 & 34.85 & 100 \\
\hline \multicolumn{7}{|l|}{Feading Test Total} \\
\hline Mampulable & 32.06 & 82 & 43.02 & 92 & 37.54 & 88 \\
\hline Non-Manipulable & 3.43 & 9 & . 79 & 2 & 2.11 & 5 \\
\hline Other \({ }^{\text {a }}\) & 3.69 & 9 & 2.74 & 6 & 3.22 & 2 \\
\hline Total & 39.18 & 100 & 46.75 & 100 & 42.87 & 100 \\
\hline \multicolumn{7}{|l|}{Vocabulary Knokledge} \\
\hline Manipulable & 26.34 & 77 & 22.45 & 83 & 24.40 & 80 \\
\hline Non-Manipulable & 6.75 & \(2{ }^{\circ}\) & . 40 & 1 & 3.58 & 12 \\
\hline Other \({ }^{\text {d }}\) & . 93 & 3 & 4.30 & 16 & 2.62 & 8 \\
\hline Total & 34.02 & 1010 & 27.15 & 100 & \(3 \mathrm{l}, 50\) & 100 \\
\hline \multicolumn{7}{|l|}{Listening Comprehension} \\
\hline Manipulable & 19.43 & 63 & 19.87 & 81 & 19.65 & 71 \\
\hline Non-Manipulable & 10.25 & 33 & 2.86 & 12 & 6.56 & 24 \\
\hline Other \({ }^{\text {a }}\) & 1.04 & 3 & 1.90 & 8 & 1.47 & 5 \\
\hline Total & 30.72 & 99 & 24.6 .5 & 101 & 27.69 & 100 \\
\hline \multicolumn{7}{|l|}{Auditorv Iest Total} \\
\hline Manipulable & 20.59 & 78 & 29.16 & 96 & 24.88 & 88 \\
\hline Non-Manipulable & 5.31 & 21 & 0.10 & \(\checkmark\) & 2.56 & 9 \\
\hline Other \({ }^{\text {d }}\) & . 39 & \(i\) & 1.35 & 4 & . 87 & 3 \\
\hline Total & 26.29 & 100 & 30.51 & 100 & 28.41 & 100 \\
\hline
\end{tabular}
a--Fredictors forced into equation, but not significant at or beyond the . 15 level.

Table 45. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Fopulation Models} & \multicolumn{2}{|l|}{indian madels} & \multicolumn{2}{|c|}{Average} \\
\hline & \(\%\) of Table Yariance & 6 of Explained yariance & Table Variance & \(\%\) of Enplained Variance & & \(\%\) of Explarmed Variance \\
\hline \multicolumn{7}{|l|}{Spellifiq} \\
\hline Manipuiable & 31.74 & 80 & 29.10 & 80 & 30.42 & 80 \\
\hline Non-Manipulabla & 6.52 & 17 & 5.59 & 15 & 6.10 & 16 \\
\hline Other \({ }^{\text {d }}\) & 1.25 & 3 & 1.85 & 5 & 1.56 & 4 \\
\hline Total & 39.61 & 100 & 36.54 & 100 & 38.08 & 100 \\
\hline \multicolumn{7}{|l|}{Math Concepts} \\
\hline Manipuiable & 26.30 & 84 & 36.56 & 97 & 31.44 & 92 \\
\hline Non-Manipulable & 3.09 & 10 & . 71 & 2 & 1.90 & 5 \\
\hline Uther \({ }^{\text {a }}\) & 1.45 & E & . 28 & 1 & . 88 & 2 \\
\hline Total & 31.17 & 99 & 37.55 & 100 & 34.22 & 100 \\
\hline \multicolumn{7}{|l|}{Math Test Tutal} \\
\hline Mampulatle & 32.10 & 94 & 26.98 & 101 & 75.54 & 98 \\
\hline Non-Manipulable & . 89 & 3 & 0.00 & 4 & . 44 & 1 \\
\hline Other \({ }^{\text {d }}\) & 1.21 & 3 & -.30 & \(-1\) & . 46 & 1 \\
\hline Total & 34.20 & 106 & 38.54 & 100 & 36.44 & 100 \\
\hline \multicolumn{7}{|l|}{Science kinowledqe} \\
\hline Manipuiabia & 24.96 & 84 & 25.60 & 88 & 24.98 & 86 \\
\hline Non-Hanipulable & \(5 . \overline{11}\) & 17 & 2.69 & 10 & 3.55 & 14 \\
\hline Other \({ }^{\text {d }}\) & \(\underline{-35}\) & -1 & . 72 & 2 & . 20 & 1 \\
\hline Total & 24.84 & 100 & 28.41 & 100 & 29.13 & 101 \\
\hline \multicolumn{7}{|l|}{Average of till model 5} \\
\hline Manipulable & 26.16 & 81 & 3.3 .9 & 89 & 28.28 & 85 \\
\hline Non-itampuiable & 4.35 & 15 & 1.37 & 6 & 3.36 & 10 \\
\hline Other \({ }^{\text {a }}\) & \(\underline{.20}\) & 4 & 1.74 & 5 & 1.47 & 4 \\
\hline Total & 32.21 & 100 & 84.00 & 100 & 3.3 .11 & 99 \\
\hline
\end{tabular}

\footnotetext{
a--frefictors forced into equation, tut nict sagnificant at or beyond the . IE level.
}
```

times as much in the Indian models. Dverall, manipulable factors
accounted for eight times as much variance as non-manipulable
variables.
On the other hand, the population models involved larger percentages of variance that were accounted for by non-manipulable variables. This was particularly true for reading comprehension, reading test total, vocabulary knowledge, listening comprehension, auditory test total, and math concepts (or 6 of 10 ) models. In comparison to the population models of achievement, therefore, the Indian models had much less explained, or table, variance that was accounted for by non-manipulable factors. That is, much more of the observed total variance in elemeniary Indian student achievement than that of students in general in the Washoe County School District was potentially manipulable by the school system.
Lastly, it should be noted that in a number of the models, and for the word study skills and vocabulary knowledge models for Indian students in particular, considerably much more of both the table and explained variance was accounted for by the "other" variables that were forced into the equations by the statistical procedures. This suggested that further comparative analyses of these other variables and the factors not entering into the models of academic achievement were necessary.

```

The "Other" Fredictors
In reanalyzing the SFSSX \(^{X}\) stepwise and forced entry multiple regression results for the word study skills, it was found that eleven
```

antecedents made up the "other" predictors in the Indian model, while
twelve made up the "other" predictors in the population model. It was
found that three of the variables accounted for most of the variance
attributed to these other variables, which had been forced into the
equation but were not statistically significant predictors. The
number of days absent, which usually was not a statistically
significant predictor of Indian achievement lexcept in the spelling
model), contrituted . B% (p = .51) to the "other" variance.
Farticipation in the gifted program, which was a consistent predictor
of Indian achievement in other models, contributed another 1.3% (p =
.33). Interestingly, the 1983 citizenship grade made the largest
contribution to the variance accounted for by the "other" predictors
in the Indian model of word study skills achievement, explaining 2.5%
(p = .23) of the variance. This was particularly noteworthy because
the 1983 citizenship grade had been found to be a suppressor variable
when it statistically entered into other models.
With respect to the Indian vocabulary model, participation in the
gifted program contributed 2. 1% (p = .17) to the variance accounted
for by the other predictors (4.3%). Thus, participation in the gifted
program accounted for over 2% of the variance, whether it entered
statistically or was forced into the equation, in all ten models of
Indian academic achievement--making it one of the best predictors.
Three other antecedents accounted for must of the remaining variance
explained by the statistically nonsignificant other variables:
percentage of books lost per student !1%, p = .27); home telephone

```
```

listed (.5%, p = .63); and 1983 citizenship grade (.9%, p = .39).
Once again it was observed that, as part of the "other" predictors,
the 1983 citizenship grade variable was not a suppressor, albeit it
contributed very little to the total explained variance.

```

\section*{Unused Fredictors}

It was of interest to note which variables in the predictor pools did not enter into the equations, even after foreed entry and level of significance were set aside. Most or all of the variance in these variables was accounted for by variables in the models. Table 46 lists the unused variables for both the Washoe County School District population and Indian models of achievement. The most obvious result was that acreage per student, student's age, and how long the library was open after school per student were unused in all Indian models, while in comparison only student's age (or its correlate grade level) were unused in all population models. Other unused predictors (for the seven reading oriented models) were cost of school per student, percentage of books lost per student, number of magazine subscriptions per student, and, for population models only, the number of encyclopedia sets per student and acreage per student. What was interesting was that many of these variables, when they did enter into achievement models (see Table 42), made relatively good contributions to the explained variance. This strongly suggested that these predictors were left unused because they co-varied with other entering predictors.

Table 46. Antecedent Fredicturs Not Entering Models After StepuiseiForced Entry Fegression
\begin{tabular}{|c|c|c|}
\hline Uependent Variable & Population Predictors & Indian Fredictors \\
\hline Hord Study 5kills & \begin{tabular}{l}
Age in Months at time of Test (n) \\
Cost of Schooi Per Student (\(\mathbf{(})\) \\
Percentage of Fooks Lost Fer Student (a)
\end{tabular} & \begin{tabular}{l}
Age in Honths at tiae of Test (\(n\)) \\
Cost of School Fer Student (a) \\
Percentage of Fooks Lost Fer Student (\({ }^{(1)}\) \\
Library Open After Scnool Fer Student (m) \\
Accreage Fer Student (a)
\end{tabular} \\
\hline Feading Compretension & Maqazine Subscriptijus Fer Student : Encyclopedia Sets Fer Student (m) Percentage of Eooks Lost Per Student (ii) Grade Level (n) & \begin{tabular}{l}
Magazine Subseriptions Fer Student (a) \\
Percentạ̣e of Books Lost Fer Student (i) \\
Acreage Fer Student (a) \\
Age in Months at Iine of Test (in) \\
Library Upen after School Fer Stujent (a)
\end{tabular} \\
\hline Feading Test Total & Hge in Months at lime of Test in: Cost of School Fer Student (w) Percentage of Hooks lust Fer Student (w) & \begin{tabular}{l}
Age in Months at inge of Test (n) \\
Cost of School Fer Student (is) \\
Fercentage of Books lost Fer Student (a) \\
Litrary Open Atter 5chocl Fer Student (a) \\
Acreage Fer Student (a)
\end{tabular} \\
\hline Vocabulary Kinowledge & Acreage Fer Student (a) Age in Months at is \(\begin{gathered}\text { me of Test (} n \text {) }\end{gathered}\) & \begin{tabular}{l}
Acreage Fer Student (a) fige in Months at time of Test (\(n\)) \\
Litrary Open After School Per student (a) \\
Cost of School Fer Student (if) \\
Magazine Subjeriptions Fer Student (a)
\end{tabular} \\
\hline Listeririg Comprehension & \begin{tabular}{l}
Gicreage Fer Student (is) \\
Age in Months at Time of Test (n)
\end{tabular} & \begin{tabular}{l}
Acreag̣e Per Student (a) Age in Months at tiag of Test (n) \\
Library Upen After School Per Student (a) \\
Cost of School Fer Student (\({ }^{(1)}\) \\
Magazine Subscriptions Fer Student (m)
\end{tabular} \\
\hline Auditory Test Total & Acreage Fer 5tudent (in) Age in Moriths at lime of Test (in) & \begin{tabular}{l}
Acreaog Fer Situdent (a) \\
Age in Months at time of Test (\(n\)) \\
Library Doeni After Scnool Per Student (al \\
Cost of School Fer Student (\\
Magazine Subscriptions Fer Student (ia)
\end{tabular} \\
\hline
\end{tabular}
(ai)--Indicates variable that is manipulable by the school district.
inl--Inaicates variable that 15 nut manipulable by the school district.

Table 46. (continued)
\begin{tabular}{|c|c|c|}
\hline Dependent Variable & Fopulation Predictors & Indian Predictors \\
\hline Spelling & Age in Months at Tiae of Test (n) Cost of School Per Student (\(\mathbf{a}\)) Magazine Subseriptions Per Student (a) & \begin{tabular}{l}
Age in Months at tive of Test (n) \\
Magazine Subscriptions Fer Student (a) Library Open After Schcol Per Student (a) Percentage of Books Lost Fer Studerit (a) Acreage Per Student (a)
\end{tabular} \\
\hline Math Concepts & Age in Months at Tiae of Test (\(n\)) & \begin{tabular}{l}
Age in Months at Tine of Test (\(n\)) Acreage Per Student (a) \\
Library Open After School Per Student (a)
\end{tabular} \\
\hline Math Test Total & Grade Level (in) & Age in Months at Tine of Test (\(n\)) Library Open After School fer Student (a) Acreage Per Student (\(\mathbf{1}\)) \\
\hline Science Knowl edge & Grade Level (n) & Age in Months at Tiae of Test (n) - Litrary Open After School Per Student (\(\mathbf{1}\)) Acreage Per Student (a) \\
\hline
\end{tabular}
((i)-Indicates variable that is anipulable by the school district.
(\(n\))-Indicates variable that is not anipulable by the school district.
\begin{tabular}{|c|}
\hline \multicolumn{21}{|c|}{Comparative analyses of the Washoe County School District} \\
\hline \multicolumn{21}{|l|}{population and Indian models of achievement demonstrated that the} \\
\hline \multicolumn{21}{|l|}{Indian models were generally more parsimonious and potentially subject} \\
\hline \multicolumn{21}{|l|}{to greater manipulation by the school system than were models of} \\
\hline \multicolumn{21}{|l|}{achievement for the Washoe County School District students in} \\
\hline \multicolumn{21}{|l|}{general. However, none of the models accounted for more than \(47 \%\) of} \\
\hline \multicolumn{21}{|l|}{the variance, with an average of only \(33 \%\) in the twenty population} \\
\hline \multicolumn{21}{|l|}{and Indian models. This meant that over half of the observed variance} \\
\hline \multicolumn{21}{|l|}{in academic achievement had to be attributed to factors or phenomena} \\
\hline \multicolumn{21}{|l|}{not included in this study. As previously mentioned, what was} \\
\hline \multicolumn{21}{|l|}{particularly intriguing was the finding that previous grades were} \\
\hline \multicolumn{21}{|l|}{generally poor predictors, albeit the best predictors included in this} \\
\hline \multicolumn{21}{|l|}{study, of academic achievement. That is, if a student did well in} \\
\hline \multicolumn{21}{|l|}{1952-83, receiving high class grades, such knowledge would not allow} \\
\hline \multicolumn{21}{|l|}{us to make very good predictions on how well the student did on the} \\
\hline \multicolumn{21}{|l|}{next year's achievement tests.} \\
\hline \multicolumn{21}{|c|}{With respect to the research questions and hypotheses, the} \\
\hline \multicolumn{21}{|l|}{comparative analyses of the population and Indian models of academic} \\
\hline \multicolumn{21}{|l|}{achievement have provided evidence towards several of the research} \\
\hline \multicolumn{21}{|l|}{questions and hypotheses. First, the results have provided empirical} \\
\hline \multicolumn{21}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
evidence for accepting the follouing research hypothesis: \\
H8: As compared to the general population, different antecedent factors are predictive of standardized achievement test scores for Indian students in the Washoe County School District.
\end{tabular}}} \\
\hline & \\
\hline
\end{tabular}
```

That is, these results have shown, also in answer to the fifth
research question, that different factors were indeed antecedent
predictors of Indian student achievement than for the Washoe County
School District in general. This did not mean aij variables were
different, but rather that enough predictors were different to be
substantively significant. In particular, previous grades and grade
level were found to have been common predictors in most, if not all;
models. In comparing the models, no variables were found to have been
unique to, or entered only into, the Indian models. Conversely, six
antecedent variatles were found to be predictive of academic
achievement for the population only. That is, acreage per student,
having the library open longer after school per student, being older
(in months), having a home phone numter listed at the school, staying
at the same school (i.e., no changes or transfers), and having less
E%pensive schools were all predictive of achievement for the
population, but not for Indian students only.
The research results have also provided overwhelming support
accepting the hypothesis,
H10: Residence is not a determinant predictor of Indian students:
achievement in the Washoe County School District.
Student's residence was a predictor for only two of the ten Indian
models of achievement: listening comprehension (1.6%) and spelling
(.1%). Interestingly, rural/reservation residence was predictive of
listening comprehension, but urban/colony residence was predictive of
spelling achievement for Indian students. But, in neither case was
the amount of variance explained very great either. Indeed, residence

```
```

was generally more important for the Washoe County School District
students in general. If residence was a determinant factor at all, it
was more so for the population, since residence was a stronger
predictor for the population models. However, the results
substantiated that, with the possible weak exception of predicting
spelling achievement for the district in general (4% explained
variancel, residence was not a determinant predictor of Indian
students' achievement, nor that of their classmates. These results,
then, also provided an answer to the seventh research question. The
empirical results of this research, contrary to previous studies, did
not find residence--whether the student lived within the reservation,
colony, county or city boundaries--to be a strong determinant of
Indian student (or other) achievement.

```
 Comparison of Indian and Indian Modified Models of Achievement
 Within all settings involving Indian education, there are bound to
be a certain number of characteristics, which would be measurable,
tinat remained unique to Indian sturents only; for instance, the degree
of Indianness, one's tribal affiliation or nationality, and
participation in Title IV-A Indian Education programs (e.g., tutoring
program). While information on a number of these characteristics was
available, it was neither complete nor readily analyabble using
advanced multiple regression techniques. There were several
variables, however, that could be used, and it was therefore desirable
to include these antecedents in another analysis procedure to
```

determine if these factors were predictors; and if so, did they add
to, subtract from, or replace components of the existing Indian
models. Thus, before proceeding to further comparative analyses with
respect to grade level, comparisons of the Indian and Indian modified
models were made.

```

\section*{Methodological Clarifications}

Specifically, the following antecedents were determined to be suitable and added, for further analyses, to the previously established reading and math pools of predictors. 29 The first variable was obtained from paperwork filed on all Indian students in the school district, which determined their status as federally authorized for Title \(V\) services. Fart of this form requested information concerning the student's Indian ancestry and was a poor, but quantitative measure of the student's Indianness. Thus, the first antecedent variable added, was "Who is Native American?"

The other variables were taken primarily from records kept by the Nevada Intertribal Folicy Board, which were concerned with various tribal Head Start programs. The two programs of concern were the Fyramid Lake Indian Feservation program ISeservation Head Start) and the Fieno-Sparks Colony program (Colony Head Start), each of which were added as variables. All day care/preschool programs in the county were also contacted, and information on a few students was obtained. The one program from which information was not obtained was the Feno-Sparks Head Start program, which serviced the entire area. A fourth new antecedent, therefore, was preschool attendance, which
```

included Head Start. Interestingly, the simple correlation between
either the colony or reservation Head Start variables and the
preschool variable was not very strong, which was why all three
variables were included.
The last variable was the number of years the student had participated in some combination of proschool programs. Data ranged from no years to three years, but the frequency for three years was 50 low that it was recoded as two years for analytic purposes. Thus, by and large, most of these new variables were coded as "dummy" variables.

```

\section*{Indian Modified Models of Achievement}

The results of the stepwise and forced entry multiple regression analyses are technically reported in Table I-1 (Appendi: I) and summarized in Table 47. As can be seen from the results, two of the five additional antecedents entered into, and thereby modified, the vocatulary knowledge, math concepts, and math test total models of academic achievement. In no case did the new variables account for much more than \(1 \%\) of the variance, while in the math concepts modified model preschool attendance acted as a suppressor variable. The amount of suppressed variance (-.1\%), however, was so small that it was probably due to statistical error. Consequently, the addition of the five variables applicable to Indian students only, actually modified only three of the Indian models of achievement.

Comparison of Models
Table 48 compares the Indian and modified Indian models of

Table 47. Modified Predictor Models of Indian Hicadenic Achrevenent
\begin{tabular}{|c|c|c|c|c|c|}
\hline Dependent Variables/
\(\qquad\) & & \% of Table Variance & Dependent Variables; Predictors & \multicolumn{2}{|r|}{\(\%\) of Table Variance} \\
\hline Werd Study Skills & & & Feading Comprenension & & \\
\hline 1993 Feading Grade (a) & & 19.4 & 1983 keading Grade (a) & & 31.6 \\
\hline Father's Status (n) & & 4.4 & Encyclopedia Sets & & \\
\hline Grade Level (\(n\)) & & 1.2 & Fer Student (a) & & 3.4 \\
\hline Magazine Subscriptions & & & Gifted Frogram (a) & & 2.3 \\
\hline Fer Student (m) & & 3.4 & Other \({ }^{\text {d }}\) & & . 4 \\
\hline Other \({ }^{\text {a }}\) & & 5.2 & & Total & 37.6 \\
\hline & Total & 153.0 & & & \\
\hline Reading Test Total & & & Vecabulary Knouledge & & \\
\hline 1983 Keading Grade (m) & & 37.2 & 1983 Feading Grade (a) & & 19.9 \\
\hline Magazine Subseriptions & & & Reservataon Head Start (\(n\)) & & 1.1 \\
\hline Fer Student (a \(^{\text {a }}\) & & 3.2 & Encyclopedia Sets & & \\
\hline Grade Level (\(n\)) & & -. 2 & Per Student (a \(^{\text {a }}\) & & 2.1 \\
\hline Emergency Telephone (m) & & . 2 & Grade Level (\(n\)) & & . 3 \\
\hline Father s Status (n) & & 1.0 & Other \({ }^{\text {a }}\) & & 5.2 \\
\hline Gifted Frogram (m) & & 2.6 & & Total & 28.61 \\
\hline Other \({ }^{\text {d }}\) & & 3.0 & & & \\
\hline & Total & 147.0 & & & \\
\hline Listenina Coaprehension & & & Auditary Test Total & & \\
\hline 1983 Reading Grate (a) & & 14.6 & 1993 Reading Grade (a) & & 20.8 \\
\hline Percentage of Books & & & Percentage of Eooks & & \\
\hline Lost Per Stucent (0) & & 2.9 & Lost Per Student (\(\mathrm{m}^{\text {) }}\) & & 2.3 \\
\hline Father's Status (n) & & 1.3 & Gifted Frogran (a) & & 2.9 \\
\hline Encyciopedia Sets & & & Grade Level (\(n\)) & & . 10 \\
\hline Fer student (m) & & 2.2 & Encyclopedia Sets & & \\
\hline Student's Residence (\(n\)) & & 1.5 & Per Student (a) & & 2.5 \\
\hline Other \({ }^{\text {d }}\) & & 2.9 & Other \({ }^{\text {a }}\) & & 2.6 \\
\hline & Total & 125.4 & & Total & 31.2 \\
\hline
\end{tabular}
---iredictors forced into equation, but nat significant at or beyond the . 15 level.
(m)--Indicates variable that is manipulable by the school district.
(n)--lndicates variable that is not manipulable by the school district.

Table 47. (continued)
\begin{tabular}{|c|c|c|c|}
\hline Dependent Variables/
\(\qquad\) & \% of Table Variance & Dependent Variables/ Fredictors & \(\%\) of Table Variance \\
\hline Spelling & & Math Concepts & \\
\hline 1983 Reading 6rade (a) & 20.3 & 1983 Grade foint Average (a) & 131.2 \\
\hline Number of Days Absent & & Percentage of Eooks & \\
\hline in 1992-83 (0) & 4.3 & Lost Per Student (6) & 3.3 \\
\hline Father's Status (\(n\)) & 1.6 & Preschool Attendarice (n) & -. 1 \\
\hline Gifted Program (\(n\)) & 3.4 & Sex (\(n\)) & . 7 \\
\hline Number of Parents Absent (\(n\)) & 2.5 & Home Phone Listed (n) & 1.3 \\
\hline Eaergency Telephone (a) & . 4 & Other \({ }^{\text {a }}\) & 2.1 \\
\hline Free \& Fieduced Lunch (\(n\)) & 2.0 & \multirow[t]{5}{*}{} & Total 38.5 \\
\hline Student's Residence (\(n\)) & . 1 & & \\
\hline Nuaber of Parents Emploved (\(n\)) & -. 6 & & \\
\hline Other \({ }^{\text {a }}\) & 2.3 & & \\
\hline Total & 136.3 & & \\
\hline \multicolumn{2}{|l|}{Math Test Total} & Science Krowledoe & \\
\hline 1983 Grade Point Average (1) & 33.8 & 1985 Grade Foint hiverage (a) & 16.7 \\
\hline Fercentage of Eooks & & Percentage of Books & \\
\hline Lost Fer Student (0) & 3.5 & Lost Per Student (0) & 5.8 \\
\hline Preschool ittendance (n) & . 7 & Grade Level (n) & 2.6 \\
\hline Other \({ }^{\text {a }}\) & 2.8 & Gifted Progran (a) & 4.0 \\
\hline \multirow[t]{3}{*}{Total} & . 40.5 & 1983 Citizenshlp Grade (0) & -1.6 \\
\hline & & Other \({ }^{\text {d }}\) & 1.10 \\
\hline & & & Total 29.6 \\
\hline
\end{tabular}
a--Predictors forced into equation, but not significant at or beyond the . 15 level.
(a)-lndicates variable that is annipulable by the school district.
(n)--Indicates variable that is not manapulable oy the school district.

Table 48. Conparison of Indian and Modified Indian Kegression Models
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Indian Stepwise/Farced Entry Model 5} & \multicolumn{3}{|l|}{Modified Indaan Stepwise/Forced
\(\qquad\)} \\
\hline Predictor & \[
\begin{gathered}
\text { i of } \\
\text { Table } \\
\text { Variance }
\end{gathered}
\] & \% of
Explained
Variance & Predictor & \[
\begin{gathered}
\text { \% of } \\
\text { Table } \\
\text { Yariance }
\end{gathered}
\] & \(\%\) of Explained Yariance \\
\hline \multicolumn{6}{|c|}{Hord Study Skills} \\
\hline 1993 Keading Grade (\({ }^{\text {) }}\) & 18.67 & 57 & 1993 Reading Grade (i) & 18.37 & 56 \\
\hline Father's Status (n) & 4.40 & 15 & Father's Status (n) & 4.41 & 13 \\
\hline Grade Level (n) & 1.29 & 4 & Grade Level (\(n\)) & 1.19 & 4 \\
\hline Magazine Subscriptions & & & Magazine Subscriptions & & \\
\hline Per Student (a) & 4.19 & 12 & Fer Student (a) & 3.85 & 12 \\
\hline Eaergency Telephone (a) & . 19 & 1 & & & \\
\hline Other \({ }^{\text {a }}\) & 4.07 & 12 & Other \({ }^{\text {d }}\) & 5.21 & 16 \\
\hline Total & 32.69 & 99 & Total & 33.04 & 101 \\
\hline
\end{tabular}

\section*{Readina Comprehension}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1983 Keading Grade (a) & 31.46 & 94 & 1993 Reading Grade (a) & 31.55 & 84 \\
\hline Encvelopedia Sets & & & Encyclopedia Sets & & \\
\hline Per Student (a \(^{\text {(}}\) & 3.05 & 9 & Per Student (a) & 3.40 & 9 \\
\hline Gifted Frogra (a) & 2.30 & 6 & Gifted Frogran (a) & 2.28 & 6 \\
\hline Other \({ }^{\text {a }}\) & . 46 & 1 & Other \({ }^{\text {d }}\) & . 36 & 1 \\
\hline Total & 37.27 & 99 & Total & 37.59 & 100 \\
\hline
\end{tabular}

Keading Test Total
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1983 Reading Grade (*) & 37.23 & 80 & 1983 Reading Grade (m) & 37.16 & 79 \\
\hline Magazine Subscriptions & & & Magazine Subscriptions & & \\
\hline Per Student (a) & 3.23 & 7 & Fier Student (0) & 3.22 & 7 \\
\hline Grade Level (\(n\)) & -. 22 & -1 & Grade Level (\(n\)) & -. 22 & -1 \\
\hline Eaergency Telephone (a) & . 15 & 0 & Energency Telephone (a) & . 15 & 0 \\
\hline Father's Status (n) & 1.01 & 2 & Father's status (n) & 1.01 & 2 \\
\hline Gifted Frogra (a) & 2.61 & 6 & Gifted Program (a) & 2.61 & 6 \\
\hline Other \({ }^{\text {a }}\) & 2.74 & 6 & Other \({ }^{\text {a }}\) & 2.96 & \(\underline{6}\) \\
\hline Total & 46.75 & 100 & Total & 46.89 & 99 \\
\hline
\end{tabular}
a--Predictors forced into equation, but not 5 ghnificant at or beyond the . 15 level.

Table 48．（Continued）
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Indian Stepwise／Forced Entry Models} & \multicolumn{3}{|l|}{Modified Indian Stepwise／Forced Entry Models} \\
\hline Predictor & \begin{tabular}{l}
\(\%\) of \\
Table \\
Variance
\end{tabular} & \(\%\) of Explained Variance & Predictor & \(\%\) of Table Varjance & \％of
Explained
Variance \\
\hline \multicolumn{6}{|c|}{Vocabulary knowledge} \\
\hline 1983 Feading Grade（a） & 20.59 & 76 & 1983 Keading Grade（m） & 19.87 & 69 \\
\hline & & & Reservation Head Start（ \(n\) ） & （a） 1.09 & 4 \\
\hline Encyclopedia Sets & & & Encyclopedia Sets & & \\
\hline Fer 5tudent（ \(⿴ 囗 十\) ） & 1.86 & 7 & fer Student（a） & 2.11 & 7 \\
\hline Grade Level（ \(n\) ） & ． 40 & 1 & Grade Level（i） & ． 33 & 1 \\
\hline Other \({ }^{\text {a }}\) & 4.30 & 16 & Other \({ }^{\text {a }}\) & 5.21 & 18 \\
\hline Tota］ & 27.15 & 100 & Total & 28.61 & 99 \\
\hline
\end{tabular}

\section*{Listening Coaprenension}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1983 Fieading Grade（1） & 14.75 & 60 & 1983 Feading Grade（m） & 14.60 & \(5{ }_{5}\) \\
\hline Percentage of Books & & & Fercentage of Books & & \\
\hline Lost Fer Student（m） & 2.82 & 11 & Lost Fer Student（ A ） & 2.82 & 11 \\
\hline Father＇s Status（ n ） & 1.31 & 5 & Father s Status（ n ） & 1.32 & 5 \\
\hline Encvelopedia Sets & & & Encvelopedia Sets & & \\
\hline Fer Student（ 0 ） & 2.30 & 9 & Fer Student（a） & 2.23 & 9 \\
\hline Student＇s Residence（ \(n\) ） & 1.55 & 6 & Student＇s Residence（ n ） & 1.53 & 6 \\
\hline Other \({ }^{\text {a }}\) & 1.90 & 8 & Other \({ }^{\text {d }}\) & 2.87 & 11 \\
\hline Total & 24.6 .5 & 99 & Total & 25.37 & 100 \\
\hline
\end{tabular}

\section*{Auditory Test Totai}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1983 Keading Grade（a） & 21.18 & 69 & 1985 Reading Grade（a） & 20.76 & Ss \\
\hline Percentage of Books & & & Fercentage of Books & & \\
\hline Lost Fer Student（a） & 2.43 & 8 & Lost Fer Student（a） & 2.35 & 8 \\
\hline 6ifted Program（a） & 3.18 & 10 & Gifted Frogras（m） & 2.94 & 9 \\
\hline Grade Level（ \(n\) ） & ． 00 & 0 & Grade Level（ \(n\) ） & ． 01 & 0 \\
\hline Encyclopedia Sets & & & Encyclopedia Sets & & \\
\hline Fer Student（s） & 2.37 & 8 & Per Student（ \(\mathbf{a}\) ） & 2.50 & 5 \\
\hline Other \({ }^{\text {d }}\) & 1.35 & 4 & Other \({ }^{\text {a }}\) & 2.59 & 9 \\
\hline Total & 30.51 & 99 & Total & 31.23 & 100 \\
\hline
\end{tabular}
a－－Predictors forced into equation，but not significant at or beyond the ． 15 level．

Tatle 48. (Contanued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Indian Stepaise/Forced Entry Models} & \multicolumn{3}{|c|}{Modifiec Indian StepuiseiForced Entry Models} \\
\hline & \(\%\) of & \% of & & \% of & \(\%\) of \\
\hline & Title & Explained & & Table & Exploined \\
\hline Predictor & Varionce & Variance & Predictor & Variance & Variance \\
\hline
\end{tabular}

\section*{Spelling}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1983 Feading frate (m) & 21.02 & 58 & 1983. Fieading Grade (m) & 20.79 & 56 \\
\hline Nuaber of Days Absent & & & Nuaber of Days Absent & & \\
\hline in 1982-1993 (0) & 4.17 & 11 & in 1982-1985 (8) & 4.28 & 12 \\
\hline Father's Status (n) & 1.63 & 4 & Father 5 Status inil & 1.65 & 4 \\
\hline Gifted Frogram (a) & 3.55 & 10 & Gifted Program (a) & 3.40 & 8 \\
\hline Nuaber of Farents Absent (n) & (1) 2.45 & 7 & Nunber of Parents Rhbsent & 2.47 & 7 \\
\hline Emergency Telephone (w) & . 36 & 1 & Emergency Telephone (a) & . 37 & \\
\hline Free: Fieduced bunch (n) & 2.03 & 5 & Frae : Eeduced Luncti (n) & 2.05 & 5 \\
\hline Student's kesidenice (\(n\)) & . 8 & 0 & Student's Residence (a) & . 68 & 0 \\
\hline Nunber of Parents & & & Ruaber of Parents & & \\
\hline Employed (a) & -. 61 & \(\because\) & Eaployed ini & -. 61 & -2 \\
\hline Othera & 1.85 & 5 & Othera & 2.31 & 6 \\
\hline Total & 36.54 & 100 & Total & Bt.7 & 99 \\
\hline
\end{tabular}

\section*{Math Concepts}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1993 Grade Foint Averase (a) & 30.57 & 81 & 1985 Grade foint Average (a) & 31.23 & 81 \\
\hline Fercentage of Books & & & Percentage of Eocks & & \\
\hline Lost Per Student (a) & 3.34 & 9 & Lost Per Student (N) \(^{\text {c }}\) & ?. 3 & 5 \\
\hline & & & Fresctioci Atteridance in & \(-.15\) & 0 \\
\hline Sen (n) & . 71 & 2 & Sex (m) & . 69 & 2 \\
\hline Gifted Frogram (m) & 2.65 & 7 & & & \\
\hline & & & Home Fhone Listed inil & 1.50 & 3 \\
\hline Othera & . 29 & 1 & Othera & 2.10 & 5 \\
\hline Total & 37.55 & 100 & Total & 33.51 & 100 \\
\hline
\end{tabular}
a-Predictors forced into equation, but not significant at or beyond the . 15 level.

Table 48. Continuedi
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Indian Stepwise/Forced Entry Models} & \multicolumn{3}{|l|}{Modified Indian Stepwise/Forced Entry Models} \\
\hline & \(\%\) of & 4 of & & \(\%\) of & \\
\hline & Table & Explained & & Table & Explained \\
\hline Predictor & Varianice & Varlance & Predictor & Variance & Variance \\
\hline \multicolumn{6}{|c|}{Math Test Total} \\
\hline 1983 Grade Foint & & & 1933 Srade Foint & & \\
\hline Average (m) & 32.73 & 85 & Average (m) & 33.84 & 84 \\
\hline Percentage of Books & & & Fercentage of Eocks & & \\
\hline Lost Per Student (is) & 3.46 & 9 & Lost Fer Student ((1) \(^{\text {a }}\) & 3.46 & 8 \\
\hline & & & Freschool Attendance (\(n\)) & . 70 & 2 \\
\hline Gifted Frogran (a) & 2.75 & 7 & & & \\
\hline Other \({ }^{\text {a }}\) & -.30 & -1 & Other \({ }^{\text {a }}\) & 2.94 & 1 \\
\hline Tota! & 38.68 & 100 & Total & 40.48 & 101 \\
\hline
\end{tabular}

\section*{Science knowledoe}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1985 Grade Foint & & & 1993. Grade Foint & & \\
\hline Average (\$) & 16.81 & 59 & Average (m) & 16.67 & 58 \\
\hline Fercentage of 5ooks & & & Percentage of Books & & \\
\hline Lost Per Student (a) & 5.78 & 20 & Lost Per Student (in) & 5.84 & 20 \\
\hline Grade Level (\(n\)) & 2.69 & 10 & Grade Level (\(n\)) & 2.63 & 9 \\
\hline bifted Fragram in) & 3.99 & 14 & bifted Prograi (a) & 3.97 & 14 \\
\hline 1983 Citazership Grade (a) & \(-1.58\) & -6 & 1983 Citizenship Grade (0) & -1.59 & -5 \\
\hline Qther \({ }^{\text {d }}\) & . 72 & 3 & Gther \({ }^{\text {a }}\) & \(1.10{ }^{7}\) & 4 \\
\hline Total & 28.41 & 100 & Total & 28.56 & 99 \\
\hline
\end{tabular}
a--Predictors forced into equation, but not significant at or beyond the .45 level.
```

academic achievement. Comparisons indicated that four of the models
were structurally modified, but that the models (encept for vocabulary
knowledge and math test total) accounted for less than one percent
more of the total variance. However, it was found that the "other"
variables statistically forced into the equations generally accounted
for more of the variance in the modified models, which suggested the
relative importance of these additional factors regardless of their
contribution to the explained variance.
Focusing upon those models with structural changes, it was noted
that three of them were also models with new predictors. The word
study skills model was changed by the elimination of the emergency
telephone listing variable. The vocabulary knowledge model was
changed by the addition of the Reservation Head Start variable (1%).
It was also noted that the 198S reading grade and grade level
antecedents explained less variance, while encyclopedia sets per
student and "other" variables, which were forced into the equation,
accounted for more variance. Tal:en together, all changes increased
the amount of explained variance by 1.5%.
The math concepts model was modified through the addition of two
variables and the elimination of one. Freschool attendance, which
entered as a suppressor variable, thereby increasing the
predictatility of the other variables, and the nome telephone listing
variables replaced the participation in the gifted program
antecedent. This implied that those Indian students who went to
preschool apparently did worse when considered separately, but, when

```
```

holding other things constant, it was found that attending preschool
did help with math concepts achievement. These two additions,
however, accounted for less variance. Eoth the logs grade point
average and the other forced entry variables accounted for more
variance. Overall, the modified model accounted for just under 1%
more variance.
The modified Indian math test total model contained the same
number of predictors as the original Indian model, but accounted for
nearly 2% more variance. This was accounted for by the large increase
in the amount of variance explained by the other variables, which
accounted for 3% more variance in the modified model. Structurally,
preschool attendance replaced participation in the gifted program as a
predictor, but explained 2% less variance than did the gifted program.
Comparison of "Other" Fredictors
These results suggested that there was some type of interaction
among the preschool attendance and participation in the gifted program
variables. That is, it would appear that preschool attendance may
have acted as a substitute for participation in the gifted program.
However, before such an inference could be drawn, more detajled
analyses of the "other" predictors forced into the equation by
analysjs procedures, as well as those variables not entering the
models, had to be made.
First, in looking at vocabulary knowledge, it was found that the
participation in the gifted program variable did indeed enter,
contributing over 2% ( }p=.17)\mathrm{ to the total variance accounted for by

```
```

the "other" variables. Thus, the only thing really affected by
introducing the additional five factors to the analysis of vocabulary
knowledge was to decrease the statistical level of significance of the
previously significant participation in the gifted program variable.
Moreover, it was noted that the only variable not to enter the model,
other than those previously not entering (Table 4b), was preschool
attendance. It would seem, therefore, that the increased
accountability of the modified Indian model of vocabulary achievement
was due to the inclusion of the new variables, particularly the
Feservation Head Start predictor. That is, the inclusion of the
preschool variable in the modified vocabulary achievement model was
not, as it appeared to be, a simple case of replacement due to
redundancy of measurement with the participation in the gifted program
variable. Both variables were predictive of vocabulary achievement,
but when holding the predictors used in this analysis corstant, the
preschool attendance variable was significantly predictive and the
participation in the gifted program variable was not.
In considering the next modified model, math concepts, basically
the same results were found as for vocabulary knowledge. That is,
participation in the gifted program contributed 2.4% (p = . 16), or . 2%
less than in the original Indian model, to the variance accounted for
by the "other" predictors. Once again, then, the participation in the
gifted program variable was not less important, but rather not
statistically significant enough to be included as a specified
predictor, In looking at the variables not entering the math concepts

```

\begin{abstract}
modified model of achievement, besides those not entering the original Indian model, neither the Colony or Reservation Head Start predictors entered. Instead the preschool attendance variable entered the model as one of the other variables.

With respect to the home telephone listing variable, it must be inferred that some type of relationship existed between preschool factors and having a home telephone number listed with the school, such that it would cause the statistical level of significance to improve enough for it to be included in the modified model. That is, the amount of explained variance was about the same for both models, but was included with the "other" predictors in the original Indian model because the standardized Beta was not statistically significant. Nearly the same pattern that was found for math concepts was found for the math test total model. Farticipation in the gifted program contributed \(2.4 \%(p=.16)\) to the total variance accounted for by the "other" variables. Thus, it was found that preschool attendance was not, despite appearances, a redundant measure with participation in the gifted program in either math concepts or math test total achievement; both preschool attendance and participation in the gifted program were predictive of Indian achievement. Hence, participation in one program was not a substitute for participation in the other.

In comparing antecedent predictors not entering various equations, it was found that the Colony and Fieservation Head Start variables did not enter any of the models except for vocabulary knowledge, in which
\end{abstract}

\begin{abstract}
preschool attendance did not enter. Thus, except for vocabulary knowledge achievement, the more general preschool attendance variable was b better predictor than the more specific Head Start antecedents. It was also noted that inclusion of the Head start variables was associated with the inclusion of the school cost per student antecedent and the exclusion of the percentage of books lost per student predictor (which contributed \(1 \%\) to the total variance accounted for by other variables in the original Indian model of vocabulary achievement).

Although neither the number of years in preschool nor the who is Native American variables were structurally included in any of the modified models of Indian achievement as a statistically significant predictor, analysis of the variables included in the "other" predictors procedurally forced into the equation indicated that they were, indeed, predictive of achievement. As the "other: predictors also accounted for more variance in the modified than in the original models, it was concluded that the addition of the preschool attendance and Who is Native American variables substantively increased the predictiveness of the Indian models of academic achievement; that is, they substantively added to pur understanding of Indian achievement.
\end{abstract}

\section*{Summary}

Feanalysis of the reading and math pools of antecedent predictors, with the inclusion of five additional variables applicable to Indian students only, were made to determine if these additional factors would modify the Indian models of academic achievement. The results
```

of these analyses (Tables 47 and 48) demonstrated that four of the ten
models were structurally changed, while comparisons with the original
models showed that the modified models accounted for slightly more
variance as would be expected when adding more variables to the pool.
Consideration of the "other" variables foreed into the models, along
with those not entering the medels, demonstrated considerable
continuity with regards to the effects of these added variables. That
is, Who was Native American, preschool attendance, and number of years
in preschool consistently entered all but the vocabulary knowledge
model (in which the two Head Start variables entered instead of
preschool attendance), thus empirically showing that these factors
made substantive contributions to explaining Indian student
achievement.
These analyses have provided, therefore, empirical evidence concerned with the eighth research question:
8. Do factors applicable to Indian students only (e.g., tribal affiliation, preschool) affect the antecedent structural models of achievement?
That is, factors applicable to indian students only do affect the antecedent structural models of achievement. In particular, adding these factors affected the structure of the vocabulary knowledge, math concepts, and math test total Indian models of achievement, but added little in terms of additional explained variance ( $\underline{R}^{2}$ ) despite the obvious substantive addition.

```

\section*{Summary of Academic Achievement in the Washoe County School District}

During this stage (second) of the first set of processes in the
```

third research cycle of this study, three distinct groups of analyses
were performed, using a combination of stepwise and forced entry
multiple regression analysis techniques, to develop the best possible
models (given the previously defined antecedent predictors) of
academic achievement for both the Washoe County School District in
general and for Indian students only. The first group of analyses
produced the best models for predicting academic achievement for the
Washoe County School District student population. The second group of
analyses resulted in the best models for predicting Indian student
academic achievement in the district. These later results were then
compared and contrasted with the population models lfrom the first
group of analyses) to ascertain similarities and differences in the
two groups of predictor models.
Fiesults of these various analyses demonstrated that, taken
together and on the average, the models could account for only about
one-third of the variance in academic achievement--for either Indian
students only or for students in general. Moreover, it was found that
even though previous academic achievement was an unexpectedly poor
predictor of academic achievement, seldom accounting for more than 25%
of the total variance, it was the best antecedent predictor used in
this study. That is, previous grades did not fully reflect
achievement, but rather tended to measure some other phenomena. More
importantly, however, the results clearly demonstrated that the
predictor models of academic achievement were different for Indian
students than for students in general.

```
```

    The third group of analyses introduced five new factors applicable
    to lndian students only, to determine if such variables would modify
the Indian models of academic achievement. Results of these analyses
showed that these factors generally resulted in little added
predictability, albeit not always large or statistically significant.
Moreover, it was found that a consistent predictor of academic
achievement was the grade level variable, which had also been found in
the original analyses during the second cycle of the study (Chapter
4). As a result of these earlier conclusions (Chapter 4), it was
hypothesized that different factors would be predictive of academic
achievement at different grade levels. The next stage of this
research cycle, therefore, was to develop models of academic
achievement by grade level for the Washoe County School District and
for Indian students only.

```

\section*{Chapter 7}

\section*{MODELS OF ACADEMIC ACHIEVEMENT BY GRADE LEVEL}
```

The objective of the third research cycle of this study (see Figure 4) were twofold: to test the models of academic achievement, which were exploratorily developed (as discussed in Chapter 4); and to determine the manipulability of those factors found to be predictive of academic achievement for the Washoe County School District elementary student population and Indian students only. To accomplish these two objectives, two sequential sets of methodological processes were conducted respective to each objective. The first set of processes was further done in a series of stages. The first stage, as reported in Chapter 5 , was to analyze the interrelationships between those variables previously identified (Chapter 4) as predictive of both reading oriented and math oriented measures of academic achievement. The second stage was the testing of these previously constructed reading and math oriented predictor pools for predicting student academic achievement for the population and for Indian students only, also discussed in Chapter 5 , and then to compare these models for structural accounting differences between the Indian and

```
```

population models of academic achievement. As part of the second
5tage, three groups of analyses were made: first on the population,
then on Indian students only, and lastly on Indian students only, but
with additional unique predictors; and two sets of comparisons were
made: population models compared with Indi an models of achievement,
and Indian models compared with Indian modified models of achievement.
The last stages of this set of processes, then, was to compare
academic achievement for the population, and for Indian students only,
by grade level. This stage, then, sought to test the minth and
eleventh research hypotheses:
HE: Different antecedents are predictjve of standardized
achievement test scores at different grade levels in the
Washoe County School District.
H11: The models of academic achievement are more predictive at
certain grade levels than others in the Washoe County School
District.
Four groups of analyses were made to accomplish the objective of this
stage, and to test these research hypotheses. The first and second
groups of analyses set up new district level models for, respectively,
the total population and Indian students without grade level as a
predictor. The third and fourth groups of analyses set up grade level
models of academic achievement for the population and lndian students
only. As with previous analyses in this cycle of research, the models
of academic achievement were developed by sequentially analyzing the
data using both the stepuise and forced entry multiple regression
tachniques.

```
```

Eefore analyses by grade level could be made, therefore, new population and Indian models of academic achievement had to be constructed without grade level as a predictor. The theoretical justification for this was that district level models without grade level could be compared to the grade level models, but the existing models (with grade level) could not.

```

\section*{Methodological and Theoretical Clarification}

Methodologically, the only change made was to remove grade level frow the list of antecedent predictors (or independent variables) in the SFSSX systems files for the Washoe County School District population and Indian students only. Otherwise, all procedures remained the same as when analyzing the antecedents with grade ievel included. The theoretical purpose for removing grade level from the pool of predictors was to obtain comparative models for both the elementary Indian students and the Washoe County School District elementary student population, without grade level as a variable, so that models of achievement for each grade level (2 nd-bth) couid be analytically compared with the population models of achievement.

\section*{Population Models Without Grade Level}

The results of the stepwise and forced entry multiple regression analyses without grade level for the ten dependent variables are reported in Table G-2 (Appendin G), while Table 49 compares those results with the the population models with grade level. Of the ten models of academic achievement in the Washoe County School District,

Table 49. Conparison of Population Kegression Models Hith and mithout Grade Level
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{\begin{tabular}{l}
Population Stepwise/Forced Entry \\
Models With Grade Level
\end{tabular}} & \multicolumn{3}{|c|}{Population Stepwise;Forced Entry Models hithout Grade Level} \\
\hline & 4 of & \% of & & \(\%\) of & \% of \\
\hline & Table & Explained & & Table & Explained \\
\hline Fredictor & Variance & Variance & Predictor & Variance & Mariance \\
\hline
\end{tabular}

\section*{Word Study Skille}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1983 Reading Grade (0) & 14.32 & 58 & 1983 Keading Grade (a) & 14.59 & 59 \\
\hline Acreage Fer Student (at) & 4.89 & 20 & Acreage Fer Student (a) & 4.81 & 20 \\
\hline Sex (n) & 1.75 & 7 & Sers (\(n\)) & 1.82 & 7 \\
\hline Grase Level (n) & 1.17 & 5 & & & \\
\hline & & & Age in Manths at Time of Test (\(n\)) & . 47 & 2 \\
\hline Esergency Teleptone imi & 1.44 & \(\pm\) & Ewergency Telephone (mi & 1.47 & 5 \\
\hline Father's Status (n) & . 56 & 2 & Father's Status in) & . 5 & 2 \\
\hline 1983 Citizerstip Grade (ix) & -. 72 & -4 & 1993 Citizershio Grase (a) & \(-1.09\) & -4 \\
\hline Other \({ }^{\text {d }}\) & 1.62 & 5 & Other \({ }^{\text {d }}\) & 1.93 & 7 \\
\hline Total & 24.34 & 100 & Total & 24.55 & 99 \\
\hline
\end{tabular}

\section*{Geading iongranemsion}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1983 rieading Ërade (m) & 21.35 & 67 & 1983 Feadino Grade (m) & 21.85 & \(t i\) \\
\hline Abreage jer Stucent (a) & 4.38 & 14 & Acreage fer Student (m) & 4.33 & 14 \\
\hline Litrary upen after & & & Library Open after & & \\
\hline School Fer Student (m) & . 97 & 3 & Sctiool Per Student (a) & . 97 & 3 \\
\hline bifted Froordim (a) & 1.52 & 5 & Gifted Frogram (\%) & 1.55 & 5 \\
\hline Cost of School & & & Cost of School & & \\
\hline Fer Student (\(m\)) & -. 27 & -1 & Fer Student (\(\mathrm{a}_{\text {) }}\) & -. 29 & -1 \\
\hline Change of Schools (n) & 1.52 & 5 & Change of Schools (if) & 1.52 & 5 \\
\hline Sex (\(n\)) & . 77 & 2 & Sex (\(n\)) & . 71 & 2 \\
\hline Energency Teiephone (a) & 1.14 & 4 & Emerọency Teleptione (m) & 1.14 & 4 \\
\hline Free \& Fieduced Lunch (\(n\)) & 1.14 & 4 & Free \& Ereduced Lunch ini & 1.14 & 4 \\
\hline 1993 Citizenship Grade (a) & \(-1.26\) & -4 & 1983 Citizenstiop Grade (ia) & -1. \(\mathrm{i}^{6}\) & -4 \\
\hline Other \({ }^{\text {a }}\) & . 69 & \(i\) & ather \({ }^{\text {d }}\) & . 68 & 2 \\
\hline Total & 32.42 & 101 & Total & 32.42 & 101 \\
\hline
\end{tabular}
a--fredictors forcec into equation, but not significant at or beyond the . 15 level.
(a)--Indicates variable that 15 manaculate br the strool district.
(n)--indicates variable that is not maripuladie of the scnool district.

Table 49. (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{\begin{tabular}{l}
Fopulation Stepulse/Forced Entry \\
Models Hith Grade Levei
\end{tabular}} & \multicolumn{3}{|c|}{Fopulation Stepulse/Forced Entry Models Without Girade Level} \\
\hline & 3 of & 3 of & & \% of & \% of \\
\hline & Table & Explaineo & & Table & Explained \\
\hline Fredictor & Variance & Variance & Predictor & Variance & Variance \\
\hline
\end{tabular}

Fieading Test Total
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1983 Fieading Grade (m) & 25.74 & 65 & 1983 Keadino Grade (m) & 26.019 & 67 \\
\hline Acreage Per Student (a) & 5.08 & 13 & Acreage ¢er Student (a) & 4.97 & 13 \\
\hline Library Open After & & & Liorary Open After & & \\
\hline School Par Student (ini & . 54 & 2 & School Per Student (a) & . 91 & 2 \\
\hline Sex (n) & 1.80 & 5 & Sex (n) & 1.84 & 5 \\
\hline Emergency ílephore (m) & 1.87 & 5 & Emergency Teleptione (a) & 1.89 & 5 \\
\hline Grade Level (n) & . 73 & 2 & & & \\
\hline Father s jutatus (f) & . 90 & 2 & Father's Status inl & . 90 & 2 \\
\hline 1983 Citizenstio Grade (a) & -1.57 & -4 & 1985 Citicenstip Gorase & -1.36 & -4 \\
\hline Other \({ }^{\text {d }}\) & \(\underline{3.59}\) & 9 & Other \({ }^{\text {d }}\) & 4.05 & 10 \\
\hline Total & 38.18 & 100 & Total & 38.90 & 100 \\
\hline
\end{tabular}

\section*{Vocabular: knowiedoe}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1993 Readirig frade (a) & 20.70 & 31 & 1983 Keading Grade (in) & 20.92 & 52 \\
\hline Free: Kectuced Lunch (n) & 2.97 & 9 & Free : Fieduced Lurich in) & 2.95 & 9 \\
\hline Change of Senools inj & 1.50 & 4 & Charige of Schools (n) & 1.48 & 4 \\
\hline Emergency Telephone (mi & 1.45 & 4 & Emergency Telephone (mi & 1.45 & 4 \\
\hline Grade Level (in) & . 69 & 2 & & & \\
\hline Gifted Frogras (in) & 1.03 & 5 & Gifted Frogram (m) & 1.71 & 5 \\
\hline Library Open After School Per Student iul & . 74 & 2 & Library Upan Aitar School Fer Student (io) & . 74 & 2 \\
\hline Mayazine Subscriptions & & & & & \\
\hline Fer Student (m) & . 92 & 5 & & & \\
\hline Nuaber of Days & & & Nuaber of Days & & \\
\hline Absent in 1982-1983 (m) & . 90 & \(\checkmark\) & Absent in 1985-1993 (in) & . 92 & 3 \\
\hline Home Phone Listed (n) & 1.59 & 5 & HCiae fhone Listed (n) & 1.65 & 5 \\
\hline Other \({ }^{\text {a }}\) & . 93 & 5 & Other \({ }^{\text {d }}\) & 1.96 & 5 \\
\hline Total & 34.02 & 101 & Total & 33.77 & 100 \\
\hline
\end{tabular}
a--Fredictors forced into equataci, but not significant at or bevond the . 15 level.
(ni-Indicates variable that is manipulatle by the school district.
(n)--Indacates variable that 15 not manipulable by the school distract.

Table 49. (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Fopulation Stepwise/Forced Entry Models Hith Grade Leyel} & \multicolumn{3}{|l|}{Fopulation Stepwise/Forced Entry Models Hithout Grade Level} \\
\hline Pradictor & \[
\begin{gathered}
\text { \% of } \\
\text { Table } \\
\text { Yariance }
\end{gathered}
\] & \(\%\) of Explained Variance & Fredictor & \[
\begin{gathered}
\text { \% of } \\
\text { Table }
\end{gathered}
\]
Variance & \% of
Enplained
Variance \\
\hline \multicolumn{6}{|c|}{Listening Comprehension} \\
\hline 1983 fieading ôrade (面) & 16.67 & 54 & 1983 Reading Grade (a) & 17.17 & 58 \\
\hline Grade Level (n) & 5.14 & 10 & & & \\
\hline & & & Age in Months at Time of Test (\(n\)) & 1.25 & 4 \\
\hline Change of Schools (n) & 2.76 & 9 & Change of Schools (n) & 2.75 & 9 \\
\hline Magazine Eubstriptions & & & Magazine Subscriptioris & & \\
\hline Fer Student (is) & 1.43 & \({ }^{5}\) & Fer Student (a) & 1.38 & 5 \\
\hline Free t. Reduced Lunch (in) & 2.03 & 7 & Free : Keduced Lunch (n) & 1.99 & 7 \\
\hline Nuaber of Farents absent in & (n) -. 04 & 0 & Number of Farents Absen & (n) -.04 & 0 \\
\hline Home Phone Listed (m) & 1.55 & 5 & Home Fhone Listed (n) & 1.62 & 5 \\
\hline Litrary Üpen fitter & & & Library Open After & & \\
\hline School Fer situent (ix) & . 07 & 0 & Sthool Fer Student (\({ }_{\text {(}}\) & . 90 & 3 \\
\hline Esergency Telephorie (ai & 1.24 & 4 & Emergency Teleptione (a) & 1.27 & 4 \\
\hline Student's Residerice (n) & . 91 & 3 & Student's Residence (m) & 1.03 & 4 \\
\hline Other \({ }^{\text {a }}\) & 1.64 & \(\sim\) & Other \({ }^{\text {a }}\) & . 30 & 1 \\
\hline Total & 30.72 & 1010 & Total & 27.62 & 100 \\
\hline
\end{tabular}

Auditory Iest Total
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1993 Reading Grade (m) & 16.46 & 63 & 1993 Keading Grade (ix) & 16.49 & 6.5 \\
\hline Emergency Teleptione (/ \(^{\text {(}}\) & 2.05 & 8 & Emergency Telephone (\(\quad\)) & 2.02 & 8 \\
\hline Free \& Reduced Lurich (n) & 1.71 & 6 & Free * keduced Lunch (n) & 1.71 & ¢ \\
\hline Gifted Frogram (a) & 1.48 & 6 & Gifted frogram (m) & 1.49 & 6 \\
\hline Number of Transters (n) & 1.55 & 6 & Number of Transters (\(n\)) & 1.53 & 5 \\
\hline Student's Kesidence (n) & . 59 & 2 & Student's Fesidence (\(n\)) & . 61 & 2 \\
\hline Father's Status (\(n\)) & . 32 & 1 & Father 5 Status (\(n\)) & . 32 & 1 \\
\hline Nuaber of Days Absent & & & Nuaber of Days Absent & & \\
\hline in 1992-1993 (m) & . 62 & 2 & in 1992-1983 (a) & . 63 & 2 \\
\hline Number of Farents Absent (n) & -. 19 & -1 & Number of Farents Absent (n) & -. 19 & -1 \\
\hline Hoas fhone Listed (n) & 1.33 & 5 & Hoae Phone Listed (\(n\)) & 1.34 & 5 \\
\hline Other \({ }^{\text {a }}\) & . 39 & 1 & Other \({ }^{\text {d }}\) & . 33 & 1 \\
\hline Total & 26.29 & 9 & Total & 26.27 & 100 \\
\hline
\end{tabular}
a--fredictors forced into equation, but not significant at or beyond the .15 level.
(a)--Indicates variable that 15 manipulable by the school district.
(n)--Indiates variable that 15 not manipulable by the school district.

\section*{Table 49. (Continued)}

Speliinq
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1983 Reading Grade (in) & 24.72 & 62 & 1983 Readino frade (m) & 24.79 & 63 \\
\hline Student 5 gresidence (ni) & 3.84 & 10 & Student's Residence (\(n\)) & 3.85 & 10 \\
\hline Ser (\(n\)) & 2.82 & 7 & Sex (m) & 2.84 & 7 \\
\hline Ácreage fer Student (0) & 2.91 & 7 & Acreage Fer Student (ai & 2.90 & 7 \\
\hline Encyclopedia Sets & & & Encuclopedia Sets & & \\
\hline fer Student (a) & 1.98 & 5 & Fer Student (a) & 1.950 & 5 \\
\hline Fercentage of Books & & & Percentage of Eooks & & \\
\hline Lost Per Stucient (a) & 2.13 & 5 & Lost Fer Student (in) & 2.15 & 5 \\
\hline Number of Farents & & & Number of Parents & & \\
\hline Enployed in! & -. 04 & 0 & Eaployed (n) & -. 34 & 0 \\
\hline Other \({ }^{\text {d }}\) & 1, 5 & \(\stackrel{\square}{3}\) & Other \({ }^{\text {d }}\) & 1.13 & 3 \\
\hline Total & 37.61 & \% & Totas & 39.51 & 100 \\
\hline
\end{tabular}

Math Conceots
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1995 brade Foint & & & 1933 Grade foint & & \\
\hline Average (n) & 27.96 & 76 & tiverage (m) & 24.14 & 77 \\
\hline Giftes Crouran (in) & 2.59 & 8 & Giftej Frogriom & 2.70 & 9 \\
\hline Orade Level (a) & 1.75 & \(\pm\) & & & \\
\hline & & & fige \(3 \pi\) Mosths at Tine of Test (ai) & 1.43 & 5 \\
\hline Fercentage of books & & & Percentage of Eocks & & \\
\hline Lost Per Student (m) & 1.41 & 5 & Lost Fer Student (a) & 1.46 & 5 \\
\hline 1983 Citizenship Grade ((\()^{\text {(}}\) & \(-1.19\) & -4 & 1983 Citizenship Grade & (mi) -1.24 & \(-4\) \\
\hline Home fhone Listed (n) & 1.34 & 4 & Hume Fhone Listed toi & 1.39 & 4 \\
\hline Library Dpen After & & & Library Opan After & & \\
\hline School Fer Student (a) & . 65 & 2 & Setioul per Sturent (fity & . 64 & 2 \\
\hline Othera & . 75 & 2 & Other \({ }^{\text {a }}\) & . 73 & 2 \\
\hline Total & 31.15 & 99 & Total & 31.25 & 10 \\
\hline
\end{tabular}
d-firedictors forced bite equation, sut not sionificant at or bevond the . i 5 level.
(ai)--Indicates variable that is manabulable oy the school district.
(in)-Indicates variable that is not wampulable by the seneol district.

\section*{Table 49．（Continued）}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Population Stepmise／Forced Entry Models with urade Level} & \multicolumn{3}{|l|}{Fopulation Stepwise／Forced Entry Models Without Grade Level} \\
\hline & \％of & \(\%\) of & & \％of & \％ 01 \\
\hline & Table & Explained & & Table & Explained \\
\hline Predictor & Varlance & Marlance & Predictor & Variance & Yariance \\
\hline \multicolumn{6}{|c|}{Math Test Total} \\
\hline 1793 Grade Point & & & 1983 Grade Foint & & \\
\hline Average（m） & 28.26 & 88 & Average（\％） & 28.26 & 83 \\
\hline Gifted Frogram（a） & 3.17 & 9 & Gifted Frogram（m） & 3.07 & 9 \\
\hline Fercentage of Eooks & & & Percentage of Eooks & & \\
\hline Lost Fer Student（i） & 1.65 & 5 & Lost Per Student（a） & 1.65 & 5 \\
\hline 1983 Citizenship Grade（m） & －1．49 & －4 & 198？Citizenship Grade & （i）-1.49 & －4 \\
\hline Hige in Honths at & & & Age in Montris at & & \\
\hline Tine of Test（n） & ． \(\mathrm{EF}^{4}\) & \(?\) & Tifie of Test（n） & ． 89 & 3 \\
\hline Library Dipen After & & & Library Open After & & \\
\hline Sthool Fer Student（in） & ． 61 & 2 & School Fer Student（a） & ． 61 & 2 \\
\hline Dther \({ }^{\text {a }}\) & 1.21 & － & Other \({ }^{\text {a }}\) & 1.21 & 3 \\
\hline Total & 34.20 & 101 & Iota！ & 34.70 & 101 \\
\hline \multicolumn{6}{|c|}{Science Kicaledoe} \\
\hline 1993 Grade Foint & & & 1993 Grade Foint & & \\
\hline Average（n） & 17.80 & 60 & Average（1）\({ }_{\text {a }}\) & 17.80 & 60 \\
\hline Age in Months at & & & Age in Months at & & \\
\hline Tine of Test（n） & 4.61 & 15 & Time of Test（in） & 4.61 & 15 \\
\hline Acreage Fer Stujent（m） & 4.47 & 15 & Acreage Per Student in & 4.47 & 15 \\
\hline Library Open After & & & Library upen hifter & & \\
\hline School Per Student（ \(⿴ 囗 ⿰ 丨 丨 又\) ） & 1.07 & 4 & School Per Student（a） & 1.07 & 4 \\
\hline Sex（n） & ． 60 & 2 & Sex（n） & ． 60 & 2 \\
\hline Gifted frogram（a） & 1.62 & 5 & Gifted Frogran（m） & 1.62 & 5 \\
\hline Qther \({ }^{\text {a }}\) & －．3．3 & －1 & Uther \({ }^{\text {a }}\) & \(-.33\) & －1 \\
\hline Total & 29.64 & 100 & Total & 29.84 & 100 \\
\hline
\end{tabular}
a－fredictors forted into equation，but not significant at or deyerid the ． 15 level．
（m）－－lndicates variatle that is manipulabla b；the sthool oistrict．
（ \(n\) ）－－lidicates variatle that is not manipulable by the scnool district．
```

five were essentially or exactly the same both with and without the
inclusion of grade level. In three of the other models, grade level
was replaced by the student's age variable. In the word study skills
model, the new equation accounted for negligibly less (.3%) variance
with student's age replacing grade level. In the listening
comprahension model, the total explained variance was reduced by 1. 1%
when student's age replaced grade level. Somewhat in contrast, when
student's age replaced grade level in the math concepts model, the new
equation accounted for more, albeit a miniscule (.1%) amount of,
variance. In the other two models, grade level was not replaced with
any other predictor. For the reading test total model, removal of
grade level from the equation reduced the total variance accounted for
by.3%, Similarly, the vocabulary knowledge model explained . 2% less
of the variance, but, in addition to grade level, the number of
magazine subscriptions also dropped out of the model.
In the five models where some changes did occur, the 1983 reading
grade generally accounted for 5lightly more variance in the new
models. Moreover, when student's age replaced grade level it never
accounted for as much variance as grade level. Overall, the removal
of grade level from the population models of achievement had minimal
effect on the structure and accountability of those models.

```
Indian Models Without Grade Level
 Table \(H-2\) (Appendi: H) reports the results of the stepwise and
foreed entry multiple regression analyses without grade level for
Indian students, and Table 50 compares these results with those when

Table 5e. Coaparison of Indian Regression Models With and Hithout orade Level
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Indian Stepwise/Forced Entry Models \#ith Grade Level} & \multicolumn{3}{|l|}{Indian Stepwise/Forced Entry Models without örade Level} \\
\hline & 2 of & \% 3 & & \(\%\) of & \% of \\
\hline & Tabie & Explained & & Table & Enplained \\
\hline Pradictor & Varianice & Yariance & Predictor & Yariance & Variance \\
\hline \multicolumn{6}{|c|}{Hord Stuiy Einills} \\
\hline 1783 Reauting Grase (a) & [E.67 & 57 & 1985 Seading grate (a) & 18.75 & 54 \\
\hline Father's Status (m) & 4.40 & 15 & Father 5 Status in) & 4.47 & 14 \\
\hline Grade Level (\(n\)) & 1.25 & 4 & & & \\
\hline & & & Age in Months at The of Test (\(n\)) & . 3.1 & 1 \\
\hline Mayazine Sutscriptions & & & Magazine Subscriptions & & \\
\hline Feer Student (m) & 4.19 & 12 & Fer Studerit (m) & 3.89 & 12 \\
\hline Emergency Telephore (i) & . 17 & 1 & Esergancy Ielephore (ait & . 21 & 1 \\
\hline Other \({ }^{\text {d }}\) & 4.67 & \(1 \overline{12}\) & Diner \({ }^{\text {a }}\) & 4.36 & 14 \\
\hline Total & 3.09 & 99 & Total & 32.00 & 101 \\
\hline
\end{tabular}

\section*{Keadano Comorenenision}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 198? Fleading Grade (m) & 31.46 & 34 & 190. Readmo frade (a) & 36 & 8.5 \\
\hline Encuclopedia Sets & & & Enevclopedia Sets & & \\
\hline Fer Student uili & 3.05 & 8 & fer Etudent in! & 2.95 & 8 \\
\hline Gifted Frogrin (m) & 2.30 & \(\bigcirc\) & Giftec Frogram: & 2.47 & 7 \\
\hline Other \({ }^{\text {a }}\) & . 46 & 1 & Other \({ }^{\text {a }}\) & . 75 & L \\
\hline Tetal & 37.27 & 39 & Total & 37.23 & 100 \\
\hline
\end{tabular}
a--Fredictors forced inte equation, but not significant at or evevon the . LE level. (m)--Indicates variable that is manioulabie ty the school district. (n)--indicates variable that 15 not mampulable by the school district.

Table 50. (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Indian Stepwise/Forced Entry Models Hith Grade Level} & \multicolumn{3}{|l|}{Indian Stepwise/Forced Entry Models Without Grade Level} \\
\hline & \% of & \(\%\) of & & \(\%\) of & \(\%\) of \\
\hline & Tabie & Explained & & Tatle & Explained \\
\hline Predictor & Variance & Variance & Predictor & Variance & Variance \\
\hline \multicolumn{6}{|c|}{Reading Test Total} \\
\hline 1983 Keading Grade (1) & 37.23 & 80 & & 36.69 & 80 \\
\hline Magazine Subscriptions & & & Maqazine Subscriptions & & \\
\hline Fer Student (a) & 3.23 & 7 & F'er Student (\(\mathbf{m}\)) & 3.03 & 7 \\
\hline Grade Level (\(n\)) & -. 22 & -1 & & & \\
\hline Emergency Telephone (a) & . 15 & 0 & Esergency Telephone (mi) & . 16 & 0 \\
\hline Father's Status (n) & 1.01 & 2 & Father's Status (n) & 1.03 & 2 \\
\hline Gifted Frogram (a) & 2.61 & 5 & Sifted Frograim (m) & 2.89 & 6 \\
\hline Other \({ }^{\text {d }}\) & 2.74 & 6 & Uither \({ }^{\text {d }}\) & 2.30 & 5 \\
\hline Total & 45.75 & 100 & Total & 45.10 & 100 \\
\hline \multicolumn{6}{|c|}{Vocatulary Knowledge} \\
\hline 1983 fieading Grade (a) & 20.59 & 76 & 1983 Reading Grade (a) & 20.72 & 77 \\
\hline Grade Level (n) & . 40 & 1 & & & \\
\hline & & & Rge in Months at Tine of Test (\(n\)) & -. 26 & 1 \\
\hline Encyclopedia Sets & & & Encyclopedia Sets & & \\
\hline Fer Student (m) & 1.86 & 7 & Fer Student (a) & 1.90 & 7 \\
\hline & & & Gifted Frogram (n) & 2.35 & 9 \\
\hline Other \({ }^{\text {a }}\) & 4. 70 & 16 & Other \({ }^{\text {a }}\) & 2.01 & 7 \\
\hline Total & 27.15 & 100 & Total & 23.72 & 101 \\
\hline
\end{tabular}
a--Predictors forced into equation, but not sagnificant at or beyond the . 15 level.
(a) --Indicates variable that is minipulable by the school district.
(n)--Indicates variable that is not manipulable by the school district.

\section*{Table 50. (Continued)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Indian Stepwise/Forced Entry Models 日ith Grade Level} & \multicolumn{3}{|l|}{Indian Stepwisa/Forced Entry Models Hithout Grade Level} \\
\hline Predictor & \[
\begin{gathered}
\text { \% of } \\
\text { Table } \\
\text { Variance }
\end{gathered}
\] & \(\%\) of Explazned Variance & Predictor & \[
\begin{gathered}
\text { \% of } \\
\text { Table } \\
\text { Variance } \\
\hline
\end{gathered}
\] & : of Explained Variance \\
\hline \multicolumn{6}{|c|}{Listening Comprenension} \\
\hline 1983 keadirig forade (a) & 14.75 & 60 & 1985 Reading Grade (0) & 14.76 & 60 \\
\hline Percentage of Books & & & Fercentage of books & & \\
\hline Lost Fer Student (0) & 2.82 & 11 & Lost Fer Student (a) & 2.76 & 11 \\
\hline Father 5 Status (n) & 1.31 & 5 & Fathers Status inl & 1.27 & 5 \\
\hline Encyclopedia Sets & & & Encyclopedia Sets & & \\
\hline Fer Student (\({ }^{\text {(}}\) & 2.30 & 9 & Fer Student (a) & 2.32 & 10 \\
\hline Student's Residence (i) & 1.55 & 6 & Student's iesidence (\(n\)) & 1.49 & 6 \\
\hline Other \({ }^{\text {a }}\) & 1.90 & \(\varepsilon\) & Otner \({ }^{\text {d }}\) & 1.80 & 7 \\
\hline Total & 24.05 & 99 & Total & 24.42 & 99 \\
\hline
\end{tabular}

\section*{Auditory Test Tetal}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1983 Keading Grade (a) & 21.19 & 69 & 1995 Readino Grase (ii) & 21.19 & 70 \\
\hline Fercentage of Eooks & & & Fercentage of Eueks & & \\
\hline Lost Per Ştudent (a) & 2.43 & 8 & Lost Per Student ial & 2.34 & 3 \\
\hline Sifted Program (m) & 3.19 & 10 & Gifted Froorda (m) & 3.40 & 11 \\
\hline Encyclopedia Sets & & & Encyclopedia Sets & & \\
\hline Per Student (i) & 2.37 & 8 & Fer Student (ti) & 2.35 & 8 \\
\hline Srade Level inl & . 0 & 0 & & & \\
\hline & & & Age in Months at Tiar of Test (\(n\)) & . 45 & 2 \\
\hline Uuther \({ }^{\text {a }}\) & 1.35 & 4 & Other \({ }^{\text {d }}\) & . 34 & 1 \\
\hline Total & 30.51 & 99 & Total & 30.11 & 100 \\
\hline
\end{tabular}
a--Predictors forced into equation, but not significant at or teycnd the . 15 level. (o) -Indicates variable that is manipulatle by the school district.
(n)--Indicates variable that is not manipulable by the school district.

Table 50. (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Indian Stepwise:Forced Entry Models with Grade Level} & \multicolumn{3}{|c|}{Indian Stepwise/Forced Entry Models Without Grade Level} \\
\hline & is of & \% of & & \% of & \(\%\) of \\
\hline & Table & Explained & & Table & Explained \\
\hline Predictor & Variance & Variance & Predictor & Variance & Variance \\
\hline
\end{tabular}

\section*{Spelling}

Hath Concepts
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{1983 Grade Foint} & \multicolumn{3}{|l|}{1993 Grade Foint} \\
\hline Giverage (im) & 30.57 & 81 & Average (m) & 30.08 & 81 \\
\hline Percentage of Books & & & Fercentage of Books & & \\
\hline Lost Fer Student (i) & 3.54 & 9 & Lost Fer Student (m) & 3.22 & 9 \\
\hline Sex (\(n\)) & . 71 & 2 & Ser (\(n\)) & . 71 & 2 \\
\hline Gifted Program (n) & 2.65 & 7 & Gifted Frogras (im) & 2.87 & 8 \\
\hline Other \({ }^{\text {a }}\) & . 28 & 1 & Other \({ }^{\text {a }}\) & . 31 & 1 \\
\hline Total & 37.55 & 100 & Total & 37.17 & 101 \\
\hline
\end{tabular}
a--Fredictors forced lito equation, but not signsiicant at or beyond the . 15 level.
(o)--Indicates variable that is manipulable by the school district.
(n)--lndicates variable that is not manipuiable oy the school district.

Table 50. (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Indian Stepwise/Forced Entry Models with Grade Level} & \multicolumn{3}{|c|}{Indian Stepwise/Forced Entry Models Without Grade Level} \\
\hline & 3 of & \% of & & \(\%\) of & \(\%\) of \\
\hline & Table & Explained & & Table & Explained \\
\hline Predictor & Variance & Variance & Predictor & Variance & Variance \\
\hline
\end{tabular}

\section*{Math Test Total}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1995 Grade Foint & & & 1993 Grade Foint & & \\
\hline Average (1) & 32.77 & 85 & Average (m) & 32.38 & 84 \\
\hline Percentage of Books & & & Percentage of Fooks & & \\
\hline Lost Per Student (i) & ?.46 & 9 & Lost Fer Student (a) & 3.38 & 9 \\
\hline Gifted Frogram (a) & 2.75 & 7 & Gifted Frogram (\(n\)) & 2.90 & 9 \\
\hline Otner \({ }^{\text {d }}\) & -. 30 & -1 & Other \({ }^{\text {d }}\) & -. 11 & 0 \\
\hline Total & 38.68 & 100 & Total & 38.55 & 101 \\
\hline
\end{tabular}

\section*{Science knowledoe}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1493 Grade Point & & & 1993 Grade Point & & \\
\hline Average (m) & 16.81 & 59 & Average (\$) & 16.89 & 62 \\
\hline Percentage of goaks & & & Fercentage of Fooks & & \\
\hline Lost Fer Student (1) & 5.78 & 20 & Lost Fer Student (0) & 5.58 & 20 \\
\hline Grade Level (\(n\)) & 2.54 & 10 & & & \\
\hline & & & Age in Months at Hime of Test (\(n\)) & 1.45 & 5 \\
\hline Gifted Frogram (m) & 3.97 & 14 & Gifted Frooram (m) & 4.35 & 15 \\
\hline 1983 Citizenship 6rade (a) & \(-1.58\) & -6 & 1963 Catizenship Grade (m) & -1.63 & -6 \\
\hline Otherà & . 72 & 3 & Other \({ }^{\text {a }}\) & . 76 & 3 \\
\hline Total & 28.41 & 100 & Total & 27.41 & 100 \\
\hline
\end{tabular}
d-afredictors forced into equation, but not significant at or bevorid the . 15 level.
(m)--Indicates variable that a manipulable by the school district.
(n)--Indicates variable that is not manipulable by the school district.
```

grade level was included. Five of the models remained essentially the
same, although not for the same measures of academic achievement. In
four of the models, student's age replaced grade level, while in the
reading test total model grade level was simply removed, which reduced
the amount of variance accounted for by the model by . }6%\mathrm{ . The
replacement of grade level by student's age reduced the percentage of
explained variance by . 7% in the word study skills model, and by . 4%
in the vocabulary knowledge, auditory test total, and science
knowledge models. Surprisingly, in the vocabulary knowledge model,
student's age was a suppressor variable. The participation in the
gifted program variable also entered into the equation (2%).
As with the population models, in those models where student's age
replaced grade level, student's age was found to account for less
variance than grade level and the 1983 reading grade generally
accounted for more variance. Overall, removal of grade level had
minimal impact ori the accountability of Indian models of student
achievement, but did have a somewhat greater effect on the structure
of the Indian model of vocabulary knowledge. That is, participation
in the gifted program became a fairly good predictor of vocabulary
knowledge when madels were created for Indian students without grade
level as a variable.

```
Modified Indian Models Without Grade Level
 The results of the stepwise and forced entry multiple regression
analyses using the modified set of predictors, which included five
variables applicable to Indian students only, without grade level are
```

reported in Table I-2 (Appendi* I), while Table 5l compares these
results with those when grade level was included. It was found that
removing grade level as a predictor resulted in student's age entering
in its place in only the madified Indian word study skills and science
knowledge models, while in the vocabulary knowledge model both
student's age and participation in the gifted program entered to
replace grade ievel. As in the Indian vocabulary model, student's age
entered the modified Indian model as a suppressor, after removing
grade level.
In the reading test total and auditory test total models removal
of grade level simply resulted in the removal of that variable and a
concurrent smali reduction in the percentage of variance accounted for
by the predictors. Since grade level did not enter into the original
modified Indian models of reading comprehension, listening
comprehension, and spelling achievement, removal of grade level as a
predictor had essentially no effect on those models. Interestingly,
in two models, wath concepts and math test total achievement, removal
of grade level resulted in the entry of the participation in the
gifted program variable, although in neither model was it a
replacement for grade level or any other predictor that had previously
entered. This meant that the participation in the gifted program
variable, when considered in conjunction with factora peculiar to
Indian students only, was suppressed by grade level. Thus, when
considering indian student achievement, but eliminating the grade
level variable, both preschool attendance and participation in the

```

Table 5i. Conparison of Modified Indian Regression Models \#ith and Without Grade Level

Word Study Skills
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1983 Keading Grade (a) & 19.37 & 56 & 1993 Feading Grade (i) & 18.39 & 57 \\
\hline Father's Status (n) & 4.41 & 13 & Father's Status (n) & 4.48 & 14 \\
\hline Grade Level in) & 1.19 & 4 & & & \\
\hline & & & Age in Months at Time of Test (\(n\)) & . 28 & 1 \\
\hline Magazine Subscriptions & & & Magazine Subscriptions & & \\
\hline Per Student (0) & 3.86 & 12 & Fer Etudent (m) & 3.66 & 11 \\
\hline Dther \({ }^{\text {d }}\) & 5.21 & 16 & üther \({ }^{\text {a }}\) & 5. 59 & 17 \\
\hline Total & 32.14 & & Total & 32.40 & 100 \\
\hline
\end{tabular}

\section*{Fieadino Cowprehension}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1993 Keading Grade (A) & 31.55 & 94 & 1935 Reading Grade (a) & 30.86 & 82 \\
\hline Enevelopedia Sets & & & Encuciopedia Sets & & \\
\hline Per Student (i) & 3.40 & 9 & Fer Student (a) & 3.32 & 9 \\
\hline Gifted Frogram (m) & 2.28 & 6 & Sifted Frogram (a) & 2.46 & 6 \\
\hline Other \({ }^{\text {d }}\) & . 36 & 1 & Other \({ }^{\text {a }}\) & . 87 & 2 \\
\hline Total & 37.59 & 100 & Total & 37.51 & 99 \\
\hline
\end{tabular}

Fieading Test Total
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1985 Keading Grade (6) & 37.16 & 79 & 1993 fieading Grade (m) & 35.56 & 79 \\
\hline Magazine Subscriptions & & & Magazine Subscriptions & & \\
\hline Fer Student (a) & 3.22 & 7 & Fer Student (a) & 2.99 & \(\checkmark\) \\
\hline Grade Level (\(n\)) & -. 22 & -1 & & & \\
\hline Emergency Telephone (\({ }_{\text {(}}\)) & . 15 & 0 & Emergency Telephone (a) & . 16 & 0 \\
\hline Father's Status (n) & 1.01 & 2 & Father's Status (\(n\)) & 1.04 & 2 \\
\hline Gifted Frogram (a) & 2.61 & 6 & Gifted Frogra (a) & 2.85 & 6 \\
\hline Other \({ }^{\text {a }}\) & 2.96 & 6 & Other \({ }^{\text {a }}\) & 2.66 & 6 \\
\hline Total & 46.39 & 99 & Total & 46.26 & 99 \\
\hline
\end{tabular}

\footnotetext{
a--Fredictors forced into equation, but foot sionificant at or beyond the . 15 level.
(\(\mathbf{(})\)-Indicates variable that is manipulanle by the schooi district.
(n)--Indicates variable that 15 nat manipulable by the school district.
}

Table 51. (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Medified Indian Stepwise/Forced Entry Models With Grade Level} & \multicolumn{3}{|c|}{Modified Indian Stepinise/Forced Entry Models Wi thout Grade Level} \\
\hline & \%. of & \(\%\) of & & \% of & \% of \\
\hline & Table & Explained & & Table & Enplained \\
\hline Predictor & Variance & Variance & Predictor & Yariance & Varjance \\
\hline
\end{tabular}

\section*{Vocabulary Knowledge}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1983 freading brade (m) & 19.87 & 69 & 1583 fieading frade (i) & 20.04 & 70 \\
\hline Reservation Head Start (n) & 1.09 & 4 & Keseryation Head Start (n) & 1.10 & 4 \\
\hline & & & Gifted Frograa (if) & 2.30 & 8 \\
\hline Encyciopedia Sets & & & Encyclopedia Sets & & \\
\hline Fer Student (m) & 2.11 & 7 & Fer Student (m) & 2.13 & 8 \\
\hline Grade Level (n) & . 33 & 1 & & & \\
\hline & & & Age in Montins at Tine of Test in) & -. 22 & 1 \\
\hline Other \({ }^{\text {a }}\) & 5.21 & 18 & Dther \({ }^{\text {d }}\) & 3.15 & 10 \\
\hline Total & 29.61 & 99 & Total & 29.40 & 101 \\
\hline
\end{tabular}

\section*{Listenina Comprehension}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1983 Reading Grade (a) & 14.50 & 58 & 1993: Feading Grade (m) & 14.50 & 53 \\
\hline Percentage of Eocks & & & Percentage of Bocks & & \\
\hline Lost Fer Student (() & 2.82 & 11 & Lost Fer Student (in) & 2.77 & 11 \\
\hline Father's Status (i) & 1.32 & 5 & Fatner 5 Status (n) & 1.30 & 5 \\
\hline Encvelonecia Sets & & & Erivyclopedia Sets & & \\
\hline Fer 5tudent (m) & 2.23 & \(\bar{y}\) & Fer Student (6) & 2.25 & 9 \\
\hline Studerit's Fesidence int & 1.53 & 6 & Student s Gesidence ini & 1.48 & 5 \\
\hline Uther \({ }^{\text {a }}\) & 2.87 & 11 & Other \({ }^{\text {a }}\) & 2.31 & 11 \\
\hline Total & 25.37 & 100 & Total & 25.21 & 100 \\
\hline
\end{tabular}
a--fredictors forced into equation, but not significant at or beyond the . 15 level.
(a)--Indicates variable that 15 wanipulable by the school district.
(n)-Indicates variable that is not manipuiatle by the school district.

Tatie 51．（Continued）
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Modified Indian Stephise／Forced Entry Models Hith Graje Level} & \multicolumn{3}{|c|}{Modified Indian Stepwise／Forced Entry Models Without Grade Level} \\
\hline & \％of & \％of & & \(\%\) of & \(40 \%\) \\
\hline & Table & Explained & & Table & Explained \\
\hline Predictor & Yariance & Variance & Fradictor & Variance & Marlance \\
\hline
\end{tabular}

\section*{Guditory Test Total}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1983 Feading Grade（ \({ }^{(1)}\) & 20.76 & 65 & 1983 Keading Grade（a） & 20.76 & 67 \\
\hline Percentage of Books & & & Percentage of Eooks & & \\
\hline Lost Per Student（fit） & 2.35 & 8 & Lost Per Student（0） & 2.35 & 7 \\
\hline Gifted Frogram（a） & 2.94 & 9 & Gifted frograe（A） & 5.12 & 10 \\
\hline Grade Level（ \(n\) ） & ． 01 & 0 & & & \\
\hline Encyclopedia Sets & & & Encyelopedia Sets & & \\
\hline Fer Student（ \(⿴ 囗 十\) ） & 2.50 & ¢ & Fer Stucent（m） & 2.53 & 8 \\
\hline Other \({ }^{\text {d }}\) & 2.69 & 9 & Otner \({ }^{\text {d }}\) & 2.27 & 7 \\
\hline Totai & 31.23 & 190 & Total & 30.93 & 97 \\
\hline
\end{tabular}

\section*{Spellino}

a－－Fredictors forced into equation，but not 51 gnificant at or deyond the ． 15 level．
（ai－－Indicates variabie that is anipulable by the schiod district．
（n）－－indicates variable that is not mampulable by the echool district．

Tadle 5l. (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Modified Indian Stepwise/Forced Models Hith Grade Level} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Modified indian StepaiseiForced \\
Eritry Models \(\begin{gathered}\text { Hi thout Grade Level }\end{gathered}\)
\end{tabular}} \\
\hline Predictor & \[
\begin{gathered}
\text { ! of } \\
\text { Table } \\
\text { Variance }
\end{gathered}
\] & 8 of
Explained Varlance & Predictor & \[
\begin{aligned}
& \text { \% of } \\
& \text { Table }
\end{aligned}
\]
Varianice & i. of Explained Variance \\
\hline \multicolumn{6}{|c|}{Math Concepts} \\
\hline 10g5 Grave Foint Average (m) & 31.23 & 81 & 1903 Grade Foint Average (ifi) & 30.79 & 81 \\
\hline Fercentage of Books & & & Fercentage of Books & & \\
\hline Lost Fer student (a) & 3.5 & 9 & Lost Fer Student (\%) & 3.21 & 8 \\
\hline Frasctool Attendance ini & -. 13 & 0 & Preschool hittencance (n) & -. 12 & 0 \\
\hline SER (\(n\)) & . 68 & 2 & Sex (n) & . 67 & 2 \\
\hline & & & Gifted Frogram (mi) & 2.55 & 7 \\
\hline Hoae Fhone Listed (ni) & 1.50 & 3 & Howe thone Listed (n) & 1.29 & 3 \\
\hline Other \({ }^{\text {d }}\) & 2.10 & E & Other \({ }^{\text {a }}\) & -. 26 & -1 \\
\hline Total & 55.51 & 100 & Total & 33.14 & 100 \\
\hline
\end{tabular}

\section*{Math Test Total}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 199: Graje Foint fiverage (is) & 33.84 & 84 & 1983 Grade Foint fiverage (要) & 33.56 & 83 \\
\hline Fercentage of Fooks & & & Percentage of Bcoks & & \\
\hline Lost Per Student (in) & 3.46 & 8 & Lost Fer Student (a) & 3.34 & 8 \\
\hline Frescnool Attendance (n) & . 70 & 2 & Freschool Attendance (in) & . 69 & 2 \\
\hline & & & Gifted Frogram (m) & 2.50 & 0 \\
\hline Other \({ }^{\text {a }}\) & 2.84 & 7 & uther \({ }^{\text {d }}\) & .18 & V \\
\hline Total & 40.48 & 101 & Total & 40.32 & 94 \\
\hline
\end{tabular}
a--Fredictors forced into equation, but not significant at or teyond the . EE level.
(a)--Indicates yariable that is annipuiable by the school district.
(nj--Indicates variable that is not manipulade by the schori district.

Table 5i. (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Modified Indian Stepwise; Forced Models Hith Girade Level} & \multicolumn{3}{|c|}{Modified Indian Stepmise/Forced Entry Model 5 Without Grade Level} \\
\hline & \% of & \% of & & \(\%\) of & \% of \\
\hline & Table & Explained & & Table & Explained \\
\hline Predictor & Variance & Yarsance & Fredictor & Variance & Yariance \\
\hline
\end{tabular}

Science knowiedae
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1985 Grade Foint Average (ai) & 16.57 & 58 & 1993 Grade Foint Average (a) & 16.73 & 61 \\
\hline Perceritage of Books & & & Percentage of Books & & \\
\hline Lost Per Student (im) & 5.84 & 20 & Lost Fer Student (iol) & 5.64 & 20 \\
\hline Grase Level (n) & 2.63 & 9 & & & \\
\hline & & & Age in Months at Tine of Test (a) & 1.41 & 5 \\
\hline Gifteo Frogran (i) & 3.97 & 14 & Gifted Frogram (a) & 4.29 & 15 \\
\hline 1983 Citizenship Grade (i) & -1.58 & -6 & [963 Citizemship Grade (6) & -1.62 & -6 \\
\hline Ither \({ }^{\text {a }}\) & 1.05 & 4 & Dther \({ }^{\text {d }}\) & 1.12 & 4 \\
\hline Total & 28.5 & 99 & Total & 27.57 & 100 \\
\hline
\end{tabular}
a--Predictors furcad into equation, but not sagnificant at or beyond the . 15 level.
(al--Indicates variaole that is danspulable by the school district.
(n)--lndicatas variable that is not manipulatle oy the school district.
```

gifted program were predictors of math concepts and math test total
achievement. Moreover, this result suggested that, when analyzing
Indian student achievement using the modified predictor pools,
participation in the gifted program would be a good predictor i}y grad
level.
Thus, in contrast to the population and Indian models of
achievement, removal of grade level from the predictors resulted in
structural changes in the modified Indian models of achievement. Such
changes, however, had little effect upon the amount of variance in the
particular measure of achievement that the models accounted for. The
greatest change in total explained variance was in the science model
where replacement of grade level by student's age lowered the
percentage of variance accounted for by about 1%. In only the word
study skills and spelling models did the removal of grade level result
in greater accountability, but the increase was less than one half of
a percent.

```
Summary
Feanalysis of the ten dependent measures of academic achievement,
after removing grade level from the pool of antecedent predictors, had
minimal effect on the population and Indian models of achievement. In
many cases (half or morel grade level was simply replaced by its
corielate, student's age. Fiemoval of the grade level variable had
negligible effects on the percentage of variance aceounted for by the
models, although it was usually less than when grade level was
included.
included.
```

Removal of the grade level variable from the predictor pools, however, did result in several unanticipated structural changes in the modified Indian models of math concepts and math test total achievement. In these two cases, where grade level had not entered when considered, it had been enpected that removal of that antecedent would have no real effect of the models. Instead, it was found that removal of grade level allowed for participation in the gifted program to enter as a good predictor of achievement. (It should be recalled that the participation in the gifted program variable had been part of the "other" variables forcibly entered into the equation when grade level was included. The implication here, then, was that removal of grade level allowed for increased statistical relevance of participation in the gifted program.l
In looking at those variables not entering the equations, the pattern of student's age simply replacing grade level was corroborated. Overall, then, the only real change to the models was that student's age became a predictor of student achievement when grade level was not included as a predictor. This result, therefore, suggested that when analyzing achievement by grade level, student's age should be a relatively consistent structural (if not explanatory) predictor

```

\section*{Grade Level Models of Achievement}

The third and fourth groups of analyses were done, respectively, for the population and Indian students only. The third group of
```

analyses consisted of separate analyses for the population second,
third, fourth, fifth, and sixth grade students on each of the ten
measures of academic achievement. The fourth group of analyses were
done exactly the same way, but for Indian students only.
Washoe County School District Population Models by Grade Level
The models of academic achievement reported in Tables G-2 (Washoe
County School District population) and H-2 (Washoe County School
District Indian students only) resulted in theoretical clarification
of those models for further analyses by grade level. Separate
analyses were then made for each grade (2nd-6th), which was
methodologically accomplished by inserting a "select if grade level
equals (a particular grade)" command in the revised population and
Indian 5FSSX systems files, and rerunning the stepwise and forced
entry multiple regression analyses on each of the ten measures of
academic achievement. This resulted in ten models of academic
achievement for each grade level (2nd-bth), for a total of fifty
models of academic achievement by grade level. The results are
discussed in Appendi% J and technically reported in Tables J-1 through
J-5 (Appendix J), while they are comparatively summarized in Table
52. All equations except the si%th grade auditory test total and
spelling models were statistically significant at or beyond the .0s
leval. (All previously discussed models have been statistically
significant; however, statistical nonsignificance was probably due the
large reduction in the degrees of freedom in the multiple regression
analyses by grade level).

```

Table 52. Predictors of Acadesic Achievenent by Grade Level for Population

a--Predictors forced into equation, but not significant at or beyond the . 15 level.
b--Equation was not statistically significant; all other equation were significant at or beyond the . 05 level.
(a)--Indicates variable that is manipulable by the school district.
(a)--Inducates variable that is not anipulable by the school district.

Table 52. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Fredictors \\
for \\
2nd 6rade
\end{tabular} & & Predictors For 3rd G̈rade & & \begin{tabular}{l}
Predictors For \\
4th Grade
\end{tabular} & & Predictors For 5th Grade & & Predictors For oth Grade & \\
\hline \multicolumn{10}{|c|}{Keading Comprenension} \\
\hline 1983 Feadarig Grade (a) & 18.97 & \multicolumn{2}{|l|}{1983 Readring} & \multicolumn{2}{|l|}{1983 Keading} & \multicolumn{2}{|l|}{1983 Keading} & \multicolumn{2}{|l|}{1983 Feadtrig} \\
\hline Library Open Alter School (a) & \[
8.84
\] & \multicolumn{2}{|l|}{Number of Farents} & \multicolumn{2}{|l|}{Change of} & Age in Months at liae of lest (n) & \[
\text { 1) }-1.88
\] & & \({ }_{5}^{2.32}\) \\
\hline Hoee Phone Listed (a) & 1.35 & \multicolumn{2}{|l|}{Acreage Fer} & \multicolumn{2}{|l|}{Student's} & \multicolumn{2}{|l|}{Nusber of} & Eaployed (n) & 1.14 \\
\hline Free and Fieduced Lunch (\(n\)) & 3.44 & \begin{tabular}{l}
Father's \\
Status int
\end{tabular} & . 82 & \multicolumn{2}{|l|}{Gge in Months at} & \multirow[t]{10}{*}{Student (a)} & \multirow[t]{3}{*}{1.99} & \multicolumn{2}{|l|}{Absent in} \\
\hline Age in Monthis at & & Nurber of Days & & \multicolumn{2}{|l|}{Father's} & & & \multicolumn{2}{|l|}{Eaergency} \\
\hline Time of Test (n) &) 2.12 & Absent in & & Status (m) & 4.11 & & & Telephone (a) & 4.48 \\
\hline Nuaber of Farents & & 198i-1983 (a) & .04 & \multicolumn{2}{|l|}{1983 Citizenship} & & & \multicolumn{2}{|l|}{Change of} \\
\hline Eaployed (n) & 2.90 & \multicolumn{2}{|l|}{Hge in Months at} & Grade (a) & -4.70 & & & Schools (a) & 2.78 \\
\hline Eaergency Jelephone (a) & 3.72 & Tlae of lest (n) & 14.7 & \multirow[t]{5}{*}{Sex (n)} & \multirow[t]{4}{*}{4.53} & & & Age in Manths at liae of Test (in) & 2.01 \\
\hline Nuaber of Wajs & & & & & & & & \multicolumn{2}{|l|}{Free 1 Reduced} \\
\hline Absent in & & & & & & & & Lunch (\(n\)) & 8.77 \\
\hline 1992-83 (a) & 1.74 & & & & & & & & \\
\hline 1983 Cithzenshap Grade (a) & . 43 & & & & & & & & \\
\hline Other \({ }^{\text {a }}\) & -1.06 & Other \({ }^{\text {a }}\) & 6.62 & Other \({ }^{\text {a }}\) & 2.40 & Other \({ }^{\text {d }}\) & 9.37 & Other \({ }^{\text {a }}\) & 4.43 \\
\hline Total & 41.85 & Total & 57.43 & Iotal & 48.73 & Total & 59.71 & Total & 51.59 \\
\hline
\end{tabular}
a--Predictors forced anto equation, but not sagnificant at or beyand the . 15 level.
b--Equation was not statistically significant; all other equation were signifacant at or beyond the . 05 level.
(a)--Indicates variable that is danipulable by the school district.
(n)--Indicates variable that is not anapulable by the school district.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Fredictors \\
For \\
\(2 n d\) Grade
\end{tabular} & \[
\begin{gathered}
\text { a } \\
\text { lable } \\
\text { Varıance }
\end{gathered}
\] & \begin{tabular}{l}
Fredictors \\
for \\
3rd Grade
\end{tabular} & \[
\begin{gathered}
\% \\
\text { Taole }
\end{gathered}
\]
Variance & \begin{tabular}{l}
Fredictor 5 For \\
4th Grade
\end{tabular} & 2
Table
Variance & \begin{tabular}{l}
Predictors \\
For \\
Sth Grade
\end{tabular} & \begin{tabular}{l}
\[
\begin{gathered}
\ell \\
\text { taole }
\end{gathered}
\] \\
Variance
\end{tabular} & \begin{tabular}{l}
Fredictors For \\
6th Grade
\end{tabular} & \[
\underset{\text { lable }}{2}
\]
Variance \\
\hline \multicolumn{10}{|c|}{Keading Test Ictal} \\
\hline 199? Keading Grade (a) & 16.13 & 1983 Keading Grade (a) & 37.94 & 198j Freading Erade (a) & 31.44 & 1983 Keading Grade (ai & 49.42 & \begin{tabular}{l}
198J Keading \\
Grade (a)
\end{tabular} & 31.18 \\
\hline Library Open & & Acreage Par & 3.11 & Student 5 & 7.94 & cost of Sinool & 1.59 & Change of & 4.48 \\
\hline Per Student (a) & 12.74 & Student's & & Sex (n) & 7.30 & Hge in Months at & & Cost of Sinool & \\
\hline Hoae Phone & & Residence (n) & 5.15 & Change of & & fase of lest (m) & -2.88 & fer Student (a) & 3.23 \\
\hline Listed (n) & 1.18 & Father '5 & & Schools (ri) & 5.29 & Father 5 & & Eaergency & \\
\hline Age in Months at & & Status in) & 2.40 & & & Status (n) & 1.37 & Telepnone (a) & 6.65 \\
\hline liae of lest (n) & (a) 2.3i & Nuaber of Farents & & & & Nuaber of Parents & & Nuaber of bays & \\
\hline Nuaber of Days & & Absent (n) & 2.00 & & & Eaployed inl & . 83 & Abserit in & \\
\hline Absent in & & Age in Monthis at & & & & & & 1982-1983 (1) & 3.93 \\
\hline 1982-1983 (1) & 1.61 & liae of lest (a) & 15.40 & & & & & & \\
\hline Sex (n) & 2.24 & Percentage of & & & & & & & \\
\hline Father's & & knoks lest & & & & & & & \\
\hline Status (a) & 1.55. & Fer Student (a) & \(-.34\) & & & & & & \\
\hline 1983 Catizenstup & & & & & & & & & \\
\hline Grade (a) & 1.71 & & & & & & & & \\
\hline \multicolumn{10}{|l|}{Encyclopedia Sets} \\
\hline Per Student (a) & 1.71] & & & & & & & & \\
\hline \multicolumn{10}{|l|}{Cliarige of} \\
\hline Schiouts (0.) & -1.05 & & & & & & & & \\
\hline \multicolumn{10}{|l|}{Fercentage of} \\
\hline Hooks Lost fer & & & & & & & & & \\
\hline Student (a) & . 28 & & & & & & & & \\
\hline Other \({ }^{\text {d }}\) & 5.15 & Other \({ }^{\text {d }}\) & 4.10 & Other \({ }^{\text {a }}\) & 0.53 & Other \({ }^{\text {a }}\) & 4.75 & Other \({ }^{\text {d }}\) & 5.04 \\
\hline Total & 45.45 & Total & 010.31 & lotal & 58.60 & Total & 01.09 & rotal & 54.51 \\
\hline
\end{tabular}

\footnotetext{
a--fredictors forced anto equation. but not significant at or beyond the . I5 level.
b--Equation mas not statistically significant; all other equation were signaficant at or beyond the .us level.
(a)--Indicates variable that is anipulable by the school district.
(n)--indicates variable that is not annpulable by the school aistrict.
}

Table 52. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Fredictors For 2nd Grate & & \begin{tabular}{l}
Predictors \\
For \\
Jrd Grase
\end{tabular} & \begin{tabular}{l}
Table \\
Variance
\end{tabular} & \begin{tabular}{l}
Fredictors For \\
4th Grade
\end{tabular} & & \begin{tabular}{l}
Fredictors For \\
Sth Grade
\end{tabular} & \[
\begin{gathered}
\vdots \\
\text { Table } \\
\text { Varlance } \\
\hline
\end{gathered}
\] & Fredactors For 6th Grade & \\
\hline \multicolumn{10}{|c|}{Vocabulary knomledqe} \\
\hline 1783 Reating Grade (a) & 18.62 & 1983 Keading Srade (a) & 27.92 & Change of Schools (n) & 21.36 & 1983 Readang Grade (a) & 38.13 & 1993 Keading Grade (a) & 13.71 \\
\hline Library Ofen & & Liorary Jpen & & 1983 Reading & & Acreage Fer & & Free : Fieduced & \\
\hline Aiter School & & After School & & Grade (a) & 18.85 & Student (a) & 16.17 & Lunich (\(n\)) & 10.71 \\
\hline Fer Stusent (a) & 13.07 & Fer Stuaent (a) & 0.16 & Eaergeney & & Age in konths at & & Sen (n) & 3.97 \\
\hline Free \& Reduced & & Number of İays & & Telephone (a) & 13.68 & Tuse of test (a) & 1-2.39 & & \\
\hline Lunch (m) & 3.46 & Absent 10 & & 6ifted & & Father's & & & \\
\hline Number of Days & & 198i-1903 (0) & 1.72 & Fragra (0) & 3.97 & Status (n) & 4.63 & & \\
\hline Atsent in & & Father 5 & & 198j Citizenship & & Nunder of Days & & & \\
\hline 198i-1983 (a) & 2.86 & Status (a) & 1.77 & Srade (a) & -5.74 & Aosent in & & & \\
\hline Sex (\(n\)) & 2.99 & Se; (m) & 1.45 & Encyclopeora Sets & & 1982-1985 (0) & 4.71 & & \\
\hline Nuaber of Parents & & & & Fer Student (5) & 3.34 & Nuaber of Parents & & & \\
\hline Eaployed (m) & 3.18 & & & Sex (n) & 3.18 & Esployed (\(n\)) & -1.64 & & \\
\hline Acreage Fer & & & & & & Sex (\(n\)) & -. 27 & & \\
\hline Student (a) & -1.74 & & & & & & & & \\
\hline \multicolumn{10}{|l|}{1983 Citizenstap} \\
\hline Grade (0) & 1.11 & & & & & & & & \\
\hline \multicolumn{10}{|l|}{Home flone} \\
\hline Listed (n) & -. 96 & & & & & & & & \\
\hline 0 Oher \({ }^{\text {a }}\) & 1.59 & Other \({ }^{\text {a }}\) & 10.60 & uther \({ }^{\text {a }}\) & 1.42 & Other \({ }^{\text {a }}\) & 7.79 & Other \({ }^{\text {a }}\) & 9.83 \\
\hline Iotal & 44.57 & Total & 49.62 & Total & où.it & Total & 67.13 & Total & 38.22 \\
\hline
\end{tabular}
a--Predictors forced into equation, but not signiticant at or beyond the . 15 level.
b--Equation was not statistacaliy significant; all other equation were significant at or beyond the . as level.
(a)--lridicates variable that is manipulable by the school district.
(n)--Indicates variable that 15 not mampulable by the schooi district.

Table 5 :2. (Contrinued)

3-FPredictors fürced into equation, but not signalicant at or beyond the . lis level.
D--Equation was not statistically significant; all other equation were significant at or sejord the . 0 le level.
(e)--Indicates variable that 15 amipulable by the schooi district.
(a)--laditates varlable that 15 not anapulable by the school oustrict.

Table 52. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Fredictors For ind brade & Yable Variance & Fredictors por jrd jracie & & Fredictors For 4tr Grade & Tade Yariance & Preaictors For 5th Grade & Table Yar:ance & Fredictors For sth Grade & \\
\hline \multicolumn{10}{|c|}{Muditorv fest Total} \\
\hline Liorapy Open after Gcriool & & 1983 Kazding Grade : in & 28.51 & : YO3 Keadirig örade (a) & 21.51 & Library Upen After School & & 1983 Reading Grade (a) & 7.78 \\
\hline Per Student (a) & 14.79 & Litarary doen & & Change of & & Fer Student (a) & 21.25 & & \\
\hline 198: Keading & & nitter 5chool & & Schouls inl & 19.54 & 198? Feadirig & & & \\
\hline Grade (a) & 11.39 & Fer Stusent (e) & 6.13 & Esergenc: & & Grade (a) & 8.81 & & \\
\hline Number of Farents & & Father s & & Teleprione is & 14.61 & Nunoer of Farents & & & \\
\hline Eaployed (n) & 7.79 & Status (fi) & 3.57 & Gifted & & Eaployed (n) & 1.31 & & \\
\hline Nuaber of Farenis & & Sex (n) & . 55 & Prugray (a) & 5.10 & Student 5 & & & \\
\hline Absent in: & 11.98 & Euergency & & & 3.65 & Kesidence (n) & 6.37 & & \\
\hline Houe Fhane & & Telephone (a) & 3.3 & Encyciopedia sets & & Free a fieduced & & & \\
\hline Listed (0) & 1.41 & Charige of & & Per Student (a) & 3.64 & Lunch (in) & 4.64 & & \\
\hline Ruaber of Davs & & Sthcois (iol & \(-1.72\) & Stident s & & Aige in Montus at & & & \\
\hline Absent in & & & & fesidence (m) & 5.21 & Tiue of Test in; & ; -.88 & & \\
\hline 1982-1983 (a) & 2.00 & & & 1983 Catleenstur & & & & & \\
\hline Free : Reduced & & & & Grade (b) & -5.98 & & & & \\
\hline Lunch (\(n\)) & 2.44 & & & & & & & & \\
\hline \multicolumn{10}{|l|}{Student 5} \\
\hline Residence (\(n\)) & . 10 & & & & & & & & \\
\hline ither \({ }^{\text {a }}\) & -.\% & Uther \({ }^{\text {a }}\) & 9.30 & Utreer \({ }^{\text {a }}\) & \(\underline{-.97}\) & Other \({ }^{\text {a }}\) & 1.10 & Other \({ }^{\text {d }}\) & 12.70 \\
\hline Total & 5.21 & Total & 50.54 & Total & 65.35 & Total & 49.98 & Total \({ }^{\text {b }}\) & 20.48 \\
\hline
\end{tabular}
a--Predictors forced dito equation, but fot significant at or beyond tia . \(\mathrm{S}_{\mathrm{s}}\) levet.
t--Equation was not statisticall; significait; all otrier equation nefe sigmifitant at or beyond the .as level.
a)--Indicates variabie that 15 maripulable oy the schiocl district.
(n)--lncicates variable that is not ampulanle oy the school district.

(a)--Indicates variabie that is mamipulable by the school district.
(ril--lnalcates variable that 15 nat manipuiable by the senool district.
Tade 55. (Continued)

iode 5s. iContifiued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Fredictors & \(\%\) & Preaictors & \(\because\) & Pradhciors & i & Fredictors & \(\%\) & Fredictors & 2 \\
\hline For & Table & For & Taole & For & Table & For & Taole & for & Tatle \\
\hline znd Grave & Yarlance & 3ru orade & Variafice & 4th Grade & Harlance & Sth Grade & Varianie & sth Urace & Pariance \\
\hline & \multicolumn{9}{|l|}{Math Test iotal} \\
\hline 1985 Srade Focint & & \multicolumn{2}{|l|}{1985 Grade Folnt} & \multicolumn{2}{|l|}{1985 brade Foint} & \multicolumn{2}{|l|}{1983 Grase Fount} & \multicolumn{2}{|l|}{1983 Grade Pount} \\
\hline Niverạe (h) & 21.51 & niperage (a) & 27.91 & R'verage in) & 31.83 & A:erage (s) & 46.33 & Hiverage (a) & 43.22 \\
\hline toge Eitizensmip & & \multicolumn{2}{|l|}{Fercentaỹe ef} & Sex in) & 11.10 & Ligrary Upen & & Se: (m) & 4.70 \\
\hline Grade (m) & 2.76 & \multicolumn{2}{|l|}{Exom} & \multicolumn{2}{|l|}{Gifted} & hilter Scnool & & \multicolumn{2}{|l|}{Acreage Fer} \\
\hline Acreaje Fer & & Fer Stuserit in & 1.15 & Progra (a) & 11.78 & Fer Student (a) & -3.12 & Student (a) & 1.83 \\
\hline Student iol & 1.15 & Sex (n) & 2.88 & \multicolumn{2}{|l|}{Fercentage of} & \multicolumn{2}{|l|}{1983 Cituzenship} & \multicolumn{2}{|l|}{Age in Honths at} \\
\hline Gitted & & \multicolumn{2}{|l|}{Hoae Fhore} & Boal; Lost & & Grade 1a: & iit. 68 & Fias of lest (n) & 1.10 \\
\hline Frograminim & 4.20 & Listeo tal & 5.81 & Fer Student (a) & 8.54 & & & & \\
\hline Licrar; Üpeni & & Acreage fer & & 19\%J intliensmo & & & & & \\
\hline nitter डichool & & Student inl & -. 45 & Srade (a) & -3.44 & & & & \\
\hline Fer Student ial & 3.41 & & & & & & & & \\
\hline itrera & . 21 & uthera & \(\underline{.71}\) & Ither \({ }^{\text {a }}\) & -.04 & Cther \({ }^{\text {a }}\) & 1.19 & Other \({ }^{\text {d }}\) & \(\underline{-2.35}\) \\
\hline Total & 33.67 & Total & 38.61 & Total & 57.30 & iotal & 49.08 & Total & 49.52 \\
\hline
\end{tabular}
a--predictors fored anti equathon, but not eignificant at or bevond the . he tevel.
 a)--lnoicates varlable that is manipuiable by the jchooi alstrict.
(a)--Indicates variable that is riot nafipuidole by the school distract.
iatle 5i. iontricied;

\footnotetext{

}

To capsulize, the stepwise and forced entry multiple regression analyses of student achievement (Table 52), as measured by academic achievement test scores, in the Washoe County School District revealed that considerable diversity existed between grade levels with respect to understanding elementary student success differences. That is, the results on all ten measures were indeed different, and often markedly so, for each grade level. Generally speaking, the achievement models by grade level accounted for considerably more of the total variance than did the population models. Indeed, the models were particularly more predictive, overall, in the fourth and fifth grades.

In contrast to the population models of achiavement, previous grades were not always the best predictor. In a number of models other variables accounted for a greater percentage of the total variance. Moreover, a number of variables also explained nearly as much variance as previous grades, which meant those factors were nearly equally important to explaining academic achievement as was previous achievement. No other variable, however, was found to be as consist a predictor across the grade levels; indeed, most variables seldom entered into more than three different grade level models. Mashoe County School District Indian Student Achievement by Grade Level

The results of the stepwise and forced entry multiple regression analyses for Indian students by grade level in the Washoe County School District are discussed in Appendi\% K and technically reported in Tables k-1 through k-S (Appendix \(k\)), while they are comparatively summarized in Table 5. Unlike most previous results where the

Table 53 , Fredictors of Academic Achievenent by Grade Level for Indian Students

a--Fredictors forced into equation, but not significant at or teyond the . 15 level.
b--Equation was not statistically significant; all other equation were significant at or beyond the . 05 level.
(a)--Indicates variable that is manipulable by the school district.
(i) --Indicates variable that is not manipulable by the school district.

Table 53. (Continued)

a--fredictors forced into equation, but not significant at or beyond the .15 level.
b-Equation was not statistically sigrificant; all other equation were significant at or beyond the . 05 level.
(a)--Indicates variable that is manipulable by the school district.
(n)--Indicates variable that is not manipulable by the school district.

Table 53. (Continued)

a--Predictors forced into equation, but not significant at or beyond the .15 level.
b--Equation was not statistically significant; all other equation were significant at or beyond the . 05 level.
(a) --Ifidicates variable that is manipulable by the school district.
(n)--Indicates variable that is not manipulable by the school district.

a--fredictors forced into equation, but not 51 grificant at or beyond the .15 level.
b--Equation was nat statistically significant; all ather equation were significant at or beyond the . is level.
(c)--Indicates variable that is samipulatle by the school district.
(a)--Indicates variable that is not wanapulable by the school district.

\section*{Table 5. ㄱ. (Continued)}

a--fredictors forced into equation, but not significant at or beyond the .15 level.
b--Equation was not statistically significant; all other equation were significant at or beyond the .05 level.
(a)--Indicates variable that is manipulable by the school district.

Ini--Indicates variable that is not manipulable by the school district.

Table 5J. (Continued)

d--Fredictors forced into equation, but not significant at or beyond the . 15 level.
b--Equation was not statistically significant; all other equation were significant at or beyond the . 0 level.
(a)--Indicates variatle that is mampulable by the school district.
(n)--Indicates variable that is not manipulable by the school district.

Table 53. (Continued)

a--Predictors forced into equation, but not significant at or beyond the .15 level.
b--Equation was not statistically sigmiticant; all other equation were 51 gnificant at or beyond the . 05 level.
(a)--Indicates variable that is annipulable by the school district.
in)--Indicates variable that is not canipulable by the school district.

Table 53. (Contanued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Fredictors For ind Grade & \[
\begin{gathered}
\text { \% } \\
\text { Table } \\
\text { Variance }
\end{gathered}
\] & \begin{tabular}{l}
Predictors \\
For \\
Jrd Grade
\end{tabular} & \[
\begin{gathered}
\% \\
\text { Table } \\
\text { Variance }
\end{gathered}
\] & Fredictors For 4th Grade & & \begin{tabular}{l}
Fredictors \\
For \\
5th Grade
\end{tabular} & \[
\begin{gathered}
\% \\
\text { Table } \\
\text { Variance }
\end{gathered}
\] & \begin{tabular}{l}
Fredictors \\
For \\
Sth Grade
\end{tabular} & \[
\begin{gathered}
\% \\
\text { Table } \\
\text { Variance }
\end{gathered}
\] \\
\hline \multicolumn{10}{|c|}{Math Concepts} \\
\hline \multirow[t]{7}{*}{1983 Grade Point Average (m)} & \multirow[t]{7}{*}{11.66} & \multicolumn{2}{|l|}{Library Open fifter School} & \multicolumn{2}{|l|}{1993 Girade Foint} & \multicolumn{2}{|l|}{1983 Grade Foint} & 1983 Grade foint Average (in) & 51.23 \\
\hline & & \multirow[t]{2}{*}{Fer Student (a) Sex (n)} & 9.94 & Hose Phone & & Sex \({ }^{\text {ant }}\) & 4.91 & Acreage Fer & \\
\hline & & & 2.88 & Listed (n) & 6.43 & Acreage Fer & & Student (ai) & 3.53 \\
\hline & & & & Fercentaga of Eock: Lost Fer & & & 7.88 & Age in Months at Time of Test (n) &) 9.21 \\
\hline & & & & Student (田) & 3.25 & Frogram (\({ }^{\text {a }}\) & 8.87 & 1983 Citizenship & \\
\hline & & & & Age in Months at Tise of Test (\(n\)) Giftect & \[
5.97
\] & & & Grade (in) & -8.59 \\
\hline & & & & Frogram (6i) & З. ® \(^{\text {¢ }}\) & & & & \\
\hline Other \({ }^{\text {a }}\) & 12.44 & Qthera & 3.22 & Other \({ }^{\text {a }}\) & -.31 & ather \({ }^{\text {a }}\) & \(\underline{.85}\) & Other \({ }^{\text {a }}\) & 3.117 \\
\hline Total \({ }^{\text {b }}\) & 24.10 & Total \({ }^{\text {d }}\) & 16.04 & Total & 78.02 & Total & 56.06 & Total & 58.45 \\
\hline
\end{tabular}
a--Fredictors forced into equation, but not significant at or beyond the .15 level.
b--Equation was not statistically significant; all other equation were 51 gnificant at or beyond the .if level.
(fin)--indicates varsable that 15 manupulable by the school district.
(ri)--Indicates variable that is not manipulable by the school district.

a--Predictors forced into equation, but not significant at or beyond the . 15 level.
b--Equation was not statistically significant; all other equation were significant at or beyond the . \(\mathrm{l}_{\mathrm{E}}\) level
(a)--Indicates variable that is manipulatle by the school district.
(fi)--Indicates variable that is not manipulable by the school district.

Table 53. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Fredictors \\
For \\
2nd Grade
\end{tabular} & \[
\begin{gathered}
\text { i } \\
\text { Table } \\
\text { Variance }
\end{gathered}
\] & Predictors For
\(\qquad\) & & \begin{tabular}{l}
Fredictors \\
For \\
4th Grade
\end{tabular} & & Predictors For
\(\qquad\) & \[
\begin{gathered}
\% \\
\text { Table } \\
\text { Variance }
\end{gathered}
\] & \begin{tabular}{l}
Fredictors \\
For \\
tth Grade
\end{tabular} & \[
\begin{gathered}
\neq \\
\text { Table } \\
\text { Variance }
\end{gathered}
\] \\
\hline \multicolumn{10}{|c|}{Science Knowledqe} \\
\hline Age in Months at Time of Test (n) & \[
4.89
\] & \multirow[t]{9}{*}{\begin{tabular}{l}
Gifted \\
Frogra (a)
\end{tabular}} & \multirow[t]{9}{*}{10.73} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 1983 \text { Grade Foint } \\
& \text { Average (m) } \quad 37.12
\end{aligned}
\]} & 1983 Grade Foint Average (m) & 20.66 & 1983 Grade Point Average (a) & 26.56 \\
\hline Hose Phane & & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Age in Months at}} & \multirow[t]{3}{*}{Acreage Per Student (a) Sex (n)} & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Fercentage of Books Lest Fer}} \\
\hline Listed (\(n\)) & 5.87 & & & & (a) 9.10 & & 8.66 & & \\
\hline & & & & \multicolumn{2}{|l|}{Acreage Fer} & & \multirow[t]{3}{*}{3.91} & Student (m) & \multirow[t]{3}{*}{} \\
\hline & & & & Student (in & 5.62 & \multirow{2}{*}{Sex (n)} & & \multirow[t]{2}{*}{Agge if Months at Tice of Test (n)} & \\
\hline & & & & Hone Phone & & & & & \\
\hline & & & & Listed (n) & 4.01 & & & & \\
\hline & & & & 1983 Citize & & & & & \\
\hline & & & & Grade (im) & -. 65 & & & & \\
\hline Other \({ }^{\text {a }}\) & 15.56 & Other \({ }^{\text {a }}\) & 7.64 & Other \({ }^{\text {a }}\) & 4.30 & Dther \({ }^{\text {a }}\) & 3.24 & Other \({ }^{\text {a }}\) & 2.73 \\
\hline Total \({ }^{\text {b }}\) & 26.32 & Total \({ }^{\text {b }}\) & 18.37 & Total & 59.50 & Total & 3 Sb 47 & Total & 51.71 \\
\hline
\end{tabular}
a--Fredictors forced into equation, but not significant at or beyond the . 15 level.
b--Equation was not statistically significant; all other equation mere significant at or beyond the . 0 点 level.
(\(\mathbf{(})\)--Indicates variable that is manipulable by the school district.
(n)--Indicates variable that is not manipulable by the school district.
```

equations had been statistically significant {except for the two sixth
grade equations noted abovej, a large number of the grade level models
for Indian students were not statistically significant at or beyond
the .05 level. Specifically, none of the results for the second grade
Indian students, the vocabulary knowledge, listening comprehension,
auditory test total, math concepts, math test total, and science
knowledge models for the third grade Indian students, and the
vocabulary knowledge, listening comprehension, and auditory test total
models for the fifth grade Indian students were not statistically
significant. The failure to obtain statistical siqnificance for the
serond and third grade madels was probably due to the small sample
sizes involved with these groups of students and resulting loss of
degrees of freedom. Fiegardless of why statistical significance was
not achieved, the results were still of substantive interest.
In brief, the stepwisa and forced entry multiple regression
analyses of Indian student achievement, as measured by academic
achievement test scores, in the Washoe County School District
demonstrated that considerable diversity existed between grades with
respect to understanding or predicting such achievement. That is, the
results showed that different antecedent variables were predjctive of
academic achievement for each grade level, and that grade level models
of arhievement were different from the models for all Indian
students. Generally speaking, the Indian grade level models accounted
for considerably more variance than the Indian models, and they often
incorporated fewer predictors. However, no clear patterns were

```
```

discernible, other than the observation that the fourth grade models
usually accounted for more variance than the models at other grades.
In comparison to both the population and Indian models of academic
achievement, previous grades were not always predictive of such
achievement at all grade levels. Indeed, grades were statistically
predictive in the third grade only for word study skills, reading
comprehension, and reading test total achievement, Moreover, in many
Of the grade level models, factors other than previous grades were
almost as evplanatory of achievement as previous grades; whereas in
the aggregate population and Indian models, previous grades were
always the best predictor.
Comparison of Fopulation and Indiari Modelड of
Achievement by Grade Level
Once the analyses of academic achjevement \&y gradz level iad iager
completed, it remained to compare the population and lndiari urede
level results for similarities im structure, accountatility, Ered
ManipulativenEs=. That is, EMamination of the resuits ty grade ievel
has thus far demonstrated that there mere differemces for botri the
popuiation and the Indiam students with respect to understanding
academic achievement by grade lavel. The question now was whether the
population and Irdian models of achigvement at a particular grada
level mere comparatively =imilar or different in terms of thai;
gverall structure, their ability to account for varismce in
achaevement, and their overall susceptibility to manipulaticn by the
school system.

```


Table 54. Fercentage of Variance Contributed by Variables to the Total Model Variance for Second Grade Population and indian Students
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Predictors} & \multicolumn{8}{|c|}{Models} \\
\hline & \multicolumn{2}{|l|}{Hord Study
\[
5 k 1115
\]} & \multicolumn{2}{|l|}{Reading Comprehension} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Reading \\
Test iotal
\end{tabular}} & \multicolumn{2}{|l|}{Vocabulary knowledge} \\
\hline & POP & INI & FOP & IND & POP & IND & FOP & 110 \\
\hline \multicolumn{9}{|l|}{Acadenic Achievement} \\
\hline 1983 fieading Grade (4) & 5.54 & & 18.97 & 19.15 & 16.03 & 19.74 & 19.62 & 26.74 \\
\hline 1993 Grade foint fuerage (a) & & & & & & & & \\
\hline Number of Days Absent & & & & & & & & \\
\hline in 1992-1783 (a) & & & 1.74 & & 1.61 & 4.30 & 2.86 & \\
\hline \multicolumn{9}{|l|}{Student Evaluations} \\
\hline 1983 Citizenship Grade (a) & 2.76 & 20.28 & .43 & & 1.71 & & 1.11 & \\
\hline Gifted Program (a) & & & & & & & & \\
\hline \multicolumn{9}{|l|}{Background Characteristics} \\
\hline \multicolumn{9}{|l|}{Age in Months at} \\
\hline Tinie of lest (n) & & & 2.12 & & 2.32 & 10.88 & & \\
\hline Change of Schools (6i) & 3.51 & 2.65 & & & -1.05 & & & \\
\hline Emergency Telephone (in) & & & 3.72 & & & & & \\
\hline Father s Status (n) & & & & & 1.50 & & & \\
\hline Frea \& Reduced Lunch (n) & & & 3.44 & & & & 3.96 & \\
\hline Hone Phore Listed (n) & . 57 & & 1.35 & & 1.19 & & -. 86 & \\
\hline Number of Parents Absent in: & & & & & & & & \\
\hline Number of Parents Employed (\(n\)) & & & 2.90 & & & & 3.08 & \\
\hline Sex (n) & 6.49 & & & & 2.24 & & 2.97 & \\
\hline \multicolumn{9}{|l|}{Student's Residence in:} \\
\hline \multicolumn{9}{|l|}{School Environaent and} \\
\hline \multicolumn{9}{|l|}{Learning Contexts} \\
\hline Acreage Fer 5tudent (m) & & & & & & & \(-1.74\) & \\
\hline Cost of School Per Student (im) & & & & 10.05 & & & & \\
\hline Encyclopedia Sets Per Student (m) Grade Level (\(n\)) & 3.56 & & & & 1.70 & & & \\
\hline Library Open After & & & & & & & & \\
\hline School Per Student (m) & 8.43 & & 8.84 & & 12.74 & & 13.07 & \\
\hline \multicolumn{9}{|l|}{Magazine Subscriptions} \\
\hline \multicolumn{9}{|l|}{Per 5tudent (\(\mathbf{m}^{\text {) }}\)} \\
\hline \multicolumn{9}{|l|}{Percentage of Books} \\
\hline Lost Per Student (0) & 1.03 & & & & . 2 C & & & \\
\hline
\end{tabular}
(w)--Indicates variable that is potentially manipulable by the school district. (n)--indicates variable that 15 not ampuiable by the school district.

Table 54. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Predictors} & \multicolumn{6}{|c|}{Models} \\
\hline & \multicolumn{2}{|l|}{Listening Comprehension} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Auditory \\
Test Total
\end{tabular}} & \multicolumn{2}{|l|}{Spellinq} \\
\hline & POP & IND & PQP & IND & POP & IND \\
\hline \multicolumn{7}{|l|}{Acadenic Achieveaent} \\
\hline 1983 keading Grade (0) & 8.30 & 32.47 & 11.39 & 37.18 & 12.84 & 17.33 \\
\hline 1983 Grade Point Average (\(\mathbf{n}\)) Number of Days Absent & & & & & & \\
\hline in 1992-1983 (\(\mathbf{H}^{\text {) }}\) & 2.87 & & 2.30 & & 1.19 & \\
\hline \multicolumn{7}{|l|}{Student Evaluations} \\
\hline 1983 Citizenship Grade (\({ }_{\text {a }}\)) & & & & & -. 47 & \\
\hline 6ifted Progra (\({ }_{\text {(}}\)) & & & & & 5.72 & \\
\hline \multicolumn{7}{|l|}{Backqround Characteristics} \\
\hline \multicolumn{7}{|l|}{Age in Months at Tine of Test (\(n\))} \\
\hline Change of Schools (\(n\)) & & & & & -2.21 & \\
\hline \multicolumn{7}{|l|}{Energency Telephone (\({ }^{\text {a }}\)} \\
\hline Father's Status (n) & & & & & 11.46 & \\
\hline Free \& Reduced Lunch (\(n\)) & & & 2.44 & & & \\
\hline Howe Phone Listed (n) & 7. 55 & & 1.01 & & & \\
\hline Nuaber of Parents Absent (\(n\)) & 10.84 & 3.57 & 11.98 & & & \\
\hline Nuaber of Parents Employed (\(n\)) & 5.02 & & 7.29 & & & \\
\hline Sex (\(n\)) & & & & & 1.97 & \\
\hline Student's Residence (n) & & & . 10 & & & \\
\hline \multicolumn{7}{|l|}{School Environitent and} \\
\hline \multicolumn{7}{|l|}{Learning Contexts} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{Acreage Per Student (a) Cost of School Fer Student (n)}} \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{} \\
\hline \multicolumn{7}{|l|}{Library Open After} \\
\hline School Per Student (a) & 18.10 & & 14.78 & & 5.32 & \\
\hline \multicolumn{7}{|l|}{Magazine Subscriptions} \\
\hline Per Student (a) & 1.41 & & & & & \\
\hline \begin{tabular}{l}
Percentage of Books \\
Lost Per Student (a)
\end{tabular} & & & & & & \\
\hline
\end{tabular}
(a) --Indicates variable that is potentially a mipulable by the school district. (\(n\))--indicates variable that is not manipulable by the school district.

Table 54. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Predictors} & \multicolumn{6}{|c|}{Models} \\
\hline & \multicolumn{2}{|l|}{Math Concepts} & \multicolumn{2}{|l|}{Math Iest Total} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Science \\
Knowledge
\end{tabular}} \\
\hline & POP & IND & POP & IND & POP & IND \\
\hline \multicolumn{7}{|l|}{Acadenic Achieveasat} \\
\hline \multicolumn{7}{|l|}{1983 Reading Grade (a)} \\
\hline 1983 Grade Point Average (m) & 13.10 & 11.66 & 21.91 & 22.18 & 17.31 & \\
\hline \multicolumn{7}{|l|}{Number of Days Absent} \\
\hline \multicolumn{7}{|l|}{in 1982-1983 (\(\mathbf{n}^{\text {) }}\)} \\
\hline \multicolumn{7}{|l|}{Student Evaluations} \\
\hline 1983 Citizenship Grade () \(^{\text {) }}\) & 1.62 & & 2.76 & & 4.33 & \\
\hline Gifted Progra (a) & & & 4.26 & & & \\
\hline \multicolumn{7}{|l|}{Background Characteristics} \\
\hline \multicolumn{7}{|l|}{Age in Months at} \\
\hline Tine of Test (n) & 3.60 & & & & 2.60 & 4.89 \\
\hline \multicolumn{7}{|l|}{Eaergency Telephone (a)} \\
\hline \multicolumn{7}{|l|}{Father's Status (n)} \\
\hline \multicolumn{7}{|l|}{Free \& Reduced Lunch (n)} \\
\hline Hone Phone Listed (\(n\)) & & & & & . 14 & 5.87 \\
\hline \multicolumn{7}{|l|}{Number of Parents Absent (\(n\))} \\
\hline \multicolumn{7}{|l|}{Nuaber of Parents Eaployed (n)} \\
\hline \multicolumn{7}{|l|}{Nusber of Transters (\(n\))} \\
\hline \multicolumn{7}{|l|}{Sex (\(n\))} \\
\hline \multicolumn{7}{|l|}{Student's Residence (\(n\))} \\
\hline \multicolumn{7}{|l|}{School Environnent and} \\
\hline \multicolumn{7}{|l|}{Learning Contexts} \\
\hline Acreage Per Student (0) & 1.16 & & 1.15 & & & \\
\hline \multicolumn{7}{|l|}{Cost of School Per Student (a)} \\
\hline \multicolumn{7}{|l|}{Encyclopedia Sets Per Student (a) Grade Level (\(n\))} \\
\hline \multicolumn{7}{|l|}{Library Open After} \\
\hline School Per Student (a) & 3.69 & & 3.41 & & 13.77 & \\
\hline \multicolumn{7}{|l|}{Magazine Subscriptions} \\
\hline \multicolumn{7}{|l|}{Per Student (s)} \\
\hline \multicolumn{7}{|l|}{Percentage of Books} \\
\hline Lost Per Student (\(\mathrm{m}^{\text {) }}\) & -. 61 & & & 11.11 & & \\
\hline
\end{tabular}
(a)--Indicates variable that is potentially manipulable by the school district. (n)--Indicates variable that is not anipulable by the school district.
```

with higher word study skills achievement; being absent more often and
bejng younger were related to higher reading test total scores; having
One or both parents absent from the home was correlated with higher
Ijstening comprehension achievement; and being older and having a home
telephone listed were asscciated with higher science achievement test
scores.
Another clear difference was that the second grade population models involved many more variables. Fourth, the "other" variables forced into the equation by analytic techniques lbut which were not statistically significant at or beyond the . 15 level accounted for much less variance in the population models than in the Indian models. Fifth, while the amount of variance accountad for in the population grade level models by individual predictors was often quite large (e.g., $\quad 10 \%$ ), other predictors often made fairly small (e.g., ت\%) contributions. In comparison, most variatles in the Indian models made moderate (e.g., $3 \%$ to $10 \%$ ) to large (e.g., $10 \%$ ) contributions towards explaining the total variance. Lastly, it was noted that previous grades, when a predictor, usually accounted for more variance (often twice as much as in the population models) in the Indian models.
With respect to factors other than previous grades, it was found that the number of days absent, whether the home telephone was listed, and how long the library was open after school were all consistent predictors of the population reading models. Father's status, number of parents absent, and how long the library was open after school all accounted for sizable amounts of variance when they entered in to the

```
```

second grade population reading oriented models. In contrast, no
antecedent enterad more than one of the Indian second qrade reading
oriented modeis, but the 1993 citizenship grade, student's age, and
cost of school all made sazable contributions when they entered. With
regards to the math oriented models, citizenship grades and how long
the library was open after school entered all three population models,
but no variable entered into all three of the Indian models.

```
\begin{tabular}{|c|}
\hline Comparison of third orade models. Table s5 presents the resuits \\
\hline for both the third grade population and Indian multiple regression \\
\hline analyses of academic achievement, as measured by standardized \\
\hline achievement tests, in the washoe County School district. It was found \\
\hline that the onjy models having any slmilarlty were the word study stills, \\
\hline reading somprehension, and reading test totai models of achievement, \\
\hline which were alsu the only indian models that were statistically \\
\hline signlficant. \\
\hline With regards to predictors that were part of both the population \\
\hline and Indian third grade models, the 1983 reading grade entered both in \\
\hline only word study stills, reading comprehension, and reading test total \\
\hline models. While for both the population and Indian students being \\
\hline younger was associated with hagher reading comprehension achievement, \\
\hline having mure encyclopedia sets available per student was positively \\
\hline corielated with higher listening comprehension test scores. In \\
\hline contrast, lower absentaeism, although structurally a predictor, was \\
\hline \\
\hline was related (\(\underline{\sim}=-.36\)) to higher reading comprenension for Indian \\
\hline
\end{tabular}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 55. Percentage of Variance Contributed by Variables to the Total Model Variance for Third Grade Population and Indian Students
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Predictors} & \multicolumn{8}{|c|}{Models} \\
\hline & \multicolumn{2}{|l|}{Hord Study Skills} & \multicolumn{2}{|l|}{Reading Comprahension} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Reading \\
Test Total
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Vocabulary \\
Knowledge
\end{tabular}} \\
\hline & POP & IND & POP & IND & POP & IND & POP & IND \\
\hline \multicolumn{9}{|l|}{Acadeaic Achieveaent} \\
\hline 1983 Reading Grade (a) & 17.45 & 13.29 & 38.71 & 19.73 & 37.94 & 19.67 & 27.92 & \\
\hline 1983 Grade Point Averaye (a) & & & & & & & & \\
\hline Nuaber of Days Absent in 1982-1983 (\(\mathbf{s}\)) & & & . 04 & 14.03 & & 23.76 & 1.72 & \\
\hline \multicolumn{9}{|l|}{Student Evaiuations} \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{1983 Citizenship Grade (o) Gifted Progran (a)}} \\
\hline & & & & & & & & \\
\hline \multicolumn{9}{|l|}{Background Characteristics} \\
\hline \multicolumn{9}{|l|}{\(\begin{array}{lllll}\text { Age in Months at } \\ \text { Tine of Test (n) } & & \\ & 6.81 & 4.72 & 6.98 & 5.40\end{array}\)} \\
\hline \multicolumn{9}{|l|}{Change of Schools (n)} \\
\hline Energency Telephone (im) & & 3.67 & & & & 7.87 & & \\
\hline Father's Status (n) & & 15.79 & . 82 & & 2.40 & & 1.77 & \\
\hline Pree \& Keduced Lunch (\(n\)) & & & & & & 2.95 & & 7.85 \\
\hline \multicolumn{9}{|l|}{Howe Phone Listed (n)} \\
\hline Nusber of Parents Absent (\(n\)) & & & 5.03 & 7.98 & 2.60 & & & \\
\hline Nuaber of Parents Eaployed (n) & & & & & & & & \\
\hline Sen (\(n\)) & & & & & & & 1.45 & \\
\hline Student's Residence (n) & & & & & 5.15 & & & \\
\hline \multicolumn{9}{|l|}{School Environment and} \\
\hline \multicolumn{9}{|l|}{Learning Contexts} \\
\hline Acreage Per Student (a) & 2.26 & & 1.49 & & 3.10 & & & \\
\hline Cost of School Per Student (a) & & & & & & & & 11.93 \\
\hline Encyclopedia Sets Per Student (a) Grade Level (\(n\)) & & & & & & & & 21.34 \\
\hline Library Open After & & & & & & & & \\
\hline School Per Student (a) & & & & & & & 6.16 & \\
\hline \multicolumn{9}{|l|}{Magazine Subscriptions} \\
\hline \multicolumn{9}{|l|}{Per Student (0)} \\
\hline \multicolumn{9}{|l|}{Percentage of Books} \\
\hline Lost Per Student (a) & & & & & -. 34 & & & \\
\hline
\end{tabular}
(a)--Indicates variable that is potentially manipulable ty the school district.
(n)--indicates variable that is not annpulable by tine school district.

Table 55. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Predictors} & \multicolumn{6}{|c|}{Models} \\
\hline & \multicolumn{2}{|l|}{Listening Comprehension} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Auditory \\
Test Total
\end{tabular}} & \multicolumn{2}{|l|}{Spelling} \\
\hline & POP & IND & POP & IND & POP & IND \\
\hline \multicolumn{7}{|l|}{Acadeaic Achievenent} \\
\hline 1983 Reading Grade (a) & 23.28 & & 28.51 & & 47.79 & \\
\hline \multicolumn{7}{|l|}{1983 Grade Point Average (a)} \\
\hline \multicolumn{7}{|l|}{Nunber of Days Absent} \\
\hline in 1982-1983 (a) & & & & & & 10.10 \\
\hline \multicolumn{7}{|l|}{Student Evaluations} \\
\hline 1983 Citizenship Grade (a) & & & & & -. 13 & \\
\hline Gifted Program (a) & & & & & . & 7.85 \\
\hline \multicolumn{7}{|l|}{Backqround Characteristics} \\
\hline \multicolumn{7}{|l|}{Age in Months at Tine of Test (n)} \\
\hline Change of Schools (n) & & & -1.72 & & & \\
\hline Eaergency Telephone (0) & & & 3.32 & & -. 71 & \\
\hline Father's Status (n) & 4.84 & & 3.57 & & & \\
\hline Free \& Reduced Lunch (n) & & & & & -. 03 & \\
\hline Home Fhone Listed (\(n\)) Nunber of Parents Absent (n) & & & & & & \\
\hline Nuaber of Parents Enployed (\(n\)) & & 4.03 & & 3.56 & & \\
\hline Sex (n) & & & . 93 & & & \\
\hline \multicolumn{7}{|l|}{Student's Residence (n)} \\
\hline \multicolumn{7}{|l|}{School Environaent and} \\
\hline \multicolumn{7}{|l|}{Learming Contexts} \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
Acreage Per Student (a) \\
Cost of School Per Student (a)
\end{tabular}} \\
\hline Encyclapedia Sets Per Student (a) & 5.66 & 13.40 & & 19.33 & & \\
\hline \multicolumn{7}{|l|}{Grade Level (n)} \\
\hline \multicolumn{7}{|l|}{Library Open After} \\
\hline \multicolumn{7}{|l|}{Magazine Subscriptions} \\
\hline \multicolumn{7}{|l|}{Per Student (a)} \\
\hline \multicolumn{7}{|l|}{Percentage of Books} \\
\hline Lost Per Student (a) & & & & & 2.30 & \\
\hline
\end{tabular}
(1)--Indicates variable that is potentially manipulable by the school district.
(n)-Indicates variable that 15 not anipulable by the school district.

Table 55. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Predictors} & \multicolumn{6}{|c|}{Models} \\
\hline & \multicolumn{2}{|l|}{Math Concepts} & \multicolumn{2}{|l|}{Math Test Total} & \multicolumn{2}{|l|}{Science Knowledqe} \\
\hline & POP & IND & POP & IND & POP & IN0 \\
\hline \multicolumn{7}{|l|}{Acadenic Achievement} \\
\hline \multicolumn{7}{|l|}{1983 Reading Grade (\(\mathbf{1}\))} \\
\hline 1983 Grade Point Average (a) & 19.96 & & 27.91 & & 17.07 & \\
\hline \multicolumn{7}{|l|}{Nuaber of Days Absent in 1982-1983 (a)} \\
\hline \multicolumn{7}{|l|}{Student Evaluations} \\
\hline \multicolumn{7}{|l|}{1983 Citizenship Grade (a)} \\
\hline 6ifted fiogias (a) & & & & & & 10.75 \\
\hline \multicolumn{7}{|l|}{Background Characteristics} \\
\hline \multicolumn{7}{|l|}{Age in Months at Tiae of Test (\(n\))} \\
\hline \multicolumn{7}{|l|}{Change of Schools (\(n\))} \\
\hline \multicolumn{7}{|l|}{Eaergency Telephone (a)} \\
\hline \multicolumn{7}{|l|}{Father's Status (n)} \\
\hline \multicolumn{7}{|l|}{Free \& Reduced Lunch (\(n\))} \\
\hline Hose Phone Listed (n) & 4.85 & & 5.81 & & & \\
\hline \multicolumn{7}{|l|}{Husber of Parents Absent (\(n\))} \\
\hline \multicolumn{7}{|l|}{Number of Parents Eaployed (n)} \\
\hline Sex (\(n\)) & & 2.88 & 2.88 & & 1.90 & \\
\hline \multicolumn{7}{|l|}{Student's Residence (n)} \\
\hline \multicolumn{7}{|l|}{School Environnent and} \\
\hline \multicolumn{7}{|l|}{Learning Contexts} \\
\hline Acreage Per Student (a) & & & -. 43 & & & \\
\hline \multicolumn{7}{|l|}{Cost of School Per Student (a)} \\
\hline \multicolumn{7}{|l|}{Encyclopedia Sets Per Student (a)} \\
\hline \multicolumn{7}{|l|}{Grade Level (\(n\))} \\
\hline \multicolumn{7}{|l|}{Library Open After} \\
\hline School Per Student (a) & & 9.94 & & 10.68 & & \\
\hline \multicolumn{7}{|l|}{Magazine Subscriptions} \\
\hline \multicolumn{7}{|l|}{Percentage of Books} \\
\hline Lost Per Student (\({ }^{\text {a }}\) & 2.08 & & 1.13 & & & \\
\hline
\end{tabular}
(\(\mathbf{a}^{(0)}\)-Indicates variable that is potentially manipulable by the school district. (n)--Indicates variable that is not anipulable by the school district.
```

students. Similarly, higher reading comprehension achievement was
correlated (r = -. 27) with having both parents at home for the
population, but was associated (r = .28) with having one or both
parents absent from the home for Indian students. Other than that,
the population and Indian third grade models shared no common
predictors. Of these four shared predictors, both student's age and
number of parents absent accounted for similar amounts of variance in
both the population and Indian models, albejt more for in the Indian
models. The number of days absent, however, explained considerably
less than 1% of the variance in the population model, but 14% in the
Indian model; and the number of encyclopedia sets explained 13% in the
Indian model in comparison to 6% in the population model.
As in the second grade models, the "other" variables forced into
the models accounted for considerably more variance in the Indian
models. Houever, of those variables that accounted for variance, the
ones entering into the Indian models usually explained moderate (3% to
10%) or large (%10%) amounts of variance. In contrast, mo antecedent
predictor accounted for more than 7% of the total variance in the
population models.
Other than previous grades, which entered all population models,
no factor was common to all reading or math oriented models for either
the population or Indian third grade students. Father's status
entered into five of the population reading oriented models, and home
telephone listing, student's sex, and percentage of books lost did,
however, enter two of the population math models. In comparison,

```
absentegism and the number of encyclopedia sets entered three of the
Indian reading models, and how long the library was open after school
per student entered two of the Indian math models. with respect to
expiaining the variance, student's age and how long the library was
open after school per student did the best for the population reading
models, and number of days absent, father's status, and number of
encyclopedia sets accounted for the most variance in the Indian
reading models, when these factors entered. The listing of the nome
telephone number explained the most variance for the population
models, and participation in the gifted program and how long the
library was open after school per student contributed the most to the
Indian math ariented models, when those antecedents entered the models.
```

    Comparison of fourth grade models. Overall, the multiple
    regression analyses results for fourth grade achievement (Table 56),
for both the population and Indian students, were more e%planatory
than for any of the other grades. On the average, the reading
oriented models accounted for 59% and 67% of the total variance, while
the math oriented models explained an average of 52% and 67% of the
total variance for the population and Indian students respectively.
Despite this, the models had very few structural similarities beyond
previous grades, and even with this, differences were clear. That is,
previous grades accounted for more of the total variance for fourth
grade Indian students than for fourth grade students in the Washoe
County Schooi District in general. In particular, previous grades
explained twice as much variance in the fourth grade Indian reading

```

Table 56. Percentage of Variance Contributed by Variables to the Total Model Variance for Fourth Grade Population and Indian Students
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Predictors} & \multicolumn{8}{|c|}{Model 5} \\
\hline & \multicolumn{2}{|l|}{Hord Study Skills} & \multicolumn{2}{|l|}{Reading Cogprehension} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Reading \\
Test Total
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Vocabulary \\
Knowledge
\end{tabular}} \\
\hline & POF & IND & POP & IND & POP & IND & FOP & IND \\
\hline \multicolumn{9}{|l|}{Acadenic Achievesent} \\
\hline 1983 Reading 6 rade (\({ }^{\text {c }}\)) & 43.95 & 61.95 & 15.05 & 38.53 & 31.49 & 66.25 & 21.35 & 25.96 \\
\hline 1983 Grade Point Average (a) & & & & & & & & \\
\hline Nuaber of Days Absent in 1982-1983 (a) & & & & & & & & \\
\hline \multicolumn{9}{|l|}{Student Evaluations} \\
\hline 1983 Citizenship Grade (0) & & & \(-4.70\) & & & & -5.74 & \(-2.58\) \\
\hline Gifted Progra (a) & & & & & & & 3.97 & \\
\hline \multicolumn{9}{|l|}{Backqround Characteristics} \\
\hline \multicolumn{9}{|l|}{Age in Months at} \\
\hline Tive of Test (n) & & & 6.59 & & & 4.81 & & \\
\hline Change of Schools (n) & & & 10.16 & & 5.29 & & 21.35 & \\
\hline Emergency Telephone (0) & & & & & & & 13.68 & \\
\hline Father s Status (\(n\)) & & . 37 & 4.11 & & & & & \\
\hline Free \& Reduced Lunch (n) & & & & & & & & 4.67 \\
\hline Hone Fhone Listed (\(n\)) & & & & & & & & \\
\hline Nuaber of Farents Absent (\(n\)) & -4.47 & & & & & & & 5.36 \\
\hline Nuaber of Parents Employed (n) & & & & & & & & \\
\hline Sex (\(n\)) & 1.64 & . 01 & 4.53 & & 7.30 & & 3.18 & \\
\hline Student's Residence (n) & & & 10.53 & & 7.99 & & & \\
\hline \multicolumn{9}{|l|}{School Environment and} \\
\hline \multicolumn{9}{|l|}{Learning Contexts} \\
\hline Acreage Per Student (a) & & & & & & 7.27 & & \\
\hline Cost of School Per Student (a) & & & & & & & & \\
\hline Encyclopedia Sets Per Student (a) & & & & & & & 3.34 & \\
\hline Grade Level (\(n\)) & & & & & & & & \\
\hline \multicolumn{9}{|l|}{Library Open After} \\
\hline School Fer Student (a) & & & & & & & & 7.85 \\
\hline \multicolumn{9}{|l|}{Magazine Subscriptions} \\
\hline Per Student (a) & & & & 19.29 & & & & 30.92 \\
\hline Percentage of Books Lost Per Student (m) & & & & & & & & \\
\hline
\end{tabular}
(a) - Indicates variable that is potentıally a manipulable by the school district. (n)--Indicates variable that is not manipulable by the school district.

Table 56. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Predictors} & \multicolumn{6}{|c|}{Models} \\
\hline & \multicolumn{2}{|l|}{Listening Comprehension} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Auditory \\
Test Total
\end{tabular}} & \multicolumn{2}{|l|}{Spelling} \\
\hline & POP & IND & POP & IND & POP & IND \\
\hline \multicolumn{7}{|l|}{Acadenic Achievement} \\
\hline 1983 Reading Grade (a) & 21.29 & 22.53 & 21.51 & 25.40 & 29.58 & 38.24 \\
\hline 1983 Grade Point Average (a) & & & & & & \\
\hline Nueber of Days Absent & & & & & & \\
\hline in 1982-1983 (a) & & & & & & \\
\hline \multicolumn{7}{|l|}{Student Evaluations} \\
\hline 1983 Citizenship Grade (n) & & & -5.98 & & & 11.32 \\
\hline Gifted Progras (e) & & & 5.10 & & & \\
\hline \multicolumn{7}{|l|}{Backoround Characteristics} \\
\hline \multicolumn{7}{|l|}{Age in Honths at} \\
\hline Tise of Test (\(n\)) & & 2.47 & & 8.30 & & \\
\hline Change of Schools (n) & 10.95 & & 19.54 & & & \\
\hline Eaergency Telephone (a) & 12.93 & & 14.61 & & & \\
\hline Father's Status (\(n\)) & & & & & & 1.56 \\
\hline Free \& Reduced Lunch (\(n\)) & & 11.94 & & 8.75 & & \\
\hline Hose Phone Listed (\(n\)) & & & & & & \\
\hline Nuaber of Parents Absent (\(n\)) & & & & & & \\
\hline Nuaber of Parents Eaployed (n) & -. 30 & & & & 1.94 & \\
\hline Sex (n) & & & 3.63 & & 7.58 & \\
\hline Student's Residence (\(n\)) & & & 5.21 & & 19.04 & 4.98 \\
\hline \multicolumn{7}{|l|}{School Environaent and} \\
\hline \multicolumn{7}{|l|}{Learning Contexts} \\
\hline Acreage Per Student (0) & & & & & & \\
\hline Cost of School Per Student (1) & \(-2.85\) & & & & & \\
\hline Encyclopedia Sets Per Student (a) & & & 3.60 & & & \\
\hline Grade Level (\(n\)) & & & & & & \\
\hline \begin{tabular}{l}
Library Open After \\
School Per Student (a)
\end{tabular} & & & & & & \\
\hline Magazine Subscriptions & & & & & & \\
\hline Per Student (a) & 11.60 & 14.94 & & 29.14 & & \\
\hline Percentage of Books Lost Per Student (() & & & & & & \\
\hline
\end{tabular}
(a)--Indicates variable that is potentially anipulable by the school district.
(n)-Indicates yariable that is not manipulable by the school district.

Table 56. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Predictor 5} & \multicolumn{6}{|c|}{Models} \\
\hline & \multicolumn{2}{|l|}{Math Concepts} & \multicolumn{2}{|l|}{Math
Test Total} & \multicolumn{2}{|l|}{Science Knowledge} \\
\hline & POF & IND & POP & IND & POP & IND \\
\hline \multicolumn{7}{|l|}{Acadenic Achieveaent} \\
\hline \multicolumn{7}{|l|}{1983 Reading Grade (a)} \\
\hline 1983 Grade Point Average (n) & 44.07 & 59.28 & 31.83 & 52.13 & 31.70 & 37.12 \\
\hline \multicolumn{7}{|l|}{Nuaber of Days Absent} \\
\hline \multicolumn{7}{|l|}{Student Evaluations} \\
\hline 1983 Citizenship Grade (0) & & & -6.44 & & & \\
\hline Gifted Program (i) & 11.25 & 3.38 & 11.99 & & & -. 65 \\
\hline \multicolumn{7}{|l|}{Background Characteristics} \\
\hline \multicolumn{7}{|l|}{Age in Months at} \\
\hline Time of Test (n) & & 5.99 & & 4.37 & & 9.10 \\
\hline \multicolumn{7}{|l|}{Change of Schools (n)} \\
\hline \multicolumn{7}{|l|}{Eaergency Telephone (a)} \\
\hline \multicolumn{7}{|l|}{Father's Status (n)} \\
\hline \multicolumn{7}{|l|}{Free \& Reduced Lunch (n)} \\
\hline Hoae Phone Listed (a) & & 6.43 & & & & 4.01 \\
\hline \multicolumn{7}{|l|}{Nuaber of Parents Absent (n)} \\
\hline \multicolumn{7}{|l|}{Number of Parents Eaployed (\(n\))} \\
\hline Sex (n) & & & 11.10 & & & \\
\hline \multicolumn{7}{|l|}{Student's Residence (n)} \\
\hline \multicolumn{7}{|l|}{School Environaent and} \\
\hline \multicolumn{7}{|l|}{Learning Contexts} \\
\hline Acreage Per Student (a) & & & & & & 5.62 \\
\hline \multicolumn{7}{|l|}{Cost of School Fer Student (a)} \\
\hline \multicolumn{7}{|l|}{Encyclopedia Sets Per Student (a) Grade Level (\(n\))} \\
\hline \multicolumn{7}{|l|}{Library Open After} \\
\hline \multicolumn{7}{|l|}{School Per Student (1)} \\
\hline \multicolumn{7}{|l|}{Hagazine Subscriptions} \\
\hline \multicolumn{7}{|l|}{Per Student (s)} \\
\hline \multicolumn{7}{|l|}{Percentage of books} \\
\hline Lost Fer Student (\({ }^{\text {(}}\) & 2.05 & 3.25 & 8.59 & 2.16 & 5.57 & \\
\hline
\end{tabular}
(a)--Indicates variable that is potentially manipulable by the school district. (n)--Indicates variable that is not a anipulable by the school district.
```

comprehension and reading test total models as in the same population
models.
Other predictors common to both the population and Indian models
were having higher citizenship grades in the vocabulary knowledge
models, number of magazine subscriptions (i.e., having fewer
subscriptions) in the listening comprehension models, student's
residence (i.e., Jiving in the Keno-Sparks urban areal in the spelling
models, participation in the gifted program in the math concepts
models, and having a lower percentage of books lost in the math
concepts and math test total models of fourth grade achievement.
The only other predictor that entered the same models for both the
population and Indian students was student's sex, which entered both
word study skills models. Unlike the other predictors, however, the
direction (and strength) of the relationship was quite different.
That is, higher word study skills achievement for the population in
general was associated (r = .35) with the student being female, but
was not even correlated (r = -.00) with student's sex for Indian
students. In other words, student's sex (i.e., being male) was only
structurally related to their word study skills achievement test
scores when other factors were held constant.
While there were some differences in the amount of variance these
factors s:口plained in the population and Indian models, the largest
differences were in the spelling model, where student's residence
accounted for 19% of the total population variance but only 5% of the
Indian variance, math concepts model, where participation in the

```
```

gifted program explained $11 \%$ of the population and $3 \%$ of the Indian variances, and in the math test total model where percentage of books lost per student accounted for $9 \%$ of the population and $2 \%$ of the Indian variances
In contrast to second and third grade models, fourth grade models of academic achievement exhibited several predictor patterns. Student's sex was generally a moderate (e.g., $3-10 \%$ ) predictor in $5 i x$ of the seven reading oriented population models, while change of schools and student's residence were moderate to strong (e.g., >10\%) predictors in five of the seven reading oriented population models. Fercentage of books lost per student was a weak (e.g., (3\%) to moderate predictor in all three of the population, and two of the Indian, math oriented models. Participation in the gifted program was a strong predictor (e.g., $>10 \%$ in two of the population, but a weak predictor (e.g., $\langle 3 \%$ ) in two of the lndian, math oriented models. Student's age, on the other hand, was a moderate to strong predictor of all three, and home phone listing was a moderate predictor of two of the three, math oriented models for Indian students. Number of magazine subscriptions was a strong predictor in four of the Indian reading oriented models, while student's age and participation in the federal lunch program were each predictive of three of the Indian reading oriented models. Ferhaps of greatest interest was the finding that participation in the gifted program was a better predictor of fourth grade achievement for the population than for the Indian

```
```

students, because participation in the gifted frogram was a falriy
consistent predictor in the Indian models of achaevement.

```
\begin{tabular}{|c|}
\hline regression analyses of fifth grade academic achievement are presented \\
\hline in Table 57. Once again, several of the models were not found to be, \\
\hline overall, statistically significant: vocabulary knowledge, listening \\
\hline comprehension, and auditory test total achievement for Indian students. \\
\hline In contrast to all models at other grade levels, and all other \\
\hline fifth grade models, the fifth grade population and Indian spelling \\
\hline models were quite similar. Structurally, both spelling models \\
\hline included previous reading grade, father's status, participation in the \\
\hline iederal lunch program, number of parents employed, and number of \\
\hline magazine 三ubscriptions as predictorj of spelling achiguement. The \\
\hline direction of the relationshap between these predictors fourid aritoth \\
\hline the pooulation and Indian spelling models was generally the same. \\
\hline Thus, having a natural father, not participating in the federal lurich \\
\hline program, and having fawer magazine subseriptions per student mere ail \\
\hline relates iu hagher subsequent spellirig achievement for both the \\
\hline population and Indian students. Farental employment, nowever was \\
\hline differentially correlated with spelling achievement. Fur the \\
\hline population, have a father or both parents empioyed was related for \\
\hline -. © 4; to magher spelling test scores, while for the indian students \\
\hline having a mother or neither parent emploved was associated (\(\mathrm{r}_{\text {a }}=.04\)) \\
\hline with hagher spelling achievement. However, in neather case was \\
\hline employment really even weakly correlated with spelling achievement. \\
\hline
\end{tabular}

Table 57. Percentage of Variance Contributed by Variables to the Total Madel Variance for Fifth Grade Population and Indian Students
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Predictors} & \multicolumn{8}{|c|}{Hodel 5} \\
\hline & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Hord Study } \\
& \text { Skills } \\
& \hline
\end{aligned}
\]} & \multicolumn{2}{|l|}{Reading Coaprahension} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Reading \\
Test Total
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Vocabulary \\
Knowledge
\end{tabular}} \\
\hline & POP & IND & POP & IND & POP & IND & POP & IND \\
\hline \multicolumn{9}{|l|}{Acadenic Achievenent} \\
\hline 1983 Reading Grade (0) & 37.08 & 21.18 & 50.23 & 23.23 & 49.42 & 35.14 & 38.13 & 22.54 \\
\hline 1983 Grade Point Average (a) & & & & & & & & \\
\hline Nuaber of Days Absent in 1982-1983 (a) & 3.78 & & & & & & 4.71 & \\
\hline \multicolumn{9}{|l|}{Student Evaluations} \\
\hline 1983 Citizenship Grade (a) & & & & & & & & \\
\hline Gifted Frogran (a) & -2.94 & & & & & & & \\
\hline \multicolumn{9}{|l|}{Background Characteristics} \\
\hline \multicolumn{9}{|l|}{Age in Months at} \\
\hline Time of Test (n) & & & \(-1.88\) & & \(-2.88\) & & -2.39 & \\
\hline Eaergency Telephone (a) & & & & & & & & \\
\hline Father's Status (n) & 3.14 & 16.87 & & & 1.37 & 8.05 & 4.63 & \\
\hline Free \& Reduced Lunch (n) & & 6.48 & & & & & & \\
\hline Hoae Phone Listed (n) & & & & 2.27 & & & & \\
\hline Nuaber of Parents Absent (n) & & & & & & & & \\
\hline Nusber of Parents Eaployed (\(n\)) & 1.44 & & & & . 83 & & -1.64 & \\
\hline Nuaber of Transfers (\(n\)) & & & & & & & & \\
\hline Sex (n) & & & & & & & -. 27 & 4.91 \\
\hline Student's Residence (n) & & & & & & & & \\
\hline \multicolumn{9}{|l|}{School Environment and} \\
\hline \multicolumn{9}{|l|}{Learning Contexts} \\
\hline Acreage Per Student (n) & & & & & & & 16.17 & \\
\hline Cost of School Per Student (a) & 10.88 & & & & 7.59 & & & \\
\hline Encyclopedia Sets Per Student (a) & & & & 5.64 & & 3.05 & & \\
\hline Grade Level (n) & & & & & & & & \\
\hline \begin{tabular}{l}
Library Open After \\
School Per Student (a)
\end{tabular} & & & & & & & & \\
\hline \multicolumn{9}{|l|}{Magazine Subscriptions} \\
\hline Per Student (0) & & 7.19 & 1.99 & & & & & \\
\hline \multicolumn{9}{|l|}{Percentage of Books} \\
\hline Lost Per Student (a) & & & & & & 5.04 & & \\
\hline
\end{tabular}
(a)--Indicates variable that is potentially manipulable by the school district. (\(n\))--Indicates variable that is not manipulable by the school district.

Table 57. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Predictars} & \multicolumn{6}{|c|}{Modeis} \\
\hline & \multicolumn{2}{|l|}{Listening} & \multicolumn{2}{|l|}{Huditory} & \multicolumn{2}{|l|}{Spellino} \\
\hline & FOP & IND & FOP & IND & FOP & 140 \\
\hline \multicolumn{7}{|l|}{Acadenic Achievement} \\
\hline 1983 heauting brade (\%) & 24.36 & 13.97 & 8.81 & 27.13 & 46.72 & 23.13 \\
\hline 1993 Grade Point Average (a) & & & & & & \\
\hline Number of Lays Absent & & & & & & \\
\hline in 1992-1983 (a) & & & & & & \\
\hline \multicolumn{7}{|l|}{Student Evaluations} \\
\hline \multicolumn{7}{|l|}{1793 Citizenship Grade (a)} \\
\hline Gifted Frograil (a) & -3.27 & & & & & 7.30 \\
\hline \multicolumn{7}{|l|}{Background Characteristics} \\
\hline \multicolumn{7}{|l|}{Age in months at} \\
\hline Tine of Test (n) & -1.84 & & -. 88 & & & \\
\hline Change of Schools in; & 4.13 & & & & \(-1.64\) & \\
\hline Emergency Teleptione (fil & -.06 & & & & & \\
\hline Father's Status (n) & & & & & . 23 & 4.41 \\
\hline Free \& Fieauced Lunch (n) & 7.81 & & 4.64 & & -1.26 & 16.47 \\
\hline Hase fhone listed (n) & & & & & & \\
\hline Nuaber of Parents mbsent (in) & & & & & 7.53 & \\
\hline Number of Parents Emoloyed (n) & 4.95 & & 1.81 & & -. 31 & 1.25 \\
\hline Sex (\(n\)) & & 3.48 & & 5.25 & & \\
\hline Studert's Fesidence (ni) & 10.75 & & 6.37 & & 3.05 & \\
\hline \multicolumn{7}{|l|}{School Environment and} \\
\hline \multicolumn{7}{|l|}{Learning Contexts} \\
\hline \multicolumn{7}{|l|}{Acreage Per Student (a)} \\
\hline \multicolumn{7}{|l|}{Cost of School Fer Student (4)} \\
\hline \multicolumn{7}{|l|}{Encyclopedia Sets Per Student (a) Grade Level (\(n\))} \\
\hline \multicolumn{7}{|l|}{Library Opeí hfter} \\
\hline School Fer Student (a) & & & 21.23 & & & \\
\hline \multicolumn{7}{|l|}{Magazine Subscriptions} \\
\hline Fer Student (m) & 1.47 & & & & 2.46 & 7.19 \\
\hline \multicolumn{7}{|l|}{Percentage of Books} \\
\hline Lost Per Student (a) & 6.65 & & & & & \\
\hline
\end{tabular}
(a)--Indicates varabia that 15 potentially faripulable ty the school district. (n)--Indicates variabie that 15 not manipulable of the school district.

Table 57. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Predictors} & \multicolumn{6}{|c|}{Models} \\
\hline & \multicolumn{2}{|l|}{Math Concepts} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Math \\
Test Total
\end{tabular}} & \multicolumn{2}{|l|}{Science knowledge} \\
\hline & POP & 1N0 & POP & IND & POP & InO \\
\hline \multicolumn{7}{|l|}{Academic Achievenent} \\
\hline 1983 Keading Grade (m) 1983 Grade Point Average (in) Number of Diys Absent in 1982-1985 (m) & 35.47 & 33.55 & 40.33 & 42.47 & 29.11 & 20.66 \\
\hline \multicolumn{7}{|l|}{Student Evaluations} \\
\hline 1983 Citizenship Grade (iw) Gifted Frogran (in) & 7.88 & 8.97 & 10.68 & & 16.46 & \\
\hline \multicolumn{7}{|l|}{Hackoround Characteristics} \\
\hline \begin{tabular}{l}
Age in Months at \\
Time of Test (n)
\end{tabular} & & & & & 1.57 & \\
\hline \begin{tabular}{l}
Charige of Schools (\(n\)) \\
Energency Teleptone (im)
\end{tabular} & & & & & & \\
\hline \begin{tabular}{l}
Father's Status (n) \\
Free a Keduced Lunch (n)
\end{tabular} & & & & & & \\
\hline Home Fhone Listed (n) Number of Farents Absent (in) Number of Farents Employed (n) & & & & & -3. 97 & \\
\hline \begin{tabular}{l}
Sex (\(n\)) \\
Student:s kesidence (n)
\end{tabular} & 1.21 & 4.71 & & & 1.06 & 3.71 \\
\hline \multicolumn{7}{|l|}{School Environment and} \\
\hline \multicolumn{7}{|l|}{Learning Contexts} \\
\hline Ḣcreage Fer Student (m) & & 7.86 & & 10.85 & 21.54 & \(8.6 t\) \\
\hline Cost of School Fer Student (m) Encyclopedia Sets Fer Student (mi) Grade Leve! (\(n\)) & & & & & & \\
\hline \begin{tabular}{l}
Library Open After \\
School Fer Student (im)
\end{tabular} & & & \(-3.12\) & & \(-5.63\) & \\
\hline \multicolumn{7}{|l|}{Magazine Subscriptions Per Student (a)} \\
\hline \multicolumn{7}{|l|}{Fercentage of Books Lost Per Student (\({ }^{(1)}\)} \\
\hline
\end{tabular}
(a)--Indicates variable that 15 potentially manioulable by the school district.
(n)--lndicates variable that 15 not mampuiable by the scnocl district.
```

The only structural differences were that the population spelling
model also had student's residence and number of parents absent as
predictors, while the Indian spelling model had participation in the
gifted program as a predictor.
ijith respect to the amount of variance accounted for in fifth
grade spelling achievement, the two were different in a number of
way5, even though the "other" variables forced into the models
accounted for 8% of the variance in both, and that, overall, both
models accounted for a little over 67% of the total variance in
spelling achievement. The two greatest differences were with respect
to the 198J reading grade, which accounted for 47% of the population
variance; but only 23% of the Indian student variance. Secondly,
participation in the federal lunch program was a suppressor (-1%) in
the population model, but enplained over 16% of the total variance in
the Indian model of fifth grade spelling achievement.
Other structural similarities, besides all models having previous
grades as a predictor (and those discussed for spelling), included
having a natural father as being related to higher word study skills
and reading test total test scores, being male as associated with
higher math concepts and science knowledge scores, and attending
schools with less acreage fer student as being associated with higher
science knowledge test scores. However, with respect to student's
sex, differences in pattern did occur. While males had higher math
concepts and science achievement test scores among both the population
and Indian students, females (r = 02) among the population students

```
and males (\(r=-.18\)) among the Indian students had higher scores in vocabulary knowledge.

With regards to the amount of variance explained in the two models, however, there existed considerable differences. There were, as well, considerably more predictors in the population models, but the entering predictors tended to account for more variance in the Indian models. For example, previous grades accounted for more variance in all the population models except for auditory test total, math concepts, and math test tatal. Moreover, the sample sizes were extremely reduced for the analyses by grade level, which adversely affected the degrees of freedom in the multiple regression analyses.

In looking for patterns in the predictors, no variable entered all seven reading oriented models, other than the 1985 reading grade. The number of parents employed entered the largest number, being a predictor in si\% of the population reading oriented models. In contrast, the most consistent predictors across fifth grade Indian reading oriented models were sex and father's status, both of which entered into three of the reading oriented models. In terms of accountability across models, residence, acreage, school costs, and how long the library was open after school made the most consistent contributions when they entered the population models. For the Indian students, father's status, participation in the federal lunch program, the gifted program, and the number of magazine subscriptions per student contributed best when they entered into the fifth grade reading oriented models.
```

For math oriented models, the 1983 citizenship grade all three of the population models, while sex (i.e., being male was associated with higher achievement) and library hours after school per student were included in two of the population math oriented models. In contrast, acreage entered into all three of the indian fifth grade math oriented models, while sex (i.e., being male was associated with higher achievement) entered into two of the math models. Although citizenship and acreage accounted for the most variance in the math oriented considerable differences. There were, as well, considerably more predictors in the population models, but the entering predictors tended to account for more variance in the Indian models. For example, previous grades accounted for more variance in all the population models, except for auditory test total, math concepts, and math test total. Moreover, the sample sizes were extremely reduced for the analyses by grade level, which adversely affected the degrees of freedon.
These results presented several interesting patterns. First, even though school acreage was not predictive in the (aggregatel Indian models of math and science achievement, it was predictive of fifth grade achievement for Indian students. Second, when school acreage was predictive of fifth grade achievement ii.e., in the science model), this factor accounted for almost two and one half times as much variance as it did in the population model. Third, student's se: was found to be important in predicting academic achievement, but particularly for Indian students. That is, student's sex was

```
```

inversely associated with, and predictive ot, vocabulary knowledge (r
= -.17), listening comprehension (r = -.i5), auditory test total (r =
-.\Sigma0i, math concepts ir = -. 20), and sclence knowledge ir = -. 18)
achievement. This meant that, for Indian students, being made was
associated with, and predictive of, higher achievement. Fourth.
citizenship grades, or the student's classroom behavior as
subiectively evaluateo by the teacher, was a fairly strong predictor
(e.g., :10%) of matm oriented achievement--particularly for sciemce
tnowlegge achlevement--for fifth grade stadents in the washoe Lourity
School Eistrict in qeneral, but not fer fifth grade Indian students.
Lastly, 1t was observed that now long the liorary was open after
schocl acted as a suppressor variable in the fifth grade population
math test total and science knowledge achicuemerit movels. in sum,
except for student s sex, fiftr graje math and science achievement
were found to be subject to considerable school svstem manioulation.
Comparlson of sixth orade models. The results of the stepuise and
for`ed entrv multiple regression analyses of sixth grade academde
achuevemerit are comparatively summarized in Tatle sg. At the outset,
it must be noted that the auditory tast total and spelling models, for
the si;tm grade popuiationi, were not statistically significant.
Fielative to the second through fifth grade models of acmiguement for
students In the Washoe Eounty 5chool District, the population and
Indlan 三i:ith qrade models had considerable slmilaritizs, although such
congrueh=ies were still outwelghed ty differences. That is, five of
the modelj shared one or more common predictorj iother than previous

```

Table 59. Percentạ̣e of variance Contributed by Variables to the Total Model Variance for Gixth Grade Fopulation and Indiari Students
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Predicturs} & \multicolumn{8}{|c|}{Model 5} \\
\hline & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Word } 5 \text { tudy } \\
& \text { Skills }
\end{aligned}
\]} & \multicolumn{2}{|l|}{Fieading Comprehension} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Reading \\
Test Total
\end{tabular}} & \multicolumn{2}{|l|}{Vocabulary knowledue} \\
\hline & Pup & IND & PDF & IND & POP & [10 & PGP & IND \\
\hline \multicolumn{9}{|l|}{Academic Achievement} \\
\hline 1993. Keadirig Grade : © & 17.87 & 22.84 & 21.06 & 49.16 & 31.18 & 53.72 & 13.71 & 21.43 \\
\hline 1983 Grade Pount Average (a) & & & & & & & & \\
\hline Number of Days absent & & & & & & & & \\
\hline is 1982-1985 (m) & & 8.62 & 4.60 & & 3.93 & & & \\
\hline \multicolumn{9}{|l|}{Student Evaluations} \\
\hline 1993. Citizenship Grade (a) & & & & & & & & \\
\hline Gifted Frogras (m) & & & & & & & & 12.50 \\
\hline \multicolumn{9}{|l|}{Backoround Characteristice} \\
\hline Age in Months at & & & & & & & & \\
\hline Time of Test (n) & & & 2.01 & & & & & \\
\hline Change of Schouls int & 4.57 & & 2.78 & & 4.48 & & & \\
\hline Emergency Teleptione (m) & 4.87 & & 4.48 & & 6.55 & & & \\
\hline Father's Status (\(n\)) & 4.11 & & & & & & & \\
\hline Free : Reduced Lurich (ri) & & 10.41 & 8.77 & & & & 10.71 & 13.75 \\
\hline Hone Phane Listed (n) & & & & 0.03 & & 3.21 & & \\
\hline Nuaber of Parents thesent (n) & & & & -. 61 & & & & \\
\hline Number of Farcats Esployed (n) & & & 1.14 & & & & & \\
\hline SEa (\(n\)) & & & 2.32 & 2.52 & & & 3.97 & 5.46 \\
\hline Student's Residence (ni & & & & & & & & \\
\hline \multicolumn{9}{|l|}{School Environaerit and} \\
\hline \multicolumn{9}{|l|}{Learning Contexts} \\
\hline Acreage Fer Student (m) & & & & & & & & \\
\hline Cost of School Fer Student : \(m\)) & . 6 & & & & 3.23 & & & \\
\hline Encyclopedia Sets Per Student (a) & & & & 5.92 & & & & \\
\hline Grade Level (\(n\)) & & & & & & & & \\
\hline Library Open After School Per Studant : ifil & & & & & & & & \\
\hline Magazane Subscriptions & & & & & & & & \\
\hline Fer student (a) & & & & & & & & \\
\hline Percentage of Eoost & & & & & & & & \\
\hline Lost Per Student (m) & & & & & & & & \\
\hline
\end{tabular}
(m)--Indicates variable that is potentialio manipulatle by the school district. (n)--Indicates variable that is not mainuiadile by the school district.

Table 59．（Continuea）
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Preoictors} & \multicolumn{6}{|c|}{Models} \\
\hline & \multicolumn{2}{|l|}{Listening Copprehension} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Auditory \\
Test Total
\end{tabular}} & \multicolumn{2}{|l|}{Spellina} \\
\hline & FOF & 110 & POP & IND & FOF & IMV \\
\hline \multicolumn{7}{|l|}{Academic Achievement} \\
\hline 1983 Reading frade（m） & 14.48 & 16.20 & 7.78 & 20.15 & 25.23 & 33.18 \\
\hline 1933 Grade Point Average（a） & & & & & & \\
\hline Number of Days Absent & & －4， 6 & & & & 11.04 \\
\hline \multicolumn{7}{|l|}{Student Evaluations} \\
\hline \multicolumn{7}{|l|}{1983 Citizenship Grade ioi} \\
\hline Gifted Frograg（閏） & & 10．32 & & 16.94 & & \\
\hline \multicolumn{7}{|l|}{Eackiground Characteristics} \\
\hline \multicolumn{7}{|l|}{Age in months at} \\
\hline Time of Test（n） & 4.78 & E．36 & & & & 9.96 \\
\hline \multicolumn{7}{|l|}{Emergency Telephone（＊）} \\
\hline Father s Status（ \(n\) ） & 3.11 & 4.53 & & & 1.55 & 2.64 \\
\hline Free \＆Reduced Luncn（in） & 14．35 & & & 9． \(0^{\circ}\) & 2.34 & \\
\hline \multicolumn{7}{|l|}{Home fhone Listed（n）} \\
\hline Nusber of Farents ibsent（in） & & & & & & 13.61 \\
\hline Number of Farents Egployeo（a） & & & & & 1.32 & －2．50 \\
\hline Number of Transters ini & 10.67 & & & & & \\
\hline Sex（ m ） & 1.46 & 9.79 & & 5.49 & & \\
\hline \multicolumn{7}{|l|}{Student＇s Residence（ n ）} \\
\hline \multicolumn{7}{|l|}{School Environaent and} \\
\hline \multicolumn{7}{|l|}{Learning Contexts} \\
\hline \multicolumn{7}{|l|}{} \\
\hline \multicolumn{7}{|l|}{Cost of School Fer Student（a）} \\
\hline Encyclopedia Sets Per Student（ \(⿴ 囗 十\) ） Grade Level（ \(n\) ） & & & & & & \\
\hline \multicolumn{7}{|l|}{Library Open áfter} \\
\hline \multicolumn{7}{|l|}{Stioul Per Student（im）} \\
\hline \multicolumn{7}{|l|}{Magazine Subscriptions} \\
\hline Fer Student（ix） & 5.16 & & & & & \\
\hline \multicolumn{7}{|l|}{Fercentage of Books} \\
\hline Lost Per Student（im） & & 13.54 & & & & \\
\hline
\end{tabular}
（ 1 ）－－Indicates variable that 15 pateritially manipulable by the school district． （in）－－Indicates variable that is not manipulable by the sencol district．

Table 58. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Freostors} & \multicolumn{6}{|c|}{Models} \\
\hline & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Math } \\
\text { Concepts }
\end{gathered}
\]} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Math \\
Test Total
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Science \\
R.nowledue
\end{tabular}} \\
\hline & FOF & IND & PCP & 114 & POF & INT \\
\hline \multicolumn{7}{|l|}{Academic Ȧhievement} \\
\hline 1983 Reading Grace (a) 1983 Girade Foint Averậe (in) Number of Days fibsant in \(1982-1985\) (\(a)\) & 38.37 & 51.23 & 4.22 & 49.39 & 25.88 & 26.50 \\
\hline \multicolumn{7}{|l|}{Student Evaluations} \\
\hline log? Citazensnip Grade (m) & & -8.54 & & & & \\
\hline Gifted Frogras (0) & & & & & 4.86 & \\
\hline \multicolumn{7}{|l|}{Backoround Characteristice} \\
\hline Age in Months at ijame of Tast in: & & 9. 21 & 1.10 & & 2.49 & 8.42 \\
\hline Change of Schools ini & & & & & & \\
\hline Emeronncy Telephoira (in) & & & & & & \\
\hline Father 5 Status (n) & & & & & & \\
\hline Free is keduced Luncti ini & & & & & & \\
\hline Home fhone tisted (a) Number of Farents hibsent in) Nuaber of Parents Emploved (n) & & & & & & \\
\hline Se\% (a) & 10.67 & & 4.70 & & 14.17 & \\
\hline Student a Kesidence (n : & & & & & & \\
\hline \multicolumn{7}{|l|}{School Environment and} \\
\hline \multicolumn{7}{|l|}{Learning Contexts} \\
\hline Acreage fer Student (fi) & & 3.55 & 1.83 & & & \\
\hline Cost of School Her Student (a) & & & & & & \\
\hline Encyclapedia Sets Fer Student (i) Girace Level (\(n\)) & & & & & & \\
\hline \begin{tabular}{l}
Library Open After \\
School Per Student (o)
\end{tabular} & & & & & & \\
\hline Magazine Subscriptions Fier Student (m) & & & & & & \\
\hline \multicolumn{7}{|l|}{Fercentage of Eooks} \\
\hline Lost Fer Student (im) & & & & & & 14.00 \\
\hline
\end{tabular}
(Ai--indicates variable that 15 potentadly manipulate by the school district. ini--indicates variatle that is not anipulable by the schocl district.

```

knowledge achievement. As with other grade levels, however, these
mutually shared predictors differentially accounted for the variance
in academic achievement, In all cases, the predictors (including
previous grades), accounted for more of the total variance in the
Indian models. Similarly, most predictors in the indian models
accounted for moderate (3-10%) or large (>10%) amounts of the total
variance; indeed, in only three cases was the contribution slight
(<J%). In comparison, most contributions to the total variance for
the population models were slight or moderate, with only four
predictors (other than previous grades) making very large
contributions.
In looking for structural patterns in the predictors, one
difference, relative to the other grade levels, was the number of
variables entering models for Indian students. That is, more
predictors entered into sixth grade models than entered into the same
models at the other grade levels for Indian students. No predictor
(other than previous grades), however, entered into more than four of
the reading oriented Indian models. In looking at the population
models, participation in the federal lunch program and change of
schools were predictive in four of the models, while emergency
telephone listing, father's status, and student's se: were predictive
in three of the reading oriented population models. In comparison,
student's sex was predictive in four of the models, while absenteeism,
participation in the gifted program, and participation in the federal
lunch progrem accounted for variance in three of the Indian reading

```
```

oriented models. Emergency telephone listing, participation in the
federal lunch program, change of schools, and number of magazine
subscriptions per student were, when they entered into the population
models, the most consistent and explanatory predictors. In the Indian
models, the number of days absent, participation in the gifted
program, student's age, participation in the federal lunch program,
student's sex, number of encyclopedia sets per student, and percentage
of books lost per student were the most aceountable factors when they
entered, While student's sex entered all three of the population math
oriented models, student's age entered two of them, but student's sex
was the most accountable. Although student's age entered into two of
the Indian math orjented models, both citizenship grades and
percentage of books lost were also very explanatory predictors.
Again, because participation in the gifted program was such a good
predictor for the Indian models of achievement, it was surprising that
participation in the gifted program was not a statistically
significant predictor of any of the Indian math oriented sixth grade
models. However, the fact was that there was only one sixth grade
Indian student cout of those included in this study) who was in the
gifted program; indeed, there was only a total of six Indian students
(included in this study) in the the gifted student program.
Accountino for the variance. While previous grades (either the
1983 reading grade or the 1983 grade point averagel were predictive of
all population grade level models, they were not predictive of two
second grade, and seven third grade, models for Indian students. In

```
```

looking at other variables, it was found that student's age, emergency
telephone listing, father's status, change of schools, and student's
se% all entered one or more reading oriented models at each grade
level for the population. Student's sex, however, was not found to be
consistent across the grade levels in terms of whether males or
females had higher achievement. In the second and fourth grades
females did better, while in the third and si%th grades males did
better; and in the fifth grade females did better in vocabulary
knowledge and males did better in math concepts and science know!edge
achievement. Conversely, for Indian students, while sex was not even
a predictor of second grade achievement and was a predictor in only
one model for each of the third and fourth grades, in all cases where
it was pradictive (including fifth and si%th grades) it was males who
did better.
Similarly, few clear patterns were found with the other common
predictors, except for the fact that having an emergency telephone
number listed at the school was always predictive of higher
achievement and in only one case (second grade word study skills) was
changing schools predictive of higher achievement. Generally, being
younger was predictive of higher reading oriented achievement and
teing older (in months) was predictive of science oriented
achievement; e%cept for si%th grade, when being younger was always
more predictive. Father's status was even more irregular in the
direction, although it tended more towards the natural father being
more predictive. In stark contrast, no single factor was found to be

```
```

predictive at all grade levels (second through si%th). Additionally,
the number of days absent, participation in the federal lunch program,
the number of parents absent, the number of parents employed, and the
number of magazine subscriptions per student each entered one or more
reading oriented models in four of the five grade levels for the
population. Conversely, only father's status, participation in the
federal lunch program, and the number of parents absent were
predictive of variance in four of the five grade levels for Indian
students. However, no patterns of direction were found, although
having a natural father and lower absenteeism tended to predict higher
achievement.
In looking at the math oriented models, the 1983 grade point average was the only predictor at all five grade levels for the
population. The 1983 grade point average, however, was a predictor in
only four of the five grade levels for Indian students. While 198%
citizenship grade, student's sex, and school acreage were predictive
of math oriented achievement at four of the grade levels for the
population, no variables (other than 1983 grade point average) were
predictive at four or more of the grade levels for Indian students.
In terms of accounting for the total variance, a number of
variables were found to make rather large contributions. That is,
fairly consistent contributors to Indian achievement across grade
levels were absenteeism, participation in the federal lunch program,
participation in the gifted program, school cost, encyclopedia sets
per student, magazine subscriptions per student, and the percentage of

```


Table 59. Comparison of Total Variance Accounted for by the Fopulation and Indian Models for Each Grade Level
\begin{tabular}{|c|c|c|c|c|}
\hline Grade Level & \[
\begin{gathered}
\text { Population } \\
\% \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Indian } \\
\% \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Fopulation } \\
\% \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Indian } \\
\% \\
\hline
\end{gathered}
\] \\
\hline & \multicolumn{2}{|l|}{Word Study Skills} & \multicolumn{2}{|l|}{Readina Comprehension} \\
\hline 2nd Grade & 37.41 & 42.35 & 41.85 & 43.78 \\
\hline Srd Grade & 32.93 & 58.56 & 57.43 & 65.30 \\
\hline 4th Grade & 58.51 & 65.73 & 48.73 & 65.62 \\
\hline Sth Grade & 55.14 & 54.21 & 59.71 & 49.65 \\
\hline oth Grade & 38.56 & 51.52 & 51.59 & 73.24 \\
\hline Average & 44.51 & 54.45 & 51.86 & 59.52 \\
\hline & \multicolumn{2}{|l|}{Reading Test Total} & \multicolumn{2}{|l|}{Vocabulary knowledge} \\
\hline 2nd Grade & 45.45 & 47.87 & 44.57 & 43.57 \\
\hline Brd Erade & 60.31 & 63.61 & 49.62 & 51.12 \\
\hline 4th Grade & 53.60 & 78.11 & 60.25 & 74.17 \\
\hline Sth Grade & 61.09 & 62.66 & 67.15 & 37.02 \\
\hline bth Grade & 54.51 & 54.75 & 38.22 & 53.52 \\
\hline Average & 55. 99 & 65.41 & 51.96 & 51.88 \\
\hline & \multicolumn{2}{|l|}{Listenino Comprehension} & \multicolumn{2}{|l|}{Auditory Test Total} \\
\hline 2nd Grade & 51.48 & 51.50 & 51.21 & 42.89 \\
\hline Sra Grade & 41.17 & 32.35 & 50.34 & 34.69 \\
\hline 4 th Grade & 63.23 & 64.31 & 66.35 & 73.88 \\
\hline 5 Sh Grade & 62.90 & 30.38 & 48.78 & 35.28 \\
\hline 6th Grade & 55.12 & 59.45 & 20.48 & 57.44 \\
\hline Average & 54.78 & 47.60 & 47.47 & 50.04 \\
\hline
\end{tabular}

Table 59. (Continued)
\begin{tabular}{|c|c|c|c|c|}
\hline Grade Level & Population
\(\qquad\) & \[
\begin{gathered}
\text { Indian } \\
\% \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Fopulation } \\
\% \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Indjan } \\
\% \\
\hline
\end{gathered}
\] \\
\hline & \multicolumn{2}{|c|}{Spelling} & \multicolumn{2}{|l|}{Math Concepts} \\
\hline 2nd Grade & 46.16 & 50.62 & 25.68 & 24.10 \\
\hline 3rd Grade & 54.63 & 39.17 & 30.97 & 16.04 \\
\hline 4 th Grade & 59.47 & 58.77 & 57.82 & 78.02 \\
\hline Sth Grade & 67.13 & 67.61 & 47.96 & 56.06 \\
\hline bth Siade & 30.41 & 70.80 & 48.82 & 58.45 \\
\hline \multirow[t]{2}{*}{Average} & 51.56 & 57.39 & 42.25 & 46.53 \\
\hline & \multicolumn{2}{|l|}{Math Test Total} & \multicolumn{2}{|l|}{Science knowledue} \\
\hline 2nd Grade & 33.69 & 33.75 & 30.03 & 26.32 \\
\hline Sra Grade & 38.01 & 15.24 & 24.73 & 18.37 \\
\hline 4th Brade & 57.70 & 53.47 & 41.37 & 54.50 \\
\hline Sth Grade & 47.68 & 58.73 & 59.86 & 36.47 \\
\hline 6th Grade & 48.52 & 54.87 & 47.83 & 51.71 \\
\hline Average & 45.40 & 45.25 & 42.56 & 33.47 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline for the sixth grade models; which explains the differences noted \\
\hline previously. \\
\hline Nonetheless, no model accounted for more than \(79 \%\) of the total \\
\hline variance, while on the other hand the least amount explained was only \\
\hline 15\% of the variance. Similarly, the models accounted for, on the \\
\hline average, only \(42 \%, 44 \%, 57 \%, 58 \%\), and \(43 \%\) (with an overall average of \\
\hline 49\%) of the total variance in the second through sixth grade \\
\hline population models, and \(41 \%, 40 \%, 58 \%, 49 \%\) and \(60 \%\) (with an overall \\
\hline average of \(52 \%\) of the total variance for the second through sinth \\
\hline grade Indian models. This meant that, on the average, between \(22 \%\) and \\
\hline 85\% (or a grand average of 50\%) of the variance in academic \\
\hline achievement for second through sixth grade students in the Washoe \\
\hline County School District must be explained by factors not included in \\
\hline this study, These results, moreover, substantiated the assumption \\
\hline that understanding academic achievement was, and remains, strongly \\
\hline dependent upon how such achievement was/is measured. That is, if one \\
\hline selectad reading test total scores as their measure of academic \\
\hline achievement, they would most likely draw entirely different \\
\hline conclusions than if they used word study skills or science knowledge \\
\hline achievement, because they would be able to account for the reading \\
\hline test total achievement much better. \\
\hline In looking at the ability of specific types of factors to predict \\
\hline academic achievement across the five analyzed grade levels (2nd \\
\hline through bth), it was found that the other antecedent measure of \\
\hline academic success, absenteeism, was structurally much more predictive \\
\hline
\end{tabular}

```

have a suppressive effect on si%th grade listening comprehension for
Indian students, which meant that, while low absenteeism appeared to
be related {r = -.13\ to higher listening comprehension achievement,
when other factors were held constant it was found that increased
absenteeism actually resulted in higher test scores. Thus, unlike
either the population or Indian aggregate models of achievement, where
absenteeism was not very predictive, absenteeism was predictive by
grade level.
In short, absenteeism was structurally quite predictive of second
grade achievement for the population, very erplanatory of third grada
reading comprehension, reading test total and spelling achievement for
Indian students, and accounted for moderate amounts of si%th grade
word study stillls and spelling achievement for Indian students.
There were two antecedent student evaluation measurements included
in the analyses for the reading oriented areas of achievement, and one
in the math oriented areas. In the population and Indian models,
participation in the gifted program was found to be both a
structurally and explanatorily consistent predictor, especially for
the math oriented population models and for Indian students.
Nonetheless, participation in the gifted program was a predictor in
only two of the population second grade models, two of the Indian
third grade models, four of the population and two of the Indian
fourth grade models, two of the population and two of the Indian fifth
grade models, and one of the population and three of the Indian si%th
grade models. Moreover, it was structurally more predictive of the

```
```

reading oriented population models across the grades, and also
accounted for more variance than in either the aggregate population or
Indian models.
The 1983 citizenship grade had generally been a suppressor
variable in the population and Indian models, but across the grades it
was suppressive less than half the time. Grade level analyses (Tables
54 - 58), furthermore, demonstrated that citizenship grades were a
predictor of achievement only for the second, third, and fourth grade
reading oriented achievement and structurally much more so for the
population than for Indian students. Moreover, it was found in the
reading oriented models for the population, citizenship grades were
generally a positive predictor in the second grade, but a negative or
suppressive predictor in the third and fourth grades. More
importantly, it was found that citizenship grades explained quite
large amounts of the second grade word study skills and fourth grade
spelling variance for Indian students. That is, their 1983
citizenship grades was very predictive of how successful thev were in
1984 with respect to word study skills and spelling.
In comparison, 1983 citizenship grade was predictive of math
oriented achievement for second through fifth qrade students in the
population, but, in sharp contrast, only for the si%th grade Indian
students. Moreover, the 1983 citizenship grade explained between 8%
and 16% of the total variance for fifth grade students in the
population, but suppressed -9% of the total variance for sixth grade
Indian students. That is, knowing the Indian student's previous

```
```

citizenship grade increased the accountability of the math concepts
model.
The most important observation concerning personal and familial factors from the analyses across the grade levels (Tables 54-58) was that for Indian students they were less important in explaining second than third grade achievement, less predictive of third grade than fourth grade test scores and 50 on, 50 that for the sixth grade students they were quite explanatory. Moreover, when such factors did predict achievement for Indian students, they often accounted for more variance than when they entered the population models. In contrast, the predictiveness of persomal and familial variables fluctuated considerably for the Washoe County School District population in general. The trend was particularly clear with respect to the reading oriented models. That is, there were seven times as many personal factors that entered the population second grade reading oriented models as entered the Indian models, twice as many that entered the population third and fourth grade models, and two and one half times as many that entered the fifth grade models. Conversely, there were only slightly more personal and familial predictors that entered the sixth grade population models than in the Indian models.
On the other hand, the number of personal and familial variables explaining math oriented achievement, as well as how much variance they accounted for, fluctuated for both groups, being four times more important for the population in the third grade and si\% times as important for Indian students in the fourth grade.

```
```

Structurally, the best or most consistent personal and familial predictors for reading oriented models of achievement were student's sex--despite the variable's inconsistency in whether being male or female was related to higher achievement--(entering 16 of 35 possible models), father's status (15 out of 35 models), change of schools (15 out of 35 models), and number of parents employed (14 out of 35 models) for the population, and student's age (entering 10 out of 35 possible models) and emergency telephone listing (10 out of 35 models) for the Indian students. Unlike for the population, student's sex (entering into only $日$ of 35 models) was a por predictor for Indian students. None of the variables were predictive of achievement in even half of the models across grade levels. The same was generally true of the personal and familial predictors for the math oriented models, except for student's sex which was predictive of achievement in 8 of the 15 possible population models. The best personal and familial predictor of Indian student achievement was student's age, which entered 6 of 15 models. Again, there were also fewer $5 e \%$ differences among Indians, with sek entering into only 3 of 15 models.
Several other structural predictor patterns were of interest. First, several of the familial predictors were clearly more important to explaining achievement for the population than for Indian students. This was particularly true for emergency telephone listing, number of parents employed, change of schools, and student's residence, Secondly, some predictors were mare important at particular grade levels than others. Age was more predictive in the

```
```

fourtin grade for lndian students and in the fifth grade for the
Fopulation {and equally predictive for both in the sixth gragel. ine
number of parents employed was most predictive for the populations
fifth grade students, while student's residence was most predietive of
fourth grade achievement.
A third pattern found in this panel data was for father s status,
which was structuraliy a good predictor in the early grades, then
aropped off, picked up, and dropped off again for the population in
general. in contrast, fatner's status was not much of a predictor in
the Early'grades, but was a good preaictor by the siath graje, when
the variable was equally important for ooth groups. A slmilar pattern
was observed across the results of thas panel aata for student s se:
and student's age. Another pattern was were both the home phone
11sting and the number of parents absent accounted for more
achievement variance in more population models in the eariy grades and
not the later grades, while they accourited for more variance in more
Indian models in the later grades and not the earlier grades.
Overall, it appeared from this panel data that the social class, or
the socioeconomic status, of one's parentsifamily was somewhat more
important at each grade level for explainlmg Indian student
achievement. The last pattern that was observed in this panel aata
was where student's residence was less predactive at each grade level:
so that it was not even predictive of siath grade achaevement for the
population 1n general.

```
```

    With respect to school context factors, the cost of school
    construction, the number of encyclopedia sets, the percentage of books
lost, and school acreage for the math oriented models, all
demonstrated the reversal pattern as well. In contrast to the other
variables, across the grade levels, school cost began as a predictor
of Indian achievement and then became a predictor of population
achievement. The variable for how long the library was open after
school was a predictor if all population second grade models of
achievement, but was not a predictor for any models in the sixth
grade. No one schcol conte;t factor, except pertiaps school acreage or
how long the library was open after scmool per student, stood out
across the grades as a good predictor for either the population or
Indian students, and, proportionately, were about as structurally
predictive for the population as for Indian students.
Lastly, it was observed that when either personal and familial or
school context variables were predictive of Indian achievement, they
generally accounted for consideragly more variance than when they
entered the population models. Overall, as with the Indian models ut
achagement, the school conte:t variables were more explanatory for
Inoian students than for the population in general.
Manigulable and Non-Manipulable Variaoles
Tabie 60 comparatively presents the number and percentages of חrodictors that were potentially manipidable or non-manipulabla by the school system in each domain (or model) of achovement. ov grade level, for the Washoe County School District population and Indian

```

Table sti. Percentages of Manipulable and Non-Manipulable Fredictors and Total Variance by Grade Level for the Fopulation
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{4}{|c|}{2nd Grade} & \multicolumn{4}{|c|}{3 ra G Grade} & \multicolumn{4}{|c|}{4th Grade} & \multicolumn{4}{|c|}{5th Grade} & \multicolumn{4}{|l|}{3 Sth Grade} & \multicolumn{4}{|c|}{Average} \\
\hline & \multicolumn{2}{|r|}{Fop} & \multicolumn{2}{|r|}{Ind} & \multicolumn{2}{|l|}{Fop} & \multicolumn{2}{|r|}{Ind} & \multicolumn{2}{|r|}{Fop} & \multicolumn{2}{|r|}{Ind} & \multicolumn{2}{|c|}{Fop} & \multicolumn{2}{|c|}{Ind} & \multicolumn{2}{|c|}{Fap} & \multicolumn{2}{|c|}{Ind} & \multicolumn{2}{|r|}{Fop} & \multicolumn{2}{|c|}{Ind} \\
\hline & \(\pi\) & \% & \(n\) & \% & \(\square\) & \% & 0 & \% & \(n\) & \% & n & & \(\square\) & \(i\) & \(\square\) & \% & \(\Pi\) & \% & n & \% & \(\square\) & \% & \(n\) & \(\%\) \\
\hline \multicolumn{25}{|c|}{Word Stuoy Skilis} \\
\hline Manipulate & 5 & 42 & 1 & 50 & 2 & 67 & 2 & 67 & 1 & 33 & 1 & 35 & 4 & 57 & 2 & 50 & 3 & 30 & 2 & 67 & 3 & 51 & 2 & 67 \\
\hline Nori-Maripulable & 3 & 38 & 1 & 50 & 1 & 33 & 1 & 33 & 2 & 67 & 2 & 67 & 2 & 33 & 2 & 50 & 2 & 40 & 1 & 33 & 2 & 40 & 1 & 33 \\
\hline \multicolumn{25}{|c|}{Fieautina Comprehersion} \\
\hline Maripulable & 6 & 67 & 2 & 100 & 3 & 50 & 2 & 50 & 2 & 24 & 2 & 100 & 2 & 67 & 2 & 67 & 3 & 38 & 2 & 40 & 3 & 50 & 2 & 67 \\
\hline Non-Maripulable & 3 & 33 & 0 & 0 & 3 & 50 & 2 & 5 & 5 & 71 & 0 & ij & 1 & 33 & 1 & 33 & 5 & 62 & 3 & so & 3 & 50 & 1 & 33 \\
\hline \multicolumn{25}{|c|}{Fieadifin Test Total} \\
\hline Manipulable & b & 55 & 2 & 57 & 3 & 43 & 3 & 75 & 1 & 25 & 2 & 67 & 2 & 40 & 3 & 75 & 4 & 80 & 1 & 50 & 3 & 50 & 2 & 47 \\
\hline Mor-Manipulable & 5 & 45 & 1 & 33 & 4 & 57 & 1 & 25 & 3 & 75 & & 33 & 3 & 60 & 1 & 25 & 1 & 20 & 1 & 50 & 3 & 5 & 1 & 33 \\
\hline
\end{tabular}

Table 60. (Continued)

Vocabulary knowledge
\begin{tabular}{llllrllllllllllllllllllll}
Manipulable & 5 & 55 & 1 & 100 & 3 & 60 & 2 & 67 & 5 & 71 & 4 & 67 & 3 & 43 & 1 & 50 & 1 & 33 & 2 & 50 & 3 & 50 & 2 & 67 \\
Nori-Manipulable & 4 & 45 & 0 & 0 & 2 & 40 & 1 & 33 & 2 & 29 & 2 & 35 & 4 & 57 & 1 & 50 & 2 & 67 & 2 & 50 & 3 & 50 & 1 & 33
\end{tabular}

Listening Comprehension
\(1 \begin{array}{lllllllllllllllllllllllll}\text { Manipulable } & 4 & 57 & 1 & 50 & 2 & 67 & 1 & 50 & 4 & 57 & 2 & 50 & 5 & 50 & 1 & 50 & 2 & 29 & 4 & 57 & 3 & 50 & 2 & 50 \\ \text { Hon-Manipulable } & 3 & 43 & 1 & 50 & 1 & 33 & 1 & 50 & 2 & 33 & 2 & 50 & 5 & 50 & 1 & 50 & 5 & 71 & 3 & 43 & 3 & 50 & 2 & 50\end{array}\)

Auditory Iest Total
\begin{tabular}{llllrlllllllllllllllllllll}
Manipulable & 3 & \(3 E\) & 1 & 100 & 3 & 50 & 1 & 50 & 5 & 62 & 2 & 50 & 2 & 33 & 1 & 50 & 1 & 100 & 2 & 50 & 3 & 50 & 1 & 50 \\
Non-Manipulable & 5 & 52 & 0 & 0 & 3 & 50 & 1 & 50 & 3 & 38 & 2 & 50 & 4 & 67 & 1 & 50 & 0 & 0 & 2 & 50 & 3 & 50 & 1 & 50
\end{tabular}

Speiling
\begin{tabular}{llllllllllllllllllllllllll}
Mampulable & \(\dot{b}\) & 67 & 2 & 67 & 4 & 60 & 2 & 100 & 1 & 25 & 2 & 50 & 2 & 25 & 3 & 50 & 1 & 25 & 2 & 33 & 3 & 50 & 2 & 50 \\
\hline
\end{tabular}

Average for Reading Üriented Models

Table 60. (Continueal
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{4}{|l|}{2nd Grade} & \multicolumn{4}{|l|}{3 rad Grade} & \multicolumn{4}{|l|}{4th Grade} & \multicolumn{5}{|l|}{5 th Grade} & \multicolumn{4}{|l|}{6th Girade} & \multicolumn{4}{|l|}{Average} \\
\hline & \multicolumn{2}{|l|}{Fop} & \multicolumn{2}{|l|}{Ind} & \multicolumn{2}{|l|}{Fop} & \multicolumn{2}{|l|}{Ind} & \multicolumn{2}{|l|}{Fop} & & nd & \multicolumn{3}{|l|}{Fop} & \multicolumn{2}{|l|}{Ind} & \multicolumn{2}{|l|}{Fop} & \multicolumn{2}{|l|}{Ind} & \multicolumn{2}{|l|}{Fop} & \multicolumn{2}{|l|}{Ind} \\
\hline & n & \(\underline{1}\) & n & & & \(\%\) & n & & & \(\%\) & ก & & & & 2 & n & & n & \% & \(n\) & \(\%\) & & 2 & & \\
\hline \multicolumn{26}{|l|}{Math Concepts} \\
\hline Manipulable & 5 & 83 & 1 & 100 & 3 & 75 & 1 & 50 & 3 & 100 & 3 & 6 & & & 67 & 3 & 75 & 1 & 50 & 3 & 75 & 3 & 75 & 2 & 67 \\
\hline Non-Manipulatle & 1 & 17 & 0 & 0 & 1 & 25 & 1 & 50 & 0 & 0 & 2 & 4 & & & 33 & 1 & 25 & 1 & 50 & 1 & 25 & 1 & 25 & 1 & 33 \\
\hline \multicolumn{26}{|l|}{Math Test Total} \\
\hline Manipulable & 5 & 100 & 2 & 100 & 3 & si) & 1 & 100 & 4 & 80 & 2 & 67 & & & 00 & 2 & & 2 & 50 & 1 & & 3 & 75 & 2 & \\
\hline Non-Manipulatle & , & 0 & 0 & 0 & 2 & 40 & (& 0 & & 20 & 1 & 3. & & & 0 & 0 & 0 & 2 & 50 & 0 & 0 & & 25 & 0 & \\
\hline
\end{tabular}

Table 60. (Continued)
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{4}{|c|}{2nd 6rade} & \multicolumn{4}{|r|}{3 ra Grade} & \multicolumn{4}{|c|}{4th Grade} & \multicolumn{4}{|c|}{5th Grade} & \multicolumn{4}{|c|}{bth Grade} & \multicolumn{4}{|c|}{Averaqe} \\
\hline & \multicolumn{2}{|l|}{Pop} & \multicolumn{2}{|r|}{Ind} & \multicolumn{2}{|r|}{Fop} & \multicolumn{2}{|r|}{Ind} & \multicolumn{2}{|r|}{Fop} & & Ind & \multicolumn{2}{|r|}{Fop} & \multicolumn{2}{|c|}{Ind} & \multicolumn{2}{|c|}{Pop} & \multicolumn{2}{|l|}{Ind} & \multicolumn{2}{|c|}{Pop} & \multicolumn{2}{|c|}{Ind} \\
\hline & \(\square\) & 2 & 0 & \% & \(n\) & 4 & n & \% \(\%\) & \(\square\) & \% & n & & n & 2 & 0 & \% & \(\square\) & \% & \(n\) & \(\%\) & 0 & \(\underline{2}\) & \(n\) & \(\%\) \\
\hline & \multicolumn{24}{|c|}{Science Knowledie} \\
\hline Manipulable & 3 & 60 & 0 & 0 & 1 & 50 & & 1100 & 2 & 100 & 3 & 60 & 4 & 57 & 2 & 67 & 2 & 50 & 2 & 67 & 2 & 50 & 2 & 67 \\
\hline Non-Manipulable & 2 & 40 & 2 & 100 & 1 & 50 & & 0 & 0 & 0 & 2 & 40 & 3 & 43 & 1 & 33 & 2 & 50 & 1 & 33 & 2 & 50 & 1 & 33 \\
\hline \multicolumn{25}{|c|}{Average for Math Oriented Models} \\
\hline Manipulable & 4 & 80 & 1 & 50 & 2 & 67 & & 1100 & 3 & 100 & 3 & 60 & 3 & 75 & 2 & 67 & 2 & 50 & 2 & 67 & 3 & 75 & 2 & 67 \\
\hline Non-Manipulable & 1 & 20 & 1 & 50 & 1 & 33 & 0 & (1) 0 & 0 & 0 & 2 & 40 & 1 & 25 & 1 & 33 & 2 & 50 & 1 & 33 & 1 & 25 & 1 & 33 \\
\hline \multicolumn{25}{|c|}{Average for All Models} \\
\hline Manipulable & 5 & 67 & 1 & 50 & 3 & 60 & & & 3 & & 2 & 50 & 3 & 50 & 2 & 67 & 2 & 50 & 2 & 50 & 3 & 60 & 2 & 67 \\
\hline Non-Manipulable & 3 & 33 & 1 & 50 & 2 & 40 & & 133 & & 40 & 2 & 50 & 3 & 50 & 1 & 33 & 2 & 50 & 2 & 50 & 2 & 40 & 1 & 33 \\
\hline
\end{tabular}
```

students only. Similarly, Table bl comparatively presents the
percentages of table and explained variables accounted for by
manipulable and non-manipulable factors. As the "other" variables
that were methodologically forced into the equations often accounted
for relatively large amounts of variance, the results in Table bl and
the discussion below were based upon variances accounted for by the
statistically significant (p <.15) manipulable and non-manipulable
predictors anly, and not the "other" variables; (see Appendix L for
calculations including the "other" variables).
Generally speaking, it was found that more manipulable than
non-manipulable variables were predictive of academic achievement
across the grade levels. Dn the average, there were only three
manipulable for every two non-manipulable variables in the population
grade level models, but twice as many manipulable as non-manipulable
predictors in the Indian grade level models (Table 60). In looking at
just the reading oriented models, on the average, half of the
variables were manipulable for the population, while twice as many
predictors were manipulable for the Indian students. On the other
hand, three times as many predictors were manipulable in the math
oriented models, on the average, for the population, yet there were
still twice as many manipulable variables in the Indian models.
In the second grade, more of the population than the Indian
predictors were, cn the average, potentially manipulable by the school
system. In five of the Indian models, all predictors were potentially
manipulable variables, but this was the case in only one of the

```

Table 61. Fercentages of Explained Manipulable and Non-Manipulable Variances by Grade Level
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{2nd Grade} & \multicolumn{2}{|l|}{3rd Gorade} & \multicolumn{2}{|l|}{4th Grade} & \multicolumn{2}{|l|}{5 th Grade} & \multicolumn{2}{|l|}{Sth Grade} & \multicolumn{2}{|c|}{Ay arage} \\
\hline & Pop & \[
\overline{\text { Ind }}
\] & \[
\overline{\mathrm{Fop}}
\] & Ind & & \[
\begin{aligned}
& \text { Ind } \\
& 0
\end{aligned}
\] & & Ind & fop & Ind & \[
\overline{\text { Fop }}
\] & Ind \\
\hline \multicolumn{13}{|c|}{Word Study Stills} \\
\hline Manipulable & 57 & 89 & 74 & 52 & 89 & 99 & 91 & 55 & 73 & 75 & 79 & 74 \\
\hline Non-Manipulable & 33 & 12 & 26 & 48 & 11 & 1 & 9 & 45 & 27 & 25 & 21 & 26 \\
\hline \multicolumn{13}{|c|}{Reading Comprehension} \\
\hline Manipulable & 81 & 100 & 79 & 69 & 22 & 1010 & 104 & 43 & 54 & 87 & 70 & 90 \\
\hline Nor-Maripulable & 19 & 0 & 21 & 31 & 78 & 0 & -4 & 7 & 36 & 13 & 30 & 10 \\
\hline \multicolumn{13}{|c|}{Feading Test Yotal} \\
\hline Hanipulable & 84 & 69 & 72 & 95 & 50 & 94 & 101 & 84 & 91 & 94 & 82 & 87 \\
\hline Non-Manipulable & 16 & 31 & 28 & 5 & 40 & 6 & -1 & 16 & 9 & 6 & 18 & 13 \\
\hline
\end{tabular}

Table 61. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{2 nd 6rade} & \multicolumn{2}{|l|}{3rd Grade} & \multicolumn{2}{|l|}{4th Grade} & \multicolumn{2}{|l|}{5th Grade} & \multicolumn{2}{|l|}{bth Grade} & \multicolumn{2}{|c|}{Averaqe} \\
\hline & \[
\begin{gathered}
\text { Pop } \\
\% \\
\hline
\end{gathered}
\] & Ind & \[
\begin{gathered}
\text { Fop } \\
\%
\end{gathered}
\] & \[
\begin{gathered}
\text { Ind } \\
6
\end{gathered}
\] & Fop & \[
\begin{gathered}
\text { Ind } \\
\%
\end{gathered}
\] & \[
\begin{gathered}
\text { Fop } \\
\vdots
\end{gathered}
\] & \[
\begin{gathered}
\text { Ind } \\
\%
\end{gathered}
\] & Fop & \[
\begin{gathered}
\text { Ind } \\
2
\end{gathered}
\] & Fop & \[
\begin{gathered}
\text { Ind } \\
2 \\
\hline
\end{gathered}
\] \\
\hline \multicolumn{13}{|c|}{Vocabulary knouledqe} \\
\hline Manipulable & 79 & 100 & 92 & 81 & 58 & 85 & 99 & 82 & 48 & 65 & 75 & 8.3 \\
\hline Nor-Manipulable & 2 & 0 & 8 & 19 & 42 & 14 & 1 & 15 & 52 & 35 & 25 & 17 \\
\hline \multicolumn{13}{|c|}{L15tening Comprehension} \\
\hline Manipulable & 61 & 90 & 85 & 77 & 80 & 72 & 56 & 80 & 36 & 62 & 64 & 76 \\
\hline Nor-Manipulable & 34 & 10 & 14 & 23 & 20 & 28 & 44 & 20 & 64 & 38 & ? 6 & 24 \\
\hline \multicolumn{13}{|c|}{Auditori Test Total} \\
\hline Manipulable & 56 & 100 & 93 & 84 & 58 & 76 & 72 & 84 & 100 & 68 & 76 & 82 \\
\hline Non-Mampulable & 44 & 0 & 7 & 16 & 42 & 24 & 28 & 16 & O & 32 & 24 & 18 \\
\hline
\end{tabular}

Table 61. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Ind Grade} & \multicolumn{2}{|l|}{Jrd Grade} & \multicolumn{2}{|l|}{4th Grade} & \multicolumn{2}{|l|}{5th Grade} & \multicolumn{2}{|l|}{6th Grade} & \multicolumn{2}{|l|}{Averaqe} \\
\hline & Pop & Ind & Fop & ind & Fop & Ind & Fop & Ind & Fop & Ind & Pop & Ind \\
\hline & \(\%\) & \(\%\) & \% & \(\%\) & : & \(\%\) & \(\%\) & \(\%\) & \% & \% & \(\%\) & \(\%\) \\
\hline \multicolumn{13}{|c|}{Spellinq} \\
\hline Manipulable & 74 & 81 & 83 & 100 & 100 & 88 & 97 & 63 & 78 & 65 & B6 & 74 \\
\hline Non-Manipulable & 26 & 19 & 17 & 0 & 0 & 12 & 3 & 37 & 22 & 35 & 14 & 21 \\
\hline \multicolumn{13}{|c|}{Average for Keading Models} \\
\hline Manipulable & 72 & 90 & 83 & 80 & 67 & 98 & 89 & 77 & 70 & 74 & 76 & 82 \\
\hline Non-Manipulable & 28 & 10 & 17 & 20 & 3.3 & 12 & 11 & 23 & 30 & 26 & 24 & 18 \\
\hline \multicolumn{13}{|c|}{Math Concepts} \\
\hline Manipulable & 84 & 100 & 83 & 78 & 100 & E4 & 97 & 91 & 78 & 83 & 88 & 87 \\
\hline Non-Manipulable & 15 & 0 & 17 & 22 & 0 & 16 & 3 & 9 & 22 & 17 & 12 & 13 \\
\hline
\end{tabular}

```

population models. Conversely, both mad one model that contained more
non-manipulable than manipulable variables; the Indian science model
had all (100%) non-manipulable predictors and the population auditory
test total model had 67% non-manipulable predictors.
On the average, twice as many variables (a7%) were potentially
manipulable as not in the third grade models for Indians, while 60%
were manipulable in the population models. In particular, the Indian
math oriented models involved, on the average, all manipulable
variables (math concepts had one non-manipulable variables), The
reading test total model for the population had more non-manipulable
than manipulable predictors, but none of the third grade Indian models
had fewer than half manipulable variables.
In looking at the results for fourth grade students (Table bo), it
Was found that on the average, 60% of the population and 50% of the
Indian achievement model predictors were potentially manipulable. In
looking at just the reading oriented models, half of the predictors
for both the population and Indian students were, on the average,
manipulable. However, in four of the population and one of the Indian
reding oriented models only one-third or less of the predictors were
manipulable, In contrast, nearly all the population math oriented
predictors were manipulable, while only about two-thirds of them were
potentially manipulable for the Indian students only.
Over the ten fifth grade achievement models it was found that, on
the average, half of the population and two-thirds of the Indian
predictors were potentially manipulable factors. Nonetheless, over

```
half of the predictors \((57 \%)\) in the population models were, on the average, non-manipulable variables, with four of the seven models having more non-manipulable variables. In contrast, none of the Indian models had fewer than \(50 \%\) manipulable predictors, although five of the seven were half and half. With respect to the math oriented models, it was found that three times as many variables in the population and twice as many entecedents in the Indian math oriented models were potentially manipulable predictors.

On the average, half of the predictors in the academic achievement models for both the population and Indian sixth grade students were potentially manipulable and half were not. However, as in the fifth grade models, it was found that, on the average, \(60 \%\) of the predictors in the population (as compared to \(50 \%\) in the Indian) reading oriented models mere non-manipulable variables. Again, four of the seven population and two of the seven Indian reading oriented models involved fewer than \(50 \%\) manipulable variables. In contrast, all three population math oriented had \(50 \%\) manipulable variables, and all three Indian models had between \(67 \%\) and \(100 \%\) manipulable predictors.

In looking at specific domains or types of achievement models, it was found (Table 60) that all ten models, on the average, were composed of \(50 \%\) or more manipulable variables. Generally speaking, the models had more manipulable variables for the Indian students only. On the average, the three math oriented models and word study skills models had more than \(50 \%\) manipulable factors for the population, while the three math oriented models, and the word study
```

skills, reading comprehension, reading test total, and vocabulary
knowledge models for Indian students only all had more than 50%
manipulable factors, Only in math concepts did the population models
have a larger percentage of manipulable predictors, while the Indian
word study skills, reading comprehension, reading test total,
vocabulary knowledge, math test total, and science knowledge models
all had more manipulable predictors than the same population models.
Considerably more population than Indian grade level models
involved more non-manipulable (`50%) than manipulable variables.
Overall, 14 of the S5 (40%) population reading oriented models had
more non-manipulable than manipulable variables, while 4 of the }
(57%) fourth, fifth and si%th grade population reading oriented models
had more mon-manipulatle than manipulable predictors. Spelling,
followed by reading comprehension and reading test total had the
greatest percentage of models with more manipulaile than
non-manipulable variables. In comparison the fourth grade word study
skills model was the only one of the 35 (3%) Indian reading oriented
models that had more non-manipulable than manipulable predictors. The
second grade science model was the only one of the 15 Indian math
oriented models by grade level that had more mon-manipulable (100%)
than manipulable (0%) variables, while none of the population math
oriented models had more non-manipulable than manipulable predictors.
On the other hand, }\mathcal{O}{9%)\mathrm{ of the }35\mathrm{ population and 5 {14%} of the
35 Indian reading oriented models were found (Table b0) to have 80% or
more manipulatle predictors. Df these, all five of the Indian models,

```

\begin{abstract}
but only one of the three population models, actually involved all (\(100 \%\)) manipulable variables. In contrast, \(6(40 \%)\) of the 15 population and Indian oriented \(\pi 0\) dels (each) had \(80 \%\) or more manipulable predictors. Again, of these, four of the population and all si\% of the Indian models involved all (\(100 \%\)) manipulable variables. Thus, overall, \(3(6 \%)\) of the 50 population grade level models of achievement, in sharp comparison to 11 (22\%) of the 50 Indian grade level models involved all manipulable variables. That is, nearly four times as many models of Indian achievement by grade level) were composed entirely of manipulable antecedent factors.

Table 61 comparatively presents the table and explained variances accounted for by factors potentially manipulable and not manipulable by the school system in each domain (or model) of achievement, by grade level, for the Washoe County School District population and Indian students oniy. Again, the figures in Table bl do not include percentages of variance accounted for by the "other" variables methodoiogically forced into the equations. As such, the explained variances, rather than table variances, will be discussed. The results presented clear empirical evidence that the largest percentages of explained variances in academic achievement were attributable to factors potentially manipulable by the school system. On the average, across the ten achievement domains (or models) and the five grade levels, four times as much of the variance in population achievement and mearly five times (4.8) as much of the variance in Indian student achievement, was accounted for by antecedent variables
\end{abstract}
```

potentially manipulable by the school system as was attributable to
factors beyond the school's control.
With respect to just the reading oriented models, three times as
much variance in the population models and four and a half times as
much variance in the Indian models was attributed to manipulable
variables. In contrast, eight times as much variance in the
population and five and a half times as much in the Indian math
oriented models was accounted for by non-manipulable variables.
Moreover, at all grade levels two-thirds (67%) or more of the average
explained variance in reading oriented, math oriented and total
(across all ten models of) achievement was attributable to manipulable
variables.
In si% of the second grade reading oriented models, manipulable
variables accounted for more variance in the Indian than in the
population models. On the average, 18% more of the erplained variance
was accounted for by manipulable variables in the Indian second grade
reading oriented models. Conversely, 25% more of the explained
variance in the population than in the Indian second grade math
oriented models was manipulable.
The percentage of manipulably explained variance in the third
grade models were, on the average, quite similar with four times as
much variance having been explained by potentially manipulable
predictors as by non-manipulable factors for both the population and
Indian students only. Just the opposite of the results for the second
grade, more variance was attributed to manipulable antecedent

```

```

    The results (Table b1) indicated that, on the average, 4% more of
    the explained variance in reading oriented models, 12% more in the
math oriented models, and 6% more overall, was manipulable for Indian
studerits but not for the population. Indeed, there was more explained
manipulable variance in the Indian models for all models of
achievement except auditory test total and spelling.
In looking at each achievement model, manipulable factors
accounted for three times as much variance, on the average, as
non-manipulable variables, except in population reading comprehension
(70% manipulable), population listening comprehension (64%), Indian
word study skills (74%), and Indian science knowledge (67%) models.
Comparatively, the models ranked as follows in terms of each model's
average manipulable variance:
Fieading Comprehension
Reading Test Total
Vocabulary Knowledge
Listening Comprehension
Auditory Test Total
Spelling
Mallog
Math Concepts 88
Math Test Total
Science knowledge

```

\section*{Model}
Word study skills
```

\% Manipulable

| Population | Indians |
| :---: | :---: |
| 79 | 74 |
| 70 | 90 |
| 82 | 97 |
| 75 | 83 |
| 64 | 76 |
| 76 | 82 |
| 86 | 79 |
| 88 | 87 |
| 89 | 99 |
| 90 | 69 |

That is, manipulable variables accounted for the largest average amount of variance across the five grade levels in science achievement for the population (but the least amount for the Indian students) and in math test total achievement for the Indian students (and the second largest amount for the population). Moreover, the most obvious

```
```

differences in manipulable variables were in science knowledge (21%)
and reading comprehension (20%).
In contrast to the results on percentages of predictors (Table
60), the results of the number of models with larger percentages of
variance accounted for by non-manipulable variables indicated that.
only S {6%) of the 50 population and 1 (2%) of the 50 Indian models of
achievement (j.e., science knowledge) had more than 50% of the
explained variance accounted for by non-manipuiable variables.
Conversely, in 28 (56%) of the 50 population and 34 (70%) of the 50
Indian models, manipulable predictors accounted for 80% or more of the
explained variance. Moreover, in ( (18%) of the population and 11
(22%) of the Indian models, 100% of the explained variance was
attributed to antecedent predictors potentially manipulable by the
school system.

```

\section*{Summary}

Comparisons of the results from the stepwise and forced entry multiple regression analyses for the Washoe County School District population and lndian student academic achievement, as measured by standardized achievement test scores, in grades two through si\% provided empirical evidence that tremendous differences existed between the two groups with respect to eaplaining such achievement. Generally speaking, the Indian grade level models of achievement were found to be structurally smaller and composed of much fewer non-manipulable predictors, and they often accounted for larger percentages of the total variance. While structurally, previous
```

grades here found to be a very consistent predictor (i.e., entered all
models) for the population, such was not the case for the Indian
student models. However, previous grades, as did most variables when
they entered, accounted for more variance in the Indian models than in
the population models.
In terms of total (or table) variance, the grade level models of
achievement generally accounted for more variance than the aggregate
population and Indian models of achievement. While more of the
aggregate models accounted for over half of the total variance, 24
(48%) of the 50 population and 31 (62%) of the 50 Indian models of
achievement by grade level accounted for over half of (and up to 73%)
the total variance; and, again, often with fewer predictors.
Comparisons in terms of the manipulability of the predictors and
the amounts of variance explained by those antecedent variables of
academic achievement showed that, on the average, between four (80%)
and five (83%) times as much explained variance was accounted for by
manipulable variables as by non-manipulable variables. More
specifically, 56% of the population and 70% of the Indian models of
achievement by grade level had manipulable predictors that accounted
for 80% or more of the explained variance. Additionally, in 5 (10%)
of the 50 population and 12 (24%) of the 50 Indian models by grade
level, manipulable factors also accounted for over 50% of the total
(or table) variance.
Additionally, the "other" variables, which were procedurally
forced into the equations (p خ.lS) were found (see Appendi% Li to

```
```

account for more than 10% of the total variance in 22% of the (50)
grade level models of achievement. That is, statistically
nonsignificant factors in toto often accounted for substantively large
amounts of the total variance in the models of academic achievement
for Indian students.
In conclusion, the empirical resulte of these analvses by grade
level, therefore, have clearly supported the ninth and eieventh
research hypotheses:
Hg: Difierent antecedents are predictive of standardized
achievement test scores at different grade levels in the
Washoe County Schooi District.
H1l: The models of academjc acmıevement are more predictive at
certain grade levels than others in the Washoe County Schcol
District.
With respect to the latter hypothesis, the models were most predictive
Of fourth grade achievement for Indian students and fifth grade
achievement for the population.

```
```

Chapter B

```

\section*{the manifulability of achievement}
```

    The third research cycle of this study was conducted through two
    sequential sets of processes pursuant to the objectives of the cycle:
to test the previously developed (in the secono research cycle) models
of academic achievement; and to determine the manipulability, and
types (e.g., personal, school) of factors found to te predictive of
elamentary school students academic achievement in the Washoe County
School District for both the total (weighted) population and for
Indian students only. The first set of research processes involved
three successive stages; the results from which were reported in
Chapters 5, 6, and 7.
Specifically, the results from the evaluation of the correlates of
academic achievement in the Washoe County School District (Chapter 5),
the multiple regression analyses of population and Indian student
academic achievement (Chapter 5), the comparison of these results
(Chapter 6), and the multiple regression analyses of population and
Indian achievement by grade level have been discussed. These results
have demonstrated that antecedent predictors of academic achievement
varied considerably and were dependent upon how academic achievement

```
```

was operationally defined or measured. mdsitionally. tiE results have
shown that acauemic achievement was explampied by jifferent factors for
Indian students than for the Washoe County School District stugent
population in general. Similarly, the results have shown that
different factors accounted for achievement at each of the grade
levels. The results alsu indicated that traje antecedent factars
included in this study were much mere erpianatory by grade ievei than
for the aggreqate population or Imalan Eamplej, änd that they
accounted for more varlance mi Indian studert toan in the gooulatiza
arademic acmlevement models by graoe level. Moreover, theresujts of

```

```

Of Explajned varismEe In atademac achjevement, ladeeg three ta five

```

```

by the schooj s:Etem.
The 三econd set ú procedures was dune in two gtagese bota of which
w:l! ba gi=gussed beluw. The first Etaue framed the resulis uf tre
first set of research procedures fof the thiraresesren cvejel an
tarns of tina antecedent predictors oi academac acnlevenent. anu anz
second stage framed the sjme fesults di regards to the amount oi
variance in academit a\sigmatizvement Ehat mad been E:ojammeu by the
antecedent predicturs. The secufid fart ot the third researam ingle.
tharafore, was conducted to provide emplrical and statistacai cuva=nce
concerming the last thu ieseaarch questions:
7. Jo manipuiaole variables account for more of the tutal
varsance than mon-marivfulable variatues`.

```
```

10. Do more manipulable than non-manipulable variables account for the explained variance?
However, as noted in Chapter 5, the results of the first two research
cycles suggested the following hypotheses with respect to these two
research questions:
```

``` explained variance in standardized achievenent test scores than non-manipulable variables in the Washoe County School District.
H13: More manipulable than mon-manipulable variables account for the variance in standardized achievement test scores in the Washoe County School District.
Thus, the second set of research processes was done to test these hypotheses concerning the manipulability of the antecedent predictors and the observed variances in elementary student academic achjevenent by the school system. Additionally, procedures were followed to determine if signiticant differences in manipulability and types (i.e., student achievenents, evaluations, personal/familial characteristics, and school/ learning context factors) of predictors Existed between the general Washoe County School District elementary student population and Indian students. Following these discussions, conclusions concerning the results from both sets of the research processes in the third research eycle (as reported in Chapters 5, 6, 7, and 8) will be made.
```


Characteristics of Academic Achievement

Several groups of analyses were made during both stages in order to evaluate the characteristics of academic achievement in the Washoe

```
County Schooi Distriet for Indian students and for the generai
Ejementary 三tudent populatjon. The first graup ut analyses were
concerned with comparing manipulative characteristacs of the ģenerai
reading and math orlented predictor pools isee Enaptar 4: wath thase
of the population and Indian predictor pools based upon the results
Obtalmed 1п this research cycle (see Chapter 5). The se=ond group uf
analv\equives comogred the manipulability of specific achievement moaeis,
a三 well as the average for reading and math orjented models and tar
all ten mudels uf asni巨vement. The last group of anabyses compareu
the abllity of the different types of factors to account for the
```


Metrocological Elaritication

To assess these issues a rumber of ミtatistics for testime

-f the jata aru the hypathesis in question. To test the proportianal
のifterenices in variaties Lsed to develof theregressian modeis the

Moreover, the binomiad test pravided the eadet probability at aoserveu
prepurtional differences. In order to test proportionai prajuctor
fifierences oetween the Washoe Lounty Schooi Dastract oubuxation anj


```
Since there were more than two types of antecedent predictors, to
determine if more of one type entered into the models more than
others, the chi-square test was used.
    In assessing hypotheses concermed with the amount of variance
accounted for by the various modeis, several statistical techniques
were also employed. It should be noted that comparisons of the
predictor pools, with respect to amounts of erplained variance, could
not be made because the pools were qualitatively based upon simple
appearance in one or more of the models rather than upon quantitative
frequency counts. Comparisons of the average amounts of variance
explained by the seven reading and three math models for the original,
population and Indian models, however, were made by calculating the
arithmetic means and variances of the manipulable and non-manipulable
variances that had been accounted for. The t-test was used to test
the observed diffarences in these means. However, because the sample
sizes and variances were often unequal, an alternative form of the
t-test, as suggested by Wright (1986:457-458), was used.
    Statistical comparisons of the amount of variance accounted for by
manipulable and non-manipulable variables in the specific population
and Indian models were also made. Eoth the binomial test and the
chi-square test was used to test these observed differences.
    Lastly, statistical comparisons were made to test hypotheses
concerning the amount of variance accounted for by antecedents of
previous student achievement, student evaluations, personal and
familial background characteristics, and school environment and
```

```
learning context variables. The arithmetic mean and variance for each
type of predictor was first calculated for both the seven reading and
three math models. Once again, because of small original n sizes and
unequal variances, an alternative form of the t-test was used to test
the observed mean differences of each type of predictors between
Indjan students and the Washoe County School District population.
Comparative Analyses of Academic Achievement Fredictors
    Three separate sets of amalyses were made concerning the
proportions of manipulable and non-manipulable variables. The first
set analyzed the proportions found in the origimal, population and
Indian general reading and math pools. The second set compared the
number of manipulable and non-manipulable variables in and acrose
models. The last set of analyses evaluated the number of antecedent
variables from each of the four types of factors that were predictors
Of academic achievement for the Washoe County School District
population and Indian students. It should be noted, however, that
analyses of the models/pocls without grade level and the models by
grade level were not made because such questions, while of interest,
were beyond the scope of the present study.
```

Comparison of reading and math predictor pools. General reading and math pools of antecedent predictors were constructed from the results of the stepwise multiple regression analyses (Original fools), which were discussed in Chapter 4, and the stepwise and forced entry multiple regression analyses, as presented in Chapter 5 , for the

```
population (Fopulation Fools), and Indian students only (Indian
Pools). These predictor pools were qualitatively developed; that js,
if an antecedent variable entered into one or more of the seven
reading or three math achievement models for the particular group,
then the predicter was included in the respective predictor pool.
These reading and math predictor pools are presented in Table 62,
along with a listing of the 30 antecedent independent variables by
type of factorl selected for the multivariate regression analyses in
this study.
    The original reading predictor pool was composed of 21 (78%) of
the 30, and the original math predictor pool incorporated 10 (30%) of
the 30, independent variables. These predictor pools, then, made up
the set of independent variables used for further analyzing the
population and Indian students. The population reading predictor pooi
had 1g (86%) of the 21 predictors in the original reading predictor
pool, while the population math predictor pool encompassed all 10
(100%) of the predictors in the original math pool. In comparison,
the Indian reading predictor pool was composed of 13 (62%) of the 21
antecedent variables in the original reading pool, and the Indian math
predictor pool had b (60%) of the 10 predictors that were in the
original math pool.
    The s0 independent antecedent variables used in the initial
stepwise multiple regression amalyses proportionaliy had s0%
manjpulable and 40% non-manipulable predictors. This meant that the
percentage of expected manipulable variables in the original predictor
```

```
Table 62. Comparison of Original, Fopulation
```

 and Indian Predictor Fools
 | Types of Fredictors/ Antecedent Variables | Original Fieading Fool | Fopulation Reading Fool | Indian Fieading Fool |
| :---: | :---: | :---: | :---: |
| A. Academic Achievement | | | |
| 1. Number of Days Absent in | | | |
| 1982-1983 (m) | x | x | X |
| 2. 1983 Feading Grade (m) | K | X | χ |
| B. Student Evaluations | | | |
| 1. 1983 Citizenship Grade (m) | x | χ | |
| 2. Gifted Frogram (m) | K | X | χ |
| 3. Number of Times Held Eack a Erade (m) | | | |
| C. Eackorourd Characteristics | | | |
| 1. Age in Months at Time of Test (n) | K | | |
| 2. Change of Schools (m) | x | x | |
| 3. Emergency Telephone (m) | χ | x | x |
| 4. Father's Status (n) | X | x | x |
| $5 . \operatorname{Free}$: Fieduced Lunch (n) | x | x | χ |
| 6. Home Phone Listed (n) | x | χ | |
| 7. Number of Fiarents fibsent (n) | \% | x | * |
| 8. Number of Farents Employed (n) | x | x | χ |
| 9. Racial Ethnic Group (n) | | | |
| 10. Sex (m) | x | x | |
| 11. Student's Fiesidence (n) | ${ }^{\prime}$ | x | x |

```
(m)--Indicates variable that is manipulatle by the school district.
(n)--Indicates variable that is not manipulable by the school
    district.
```

```
Table 62. (Continued)
```

Types of Fradictors/ \qquad	Original Feading Fool	Population Feading Fool	Indian Feading Fool
D. School Environment and Learnina			
Contexts			
1. Acreage Fer Student (m)	x	x	
2. Cost of School Fer Student (m)	χ	x	
3. Encyclopedia Sets Per Student (m)	χ		x
4. Grade Level (n)	K	X	χ
5. Library Open After School			
Per Student (m)	K	χ	
6. Magazine Subscriptions Fer Student (m)	X	x	X
7. Number of Second Grade Special Education Students Fer Student (m)			
B. Fercentage of Bool:s Added Fer Student (mi)			
9. Fercentage of Eooks Lost Fer Student (m)	x		x
10. School's Age (n)			
11. School's Total Enrollment (m)			
12. School's Median Family Income (m)			
13. Total Library Circulation			
Fer Student (m)			
14. Total Staff Fer Student (m)			
Proportion of Manipulable (m) to Non-Manipulable (n) Variables			
60:40	52:48	$50: 50$	54:46

(m) --Indicates variable that is manipulable ty the school district.
(n)-Indicates variable that is not manipulable by the school district.

Table 62. (Continued)

Types of Fredictors/ Antecedent Variables	Original Reading Pool	Fopulation Feading Fool	$\begin{array}{r} \text { Indian } \\ \text { Reading } \\ \text { Fool } \\ \hline \end{array}$
A. Academic Achievement			
1. Number of Days Absent in 1992-1983 (m)			
2. 1983 Grade Foint Average (m)	χ	x	x
E. Student Evaluations			
1. 1983 Citizenship Grade (m)	x	x	x
2. Gifted Frogram (m)	χ	x	x
3. Number of Times Held Back a Grade (m)			
C. Eackoround Characteristics			
1. Age in Months at Time of Test (n)	x	K	
2. Change of Schools (n)			
3. Emergency Telephone (m)			
4. Father's Status (n)			
5. Free \% Reduced Lunch (n)			
6. Home Fhone Listed (n)	x	χ	
7. Number of Farents Absent (n)			
3. Number of Farents Employed (n)			
9. Racial Ethnic Group (n)			
10. Se\% (n)	\%	x	x
11. Student's Residence (n)			

```
(m)--Indicates variable that is manipulable by the school district.
(n)--Indicates variable that is not manipulatile by the school
    district.
```


(m)--Indicates variable that $i s$ manipulable by the school district. (n)--Indicates variable that is not manipulable by the school district.

used in the analyses. For the population and Indian predictor pools,				
the Expfeted percentages of manipulable variables was 52\% and 60\% for				
the reading and math oriented fredictor pools respectively, tecause				
that was the proportion of manipulable antecedents that actually				
entered into the original predictor pools that were used in the				
multiple regression analyses for the population and Indian students.				
The expected and actual number and percentage of manipulable variables				
in the reading oriented predictor pools were as follows:				
	Manipulatle Variables Expected	$\begin{array}{r} \text { Manip } \\ \text { Variabl } \\ \hline \end{array}$	tered	e-val
Fredictor Fool	$\cdots \quad \%$	π	$\%$	
Original	$18 \quad 60$	11	52	. 13
Population	1152	9	50	. 18
Indian	11 52	7	54	22
A binomial test of proportions for each predictor pool indicated that				
none of the observed percentages of manipulable variables in the				
original, population, and Indian reading oriented predictor pools were				
statistically greater or less than expected by chance. It was				
sutstantively interesting to note, however, that the Indian reading				
predictor pool was the only one to have a largar percentage of				
manipulatie predictors than expected.				
The enpected and actual number and percentage of manipulable				
variable in the math oriented predictor pools were as follows:				
	Manipulable Variables Expected	Mani	le tered	p-val
Fredictor Fogl	\cdots	-	$\%$	
Origimal	18 60	6	60	. 25
Fopulation	$6 \quad 60$	6	60	. 25
Indian	660	4	67	. 31

```
Again, a binomial test of proportions for each of the predictor pools
showed that none of the observed percentages of manipulable variatles
in the math oriented pools were statistically larger or smailer than
expected by chance. Indeed, for both the original and population, the
math predictor pools had exactly the same percentage of manipulable
variables as was expected by chance alone, while, once more, the
Indian pool had a larger percentage of manipulable variables than
e:pected by chance.
    The number and percentage of manipulable and non-manipuladie
variables, then, in each of the three reading pools were as follows:
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Nanipulatie Variables} & \multicolumn{2}{|l|}{Non-Manipulable Variables} \\
\hline Predictor Fool & \(\square\) & \(\%\) & \(n\) & \(\%\) \\
\hline Original & 11 & 52 & 10 & 48 \\
\hline Fopulation & 9 & 50 & 9 & 50 \\
\hline Indian & 7 & 54 & 6 & 45 \\
\hline
\end{tabular}
A chi-square statistical test of the observed distributions was not
signjficant (X2 = .05, P= n.5.), which meant that the distributjons
of manipulable and non-manipulable variables were not statistically
significantly different tetween the three reading oriented predictar
pouls.
The number of manipulable and non-manipulable variables in each of the three math oriented predictor pools were as folluws:
\begin{tabular}{lcccc} 
& Manipulable Variables & Non-Manjpulable Variables \\
Fredictor Fogl & 0 & \(\%\) & 0 & 4 \\
\cline { 3 - 3 } & 6 & 60 & 4 & 40 \\
Fopulation & 6 & 60 & 4 & 40 \\
Indian & 4 & 67 & 2 & 35
\end{tabular}
The chi-square statistical tast was not statistically significant (\underline{x}2
=.09, p = n.5.), which meant that the observed distributions in the
```

```
three math oriented predictor pools of manipulable and non-manipulable
variables were not statistically significantly different.
    In sum: statistical tests of the observed differences in
manipulable and non-manipulable antecedent variables in the original,
population, and Indian predictor pools were not statistically
significantly (p <.05) different from what would have been expected by
chance based upon the proportion of manipulable variables included in
the various multiple regression analyses. Nonetheless, in comparing
the distributions of manipulable variables, the fact that the Indian
reading and math oriented predictor pools were the only ones to have a
larger proportion of manipulable variables than was e%pected by chance
was substaritively significart.
```

Comparisons of manipulability by mudels of achievement. The second group of analyEes was concerned with the distributions of manipulable and non-manipulable predictors for each specific achievenent model, as well as for the reading and math oriented models in general. Table 63 presents the number and percentage of manipulable and non-manipulable variables that entered in each of the original (stepwise only), population, and Indian models of achievement. The average number and percentage of predictors in the seven reading oriented, three math oriented, and all ten models are also presented in Table b3. Analyses of manipulable and non-manipulable predictors through statistical examination of differences in the proportions between the original, population, and Indian modele all proved to be nonsignificant (i.e., p \quad.is). Thus,

Table bs. Number and Percentage of Manipulable and Non-Manipulable Variables in the Original, Population and Indian Fiegression Models of Achievement

		$\frac{\frac{n a 1}{15}}{\%}$	$\frac{\text { Popu }}{\text { Mo }}$	$\frac{10 n}{\frac{5}{\%}}$	Indi Mod	$\frac{\frac{3 n}{15}}{\%}$
Word study Skills						
Manipulable	3	60	$4{ }^{\text {a }}$	57	3, c	60
Non-Manipulable	2	40	3	43	2	40
a--A binomial resulted i D--A binomial in $p=.35$ ᄃ--A Fisher's models res	en กп ab $=$		and p and I men	lati an [1] at	fels resui dind	ed an
Geading Comprehension						
Manipulable	5	8.3	$7^{\text {a }}$	70	3 ta	
Non-Manipulatle	1	17	3	30	0	
a--A binomial resulted i b--A binomial in $p=.57$ C--A Fisher's models res	en en bat =		and p and I ween	lati an m ulat	els resul d Ind	ed an
Feadino Test Total						
Manipulable	5	52	53	52	4 b, c	67
Non-Manipulable	3	3 日	3	38	2	33
a--A binomial resulted i b--A binomial in $F=.32$ C--A Fisher's models res	een en ab =		and p and I ween	lati an ulat	yels resul d Ind	ed an

Table bs. (Continued)

Table 63. (Continued)

Table 63. (Continued)

Table 63. (Continued)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& Ori

Mo \& \& $$
\frac{\text { Fopu }}{\frac{M o}{n}}
$$ \& \[

\frac{tion}{\frac{15}{\%}}
\] \& \&

\hline \multicolumn{7}{|l|}{Average for All Models}

\hline Manipulable \& 4 \& 67 \& $5{ }^{\text {a }}$ \& 62 \& 3b, c \& 60

\hline Non-Manipulable \& 2 \& 33 \& 3 \& 38 \& 2 \& 40

\hline \multicolumn{7}{|l|}{a--A binomial test between the original and population models resulted in $0=.27$.}

\hline \multicolumn{6}{|l|}{b--A binomial test between the origimal and Indian models resulted in $p=.33$.} \&

\hline
\end{tabular}

```
none of the observed differences in the distributions of manipulable
(and non-manipulable) variables were statistically significantly
different from what would have been expected by chance alone. That
such differences in the proportions were not statistically significant
may have been due to the small n Sizes (i.e., S to lo variables per
model) involved.
```


> Table b4. Comparison of Variable Frequencias of Academic Achievement, Student Evaluation, Personal and Familial Background Characteristics, and School Environment and Learning Context Fredictors
Frequency Fopulation Indian Total Fopulation Indian Total Math Oriented Models

Academic Achievement

Observed	9	8	17	3	3
Expected	8.5	8.5	3	3	

Student Evaluations

Observed	6	4	10	5	4
Expected	5	5	4.5	4.5	

Fersonal and Familial
Backoround Characteristics

Observed	30	12	42	4	1
Expected	21	21	2.5	2.5	

School Environment and
Learning Contexts

Ohserved	17	12	29	7	4
Expected	14.5	14.5	5.5	5.5	

```
frequency of nine predictors for the academic achievement type of
variables in the population models.
    Fesults of the chi-square test indicated that the only observed
difference that was statistically different was for the number of
background characteristics in the reading population models. That is,
the number of times background characteristics structurally predicted
readinq oriented academic achievement for the population was
statistically greater than expected by chance. This meant, as well,
that background characteristics were statistically less important in
explaining the reading oriented academic achievement of Indian
students than for students in the Washoe County School District in
general.
```


Comparative Analysis of Explained Varjance

Similar to the analyses of the proportion of variables entering

```
into the various models that would be potentially manipulable by the
school system, three sets of evaluations were made of the variance
accounted for by manipulable and non-manipulable variables. The firet
group of analyses compared the average amounts of variance explained
by manipulable and non-manipulable antecedent predictors in the
original, population, and Indian reading and math oriented models of
achievement. The second set of analyses compared each of the ten
population and Indian models of actigevement for amounts of variance
explained by manipulable and non-manipulable factors. The last set of
analyses compared the population and Indian models with respect to the
average amounts of variance e%plained by previous student academic
achievement, previous student evaluations, personal and familjal
background characteristics, and school environment and learning
context types of predictors. Separate analyses were made for the
reading and math oriented models of academic achievement.
    Comparison of average variances in reading and math oriented
    models. An assumption made for these analyses was that the average
percentage of variance explained by manjpulable variables should be
theoretically proportionate to the percentage of manipulable variables
in the respective reading and math oriented predictor pools. As such,
the percentage of manipulable variables in the population reading
(50%) and math (60%) and Indian reading (54%) and math (67%) predjctar
pools were used as e%pgcted percentages of e%plained variance.
```

```
    The expected ard actual average percentages of expiaimed variance
arcounted for by manlpulable variables di the reading orierted mujel三.
therefore, were as folluns:
\begin{tabular}{|c|c|c|c|}
\hline Fredictor Fiocl & \％of Vardance
\(\qquad\) & Average \％of É口lained varbance & g－val \\
\hline Origanal & 52 & 79 & ． 01 \\
\hline Fopulation & 50 & 32 & ． 01 \\
\hline Itrdian & 54 & 42 & 001 \\
\hline
\end{tabular}
The z-test of proportions for the average percentage of zoglaimea
variance was statisticallv 51gnificant for tom orjg1nal Iz=2.7. =
```



```
readang orlenteg model= ot achlevement. Thas meamt that the average
Groportion gf e%olainad variance in the feading urienteu models
```



```
greater than evaEEtES rejatlve to the groputtign of manupuisode
varlables in the reading oriented predictor pegis used iof trea
original, population, and Incian multlpleragression anjivミコミ,
```



```
varianles in reading oflented achievement. That i g, over
three-fourths of the explained variance ln feauing orientac
achievement was potentlallv manipulatale oy tal school syइtam.
Moreover, it was clear tmat mandpuiabie oregistor三 accoarted toi
substafituvejv more explained varlance (i.e., vo% more; in the injuã
reading orlented models (%2%), than l# elther the orlolnal (i%% ai
trie population (S2%) models.
```

Further, the expected and actual average amounts of explained variance accounted for by manipulable variables in the math oriented models were as follows:

Fredictor Fool	\% of Variance Enpected	Average \% of Explained Variance	e-value
Original	60	91	.001
Fopulation	60	90	.001
Indian	67	96	.001

```
    The average expected and actual avarage percentages of explained
variance accounted for by manipulable variagles across tre ten models
of academic achievement were as foliows:
\begin{tabular}{|c|c|c|c|}
\hline & Average \% of & Average \% of & e-value \\
\hline Fredictor Fool & Eyplained Variance & Eyolained yariance & \\
\hline Originaj & \(5 t\) & 83 & . 41 \\
\hline Population & 55 & 84 & .01 \\
\hline Indian & 60 & 94 & . 001 \\
\hline
\end{tabular}
Ilearly, substantively more variance, on the average, was accounted
for by manipulable predictors 1n the Indian models of academic
achievement than in the origlnal or population models uf achievement.
The results of the z-test anajyses also indicated that statistically
more variance, on the averade, Was accounted for by manipuiable
\forallarlatles than waj exDected based upon the average proportions of
manipuiable variables ln the original, population and Indian model=.
    As a result of these analyses, statistical comparisons of
variances attributad to manap:slatie predictors were made between the
original, population, and Indjan reading and math oriented models ef
achigvement. Table bs reports the means and t-ratio values by pairs
Of models for total variances accounted for by manipulatle variabias.
While none of the statistical comparisons were significant ip ajs)
several sutstantavelv significant results were found. As noted acove,
the mean amounts of yarlan=e accounted for by the reading and math
oriented models were essentially the same in both the original ano
population models of achievement. Un the other hand, the averauge
aifount of manipulable variances explaineu by the Inoman models was
conisidaragly different from those in the original and gopulation
```

```
Table 65. Mean Comparisons of Average Amounts
    of Variances Accounted for by
                Manipulable Variables
```

Types of Models	Average \% of Table Variance Accounted for by Manipulable Variables		
	Oriqinal	Population	
Reading Oriented	25.19	25.46	-. 09
Math Oriented	28.15	27.89	. 10
	Population	Indian	
Fieading Oriented	25.46	29.08	-1.02
Math Oriented	27.89	33.51	-. 88

```
models. Additionallv, it was again noted that manipulatie variagiEs
accounted for substantively more variance in the Indian than the
popularion (or original) modeis.
    The results of the mean comparisons of varaance accounted for ty
non-manipulable variables are presented in Tabie ot. Interestingiy.
the mean comparison (t-test) of the average amount of non-manipulable
variance in the population reading oriented models was statistically
signaficantiy tt = 2.17, p {05j greater than the variance accounted
For by non-manipuiatle variables in the Indaan reading oriented
models. That as, antecegent predictors, which were not potentiajjv
menipulable by tie sohuol system, accounted for statlsticaliy
signlficantly less variance dn reading oriented mujejs of Iriaiãa
student achigveninet than thev did for the wasnoe county Sehooi
District students in general, whach punctuates the results iefartes
aarlier for the number of non-manipulioie predictors for Intan
ミたいすこの!こ。
    Table s7 summarizes the table and e:iplaimed varlances for eacn
model, for the reading and math oriented model averages. and for the
averages of the ten models. The results (Tatle ef) imdicateu trat
non-manipulable variables accounted for the laroast amounts si
varjance in the population models first, then tne aidglmad madelइ: and
lastly the Indian models. Indeed, non-manmpulable variables actounted
for more than timee as much explained variance, ori the average, in the
gopulation models (lu%) as in tme Indaan models (s%), Moreover, the
amourit of enplaimed variance accounted iour ov mon-manipulatile
```

```
Table bb. Mean Comparisons of Average Amounts
    of Variances Accounted for by
        Non-Manipulable Variables
```

Average \% of Tatle Variance Accounted for by Non-Manipulable Variables			
	Oriqinal	Fopulation	
Reading Oriented	5.41	5.61	-. 15
Math Oriented	2.81	3.06	-. 14
	Population	indian	
Reading Oriented	5.61	2.19	2.19*
Math Oriented	3.06	1.13	1.99

$$
*--p<.05 .
$$

Table 67. Comparisons of Table and Explained Variances in the Original, Papulation, and Indian Models of Achievenent

Model ${ }^{\text {a }}$	Driqinal Models				Population Model 5				Indian Models			
	Manipulable		Non- Manipulable		Manipuldtie		NonManioulable		Manipulable		Non- Manipulable	
	Tab ${ }^{\text {b }}$	Exp ${ }^{\text {c }}$	Tab ${ }^{\text {b }}$	Exp ${ }^{5}$	Tab	Exp ${ }^{5}$	Tab ${ }^{\text {d }}$	Exp ${ }^{5}$	Tab ${ }^{\text {b }}$	Exp ${ }^{\text {c }}$	Tab	Exp ${ }^{\text {c }}$
	$\%$	4	$\%$	2	4	$\%$	2	$\%$	2	$\%$	$\%$	$\underline{4}$
SKLS	18.41	81	4.26	19	19.73	85	3.49	15	22.94	80	5.68	20
READ	28.57	95	1.61	5	28.31	99	3.43	11	36.81	100	0.00	0
READT	32.46	85	5.55	15	32.06	90	3.43	10	43.02	98	. 79	2
VOC	22.32	73	8.38	27	26.34	90	6.75	20	22.45	98	. 40	2
LIST	18.20	64	10.02	46	19.43	65	10.25	35	19.87	87	2.86	13
AUDIT	17.36	75	5.69	25	20.59	79	5.31	21	29.16	100	0.00	0
SPELL	31.66	83	6.69	17	31.74	83	6.62	17	29.10	84	5.58	16
Average for Models	24.14	79	6.03	22	25.46	82	5.61	18	29.05	92	2.19	8
MATH	27.32	90	3.08	10	26.35	39	3.09	11	36.56	98	. 71	2
matht	32.82	100	0.00	0	32.10	97	. 89	3	38.98	100	0.00	0
SCI	24.30	82	5.35	18	24.96	33	5.21	17	25.00	90	2.69	10
Average for Models	28.15	91	2.81	9	27.80	90	3.06	10	33.51	96	1.13	4
Average for All Models	25.34	83	5.06	17	26.16	84	4.95	16	30.39	94	1.87	6

a--hodel names are as follows: SKLS--Kord Study Skills; READ--Reading Coaprehension; READT-Reading Test Total; VOC--Vocabulary Knowledge; LIST--Listening Comprehension; SPELL--Spelling; AUDIT--Auditory Test Total; MATH--Math Concepts; MATHT--Math Test Total SCI--Science
b--Percentage of table for totall variance accounted for an the dependent variable.
c--Percentage of explained variance accounted for in the dependent variable. The variance accounted for by the 'other" yariables statistically forced into the equation was not included in the comparisons or for purposes of calculating the explained variance.

```
variables, on the average, was essentially the same for both the
original (17%) and population (16%) models.
```

Comparison of variances by models. Table 58 comparatively presents the amounts of variance for each of the ten dependent variables accounted for by manipulable and non-manipulable antecedent predictors in the population and Indian models, along with the calculated chi-square value. The results of the statistical tests indicated that the auditory test total variance was the only one of the ten crosstabulations that was statistically significant at or teyond the .05 level. That is, the chi-square test of otserved manipulable and non-manipulable variances indicated that non-manipulable variables accounted for statistically significantly (p (.05) more variance in the population than in the Indian model of auditory test total ächievemerit.

```
    Comparison of e:giajned variances by types of predictors. The
results of the mean comparisons (or t-tests) of variance eaplained by
previous academic achievement, student evaluations, personal and
familial background characteristics, and school environment and
learning conte%t factors between the population and Indian reading and
math oriented models are presented in Table bi. Three of these
statistical evaluations were found to be statistically significant at
or beyond the .0S level. First, the mean amount of variance explained
by previous student evaluations was statistically significantiy
greater in both the Indian reading oriented (t = -2.19, p (.05) and
```

```
Table 68. Comparisons of Variances Accounted for by
    Manipulable and Non-Manipulable Predictors
```

Model $\frac{\text { Table Variance }}{\text { Fopulation } \%}$

Word Study Skills

Manipulable	19.73	22.94
Non-Manipulable	3.49	5.68
Total	23.22	28.62
	$\underline{x^{2}}=0.01$	$\rho=0.5$.

Fieading Comprehension

Manipulable	28.31	36.81
Non-Manipulable	3.43	0
Total	31.74	36.81
	$\underline{x}^{2}=2.22$	$p<.20$

Reading Test Total

Manipulable	32.06	43.22
Non-Manipulable	3.43	.79
Total	35.49	44.01
	$\underline{x}^{2}=1.11$	$p=0.5$.

Table 68. (Continued)

Model	Table Variance	
	$\begin{gathered} \text { Fopulation } \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \text { Indians } \\ \% \\ \hline \end{gathered}$
Vocabulary Knowledqe		
Manipulable	26.34	22.45
Non-Manipulable	6.75	. 40
Total	33.09	22.85
	$\underline{x}^{2}=2.71$	$p<10$
Listening Comprehension		
Manipulable	19.43	19.87
Non-Manipulable	10.25	2.86
Total	29.68	22.73
	$\underline{x}^{2}=2.24$	$p<.20$
Auditory Test Total		
Manipulable	20.59	29.16
Non-Manipulable	5.31	0.00
Total	25.90	29.16
	$\underline{x}^{2}=4.47$	$p<.05$

Table 68. (Continued)

Model \quad Tatle Variance

Spelling

Manipuiable	31.74	29.10
Non-Manipulable	6.62	5.58
Total	38.36	34.68
	$\underline{x}^{2}=.06$	$p=n .5$.

Math Concepts

Manipulable	26.60	36.56
Non-Manipulable	3.09	.71
Total	29.69	37.27
	$\underline{x}^{2}=.90$	$p=n .5$.

Math Test Total

Manipulable	32.10	38.95
Non-Manipulable	.89	0.00
Total	32.99	38.98
	$\underline{X}^{2}=.00$	$0=\pi .5$.

Science Knowledqe
Manipulatle
24.96
25.00
Non-Manipulable
5.21
2.69
Total
30.17
27.69
$\underline{x}^{2}=.20 \quad p=n .5$.

Table 69. Comparison of Average Amounts of Variances Accounted For by Type of Predictor

Type of Variable	Reading Oriented Models			Wath Oriented Models		
	Meas \% of Variance for Population	Mean $\%$ of Varlance for Indians	t-value	Mean \% of Variance For Population	Mean \% of Variance For Indians	t-value
Acadenic						
Achievement	20.00	24.15	-1.31	23.31	26.72	-1.09
Student						
Evaluations	. 13	1.66	-2.19*	1.29	2.60	-7.71+4*
Background						
Characteristics	6.12	2.08	3.8174	2.48	. 24	1.15
School						
Environaent	4.54	3.34	1.10	5.37	5.09	. 30

$$
\begin{gathered}
\ddagger--p<.05 \\
\pm \ddagger-p<.01 \\
\ddagger \pm--p<.001
\end{gathered}
$$

```
math oriented (t = -7.71, p <.001) models. This meant that previous
teacher evaluations were statistically significantly more important in
explaining Indian student achievement than elementary student
population achievement in general.
    Second, the average amount of variance explained by personal and
familial background characteristics was statistically significantly
greater in the population reading oriented (\underline{t = 3.81, p (.01) models}
than in the same Indian models. In other words, contrary to most
assumptions, but in line with the findings of Coleman et al. (19.6),
background characteristics were more explanatory of population than
Indian student reading oriented achievement. That is, Coleman et al.
concluded that based upon their large cross-sectional study,
background characteristics were the most influential predictors of
student achievement. While the results of the study reported here,
that over three-fourths of the variance in academic achigvement test
scores was manipulable, have shown that Coleman et al. were not
correct in their conclusion that background factors were the most
predictive of achievement, the results have suggested that they may
Have been partially right to the degree that background factors were
significantly more predictive of population rather than Indian student
achiavement. Third, the results demonstrated that, on the average,
previous grades (or academic achievement) accounted for substantively
more variance in the Indian models than in the population models.
```

Summary. Statistical analyses of the proportions of predictors and variance that were potentially manipulable by the school system,

```
demonstrated that significantly larger amounts of variance, indeed
between three and nine times as much variance, was accounted for by
proportionately more manipulable variables as by non-manipulable
factors. The analyses also found that substantively more explained
variance in the Indian models was potentially manipulable by the
school system. Furthermore, statistically significantly more
explained variance was accounted for by non-manipulable variables in
the reading oriented models of achievement for the population than for
Indian students only.
    Statistical comparisons of the four types of predictors found that
teachers' previous evaluations were statistically significantly more
predictive of Indian student achievement than population achievement.
That is, how the previcus teacher subiectively evaluated the Indian
student's citizenship, or whether the teacher recommended the Indian
student for participation in the gifted student program, were
significantly more important to understanding Indian rather than
population achievement. Conversely, personal and familial background
characteristics were found to be significantly more important to
understanding population than Indian student reading oriented
achievement.
```


Conclusions

```
    Through two sets of research processes the results of the third
research cycle have provided empirical evidence concerning a number of
```

```
research questions and related hypotheses concerning the academic
achievement of elementary students in the washoe County School
District, and for the Indian students in particular. The first set of
processes involved three stages, while the second set had two stages.
The results of the first stage delineated those independent variables
that correlated (Chapter 4) with academic achievement, as measured by
ten subtest and test scores of the Stanford Achievement Test, and
their jritercorrelations with each other (Chapter 5). The results of
the second stage produced predictor models of achievement, for each of
the ten dependent variables, for both the Washoe County School
Gistrict elementary student population and for the Indian students
(Chapter 5), which were then compared and contrasted (Chapter 6). As
grade level had proved to be a good predictor, and because it had been
suggested by the literature to be a potential precictor, grade level
was removed from the predictor pools and new models were develaped
(Chapter 7).
    From the ten models for both the population and the Indian
students, separate predictor pools for the population and Indian
students were also built (Table b2). The results from the third staqe
produced predictor models for each of the five grade levels (second
through sixth) included in the study, for both the population and
Indian studentis, The second set of processes in the research evele,
as reported in this chapter, further analyzed the resulte to determime
What proportion of the predictors and how much of the total variance
were potentially manipulable by the school system, and what types of
```

```
factors (e.g., student evaluations or personal/familial variables)
were the most predictive of academic achievement.
    Specifically, the third cycle of the research sought empirical
evidence concerning the following research questions:
    5. Are different factors antecedent predictors of achievement for
        Indian and non-Indian students?
    6. Are different factors antecedent predictors of achievement
        across different grade levels?
    7. Is residence {reservation, colony, urban) a determinant of
        Indian student achievement?
    B. Do factors applicable to Indian students only le.g., tribal
        affiliation, preschool) affect the antecedent structurai
        models of achievement?
    9. Do manipulable variables account for more of the total
        variance than non-manipulable variables?
    10. Do manipulable variables account for more of the eaplained
        variance than non-ianipulable variables?
The third research cycle also sought empirical evidence to either
refute or verify the following research nypotheses concerned with
these questions:
    Hg: As compared to the general popalation, different antecedent
        factors are predictive of stamdardized achievement test
        scores for Indian students in the Washoe County School
        District.
    Hg: Different antecedents are predictive of standardized
        achievement test scores at different grade levels in the
        Washoe County School District.
    H10: Fesidence is not a determinant predictor of Indian student
        achievement in the Washoe County Schoul District.
    H11: The models of academic achievement are more predictive at
        certain grade levels than others in the washoe County school
        District.
```

H12: Manipulabie variables account for more total variance in achievement than non-manipulable variables in the Washoe County Schooi District.
H_{1} : More manipulable than non-manipulable varjables account for the observed variances in achievement in the Washoe County School District.

Antecedent Fredictors

The eighth research hypothesis (Hg_{g}) was iormulated, as an answer to the fifth research question, as a result of both the review of previous studies and the results of the first two cycles of this study. As euch, verification of the hypothesis that different antecedents were predictors of Indian achievement than for the general popuiation was highly probable. Indeed, the resuits of the second (and third) stage fully verified that different antecedent variables were involved in predicting Indian student achievement than for their ciassmates. These differences, however, were not absolute. In particuiar, when predictors were looked at across specific achigyement models and general predictor pools formed for the population and Indian students, no significant differences existed in terms of the number of manipulatie and non-manifulable variables. On the other hand, considerable differences existed with respect to how much variance specific variables explained in Indian student and population achievement. Fravious grades, however, was generally the best predictor in terms of the number of models and total variance it was involved with.

Different factors were both structurally and explanatorily (\boldsymbol{f}^{2}) juvolved in predicting or explaiming the academic achievement of

Indian students than for the Washoe County Echool District students in general. Moreover, the results cleariy substantiated the basic assumption of this study that how one measures academic achievement affects what factors account for such success (or failure). Different factors were predictive of word study skills than reading comprehension, and both involved slightly different predictars, and accounted for different amounts of variance, than reading test total achievement. Hence, structural and explariatory differences were observed for both dependent measures and sample groups fopulation and Indian students).

These results also verified the ninth research hypothesis, that different antecedents were indeed predictive of standardized achievement scores (or academic achievement) at different grade levels. Moreover, large differences in the predictors, and amounts of variance explained by those variables, were also found both between the various measures (or models) of academic achievement and the population and Indian students by grade level. Perhaps the most interesting result was that the predictors accounted for significantly more of the measured variance in achievement at particular grade levels than for the aggregate population or indian samples in general. Moreover, the grade level models exhibited greater structural differences between the population and Indian students than did the models for the aggregate population and Indian student samples. Indead, for second and third grade Indian students, previous

```
grades often were not predictive, or were less predictive, of academic
achievement than other factors.
    In sum, the empirical results of this study established that
different antecedent factors were predictive of elementary Indian
student achievement than for population achievement, that predictors
differed considerably and were dependent upon how academic achievement
was specifically measured, and that predictors of achievement at
different specific grade levels varied tremendously, particularly for
Indian students. That is, if one desired to explain what factors
contributed to a student's academic achievement {in the Washoe County
School District), then whether the student was Indian or not, what
grade level the student was in, and how such achievement was measured
would all have to be known, because the results of this study have
shown that student academic achievement varies considerably by these
factors. ficcordingly: the empirical results clearly suggested the
following research generalizations with respect to the eighth and
ninth research hypotheses, and the fifth and sixth research questions:
1. Different antecedent factors are predictive of different measures of academic achievement.
2. In comparing student achievement between Indian students and other students in general, different antecedent factors are predictive of achievement for Indian students than their classmates.
3. In general, previous grades are a consistent, even if not an especially powerful, predictor of academic achievement, as variously measured by academic achievement tests.
4. Antecedent predictors of academic achievement are different at each grade level: for both Indian students and students in general.
```


Student's Riesidence

```
The review of previdus research in Chapter 1 suggested that where a student lived was a particularly strong determinant of student achievement, especially in the Washoe County School District. It was of interest, therefore, to determine if such was still the case:
7. Is residence (reservation, colony, rural, urban) a determirant of Indian student achievement?
Data analyses in the second cycle of this research, houever, suggested the foilowing hypothesis concerning residence:
\(H_{10}\) : Fesidence is nat a determinant predictor of Indian student achievement in the Washoe County School District.
That is, this hypothesis was deduced as a direct result of the multiple regression analyses discussed in Chapter \(4, i n\) which residence structurally entered into only one of the ten models of acadefinc achievement constructed through stepwise multiple regression techniques. Indeed, such results were somewhat unerpected since descriptive analyses had been statistically significant \(\underline{\chi}^{2}=142, p\) <.001: \(\underline{y}^{2}=13.93, p\).001). Conversely, associative analyses had indicated that residence was only weakly, and consistently negatively, associated with achievement. Hence, the results of the third research cycle also supported the tenth hypothesis that:
\(H_{10}:\) Fesidence \(i s\) not a determinant predictor of Indian student achievement in the Washoe County School District.
Fesults of the stepwise and forced entry multiple regression analyses for Indian students, as reported in this chapter, found that residence, whether the student's home was in either the urban Reno-Sparks city/Indian Colony area or the rural Washoe County/fyramid
```

```
Lake Indian Reservation area, was structurally a predictor in two of
the ten predictor models of Indian achievement ilistening
comprehension, 1.6%; spelling, . 1%). In the case of listering
comprehension, residence was positively associated with achievement,
which meant that students living in the county or on the reservation
Were associated (r = . 108) with higher achievement. Conversely,
residence was negatively related (r = -.007) to spelling, which meant
that residing in the city or colony area was related to higher
echievement. In comparison, residence was a predictor in three of the
Washoe County School District population models. In all cases, living
in the city or colony was associated with higher achievement.
Moreover, residence was not very explanatory of achievement for either
Indian students or the population, although the average amount of
variance accounted for by residence was twice as much in the
popuiation models (1.8%) than in the Indian models (. }8%\mathrm{ ). Indeed, the
only occasion where residence accounted for much variance was in the
population spelling model (4%).
    That residence was more applicable to explaining achievement for
the population in general rather than Indian students became even more
Obvious when grade level analyses were made. Ey grade level,
residence was found for Indian students to be predictive of only
spelling achievement, and then only for second and fourth graders.
Conversely, residence was found for the population to be predictive at
ali grade levels, except for the sjath grade. Fesidence was a
predictor for fourth grade reading comprehension, third and fourth
```

```
grade reading test total, fifth grade listening comprehension, second
and fifth grade auditory test total, and fourth and fifth grade
spelling in the general population. That is, residence was a
predictor in 8 (16%) of 50 population predictor models by grade level,
but only 2 (4%) of 50 Indian student models.
    It should be noted that a number of the other antecedents may have
been measuring some cognate concept of residence as well. That is,
residence was moderately correlated with school acreage per student (r
=.42, P <.001), and weakly correlated with the student's age (r =
-.19, p <.001), the average cost of school per student (r = .27, p
{.001), and the number of magazine subscriptions per student (r = . 15,
P <.001). These correlations suggested that all of these factors may
have been measuring some economic or affluence factor. However,
residence was not correlated ( }|=.00\mathrm{ (at all with the socioeconomic
measure, which was the participation in the federal lunch program
variable. Thus, it appeared that residence may have been reflectirg
what futter: et al. (197%) referred to as school ethos. Hence, the
failure of residence to predict Indian student achievement may have
been caused by an interactive effect with other predictors. However,
it was also found that these four weak to moderate correlates of
residence were no more predictive of Indian student achievement than
residence itself. Thus, the results of this study, contrary to other
studies, verified the tenth research hypotheses that residence was not
a determinant predictor of Indian student academic achievement.
```

```
Achievement bv Grade Level
    The results of the stepwise multiple regression analyses in the
second cycle and the previous comparison test results in the first
cycle of the research indicated that grade level was a good predictor
of academic achievement (Chapter 4). These results, therefore,
suggested the following hypothesis:
\(H_{11}:\) The models of academic achievement are more predictive at certain grade levels than others in the Washoe County Schooi District.
That is, based upon the statistical test results of academic achievenent by grade level reported in Chapter 3 , which found tremendous variation in levels of achievement between grade levele, and the structural predictiveness of grade level in the original analyses, it seemed probatle that the ability to account for observed achievement variance would aiso vary.
The stepwise and forced entry multiple regression analysis results, discussed above, fully verified the eleventh research hypothesis. The results also demanstrated that the grade levels at which models were most predictive of Indian achievement differed from those for the population, and that, as previously discussed, the models by grade level were generally more predictive than the models for all grades combined; that is, for the aggregate population and Indian samples (Table 42):
```

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Grade Level} & \multicolumn{2}{|l|}{Mean} & \multicolumn{2}{|l|}{Mean} & \multicolumn{2}{|l|}{Mean} \\
\hline & \multicolumn{2}{|l|}{Total Model} & \multicolumn{2}{|l|}{Fieading Oriented} & \multicolumn{2}{|l|}{Math Drienteri} \\
\hline & \multicolumn{2}{|l|}{Variance} & Model Var & anca & Model Var & ance \\
\hline & Fopulation & Indians & Population & Indians & Fopulation & Indiens \\
\hline 2 & 42\% & 41\% & 45\% & 46\% & 33\% & 25\% \\
\hline 3 & 44\% & 40\% & 50\% & 50\% & 31\% & 16\% \\
\hline 4 & \(57 \%\) & 68\% & \(57 \%\) & 59\% & 52\% & 67\% \\
\hline 5 & 58\% & 49\% & 60\% & 48\% & 52\% & \(50 \%\) \\
\hline 6 & 43\% & 60\% & 41\% & 62\% & 48\% & \(55 \%\) \\
\hline Avg & \(\% ~ 49 \%\) & 52\% & 51\% & 55\% & 43\% & 43\% \\
\hline Aggreg & ate & & & & & \\
\hline Avg \% & 32\% & 34\% & 32\% & 34\% & \(32 \%\) & 35\% \\
\hline
\end{tabular}
The predictors, then, accounted for the largest average percentage of
the observed variances in student achievement for the fourth (57%) and
fifth (5B%) grades in the population, but were most predictive for the
fourth (68%) and sixth (60%) grades for Indian students. Mareover,
the differences between the average percentage of variance accounted
for by the aggregate population and lndian models was clearly less
than that explained by the grade level models, both individually and
on the average.
Maripulability of Academic Achievement
    Most of the previous studies discussed in Chapter 1 were found to
have consistently concluded that most, if not all, factors
structurally predictive of academic achievement were beyond the
control of the school system. More importantly, those factors
accounting for the largest amounts of the observed variance in
academic achievement were found to be non-manipulable by the schools.
On the other hand, several less prestigious, but equally rigorous,
studies suggested that many factors predicting, and accounting for the
variance in, academic achievement were indeed potentially controllable
```

```
by the school system. These conflicting conclusions; therefore, posed
two intriguing research questions for this study:
    9. Do manipulable variables account for more of the total
        variance than non-manipulable variatles?
    10. Do more manipulable than non-manipulable variables account for
        the erplained variance?
    Fesults of the correlational analyses, discussed in Chapter 4,
found proportionately more of the measured independent variables that
Were correlated with the ten dependent measures of acacemic
achievement to be manipulable (18 or 60%) rather than non-manipulable
(12 or 40%). Similarly, the resultant reading and math oriented
predictor pools of the stepwise multiple regression analyses, using
these su best correlates of achievement, incorporated more manipulable
Geading--52%; Math--60%) than non-manipulable variables
(Reading--48%; Math--40%). Thus, the conclusions of Chapter 4
suggested the following hypotheses concerning the manipulability of
factors predictive of academic achievement:
    H12: Manipulable variables account for more total variance in
        achievement than non-manipulable variables in the Washoe
        County School District.
    H_s: More manipulable than non-manipulabie variables account for
        the observed variances in achievement in the Washoe County
        School District.
    The last stage of the third research cycle, reported above, was
conductad to specifically amalyze the regression results to test these
two hypotheses. While on the average (and for all models except
several qrade level models) more manipulable than mon-manipulable
variables entered the models and accounted for greater amounts of
```

```
variance, many results were not statistically significant. Thus, the
empirical results failed to completely statistically validate these
two research hypotheses. Substantively, however, and in terms of
straight percentages, the results supported the hypotheses.
    Moreover, the results also indicated that the number of
manjpulative predictors and the amount of variance explained by
manipulable variables was seldom statistically different between
Indian students and the Washoe County School District population.
Several important statistical findings, however, were made concerning
non-manipulable factors. It was found that statistically
significantly fewer non-manipulable factors entered into the Indian
student reading oriented models of achjevement, and accounted for
significantly less of the total variance than in the population
models. That is, non-maripulatle facturs were significantly more
important to explaining student achievement in the Washoe County
School District population than for Indian students.
    At this point, the manipulability of students' class grades needs
to be readdressed. A large number of researchers would more than
Likely disagree that class grades were manipulable by the school
system, perhaps because, for example, they agree with studies showing
they were biologically or ancestrally determined, or they might
believe grades make vajid measurements. Such a debate, however, was
beyond the scope of this study. Those interested in pursuing this are
referred to Erod's studies on predicting grade point averages (1975)
and grade-averaging bias among teachers of Indian students (197ba).
```

```
To summarize Brod's position, he has convincingly demonstrated that for lndian students most factors explaining grade point averages are within the academic domain and subject to changes by the school system. Indeed, Brod (1975) found that only \(35 \%\) of the variance in grade point averages was attribut-tie vo scholastic achievement, IQ scores, and absenteeism. Results from data collected for this study: but not included in the multivariate analyses because the factors were not antecedent to the achievement test scores, also provided support for this. That is, when the relationship between test scores and 1584 class grades were evaluated, it was indeed found that, on the average, only Jo\% of the variance in grades explained test scores. In addition, it must be remembered that the Washoe County school Distriet had no standardized grading policy, leaving rlassroom grading procedures aid decjeions up to the individual teachers. It was also found in this study (Chapter 3) that Indian students tended to be graded using the montraditional system more than their classmates. Taken together, then, class grades were assumed to be potentially manipulable by the school system,
In summary, ine results of this research suggest that more manipulable than non-manipulable variatles were predictive of academic achievement, and that manipulable variables usually accounted for more of the variance; particularly with respect to Indian student achievement.
```


Factors Unigue to Iridian students

A number of studies have suggested that observed variances in

```
Indian students' academic achievement were relatad to factors unique
to the Indian students themselves. That is, their lower observed
achiavement was the result of characteristics unique to them being
Indian. Elood quantum, or the percentage of Indian ancestry, has been
the most typical measure used, although language, degree of
assimilation, and living on a reservation have also been used. This
study, however, sought to determine if other measures. which were also
urique to Indian students, were related to their achievement:
    8. Do factors applicable to Indian students only {e.g., tribal
    affiliation, preschool) affect the antecedent stiuctural
    models of achievement?
    As discussed in this chapter, two of these variables mere fu|nd to
be predictive of Indien students' academic achievement, although the
factors did not account for much of the total variance. Specifjcally,
participation in the Fyramid Lake Indian Seservation Head Start
program accounted for 1.1% of the total variance in vocatulary
knowledoe achievement, and particifation in some type of preschool
program was predictive of 0.7% of the variance in math test total
achievement and as a suppressor variable (-.1%) of the variance in
math concepts achievement for Indian students.
    The results of these analyses suggested that some factors unjque
to Indian students may be predictive of Indian student achievement.
However, the results were not substantial enough to propose any
generalizations at this point. Father, the results established the
need for further research in this area.
```


Types of Fredicturs

```
Four types of independent variables or antecedent predictors were included in this study: previous academic achievement; previous student evaluations: personal and familial background characteristics; and school erivironment and learning context variables. While no specific questions or hypotheses were posed concerning these types of variables, questions concerning them have been implied and now must be made explicit:
```

```
    2. Was any one type of variable more predictive of academic
        achievement?
    2. Ware any particular types of factors more predictive of Indian
        student achievement?
    3. Were any particular types of factors more predjctive of
        student achievement in the Washoe County School District
        population?
    4. Did any of the types of factors account for statistically more
        or less variance for Indian students than the population?
    As discussed atove, the results of these analyses clearly provided
empirical evidence to support answers to these questions concerning
the types of predictors involved in this study. With regards to the
first question, previous academic achievement was clearly the most
predictive type of factors if previous grades were included. Without
class grades, however, previous academic achievement type predictors
would generally be the least predictive type of antecedent variables,
as absenteeism was not a very good predictar. That is, previous
grades were wint made the academic achievement type factors most
predirtive, After previous grades, background characteristics were
the next best predictors for reading oriented achievement in the
```

```
Washoe County School District, but school environment and learning
context factors were for math oriented achievement, for both the
Washoe County School District population and Indian students, as well
as the best predictor for Indian students' reading oriented
achievement.
    In regards to the second and third questions, it was found that
previous academic achievement and student evaluations were more
predictive for Indian students, while background characteristics were
Mure predictive of achievement for the Washoe County School District
elementary student population in general. School environment facturs
Were mcre predictive of population reading oriented achievement, but
Were essentially equally strong predictors of math oriented
acmievement for both Indian students and the population.
    The results also found, in response to the last question, that
bacl:gifund characteristics were statistically more predictive of
population rather than Indian reading oriented achievement. Eut of
greater interest was the finding that student evaluations were
statistically more predictive of Indian than population achievement,
particularly math oriented achievement.
```


Summary

```
This chapter has reported the results of four distinct stages in this research project. First, the correlates of academic achievement were analyzed. This was followed by the establishment of predictor models for the Washoe County School District population and Indian students, from which comparative analyses were also made. Additional
```

```
analvses were made on Indian students using several variables unique
to them, and for the population and Indian students without grade
level as a predictor. The next stage consisted of creating
achievement models for each of the studied grades for both the washoe
County School District and for the Indian students. The last stage
reported in this chapter involved analyzing the predictor models in
terms of their potential manipulability and general types of variables.
    The results of this study were found to have generally supported
the research hypotheses and, regardless of support for the hypotheses,
provided empirical "answers" to the research questions. Theseresults
showed that different predictors were predictive of Indian students.
achievement than were predictive of student achievement in the washoe
County School District in general, that predictor models varied
tremendously by grade level (but were more explamatory), that
residence was not a determinant for even poor) predictor of indian
achievement, that there were a few factors unique to Indian students
that added to the explained variance, that the predictors accounted
for the greatest average amount of variance at the fifth grade level
for the washoe County School District population and at the fourth
grade level for Indian students, and that more manipulable variatles
accounted for more total variance than non-manipulable variables.
Moreover, personal and familial bacl:ground characteristics were found,
contrary to previous studies, to be statistically less accountable of
readimg oriented achievement for Indian students, but that previous
teacher evaluations of students were statistically more predictive of
```

```
both readirg and math oriented acniguement for Indian studEnts. inat
is. the :esults cresented in this chapter have shumi trat trosea
factors which accounted for the academic achievement of stacents fir
generad) an the Washoe County School jastrict were rict auch hele in
E%plazmang the abademic achmevament of indian students: and that thasj
factors that du help expiain indian achievement wera more often
factors which werg porentiallv manipulable by the school system.
```


Chapter 9

THE ACADEMIC ACHIEVEMENT OF THE GASHOE COUNTY SCHOOL DISTRICT ELEMENTARY SCHOQL FOFULATION AND INDIAN STUDENTS: SUMMARY AND CONCLUSIONS

```
To facilitate making the results of this research cumulative with the existing understanding of academic success for both indian students and their classmates, which was an express goal of this study, the results had to be explicitly integrated with existing knowledge. Generally, the study enhanced understanding through the accomplishment of the research objectives, which were: (1) to describe and compare characteristics of elementary school Indian and non-Indian students (including academic achievement) in the Washoe County School District; (2) to inductively identify and isolate antecedent predictors of achievement test scores in the Washoe County School District; (S) to deductively determine which factors best predicted achievement for the population and Indian students and to compare population and Indian modeis at both the aggregate and individual grade levels; and (4) to empirically assess whether factors found to explain academic achievement for elementary school Indian students and their classmates were within the school system, and
```

```
therefore potentially manipulable by it, or, as found in most other
researeh, outside the control of the sehools, and not subject to
manipulation by the school system. How, then, did these results add
to the theoretical understanding of Indian education? What can the
school system change to improve Indian student academic success? The
fourth, and last, cycle of this research project sought to answer
these questions by integrating and synthesizing the results of this
study with the existing cumulative understanding of Indian student
educational success.
    To recapitulate, this study was designed with four successive
research cycles, each building upon the previous cycle. The first
cycle (see Chapter 3) involved both inductive and deductive
processes. First, characteristics of student education in Washoe
County School District were described and the hypothesis that Indian
students' achievement test scores were significantly lower than those
for their classmates was tested. Data analyses during this cycle
inferentially indicated that Indian students Here significantly
different from their classmates in a preponderance of the factors
measured, and that Indian students were scoring significantly lower
than non-Indian students on academic achievement tests (see Chapter is).
    The second cycle (see Chapter 4) of the research inductively
reanalyzed the data, using more sophisticated stepwise multiple
regression statistical analysis procedures, to identify which of the
measured factors might be good predictors of academic achievement.
These analyses failed to find, as hypothesized, that ethnicity {i.e.,
```

```
being indian) was a predictor of academic achievement. Grade level,
however, was found to be a consistent predictor of academic
achievement, which verified the Hypothesis that grade level would be a
predictor of achievement. On the basis of these anlayses, general
reading and math pools of predictors were developed, which were used
as theoretical models of achievement.
    The third cycle of the research deductively tested the inductively
developed predictor models of academic achievement. Using stepwise
and forced entry multiple regression techniques in sequence,
population models were first established, then similar analyses were
made for Indian students only (see Chapter 5). When compared (see
Chapter 6), the results of these analyses indicated, as hypothesized,
that the antecedent factors predicting Indian student achievement were
different from those predicting student achievement for the washoe
County School District student population in general. Following these
analyses, the stepwise and forced entry multiple regression analyses
were redone for the Indian students, but with the additional factors
pertinent to the Indian students only. The modified regression
analysis results (see Chapter b) found that the variables concerning
preschool and Head Start were indeed predictors of Indian student
achievement.
As grade level had been shown to consistently predict achievement, the nent stage of the third research cycle consisted of re-analyaing the predictors without grade level as a variable to establish models without grade level for the population and Indian students for
```

```
comparison with models by grade level as a control. Analyses were
then conducted for each grade level. The results (see Chapter 7) of
these analyses showed that not only did different antecedent factors
predict achievement at different grade levels, but they also accounted
for significantly larger amounts of the observed (or table) variance
in academic achievement, as measured by test scores.
    The second set of processes, in the third research cycle,
consisted of analyses of the predictor variables and explained
variances to determine whether they could be manipulated (i.e.,
changed or altered somehow) by the school system. These results (see
Chapter 8) indicated that the proportion of manipulable and
non-manipulable predictors in the Washoe County School District
population and Indian models of achievement were not statistically
significantly different in comparison to each other or in comparison
to the proportion of manipulable and non-manipulable variables used in
the analyses (i.e., the General Reading and General Math predictor
pools). Similarly, the amounts of total variance accounted for by
manipulable and non-manipulable variables in the population and Indian
models generally were not found to be significantly different. The
one exception was that non-manipulable variables accounted for
significantly more of the total variance for the population than for
Indian students in the seven reading oriented models of achievement.
Additionally, it was found that manipulable factors (with or without
previous grades) generally accounted for the largest amount of
```

```
variance, although this was more true for the Indian students than for
the general Washoe County School District population.
    More importantly, the results showed, contrary to most previous
regearch, that personal and familial tackground characteristics were
statistically more important in explaining achievement for the
population than for Indian students. That is, background
characteristics, which were also usually bevond the manipulative
control of the school system, were found not to be very important in
understanding Indian student academic achievement. What was found to .
be statistically significantly more important in e%plaining the
academic achievement of Indian students was previous teacher's
evaluations of the student (i.e., citizenship grades and participation
in the gifted programl.
    The fourth (see Figure 5, Chapter 1) and last research cycle
(discussed below) involved inductively building a theory of Indian
aducation, grounded upon the conclusions drawn from the resilts of the
first three research cycles and synthesized with existing literature.
This last cycle, then, essentially imvolved theorizirg. The first
stage of the cycle consisted of pooling together various findings and
conclusions. This was followed by inductive data analyses to
formulate generalizations from tha study. These gerieralizations were
ther pieced together and synthesized with existing ideas irito a
proposed theory of Indian education. However, this last stage was not
accomplished because more empirically based understanding of Elassroom
interactions and culture, along with clearer attitudinal data, were
```

```
deemed necessary. That is, several links in the body of knowledge
concerning Indian education still needed to be understood.
```


Discussion

The objective of this last cycle in the study was to abstract the results of the first three cycles, draw some summative conclusions concerning these results, and then try to discover if any relationship existed between these conclusions. The first stage of this research cylce, therefore, was to consolidate and discuss the results of each cycle, from which general conclusions were inductively formulated. The results of the first cycle of research concerning differences in academic achievement and student and school characteristics will be discussed first. This will be followed by a discussion of the results concerning the predictors of academic achievement from the second research cycle and the first three stages of the third research cycle. Next, the results concerning the potential manipulability lby the school system) of predictors of academic achievement from the last stage of the third research cycle will be discussed. Lastly, the types of factors that were found from the last part of the third research cycle to be characteristic of academic achievement will be discussed.

Academic Achievement

```
    Statistical comparisons of nationally standardjzed mean test
scores for Indian and mon-Indian students in the Washoe County School
District found that Indian students' academic achievement in all
```

```
measured areas was significantly ( }\beta\mathrm{ (.001) lower than that of their
classmates (see Table 12, Chapter 3). When analyzed by grade level
(Table 1S), test score differences were considerably smaller, but more
varied. For instance, in the second grade, Indian students'
achievement test scores were statistically lower than their classmates
in only language knowledge and auditory test total achievement. In
the third grade, however, Indian students were statistically
significantly different from their classmates in all but listening
comprehension and spelling, vet in the fourth grade Indian students*
achievement was not significantly different from non-Indian students.
achievement in reading comprehension, spelling and science knowledge.
In the fifth grade, Indian students did sjgnificantly poorer than
nor-Indian students in all areas but spelling, and by the sirth grade
Indian students were consistently achaeving below their ciassmates in
all areas of achievement.
    Comparisons of mean test scores folind that Indian students'
achievement scores were anywhere from.30 to . Sl standard scores below
their classmates, with an average difference of . 4o cor nearly
one-half of a standard score). On the other hand, by grade level,
substantive differences in achievement test score means (Table 7.) for
Indian students and their classmates also e:hibited tremendous
variability, ranging from a minimal difference of only . }12\mathrm{ standard
scores in second grade spelling to a maximum differance of l.02 (or
more tinan one full) standard score in sixth grade math concepts.
```

```
Table 70. Mean Differences in Standardized
    Achievement Test Scores Across
    Grade Levels for Models
```

Model	Grade Level				
	2nd	3rd	4th	5th	6th
Word Study Skills	. 19	. 52	. 56	. 44	. 40
Reading Comprehension	. 30	. 36	. 27	. 50	. 71
Reading Test Total	. 24	. 47	. 43	. 51	. 62
Vocabulary Knowledge	. 64	. 49	. 51	. 65	. 82
Listening Comprehension	. 37	. 20	. 43	. 48	. 77
Auditory Test Total	. 58	. 37	. 49	. 53	. 57
Spelling	. 12	. 33	. 13	. 32	. 66
Math Concepts	. 33	. 41	. 53	. 66	1.02
Math Test Total	. 32	. 38	. 46	. 61	. 90
Science Knowledge	. 37	. 52	. 24	. 57	. 65
Average	. 35	.40	. 40	. 53	. 71

```
Moreover, average differences showed a parabolic increase from the
second to the sixth grade.
    In comparing sutstantive mean differences across grade levels
(which were based upon panel datal for each measure of achievement
(Table 70), then, the general pattern indicated differences were
greater for each successive grade level. However, there were several
deviations from this general pattern. The most important were in the
achievement areas of vocabulary knowledge, listening comprehension,
and auditory test total scores, where Indian students were found to
have been dramatically behind their peers in the second grade (Table
70). Indian students in the third grade, however seemed to have
closed this gap considerably, while the fourth grade Indian students
remained about as far behind as the third graders. The fifth grade
Indian students, on the other hand, were essentially as far behind
their classmathes as were the second grade Indian students. More
importantly, these differences between Indian students and their
classmates seemed to increase in the sixth grade.
    A second deviation from the pattern of increasing differences in
achjevoment across grade levels was in the area of word study skills,
in which Indian students were not much (nor statistically) different
than their clas5mates in the serond grade, but third and fourth grade
Indian students were more than half a standard score behind. Although
the differences were decreased for them in the fifth and sixth grades,
Indian students were nonetheless still . 4 standard scores behind their
classmates. The last deviation from the general pattern concerned the
```

```
differences between the Indian students and their classmates in
reading comprehension, reading test total, and science knowledge
achievement, which were less in the fourth grade than in the third
grade. Indeed, the differences between Indian and non-Indian students
in reading test total and science test scores were smallest in the
fourth grade.
These substantive differences in achievement test scores raised several interesting questions about the observed differences in Indian and non-Indian test achievement. That is, were Indian students really performing all that poorly? Is one half of a standard score that much of a substantively real difference? In her study of washoe county School District students, Quirk (1965) found that grade equivalent means on the battery total for Indian students were not substantively much different from their classmates' means; indeed, the differences were not statistically significant. In his meta-analysis, Day (1983) indirectly corroborated Quirk's observations, as he found that in the 19605 there was a tendency for reading and math test total scores to converge toward the comparison mean. Day's study further indicated that reading and math achievement in the 19805 was "as high or higher than it has been at any time in the last thirty years" (1983:2-22\}. Unlike Quirk, however, Day drew the conclusion that, "nevertheless, these remain well below the national norms, and the academic needs of Indian students have not been met" (1983:2-22).
Evaluation of other studies, then, provided no easy solution to the questions about the substantive importance of these statistically
```



```
between Indian students and their classmates were substantively
important as well as statistically significant.
    Based upon these various sources of evidence, it was concluded
that the observed differences in academic achievement between Indian
and non-Indiän students were indeed both statistically and
substantively significant, despite the apparently minimal differences
(i.e., less than half a standard score).
    Hence, in response to the questions posed above, the observed one
half of a standard deviation difference between Indian and non-Indian
students was indeed a substantively important difference. Moreqver,
it was concluded that Indian students, as a group, in the Washoe
County School District were performing significantly more poorly than
their classmates; and more poorly than other students nationally
because all observed mean test scores for Indian students (Table 12)
were also below the national average.
    Statistical analyses of other student academic achievements (i.e.,
class grades, attendancel also found that Indian students were
statistically significantly different from their peers in eighteen of
twenty-one (96%) measured aspects. But the three factors in which
statistical differences were not found were substantively
significant. First, Indian students, interestingly enough, and in
sharp contrast to other findings, were found to be present at school
slightly more often, on the average, than non-Indian students during
the 1982-8S school vear. Conversely, Indian students were present
statistically significantly fewer days than their classmates during
```



```
knowledge and auditory test total achievement for the population, and
4% of the variance in spelling for the Indian students. The fajlure
Of absenteeism to predict achievement may have been due to the poor
measurement of this factor, or it may have been because
attendance/absenteeism was not predictive of achievement in the Washoe
County School District.
    Absenteeism was; however, a somewhat better predictor at
particular grade levels. It was predictive in 6 (8t%) of the 7
population and 1 (14%) of the 7 Indian reading oriented models for
second graders, 2 (29%) of the population and 3 (43%) of the Indian
third grade reading oriented models, 2 (29%) of the population fifth
grade models, and 2 (29%) of the population and 3 (43%) of the Indian
sixth grade models. Across the grade levels, absentegism was found to
account for variance in 12 (34%) of the 35 population and 7 (20%) of
the 35 Indian reading oriented models. Absenteeism did, however,
account for sizable amounts of the variance in the third and si%th
grade models, but otherwise made minjmal to moderate contributions to
the explained variance.
    In looking at the relationship between the number of days absent
and achievement, it was interesting to find absenteeism positively
correlated for both Indian and population second grades, as well as
for third and fifth grade population students. This meant that
achievement improved with increased absenteeism. Conversely, a
negative or inverse relationship, as expected, was found for
population si%th graders and for all other grades. That is, as
```

```
achievement improved, absenteeism dropped off. These results,
therefore, have challenged, despite measurement problems, the existing
assumption of many educators calling for an increase in the number of
days in the classroom and the reduction of absenteeism in order to
improve academic achievement. }29\mathrm{ That is, despite the reliability.
problems with the original teacher coding of the information, the
results of this study have seriously questioned the assumption that
absenteeisin was/is a good predictor of academic achievement;
particularly in the Washoe County School District and similarly
composed school systems.
    Iifferences between Indian and non-Indian students were not
limited to just academic achievement. For example, with respect to
teacher evaluations, it was found that Indian students received
statistically lower citizenship grades (which were based upon the
teacher's subjective evaluation), were twice as likely to be retained
one or more grades by past teachers, and half as likely to be placed
in the gifted student program by the teacher. This latter difference
proved to be particulaply important in terms of predicting Indian
student achievement (see also below). Another example was the
particularly serendipitous finding was that Indian students in this
study did not attend schools that had a certified librarian.
    The results of this explanatory study have described, then, some
of the scope and depth in the achievement, student evaluation,
personal and familial characteristics, and school and learning
conteats differences between Indian and non-Indian students. Indian
```


Abstract

students in the Washoe County School District were consistently and statistically below their non-Indian classmates, as well as below the national average, in all measured areas of academic achievement, as measured by standardized test scores. Indian students' class grades were also significantly lower than those of their classmates and they were absent from school significantly more than non-Indian students Moreover, Indian students had significantly lower citizenship grades, and were retained more often, but placed into the gifted program less often, than their classmates. Indian students were found to have significantly different personal and familial background characteristics than non-Indian students, and they attended schools that were often significantly different from schools most likely attended by non-Indian students.

Comparable and Contrastable Characteristics of Models

As suggested in Chapter 1 , much of the apparently contradictory findings in previous studies may be attributable to the failure of the researchers to develop different models for each ethnic group and at each grade level. It was also concluded that the selection of the dependent variable(s) was usually too selective and narrow to fairly represent student academic achievement. Thus, it was suggested that a broader spectrum of measures, as used in this study, would produce a more complete and accurate representation of student achievement, albeit it would also be more complex and difficult to conduct such research.

```
Predictors of academic achievement. More to the point of the research questions, this study has found that those factors that explained the observed statistical differences (or variance) in academic achievement for Indian students and their classmates were quite \(\operatorname{sften~different.~In~an~attempt~to~demonstrate~this,~Table~} 71\) indicates the number and percentage of predictors shared by both the population and Indian student models, along with the number of predictors unique to each of them.
These results indicated that, on the average, \(61 \%\) of the variatles that predicted academic achievement for Indian students also accounted for variance in the population models, while, on the average, \(36 \%\) of the predictors in the population models were similarly predictors in the Indian models. This meant that, on the average, \(64 \%\) of the antecedents in the population models of achievement were not predictive of Indian student achievement and that, on the average, \(39 \%\) of the factors that did help to explain Indian student achievement were not explanatory of general student academic achievement.
Hence there were considerably more factors involved in explaining population achievement, which were of little utility in understanding Indian student achievement, than were involved in accounting for Indian student achievement. More importantly, this also meant that over one third ( \(59 \%\) ) of the predictors that explained Indian achievement would not have been found or known if separate achievement models had not been made. Equally, if not more importantly, these results also meant that nearly two thirds of the variables involved in
```

Table 71. Predictors and Variance Cosaon to and Unique to the Population and Indian Achievenent Models

Model ${ }^{\text {d }}$	Predictors and Variance Coman to Both Models					Predictors and Variances in Population Models Only				Predictors and Variances in Indian Models Only				Variance Explained by "Other" Variables	
	Predictors			Explained Variances		Predictors		Variance		Predictors		Variance			
		Pop ${ }^{\text {b }}$	Ind $^{\text {c }}$	Fop ${ }^{\text {b }}$	Ind $^{\text {c }}$			Tab ${ }^{\text {d }}$	$\underline{E x p}^{\text {e }}$			Tab ${ }^{\text {d }}$	$\underline{\text { xp }}^{\text {e }}$	Pop ${ }^{\text {b }}$	$\underline{\text { Ind }}{ }^{\text {c }}$
	n	$\%$	2	4	2	n	2	$\%$	$\%$	0	4	4	$\%$	$\%$	1
SKLS	4	57	80	71	75	3	43	5.73	23	1	30	4.08	12	6	13
READ	2	20	67	72	90	8	80	8.37	27	1	33	3.05	8	1	2
READT	4	50	67	75	81	4	50	6. 25	$1 t$	2	33	5.84	13	9	6
VOC	2	20	67	63	77	8	80	11.70	35	1	33	1.86	7	2	16
LIST	2	20	40	57	66	8	80	12.10	40	3	60	6.43	25	3	9
AUDIT	2	20	40	59	79	8	80	7.96	29	3	60	4.80	16	2	5
SPELL	3	43	33	72	56	4	57	9.84	24	6	67	14.54	39	4	5
MATH	3	43	75	88	97	4	57	1.83	6	1	25	. 71	2	6	1
MATHT	3	50	100	96	101	3	50	. 01	1	0	0	0.00	0	3	-1
SCI	$\underline{2}$	33	40	85	73	4	57	10.75	36	3	60	6.89	24	-1	$\underline{3}$
Average	3	36	61	73	80	5	64	7.45	24	2	39	4.82	15	4	6

a--Model names are as follows: SKL.S-Hord Study Skills

AUDIT--Auditory Test Total
READ--Reading Cosprehension READT--Reading Test Total VOC--Vocabulary Knowledge SPELL--Spelling
ATH--Math Concepts
LIST--Listening Conprehension
MATHT--Math Test Total
b--Population eodels
C--Indians models
d--Percentage of table (or total) variance accounted for in the dependent variable.
e--Percentage of explained variance accounted for in the dependent variatle.

```
accounting for population achievement have nothing to do with
explaining Indian student achievement.
```

Variances in academic achievement. Table 71 also shows the percentage of table variance accounted for by those variables not entering into both the population and Indian models. Eetween 0% and 14% of the total variance (or about 5% on the average) was accounted for by factors unique to the Indian student models, and between 0% and 12\% of the total variance (or about 7% on the average) was explained by variables unique to the population models. With respect to table variance, therefore, it appeared that the amount of variance accounted for by factors unique to each of the population and Indian models was not, on the average, too large. On the other hand, when contrasted with the percentage of predictors unique to the population and Indian models, it was found that the fewer predictors unique to the Indian models (39\%) accounted for relatively more table variance (5%), on the average, than did the larger percentage of predictors unique to the population models (64%) that accounted for relatively less, on the average, table variance (7\%).

Furthermore, the percentage of the explained variance in the population and Indian models (Table 71) indicated that considerable variation existed in terms of the percentage of explained variance that was contributed by predictors common to both the population and Indian models of achievement. Dn the average, predictors found in both the popuietion and Indian student models contributed 73% of the explained variance in the population models, and 80% of the explained

variance in the Indian models. (It should be noted that the "other"
predictors forced into the equations accounted for an average of 4% of
the explained variance in the population models and 6% in the Indian
models.)
Fredictors common to both the population and Indian models
contributed the largest amounts of explained variance in the math
concepts and math test total models for both groups. Fredictors found
in both models also accounted for a large percentage of the explained
variance in the Indian reading comprehension model (90\%), but not in
the population model (72%). Conversely, predictors common to both
models contributed the least amount of explained variance in the
spelling (72\% and 56% respectively) and science knowledge (65% and 73%
respectively) models for both the population and Indian students.
Fredictors by grade level. It would be reasonable to assume that
if the observed differences in the percentages of predictors and
variances that were commonly shared by (as well as unique to) both the
population and Indian student models of academic achievement by grade
level were about the same as for the aggregate models, then such
percentages were probably due to random chance or error rather than
being dependent upon the group of students involved. Conversely, if
the percentages of predictors and explained variance common to both
the population and Indian student achievement models were sinaller by
grade level than for the aggregate groups, then it would be equally
safe to conclude that the observed differences in the percentages of
predictors and variances common to both the aggregate population and

```
Indian models were, indeed, substantively significantly dependent upon
the respective groups of studenis.
    Comparisons by grade level, however, were considerably different.
In fact, there were no commonly shared predictors in six of the ten
third grade models. In other words, predictors in the population
models explaimed none of the abserved achievement variance in 60% of
the third grade Indian models. Additionally, in 33 (66%) of the 50
grade level models there was only one commonly shared predictor in the
population and Indian models. More importantly, in 3i (t2%) of the 50
grade level models half or more of the predictors were unique to the
Indian models. Of these, in only 7 (14%) of the 50 grade level mode!s
did the factors unique to the Indian models account for less than 10%
of the total variance; but in }t(12%)\mathrm{ of the }50\mathrm{ grade level models
they accounted for more than one third of the total variance. In
other words, considerably fewer predictors and much less explained
variance were commonly shared by the population and Indian models of
achievement by grade level than were shared by the aggregate models.
    Unique characteristics of model5. It would seem plausible,
therefore, to conclude that the observed differences in antecedent
variables that predicted academic achievement for the population and
Indian students were substantively significant. A binomial test for
statistical significance of the proportion of variables unique to the
Indian models and the proportion of variables common to both the
population and Indian models indicated that the observed proportions
in the listening comprehension and auditory test total achievement
```

```
models were indeed statistically significant. Hence, the proportions
of observed predictors that were unique to these Indian models were
statistically different from the proportion of antecedents common to
both the population and Indian models.
    Additionally, the probability levels for the binomial tests of the
Other eight models were all less than . 20; indeed four of them were
significant at or beyond the . }10\mathrm{ level. Thus, although the
probability levels were higher (i.e., p >.05) than accepted levels
(i.e., p <.05) for eight of the binomial tests of significance for
differences between proportions of common and unique predictors of
Indian achievement, for explanatory purposes these differences were
taken to be significant.
    It was concluded, therefore, that the predictors entering the
Indian models of academic achievement were not only different (as
hypothesized), but that they were significantly different from those
predicting achievement for the Washoe County School District
elementary school population. Noreover, it was found that differences
in which predictors explained academic achievement increased when
evaluated for a particular grade level.
Frequent predictors. What, then, were the most frequent (i.e., entered more than four of the seven reading oriented and three of the math oriented models) predictors of academic achievement in the washoe County School District population and for Indian students only? What were the most frequent predictors at specific grade levels? For the population, the following were the most frequent predictors the
```

```
number in the parentheses indicates the number of models the predictor
entered out of the seven reading and three math oriented models):
    1. Fopulation Reading Model5: 198J Reading Grade (7), Emergency
        Telephone Listing (6), Participation in the Federal Lunch
        Frogram (4), Change of Schools (4), Student's Se% (4), Acreage
        Fer Student (4), Grade Level (4), and How Long the Library Was
        Open After School Fer Student (4);
    2. Fopulation Math Model5: 1983 Grade Point Average (3),
        Fartieipation in the Gifted Program (3), and How Long the
        Library Was Open After School Per Student (3).
The following were the most frequent predictors for Indian students:
    1. Indian Readinq Model5: 1983 Reading Grade (7), Participation
        in the Gifted Frogram (4), Father's Status (4), Number of
        Encyclopedia Sets Per Student (4), and How Long the Library
        Was Open After School Fer Stwuent (4);
    2. Indian Math Models: 1983 Grade Point Average (3),
        Farticipation in the Gifted Frogram (3), and Fercentage of
        Books Lost Fer Student (3).
Of the mast frequent predictors, the 198S reading grade and how long
the library mas open after school per student were the only two
predictors that were frequent predictors for both population and
Indian student reading oriented achievement. Similarly, the 1983
grade point average and participation in the gifted program were the
most frequent predictors of both population and Indian math oriented
achievement.
```

Frequent predictors by grade level. In contrast, there were even fewer common frequent predictors by grade level. The most frequent predictors of second grade achievement were:

1. Fopulation Reading Model5: 1983 Reading Grade (7), Number of Days Absent (6), 1983 Citizenship Grade (5), Home Telephone Listing (6), Number of Farents Employed (4), Student's Sex (4), and How Long the Library Was Open After School Per Student (7);
2. Fopulation Math Model5: 1983 Grade Point Average (3), 1983 Citizenship Grade (3), Student's Age (2), Acreage Fer Student (2), and How Long the Library Was Open After School (3);
3. Indian Readinq Models: 1983 Reading Grade (6);
4. Indian Math Models: None.
Previous grades was the only variable to predict Indian student achievement in more than half the reading oriented models for second grade Indian students. No variable was a predictor in all three math oriented models for Indian students. Thus, previous grades was the only predictor for both the population and Indian second grade models.
Even fewer factors were found to be frequent predictors of third grade achievement:
5. Population Reading Model5: 1983 Reading Grade (7) and Father's Status (5);
6. Fopulation Math Model5: 1983 Grade Point Average (3);
7. Indian Reading Models: None.
8. Indian Math Models: None.
No factor was found to predict third grade Indian achievement in four or more of the reading oriented models; indeed only three factors were predictive in even three of the models. Nor was there any variable predictive of Indian student achievement in all three math oriented models. Thus, in the third grade, none of the frequently occurring variables were predictors in both the population and Indian models.
The following variables were the most frequent predictors of
fourth grade academic achievement:
9. Population Feadinq Models: 1983 Reading Grade (7), Change of Schools (5), Student's Sex (6), and Student's Residence (4);
10. Fopulation Math Models: 1983 Grade Foint Average (3) and Percentage of Eooks Lost per student (3);
11. Indian Reading Models: 1983 Reading Grade (7) and the Number of Magazine Subscriptions Fer Student (4);
12. Indian Math Model5: 1983 Grade Foint Average (3) and Student's Age (3).
```
Once again, the only frequently occurring variable that was predictive
of both population and Indian fourth grade achievement was previous
grades.
    The following variables were the most frequent predictors of fifth
grade academic achievement:
1. Population Reading Models: 1983 Reading Grade (7), Student's Age (5), Father's Status (4), and Number of Parents Employed (6);
2. Population Math Models: 1983 Grade Point Average (3) and 1983 Citizenship Grade (3);
3. Indian Reading Models: 1983 Reading Grade (7);
4. Indian Math Models: 1983 Grade Point Average (3) and Acreage Per Student (3).
Frevious grades, as at other grade levels, was the only variable that was predictive of both population and Indian fifth grade achievement.
Lastly, the most frequent predictors of sixth grade academic achievement were as follows:
1. Population Feading Models: 1983 Feading Grade (7), Farticipation in the Federal Lunch Frogram (4), and change of Schools (4);
2. Fopulation Math Model5: 1983 Grade Point Average (3) and Student's Se\% (3);
3. Indian Feading Model5: 1983 Feading Grade (7) and Student's Se\% (4);
4. Indian Math Models: 1983 Grade Foint Average (3). The only frequent predictor found for both the population and Indian students was, once more, previous grades.
Across the grade level models the only variable found to be a frequent predictor of academic achievement at each grade level was previous grades (either the 1983 reading grade or the 1983 grade point average); and that was only for the Washoe County School District population in general. Thus, in response to the question concerning
```

```
the most frequent predictors, other than specifying what they were by
grade level, or for the aggregate population and Indian samples, there
were none (again, encept for previous grades).
    The obvious conclusion, then, concerning predictors of academic
achievement was that no general model of achievement was, or could be,
predictive of both general population and Indian student achievement,
nor of more than any one specific grade level. Thus, in order to
understand and explain academic achievement, there must be separate
models for Indian students only, and for every specific grade.
Manipulability of Academic Achievement
    The results of this study presented overwhelming evidence that the
largest percentage of observed variances and predictors in academic
achievement, for both Indian students and the population, were
potentially manipulable by the school system. With respect to
proportions of manipulable variance in achievement test scores, it was
found that three to nine times as much explained variance was
manipulable as was not, and that statistically significantly more
variance than would have been expected was explained by manipulable
factors. In terms of proportions of manipulable and non-manipulable
variables, the proportions observed in the Washoe County Schoul
District population and Indian models of academic achievement ware not
statistically different from the proportions among the independent
variables used in the multiple regression analyses. Comparatively,
the population and Indian models substantively differed, but were not
statistically different in terms of either numbers of manipulable and
```

```
non-manipuladle predictors nor in the amounts of variance e%plained by
manipulable and nom-manipulable variables. While the resuits were
less evident by grade, essentially the same pattern was found.
    With respect to non-manipulable variables only, it was found that
the population reading oriented models contained predictors that
accounted for statistically more variance than expected for the
population, and less than expected for Indian etudents only. That is,
non-manipulable factors were statistically more important in
enplaining reading oriented academic achievement, as measured by
standardized achievement test scores; in the population than for the
Indian students.
    Thus, it was concluded that, overall, manipulable factors were
much better predictors of students academic achievement than were
variables that were beyond the control of the school system, and that
non-manipulable factors were less important to understanding Indian
students' academic achievement than the academic achievement of the
Washoe County School District students in general.
```


Characteristics of Academic Achievement

Data were collected and analyaed on four general types of characteristics concerning, or often found in context with, academic achievement: 1) previous student achievement; 2) previous student evaluations (made by teachers); 3) personal and familial background characteristics; and 4) school environment and learning context characteristics. By far, the largest number of variables, for which data were collected, were concerned with the school environment and


```
background type factors in the population than in the Indian reading
oriented models.
    Comparatively, then, personal and familial background
characteristics were significantly more important to understanding
population, rather than Indian achievemerit, in the Washoe County
School District. In contrast, student evaluations were significantly
more important to understanding Indian, rather than population,
achievement in the Washoe County School District.
```


Conclusions

```
    The results of this study have provided empirical evidence for the
following conclusions concerning the academic achievement of
elementary school students in the Washoe County School District:
    Ci: Standardized achievement test scores for Indian students are
        significantly lower than test scores for non-Indian students.
    C2: Standardized achievement test scores, holding grade level
        constant, for second, third, fourth, fifth, and sixth grade
        Indian students are significantly lower than for their
        respective classmates.
    C3: Class grades and grade point averages for Indian students are
        significantly lower for Indian students than for non-Indian
        students.
    C4: Indian students are absent signjficantly more than non-Indian
        students.
    C5: Teacher evaluations of Indian students are significantly
        lower than for non-Indian students.
    Cb: The personal and familial background characteristics for
        Indian students are significantly different from those of
        non-Indian students.
```

```
C7: The school environments and learning contexts most likely
    attended by Indian students are substantively different from
    those most likely attended by non-Indian students.
Cg: Holding other relevant variables constant, grade level is an
        antecedent predictor of some standardized achievement test
        scores.
        Cga: Holding other relevant variables constant, for both the
        population and Indian students only, grade level is a
        predictor of:
        (1) Word Study Skills
        (2) Reading Test Total
        (3) Vocabulary Knowledge
        Cgt: Holding other relevant variables constant, for the
        population only, grade level is also a predictor of:
        (1) Listening Comprehension
        (2) Math Concepts
        C8c: Holding other relevant variables constant, for the
        Indian students only, grade level is also a predictor
        of:
        (1) Auditory Test Total
        (2) Science knowledge
        Cgd: Holding other relevant variables constant, for either
        the population and Indian students only, grade level is
        not a predictor of:
        (1) Feading Comprehension
        (2) Spelling
Cy: Holding other relevant variables constant, when explaining
    academic achievement, grade level must be controlled for or
    taken into consideration.
C10: Holding other relevant variables constant, previous grades,
    on the average, account for only one fourth or less of the
    observed variance in standardized achievement test scores.
C11: Holding other relevant variables constant, a significant
    number of the predictors of standardized achievement test
    scores for Indian students are different from the predictors
    for the Washoe Colinty School District in general.
    C11a: Holding other relevant variables constant, previous
        grades are predictive of both population and lndian
        students' standardized achievement test scores.
```

```
\(C_{11 b}:\) Holding other relevant variables constant, previous
    grades, on the average, accourit for more variance in
    standardized achievement test scores for Indian
    students than for the general population.
C11e: Holding other relevant variables constant, besides
    previous grades, the only predictors to account for
    variance in the same reading oriented standardized
    achievement test for both the population and Indian
    students were:
    (1) Emergency telephone number listing (i.e., having a
        number listed was associated with higher
        achievement for the population, but, conversely,
        not having a number listed was associated with
        higher achievement test scores for Indian
        students):
    (2) Father's status to the student (that is, having a
        natural father is associated with higher
        achievement, except for listening comprehension
        and auditory test total achievement;
    (3) Grade level (that is, the higher orie's grade
        level, the higher their academic achievement,
        except for reading test total achievement where
        being in a lower grade level is correlated with
        higher achievement for Indian students);
    (4) Farticipation in the gifted program (that is,
        being in the gifted programis associated with
        higher achievement when controlling for previous
        grades);
    (5) Student's residence (that is, residing in the
        Reon-Sparks/Reno-Sparks Indian Colony area is
        associated with higher achievement test scores);
        and
    (6) Number of parents employed (that is, having just
        the father or both parents employed is related to
        higher achievement test scores).
\(C_{11 d}:\) Holding other relevant variables constant, besides
    previous grades, the only predictors to account for
    variance in the same math oriented standardized
    achievement test for both the population and Indian
    students are:
```

[^0]$C_{17}:$ Holding other relevant variables constant, predictors potentially manipulable by the school system account for significantly more of the explained variance, although nearly equal in numbers in the variable pools, in standardized achievement test scores than do predictors that are bevond the schoal system's control.
$C_{18}:$ In multivariate models, different antecedent factors are predictive of each different measure of standardized achievement test.

C19: In multivariate models, there are particular factors, which are uniquely characteristic of Indian students only, that are predictive of standardized achievement test scores.

C 19a: Holding other relevant variatles constant, participation in a preschool program is predictive of math concepts and math test total standardized achievement test scores for Indian students.

C19b: Holding other relevant variables constant, participation in the Fyramid Lake Indian Reservation Head Start program is predictive of vocabulary knowledge standardized achievement test scores for Indian students.
C_{20} : Holding other relevant variatles constant, previous student evaluations by teachers are significantly more predictive of both reading and math oriented standardized achievement test scores for Indian students than Washoe County School District students in general.
C_{21} : Holding other relevant variables constant, personal and familial background characteristics are significantly more predictive of population than Indian students' reading oriented standardized achievement test scores.
C_{22} : In multivariate models by grade level, non-manipulative factors are increasingly (panal data) important in accounting for variances in standardized achievement test scores for Indian students at each successive grade level (second to sixth).

C2亏: In multivariate models by grade level, Indian students' academic achievement is dramatically lower (panal data) in the fifth grade; particulary with respect to standardized achievement scores.

```
\(C_{24}\) : While ethnicity, when holding other relevant variables constant, may not be a predictor of standardized achievement test scores, there exist substantively sufficient differences to justify holding ethnicity constant (or developing ethnic-based models of achievement).
With respect to the research hypotheses, the empirical results of this study have verified the follcoing:
\(H_{1}:\) Standardized achievement test scores for Indian students are significantly lower than scores for non-Indian students in the Washoe County School District.
\(H_{2}: \quad\) Class grades, attendance, and other measures of achievement are significantly different for Indian and non-Indian students in the Washoe County School District.
Hz: Teacher evaluations are different for Indian and non-Indian students in the Washoe County School District.
\(H_{4}\) : Fersonal and familial background characteristics are significantly different for Indian and non-Indian students in the Washoe County School District.
\(H_{5}:\) School environment and learning context variables are different for Indian and non-Indian students in the Washoe County School District.
\(H_{6}:\) Grade level is an antecedent predictor of standardized achievement test scores in the Washoe County School District.
```



``` factors are predictive of standardized achievement test scores for Indian students in the Washoe County School District.
Hq: Different antecedents are predictive of standardized ashievement test scores at different grade levels in the Washoe County Schooi District.
H10: Residence (i.e., urban/colony or rural/reservation) is not a determinant predictor of Indian students achievement in the Washoe County School District.
\(H_{11}:\) The models of academic achievement are more predictive at certain grade levels than others in the Washoe County School District.
```

```
    H12: Manipulable variables account for more total variance in
        standardized achievement test scores than mon-manipulable
        variables in the Washoe County School District.
    H13: More manipulable than non-manipulatle variables account for
        the observed variances in standardized achievement test
        scores in the Washoe County School District.
But the data results refuted the following hypothesis:
    H7: Ethnicity is an antecedent predictor of standardized
        achjevement test scores in the Washoe County School District.
    In other words, ethnicity per se (or as a predictor variable) in
conjunction with other predictors was not a direct antecedent
predictor of standardized achievement test scores. Ethnicity was,
however, indirectly an antecedent factor of academic achievement,
because: (1) previous class grades were found to have predicted
(later) academic achjevement and Indian students tended to have had
lower class grades; and (2) student evaluations, which tended to be
significantly lower for Indian students, were found to have precicted
Indian achievement. That is, previous class grades and student
evaluations were predictive of achievement test scores and ethnjcity
was found to be an antecedent of both previous class grades and
student evaluations. Consequently, it was concluded that ethnicity
(or being self identified as Indian) indirectly affected achievement
test scores through teacher evaluations and rewards.
    In summary, this study has demonstrated that Indian students,
relative to their classmates, were failing academically, received
lower evaluations from teachers, were significantly different from
their non-lndian classmates in terms of personal and familial
background, and tended to go to schools that were considerably
```

```
different than the schools most likely attended by non-Indian
students. This study has shown that, while not necessarily a
predictor of standardized achievement tests, ethnicity and grade level
must be controlled for. That is, compared to the general population
those factors that explained standardized achievement test scores
tended to be different for Indian students and for each respective
grade level. Fotentially manipulable variables were significantly
more important to explaining academic achievement than were
non-mapipulable factors for the population in general and for Indian
students. Furthermore, these potentially manipulable factors were
more predictive of Indian student than population achievement; in
contrast, personal and familial characteristics were more important to
understanding the Washoe County School District population achievement
then the Indian students' achievement. Student evaluations, which,
ggain, tended to be lower for Indian students, were significantly
better predictors of Indian student than population achievement, and,
therefore, being Indian was an indirect antecedent of achievement test
scures, primarily through previous teacher evaluations.
```


Chapter 10

ACADEMIC ACHIEVEMENT DF INDIAN STUDENTS: DISCUSSION AND IMPLICATIDNS

This study was primarily an inductive comparison of the educational success, as defined by high academic achievement, of elementary school Indian students and thejr classmates in the Washoe County School District. The majority of previous studies on Indian and mon-Indian students academic or educational success have concluded that the primary explanations for such success were not located within the schools, but rather within the students themselves, their families, their community, and their culture. On the other hand, a minority of the previous studies have concluded that factors within the school or the control of the school system were equally important to understanding academic success. The impetus for this research was both theoretical and applied. Theoretical because a review of the literature documented the need for further empirical research to fill in gaps in the current understanding of academic and educational success, and tecause the same review concluded that there existed a lack of cohesive theoretical understanding of the academic achievement of Indian students. Applied because the school system

```
studied; the Washoe County School District, desired empirical
knowledge about the achievement level of Indian students in their
system, and because schcol officials desired empirical knowledge for
future palicy implementations.
    An inductive and deductive examination of the academic success of
elementary school Indian students and their classmates in the Washoe
County School District was made, therefore, to add to current
understanding of elementary student academic success and to attempt a
synthesization of the theoretical understanding of the academic
achievement of Indian students. In other words, while the purpose of
this study was to exploratorily compare the educational sucess of
Indian and non-Indian students, the goal was to more fullv understand
(relatively) Indian student academic success. Fursuant to this
research goal, this study encompassed four objectives: (1) to
describe and compare characteristics of elementary school students and
tMeir academic achievement; (2) to identify antecedent predictors of
academic achievement success; (3) to develop predictor models of
academic success; and (4) to determine the potential manipulability of
such academic success by the school system.
    To achieve these objectives, this research project conducted what
it referred to as a processual study. A processual study was defined
as a combination of research processes interconnected by numerous
individual (subjective) decisions as to when, where, why, and how to
begin and end a particular cycle of research. A research process was
defined as a particular stage in the research cycle interconnected
```

```
with individual decisions; that is, a research process was
conceptualized as dynamic, interactive, and replete with sutjective
choices and not a static, pre-existing stage devoid of any choices or
interactions. A research cycle was conceptualized as a set of
research processes (or stages and decisions) that encompassed a
distinct (but subiectively identified) beginning and end. As such, a
research cycle could have parallel or sequential sets of research
processes, or simply one set of processes, while each set of research
processes could have one or more parallel or sequential research
processes (or stages and decisions). Similarly, a study could be
composed of a single research cycle, or it could have two or more
parallel or sequential research cycles.
    Due to the scope of the research objectives, this study was
composed of four sequential research cycles. The first cycle of
research entailed two parallel sets of research processes; one
inductive and descriptive, the other deductive and romparative in
nature. The first cycle began with the review of the literature and
Ended with the descriptive and comparative results reported in Chapter
3. The second cycle of research was concerned with developing
predictor models of achievement and began with the results and
conclusions of the first research cycle, while the second cycle ended
with predictor pools and models of achievment, the results of which
were discussed in Chapter 4.
    The third research cycle was the most comiple: cycle, as it
involved two sequential sets of research processes. The first set of
```

```
processes involved three stages, which were to establish correlational
(as reported in Chapter 4) and inter-correlational (as reported in
Chapter 5) matrices, to build (as reported in Chapter 5) and compare
(as reported in Chapter 6) predictor models for the elementary student
population and Indian students only, and to develop predictor models
of academic achievement for the population and Indian students by
grade level (as reported in Chapter 7). The second set of processes
in the third research cycle included two stages, as discussed in
Chapter 8. The first sought to determine whether manipulable or
non-manipulable antecedent predictors or any type of antecedent factor
(i.e., previous achievement, previous evaluations, personal/familial
characteristics, school environment/learning context factors)
accounted for the larger amounts of explained variance. The second
stage involved the same processes, but evaluated the percentages of
explained variance accounted for by manipulable/non-manipulable
predictors, and by the four types of antecedents for Indian and
population models.
    The fourth research cycle dealt with drawing conclusions from the
first three research cycles, making inferences concerning these
results, and integrating such generalizations into the existing
knowledge; that is, the discussion in Chapter P was essentially that
of theory construction. While conclusions and generalizations were
developed, the research cycle was stopped after the first stage, based
upon the (subjective) decision that too many gaps in the understanding
of educational success e%isted to formulate a valid theory.
```

```
As discussed in Chapter 9 , the results and conclusions of this study generally supported the various research hypotheses that were either originally derived from the literature review or the initial conclusions of the earlier research cycles in this study. More importantly, the results provided new exploratory and additional descriptive knowledge about the academic achievement of elementary school Indian students and their classmates, in regards to the research questions posed in Chapter 1 . But what do all of these generalizations and this knowledge tell one about Indian education? It will be recalled that the review of the literature in Chapter 1 documented the protracted interest in Indian education, and the overwhelming sense that Indian students were failing. Eeginning with the Meriam Report (Meriam et al., 1928), continuing through to the Kennedy Report (U.S. Senate, 1969), and up to the recent evaluation of Title IV, Fart A projects (Development Associates, 1985; Young at al., 1983), research and evaluation of Indian education has failed to produce much theoretical understanding of Indian education, which in turn, has resulted in no applicable solutions for what can be done to change it. That is, there exists substantial empirical evidence of Indian student failure, but very little research that has attempted to Explain why observed differences continue to exist between American Indian and non-Indian students academic achievement.
It mas concluded that this has been generally due to the fact that most researchers of Indian educatign have relied upon more general theories of education and, therefore, have presumed that the
```

```
differences were primarily due to factors such as heredity (e.g.,
Jenser, 1969), luck (e.g.; Jencks et al., 1972), or familial and
cultural influences (e.g.; Coleman et al., 1966; Flowden Report,
1967), all of which were beyond the control of the educational
institution {see Bridge, Judd, and Moock, 197%; and Mosteller and
Moynihan, 1972; Shea, 1976 for reviews of this literaturel. Yet, as
also shown in the literature review, this theoretical position has not
been left unchallenged (e.g.; Brod, 1976t; Heyns, 1974, 1978; Mayeske
et al., 1972; Futter et al., 1979). That is, studies have suggested
that some factors can be manipulated by the school system, and that
such factors were equally, if not more, important to academic
achievement than the mon-manipulative factors cited by dominant theory.
    Moreover, this alternative theoretical position has demonstrated
that many of the conclusions formulated by the presiding theory were
based upon research that was asking different types of questions and
Often encompassed different goals. That is, Coleman et al., Jencks et
al., and others have been studying education with the goal of
understanding how education could eliminate social inequality, not
with the goal of understanding how educational equality or success
could be aciiieved. Indeed, in discussing factors that were
potentially manipulable by the school system, and thus could help
increase academic achievement, Jencks et al., conceded that:
If we think of school life as an end in itself rather than a means
to some other end, such differences are enormously important.
Eliminating these differences would not do much to make adults
more equal, but it would do a great deal to make the quality of
children's (and teacher's) lives more equal (1972:25b; emphasis
added).
```


Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

```
McShane's model attempted to include both environmental and
interactional aspects, which was noted (in Chapter 1) to be similar in
nature to the conceptual model of education recently proposed by
Stockard and Mayberry (19日7). Stockard and Mayberry's model has
focused upon factors that were potentially manipulable (as well as
some that would not be manipulable) by the school system. Their
conceptual model, on the other hand, has failed to accourit for the
multicultural educational processes of acculturation or the more
propagandistic processes of assimilation. That is, Stockard and
Mayberry's model addressed the socialization, but not the
enculturation, of students.
    Thus, it was concluded, from the review of previous studies, that
thare existed no model or theory that adequately explained Indian
education, as narrowly defined by academic achievement. As stated at
the beginning of this chapter, the intent of the last cycle of this
study had been to develop a grounded theory of Indian education; which
would have been based upon a synthesis of e%isting knowledge,
concerning both Indian and non-Indian education, and the empirical
generalizations of this study. Although it was concluded that the
generalizaitons of this study were important, too much of the variance
in agademic achievement for Indian students (and the population in
general) was left unexplained to construct an adequate theorv; nor
were the generalization from previous studies useful for doing 5o.
However, this did not preclude more fully integrating some of the
```

```
generalizations of this study, and suggesting some implications for
further research.
```


Indian Education

The results of this study presented longitudinal and panel evidence for the formulation of theoretical generalizations that seemingly contradict existing understanding of Indian (and non-Indian) education. The results demonstrated that a number of variables within the control of the school system were influential in understanding academic achievement. Indeed, the study indicated that most of the factors that explain Indian student achievement were school environment and learning context, student evaluation, and previous student achievement characteristics, rather than personal and familial/cultural characteristics. More to the point, student evaluation factors were significantly more important in explaining Indian rather than population achievement, although personal and familial factors were significantly more important in explaining population rather than Indian academic achievement. This study did measure a number of the factors usually attributed to Indian students. educational failure (e.g., father's status, student's residence, parental employment), but failed to find them to be predictive of Indian student achievement. Indeed, this study has found that, on the average, between 92% and 96% of the variance in the academic achievement of Indian students was within the school system's potential control.


```
reality, but rather a cultural fact, and in any case is not a
predisposition of innate intelligence or potential; nor is it a
default explanation of the resultant student (or adult).
    The conclusions of this study, then, were most consistent with
those made by Erod (1975, 1976b, 1978, 1979b) and Rutter et al.
(1979). This study collaborated Erod's findings that potentially
manipulable variables within the school system accounted for much of
the variance in academic achievement (test scores). In contrast to
Brod's findings, however, this study found this to be true for
students in both urban and rural school settings. This also provided
empirical evidence that refuted commonly held assumptions le.g.,
Dankworth, 1969) that residence was a determinant predictor of Indian
students' academic achievement. That is, living in an urban area,
including urban Indian colonies, has been held to lead to higher
academic achievement than living in a rural area or on a rural Indian
reservation.
    These results, moreover, supported the conclusions made by futter
and his colleagues (1979), based upon their longitudinal study of
English students, that there was tremendous variabjlity between
various groups and schools in student achievement, educational
characteristics, and predictors of success. That is, this study found
considerable differences between the Washoe County School District
population and Indian students with respect to academic achievement
success, student and school characteristics, and the antecedent
predictors of academic achaevement. Additionally, these results
```

```
verified the assumption made by Rutter and his associates that a
reliance upon one or two measures of academic achievement
underestimates the importance of schooling.
    A study by Driessen and Elliott (1968) had found that students.
aspirations varied considerably by grade level, which led to the
research hypothesis of this study that Indian student and population
acedemic achievement mould also vary by grade level and, more
importantly, that the predictors would vary as well. The results of
this study clearly showed that there was tremendous variation in the
grade level models of academic achievement for both the washoe County
School District population and Indian students, as well as between the
Indian students and the population. Moreover, the models for some
grade levels accounted for nearly twice as much of the variance (\underline{E}2)
in the standardized achievement test scores as that found in the
aggregate populetion and Indian models. These results were of
particular significance to understanding the academic achievement of
Indian students for several reasons.
    First, the assumption has been generally made in other studies
that standardized achievement tests were measuring cumulative
knowledge and learning. If such were the case, then, presumably, the
amount of variance accounted for by the models should accumulate or
increase because the factors explaining achievement would also be
additive in nature. While the panal data used in this study were not
true longitudinal data, it was possible to tentatively examine this
assupmisun. Examination of the results, nowever, did not indicate
```


grade? More importantly, how can the Washoe County School District
somehow occur. That it was not occurring was somewhat evident by the
finding that previous class grades were not very strong predictors of
academic achievement. On the other hand, it could be that previous
grades just were not particularly good predictors of academic
achievement test scores because they were not valid measures of
academic achievement, It may be, then, that previous grades were not
valid measures, rather than the tests themselves; lagain, assuming the
tests were measuring some relevant phenomenal. Indeed, it may well be
that previous test scores would more validly and reliably represent a
student's previous achievement. Of course, this would also imply the
ludicrousness of class grades.
The second reason why these results were significant to Indian
education was because the panal data provided some evidence of support
for a "piataau" or "drop-uff" effect. 30 As just discussed, the mean
test scores from the panel data for both Indian and non-Indian
students appeared to demonstrate generally positive progress or
Ehanges in standardized achievement test scores in the second, third,
and fourth grades. Eut this pattern was interceded by either a
leveling off or a decline in scores for toth Indians and non-Indians
in the fifth grade. Similarly, it has been noted that the ability of
predictor antecedents to explain the variance in scores also declined,
which suggested that this "drop-off" was probably due to factors not

```
measured in this study. Following this fifth grade "drop-off,"
however, both Indian and non-Indian students showed positive increases
in their test scores. But Indian students at this grade level failed
to achieve at the same level as their clas5mates. That is, while
non-Indian students made a significant turnaround at the si%th grade,
Indian students essentially leveled off or "plateaued out."
    Additionally, the predictor models showed the same pattern in
terms of the explanatory power of the predictors, particularly with
regards to previous reading grades. For example, previous grades
accounted for as much as 66% of the total variance (in that
achievement model) for fourth grade Indian students, but mb more than
42% of the variance for fifth grade students. More importantly,
previous grades erplained more variance in all fourth grade models
than iri the same fifth grade models, and the total explained variance
was always greater for fourth grade. The obyious question at this
point was, what was causing this to happen?
    To try and explain this "plateau effert," the conclusions were
re-evaluated to try and djscover 50me clues. First of all, it mill be
recalled that it was suggested that standerdized achievement tests
were not very cumulative. However, what might have been occurring was
that the eiams were more cumulative at one or more of the upper grade
levels. From Table 10 iri Chapter 2 it will be recalled that the
intermediate level z%am was used for grades 4, 5, and b. However,
Form 1 was administered to both the fourth and fifth grades and form 2
to the si%th grade. Thus, it would seem probable that the e:ams were
```

```
potentially more cumulative for fifth grade students than others. If
this was the case, it would partially explain why the scores dropped
Off for fifth grade students.
    Second, it was ooserved that Indian students were achieving their
highest scores in the third and fourth grade <indeed in some cases
they were above or very close to the national norms), vet previous
achievement factors indicated that class grades assigned by teachers
Were not reflective or predictive of their relatively high
performances on the standardized achievement tests {see Table 1b,
Chapter 3). That is, their class grades were considerably lower than
would be expected for students with the standardized achievement test
scores that Indian students had in the following grades {assuming
cumulative knowledge). Such discrepancies between classroom
achievement (class grades) and standardized test score measurements of
achievement have also been linked to organizational differentiation
(Cicourel and kitsuse, 1963) and se%/gender differences (Ballantine,
1983; Dolan, 1987). Indeed, a recent report on se% differences
between grades and test scores in math and science found that
    when students reported their rank in the graduating class, 42
    percent of Montana's female students and 34 percent of the male
    studenis taking the SAT, were in the top 10 percent of their
    graduating class. However, the males in this group outscored
    females by 80 points on the mathematics test (Dolan, 1987:7).
This finding led Dolan to rajse the obvious question which could be
asked of any group of students with such a discrepancy:
    Why do female [or Indian] students rank so much higher according
    to GFA, a rank determined by teacher grades, yet are outscored on
    the math [and other types of] test[s] by such a significant
    margin? (Dolan, 1987:7).
```

```
While Dolan more recently focused upon the school's criteria for grading achievement, Cicourel and kitsuse (1963) had earlier brought attention to the school system's processes of organizational differentiation and the ascription of labels based upon achievement and social types. Cicourel and kitsuse had found that test/grade discrepancies were viewed by the school system as characteristics of the students, rather than the grading or testing processes: Students perform belaw or above their tested ability as a consequence of motivational, personal, and social "problems," not methods of teaching, preparation (readiness), or aptitude (1965:62-63).
In a real sense, this "gate keepirig" process, then, has led to a self-fulfilling prophesy, because
the classification of students as achievement types in effect produces a distribution of students who are conceived by the organizational personnel to have "problems" (1963:65).
Moreover, teacher evaluation factors (e.g., citizenship grades, placement in the gifted program) indicated that teachers were telling Indian students that they were not very good students. Thus, Indian students were not being adequately rewarded for their measured achievements. This was particularly important, because "where academic achievement is rewarded by faculty and peers, students tend to achieve better" (Ballantine, 198: 184; McDillet al., 1967). That is, students tend to conform to the academic norms of the school they attend, and teacher evaluations have provided such cues. More importantly, Brookover and his associates (Erookover et al., 1967; Frookover et al., 1973; Erookover and Schneider, 1975; Brookover at al., 1979; Brookover et al., 1982) have shown the importance of
```



```
predictive for fourth grade than for fifth grade Indian students'
academic achievement. More importantly, non-manipulable variables
become increasingly important in the fifth grade, and were most
important by the sixth grade.
    Conversely, for non-Indian students, previous grades remained
relatively consistent with regards to the amount of variance they
explained in standardized achievement test scores for fourth to sixth
grade students, although such predictability was less than that for
Indian students. Hence, there was much greater congruence between
class grades and achievement test scores for mon-Indian students.
Similarly, there was less fluctuation in the antecedent predictors of
population achievement, particularly with respect to whether such
variables were manipulable by the school system or not. In other
words, personal and familial tackground characteristics were more
important for predicting academic achievement in the general
population than for Indian students only.
    A fourth possibility was that something unique happened in the
fifth grade that made that grade particularly tough for Washoe County
School District students, but especially for Indian students. After
all, the standardized achievement test scores did drop for both Indian
and non-Indian students. That is, if the tests themselves were
cumulative, and presumably the class curriculum too, then this would
certainly constitute unique circumstances (assuming tests at other
grade levels were less cumulative). One possibility might have been
that fifth grade teachers were somehow different than fourth grade
```

```
teachers in their e%pectations, teaching styles and personal
characteristics. For instance, the only elementary school level
Indian teacher in the Washoe County School District, who taught at the
school with the largest Indian student population, taught fourth
grade. Perhaps this was such a positive experience that getting
another non-Indjan teacher in the fifth grade resulted in greater
disenchantment for the Indian students, than if she/he had had
non-Indian teachers all along. That is, having a role model that
Indian students could self-identify with may have resulted in
increased achievement or different expectations, but the return to a
non-Indian teacher in the fifth grade suppressed those gains and
actually compounded the situation.
    Another possibility was found through examination of other
elementary teachers' characteristics, which suggested that one
potentially major difference was teacher's se%, Overall only 10% of
the elementary school teachers were males. Of these, only 13% were
teaching at the fourth grade level, but Jo% were teaching at the fifth
grade level and 49% were at the sixth grade level (see Table A-3,
Appendi:% Al. Such figures, then, suggested that another problem
occurring at the fifth grade level was that students were far more
likely to have a male teacher for the first time. Indeed, it was
found that, of the three schools with large numbers of Indian
students, one school had all female teachers (School number 59), and
the other two did not have any male teachers until the fifth grade.
Moreover, Indian students had a SJ% chance at one school (Number OJ)
```

```
and 66% chance at the other school (Number SE) of having a male
teacher. While this may seem inconsequential, when considered with
other results from this study, it becomes important.
    It will be recalled that Indian students were significantly more
likely to have a father missing or someone other than their natural
father present in the home. From this fact it can be taken that
Indian students may have been more likely than non-Indian students to
have a difficult time relating to a male teacher. It will also be
recalled that this very factor, father's status, was a strong
predictor for fifth grade Indian students (see Table E3).
    What does all of this mean? It means that Indian students
probably were not being properly rewarded by their teachers and/or
were not adjusting to the likely change of having a male teacher in
the fifth grade for the first time. Moreover, the system may have
been getting to the Indian student, so that a process of
self-fulfilling prophecy became a reality. These panel data analyses
indicated that Indian students were generally not statistically or
substantively different from their classmates, in terms of teacher
assigned class grades and academic achievement test scores, when they
first started school. Indeed, achievement patterns, as measured by
grades and test scores, from this panal study indicated that Indian
students appeared to have often made greater gains in the early years
of school than their classmates. Yet, it was also informally observed
by the researcher that many teachers in the Washoe County School
District honestly believed that Indian students could not succeed
```

```
because they were Indian. Such an attitude was partially measured by
the various teacher evaluation measures (e.g., citizenship grade). It
will be recalled, however, that Indian students generally received
lower teacher evaluations, but that they were significant, albeit not
very accountable, predictors of their academic achievement test scores.
    Such sociocultural discrimination could have easily produced a
downward spiral of self-fulfilling prophecy, Eecause the relationship
between expected background characteristics and test scores was
generally stronger for the population in general, and because the
teachers generally believed that most of these students could succeed,
non-Indian students found themselves taking off towards significantly
more positive educational fulfillment at the sixth grade level.
Similarly, because non-Indian students were more likely to have a
natural father, they probably would have a sociocultural advantage
over Indian students in interacting with male teachers. That is,
students with natural fathers probatly have had more experience to
draw upon when they encountered or had to interact with a male teacher
for the first time, while Indian students would, most likely, have had
to first learn new interpersonal relationship skills before they could
proceed academically.
    This is not to say that Indian students with natural fathers may
not also be culturally disadvantaged because they may have had a
completely different sociocultural family structure as well. That is,
most educational systems contain the assumption that a student comes
from a family with an accepted familial structure, and one which would
```

```
have prepared them to "properly" interact in the classroom. Yet this
was not the case for Indian students; they had to first learn how to
be members of the school system (e.g., how to interact with male
teachers) before they can learn what the system wants them to know
(e.g., academic achievement). Non-Indian students also had a
structural advantage in that they were more likely to have attended
schocls where they would have had male teachers at various grade
levels, while most Indian students did not encounter male teachers for
the first time until the fifth grade.
    Taken together, then, it would appear that Indian students were
being programmed towards failure between the third and fifth grades,
which was a reality at the si%th grade level (when previous grades
were, once again, a powerful predictor of achievement). Hence, the
panal data results indicated that after a generally rugged fifth grade
year, Indian students in the si:%th grade showed a steady level or
"flateau" of achievement, while non-Indian students' academic
achievement apparently took off. That is, it would appear that
education for Indian students failed to be cumulative, but was
increasingly cumulative for non-Indian students. Moreover, although
this study did not include data on middle and high school students,
numerous studies have documented that this pattern of a widening gap
between Indian students and their classmates continues through the
twelfth grade, when Indian students have been found to be performing
at about eighth grade achievement levels (e.g., Erod, 1979b; Erod and
Brod, 1981; Coleman et al., 1966; Coombs, 1970).
```

```
At this point it is important to reiterate that this analysis was based upon a panel study design, rather than a true longitudinal research design. However, predictors did occur prior to the exams. This fact, then, increased the confidence in generalizing that education for indian students in the si\%th grade was not only not equal, but was becoming increasingly unequal. In other words, education was differentiating for Indian students, but increasingiy homogenizing for non-Indian students. Thus, education in the sixth grade was working for non-Indian students, as institutionalized socialization, but had stopped functioning, as institutionalized enculturation (or assimilation), for Indian students.
```


Implications

Ferceptibly, the results and conclusions of this study have suggested a number of important methodological, theoretical, and practical; or applied, implication.

Methodoloqical implications

A major conclusion of this study was that each test and subtest of the scholastic achievement test was a different measure of academic achievement. That is, knowledge about a student's reading test total or math test total scores was not always equally representative of either the subtests in reading and math or the other test scores (e.g., auditory, spelling, and science subtests and tests). Nor were the antecedent factors that accounted for the explained variance in the reading or math test total scores necessarily inclusive of the


```
subtests). Similarly, the predirtors of these test scores for second
grade Indian students (Table K-1) were different for each subtest/test:
```

Achievement Subtest/Test Word Study Skille

Reading Comprehension Reading Test Total

Fredictors
1983 citizenship grade, change of schools 1983 reading grade, school cost 1983 reading grade, age; student's absenteeism

```
Clearly, the subtests were measuring things that became lost or confounded when totaled together. Thus, the researcher who reported that the predictors of reading achiavement, as measured by the reading test total score, were previous grades, age, and absenteeism would have reported misleading conclusions. And in this e\%ample the conclusions would have validated existing beliefs, when in fact a number of other atypical factors were also predictive of second grade reading achievement for Indian students.
Perhaps more importantly, it was observed that some of the dependent measures were subject to greater control and manipulation by the school system than others. For example, if only the reading test total and math test total scores had been used in this study, the conclusion would have been that \(82 \%\) of the explained variance in reading achievement for the population and \(92 \%\) for the Indian students, was explained by manipulable variables. Such a conclusion, however, could have masked that the following percentages of variance were accounted for by manipulable variables in the subtests:
Manipulable Variables
```

Achievement Test
Word Study Skills Reading Comprehension

Population \quad Indians
$79 \% \quad 70 \%$
$87 \% \quad 99 \%$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

```
That is, the percentage of variance accounted for by manipulable
predictors was often quite different from the percentage for the test
total. Moreover, other tests (e.g., auditory test total, spelling,
science knowledge) al50 had different amounts of variance and
predictors that were potentially manipulable by the school system (see
Table 45).
    Interestingly, a recent study of Indian and other students in the
Minneapolis Fublic Schools also found evidence that achievement was
not the same throughout the parts of a criterion referenced exam,
Witthuhn (1984) reported finúing different patterns of performance on
mathematics strands of a locally developed criterion referenced
benchmark test. Witthuhn reported that:
    The results of the analysis of the criterion referenced
    mathematics tests of more than 10,000 Minneapolis students
    indicate that significant differences in the total test scores of
    students are related to the ethnic group and socioeconomic class
    of the students, but thet those differences do not exist uniformly
    throughout all parts of the mathematics curriculum (1984:s1).
Witthuhn's research indicated that Indian studenis had problems with
numeration, but demonstrated relative strength on the geometry
strand. These findings, then, reiterate the results of the current
research that the measurements of achievement tests vary considerably,
which have presumably influenced (or contaminated) the results of
those studies that used only test total scores. In witthuhn's study,
for example, if only the geometry strand had been used, Indian
students would have shown mathematical strength in that school
district, while reliance on the numeration strand mould have led to
```

```
the conclusion that Indian students were severely below e%pectation
and use of the test total would have also indicated that they were
failing.
```



```
classroom interactions must be better understood, although Fhillips'
```


Abstract

(1983) study on the "invisible culture" has provided much needed understanding in this area.

A related methodological implication, therefore, concerned the data collection methods. Clearly, a triangulation of existng records, non-participant observation, interviewing, and survey methods is needed to obtain all the different types of data implied above as necessary. Such a position, no doubt, will require greater reliance upon inductive research and the "dumping" of theoretical biases. But that is what is needed before a theory of Indian education can really emerge.

Theoretical Implications

Although this research has not provided adequate conclusions to develop a theory of Indian education, it has evolved several important generalizations and considerations, along with a model for future studies. Foremost was the conclusion that any theory of Indian education will have to acknowledge that the school system does exert tremendous influence over both population and Indian student achievement, but also that it has greater control over the academic achievement of Indian students. That is, it was found that the predictors of the Hashoe County School District population included significantly more mon-manipulable variables than did the Indian models. Additionally, any theory will have to be complex enough to accommodate differences by grade level and recognize that the goals of education are different at each grade level, and thus the predictors will be different. The general theory will have to make explicit that

```
it is applicable to Indian students only, because the antecendent
predictors of Indian student achievement were different enough to
warrant a distinctive theory.
    In a study of a reservation schools in Arizona, Boloz and Varrati
(198心) reported that given the chance through positive school image
(i.e., ethos), proper curriculum, and school control, Navaio students
who remain in the system demonstrated significantly higher achievement
test scores. That is, the school system can make changes, but
research must demonstrate and school personmel must accept, such
ideas. The results of Boloz and Varrati and this study, then, suggest
that any guiding theory of Indian education must encompass the effects
and replacement of negative assumptions with positive ones: e.g.,
Indian student success rather than failure.
    More importantly, when the conclusions of this study are
ju:taposed with other recent research findings concerning classroom
interactional differences for Indjans and non-Indians in the classroom
(Greenbaum, 1995; Fhilips, 198J), it would seem appropriate that
theoretical understanding must include interactional characteristics.
While many studies have shown attitudinal factors to be predictors of
achievement, none have considered interactional differences. Indeed,
the positive relationships in student and teacher interactions,
teacher's sex, positive attitudes and achievement are theoretical and
empirical unknowns, other than the assumption that they correlate
positively; which, as this study has shown, may not be true. For
instance, analysis of teacher distributions by sex suggested that
```

```
having a male teacher may be negatively related to achievement,
especially for Indian students.
    All of these issues, however, address a more fundamental
theoretical implication: the goals of Indian education. That is, the
dominant belief is that the goal of education for Indians is
assimilation or pluralism at best; but for most Indians themselves,
the goal of education which is the prescribed goal of education for
non-Indians, is socialization.
    Assimilation refers to both cultural and social processes of
change, and to cultural and social goals. As cultural processes,
assimilation can be either crosscultural or intracultural.
Crosscultural assimilation occurs when two or more cultures are in
contact with each other, and involves the replacement of one of the
cultures with the other. Crosscultural assimilation, then, involves
groups of people (often entire societies or cultures) rather than
individuals, and may occur through either force ("forced
assimilation") by the dominant cultural group, or, in rare instances,
by the choice of the subordinate cultural group. Additionally, the
assimilated culture (the one losing its identity) may be either the
subordinate or dominant culture, but since voluntary crosscultural
assimilation is essentially sociocultural suicide, it seldom occurs.
Thus, the goal of crosscultural assimilation is the elimination of one
culture, which is also referred to as assimilation (or being
assimilated).
    Intracultural assimilation, in comparison, is the cultural process
```



```
the individual (through enculturation), and the goal, referred to as
being assimilated, is the elimination of native (to the minority or
cultural group member) traits for alien traits (from the majority).
However, since the process of enculturating individuals into
sociocultural group is often voluntary and, more important, additive
rather than eliminative, it can also lead to a different goal, that of
pluralism.
These processes of assimilation and enculturation are often
confused with the social process of socialization, which is the
process whereby an individual learns his native culture. That is, the
individual interacts with others to achieve a series of specialized
and acknowledged goals and/or directed skills important to and valued
by the cultural group he/she is born into. A well socialized
individual is someone who has fully absorbed or assimilated his/her
native culture. Socialization, then, is the microlevel process of the
macrolevel intracultural assimilation. That is, socialization occurs
within identifiable small groups, and organizations, and intracultural
processes occur within communities, regions and societies.
    While the overriding purpose of socialization is to facilitate
making individuals into actively participating members of their
culture/society, there are two distinct goals of socialization. The
most commonly accepted or preferred goal of socialization is to
homogenize individuals for ma%imum conformity. In this respect
socialization appears to be like assimilation or enculturation;
indeed, this is why schools are often viewed as the great equalizers.
```

```
In contrast, the second goal of socialiaation is to differentiate
individuals to foster creativity and initiative, to develop each
person`s potential and to produce individuals who can transforin
society. Bath goals, despite their apparent contradiction, are
fundamental to socialization (and education).
    Education is the unbiaser, institutionalized socialization of new
native members. Education involves both formal and irsormal {e.g.,
the "hidden curriculum," Eallantine, 1983) processes to achieve both
goals of socialization, and when schools emphasize one goal over
another they engage in propaganda, which is biased, one-sided,
institutionalized socialization. Yet, schools where Indians are
students have two sets of goals: assimilation and
membership/socialization. That is, socialization is usually referred
to as the prescribed goal of education for non-Indians, but
intracultural assimilation is also assumed. gut the prescribed goal
of education in many, if not most, schools for Indian students is
crosscultural and/or social assimilation. Most schools do not have
50cialization as a goal for Indian students. This is not meant to
imply, however, that within the Indian student's own cultural
commurity the desired goal of education also involves the goal of
socialization.
    Consequently, the implication is that there are dialectical
functions for the schools attended by Indian students. That is, on
the one hand the school is to educate and on the other, it is to
propagandize (or assimilate). Gut at schools where there are no
```


Abstract

end, but Indian socialization would result in their being members of their own unique cultural group or society. Tests, therefore, actually measure different parts of the final products or outcomes and not the processes themselves; that is, they measure the skills and knowledge necessary for surviving in the majority's cultural world. Hence, achievement tests are measuring homogenization and a common understanding of the dominant culture, regardless of the process leading to the product. Thus, because of their similar goals, academic achievement tests probably measure both socialization (for nori-Indjans) and assimilation (for Indians).

This becomes problematic since Indian students are socialized into their respertive cultural ways prior to entering into the school systems. The theoretical implication, therefore, is that if Indian students are entering into the educational institution having been diffarentially socialized (e.g., Greenbaum, 1985; Fhilips, 1903), they will have entirely different antecedents to academic success than other students, which is what this study found.

Moreover, since the educational institution is attempting to assimilate rather than socialize Indian students while at the same time socialize non-Indian students, one would expect early high levels of accountability of academic achievement followed by declines. In other words, the students would be forced to learn to survive, but would then reach a plateau and level out. Thus, when one attempts to account for variance in the academic achievement of Indian students, previous achievement and evaluations would be presumable very


```
explanatory at first, and then level off or drop out. Clearly, this
was the pattern found in the results of this study. Moreover, this is
understandable since socialization is generally meaningful to
students, while assimilation is generally not desired. Conversely, if
socialization is the primary goal, then the achievement pattern would
reflect greater continuity and continued growth. It is particularly
pertinent that in the district studied by foloz and Varrati (1983)
(see also Foloz and Jenness, 1984), the school system was explicitly
attempting to socialize, rather than assimilate, Navajo students; and
the result was increased achievement (i.e., continuity of achievement)
across the grade levels.
    Theoretically, then, it seems appropriate that future research
should assume that, if the goal e%plicitly or implicitly is
assimilation, then academic failure is likely to be found for Indian
students, while if the goal is socialization, then academic success
for Indian students is more probable. Nore specifically, if the goal
of schools for Indian students is socialization to help the student to
become a good person/member of their particular Indian society, then
Indian education would be occurring. Conversely, if the goal for them
is to conform to, and become an assimilated member of, non-Indian
society, then what would be occurring is the "education" (or
propagandization) of Indians. Since assimilation is generally not a
desired goal for Indian students thomselves, and is essentially
disruptive to their own socialization, the goal of assimilation would
```

```
clearly initiate a process of failure that takes hold at about the
fifth or sixth grade.
    Practical/applied implications. A secondary purpose of this study
was to provide information to the Washoe County School District that
would be useful in improving the academic achievement of Indian
students. With this purpose in mind, several specific implications
were drawn from the results and conclusions of this study.
    The most important implication, obviously, is that the school
district can do things to alter Indian student academic achievement
(vis-a-vis success). This study has pointed out a number of factors
potentially manipulable by the district. In particular, both measures
of teacher evaluation--participation in the gifted student program and
citizenship grades--are statistically significant predictors of
arhievement. That is, broadly speaking, participation in the gifted
piogram is contingent upon teacher agreement (i.e., evaluation), and
the results of this study strongly indicate that participation in this
program has very positive effects on achievement test performance.
Yet Indian students are half as likely to participate in the program.
Similarly, it was found that citizenship grade, when it entered, was a
fairly good predictor of achievement and may even lead to a situation
of self-fullfilling prophacy. More importantly, citizenship grade,
which is manipulable by the school system, was most predictive in the
early elementary grade levels.
    Additionally, the results indicated a relationship of some type
between the participation in the gifted student program and Indian
```

```
student participation in preschool, particularly in terms of
predicting math concepts and math test total achievement scores. That
is, without the preschool variable, participation in the gifted
program was a fairly strong predictor of math concepts achievement.
When the preschool factor was included, participation in the gifted
program no longer significantly accounted for any of the variance in
math concepts scores, Instead, preschool entered the equation as a
suppressor variable of math concepts achievement. The implication,
then, is that additional research is needed to understand this
relationship.
    Nore specifically, the Washoe County School District could
probably improve Indian student achievement, over time, by equalizing
Or standardizing grading and evaluations by teachers by using
achievement criteria rather than as rewards/punishments. Implicit to
this, also is making teachers aware of assimilation goals (implicit or
explicit; and the educational differences between Indian and
non-Indian students and structural biases in achievement evaluation in
an attempt to curtail self-fulfilling prophecy.
    More generally, the results justify the need for different
educational processes for Indian students; that is, different factors
are predictive of their academic achievement and these must be
considered. While a number of these factors have been identified,
further research (e.g., teacher-student interaction patterns) is
needed to better understand and e%plain Indian academic achievement.
More importantly, the results demonstrate that familial differences
```

```
and factors outside the school's control are not very important, and
that, surfrisingly, attendance differences do not really explain
achievement differences either for Indian students or the population
in general. Such results pose the impljcation that jt is the
teacher's evaluation of the student's attendance or the student's
visibility (Erod, 1977) that is accounting for variance rather than
attendance per se. Yet, other studies have indicated that upward
gradirig bias (Erod, 1976a) and class grades (Brod, 1975) are a result
of absenteeism, especially fourth quarter absenteeism, but not of
achievement. This is particularly important because too often
teachers and others assume that if an Indian (or any other ethnic)
student is atsent too uften that heishe will not achieve well. Eut
such an assumption is shown to be false by the empirical results of
this stuoy. IndeEu, if attendance was a good predictor of
achievement, Indian students would have had higher achaevement test
scores in 1984 than non-Indian students because they were present more.
```


Summary

This study has demonstrated the validity of its research hypotheses. It has descriptively presented characteristics concerning education in the Washoe County School District, which showed that the achievement level of Indian students, as measured by achievenent test scores, was below that of their classmates, both at the aggregate and different grade levels. This study has also shown that differant factors predjcted such achievement for Indian students than for their classmates, and that, on the average, $b 0 \%$ of the predictors in the

```
reading oriented models and 75% of the predictors in the math models
(or 60% of the predictors in all ten models) that were associated with
higher achievement for Indian students were potentially manipulable by
the school system. Indeed, these same predictors accounted for
between 30% and 100% (or, on the average, 92%) of the variance in the
reading oriented models and between 90% and 100% (or, on the average,
96%) of the variance in the math oriented models. This meant that, on
the average, 94% of the explained variance in achievement test scores
for Indian students was attributable to factors potentially
manipulable by the school system. On the other hand, for their
classmates, 5s% of the reading oriented models' and 71% of the math
oriented models' (or 62% of all ten models') predictors were
potentially manipulable by the school system. These factors accounted
for between 65% and 90% (or, on the average, 82%) of the e:plained
variance in the population reading oriented models and between 82% and
97% (or, on the average, 83%) of the e:plained variance in the
population math oriented models. Thus, on the average, potentially
manipulable variables accounted for 84% of the explained variance in
achievement test scores for the population.
    The study further found that noni-manipulable variables were
significantly more important to understanding population achievement
than Indian student achievement. Contrary to what Coleman et al.
(19,6) have arguad, this study found that personal and familial
factors were not very predictive of academic achievement. Indeed,
when such factors were predictive, personal and familial variables
```

```
were significantly less predictive of Indian student than population
achievement. Conversely, teacher evaluations were significantly more
important to enplaining Indian student achievement, and vet teachers
were undergrading Indian students in comparison to their standardized
achievement test scores later on.
    This study, ihen, has shown that Indian students academic
achievement is below that of their classmates in the Washoe County
School District, but that it is due to factors that are different from
those explaining elementary education achievement in general, and that
these factors are, potentially, more manipulable by the school system
than are those accounting for population achievement. The results
have shown the need to examine academic achievement separately for
Indian students, and for each grade level. Moreover, it has been
shomn that a large factor in determining whether Indian students are
failing or succeeding is mow one measures academic achievement, and
that a multifaceted assessment provides a much more valid
reprasentation of such achievement. Howover, before a complete theory
of Indian education can be developed, further research into the unique
characteristice of Indian students, classroom interactions, and
student; family, and school personnel attitudes is needed.
```


ENDNOTES

```
1The special issue of Journal of Thought on "Indian Education: 1984," edited by Joe L. Kincheloe, Teresa Scott Kincheloe, and George H. Staley was brought to the attention of the invastigator during discussions on the goals of Indian education. All of the articles in this special edition are of theoretical relevance and are included in the references. Interested readers are referred to this special edition for cognate readings.
ZFor a detailed discussion of such issues, see the October 1981 issue of American Fsychologist. The main point of the criticism is that they underestimate the ability and achievement skills of minority students and are a poor assessment of their capabilities to function in the real world.
SThe most obvious of these emerging roles would be that of truly Indian education: Indian directed socialization of their respective cultures. For additional types of possible goals, see Thomas Thompson (ed.) The Schooling of Native America (Department of Health, Education, and Welfare, U.S. Office of Education, Teacher Corps. Washington, D.C.: American Association of Colleges for Teacher Education, 1978) and Kincheloe, et al., (eds.) "Indian Education: 1984," Journal of Thought, 19, E(Fall): 1-171.
\({ }^{4}\) Dr. Carling Malouf has pointed out in personal discussions with the researcher that such a "cross-over effect" is subject to regional differences, and that in Alaska such evidence was not found in similar types of E.I.A. schools as those studied by Bryde. Another factor often not considered is that at about the same time as Bryde's research, reservation Indian youth were experiencing tremendously high rates of peer influenced suicide.
\(5^{5}\) it is noted that several faculty advisors to this dissertation pointed this very "fact" out as a potential variable for this study. It is, however, the researcher's opinion that residence is a very poor indicator of either culture contact or cultural integration (e.g., assimilation). For instance, most residents of the Reno area would probably find it hard to believe that the Reno-Sparks Indian Colony had more than one full time medicine man and religious leader. Yet,
```

```
it was discovered that at least one son was in the status of
apprentice and was basically "bagging" school to learn culturally more
important knowledge (i.e., culturally appropriate socialization rather
than culturally confusing enculturation; see Edwards, 1985a, for
greater discussion on this). Indeed, based upon discussions with
residents of the Colony, it is the researcher's conclusion that for
many residents the Colony is just as much an island of isolation and
sanrtuary as the Fyramid Lake Indian Reservation.
GImplicit to these goals was the interest to conduct
multivariate analyses on this data to develop greater understanding
concerning Indian education. The goals and objectives of this
research, then, fulfill the district's implicit goals.
7ndeed the Indian population is the smallest: Asian/farific Islanders - 1,142 (3.66\%); Elacks - 762 (2.44\%); Hispanics - 1,727 (5.54\%): Total Minorities - 4,355 (13.96\%); Whites - 26,705 (85.62\%) (W.C.S.D., 1984).
8It should be noted that none of these students were selected for the non-Indian comparison group. If they had, however, they would have been handled as non-Indians.
9Similar representation by classroom was included in the original sampling, but school recorded inconsistencies and policies made such impossible to control.
10 while the district was agreeable to the researcher collecting information on non-Indian students for comparisons, they were not enthusiastic atout collecting such data on over 7,000 non-Indians \((5 \%\) sample).
\({ }^{11}\) Considerable data on the students in grades 7-12 were also collected, but not used for this study for reasons previously stated.
12These students took the exams on the basis of teacher's prerogative. About \(30 \%\) of the special education students, for whom data were collected, took part or all of the exams.
13 Indeed several cases were not confirmed until May, 1985, some five months after the researcher had left the field.
14 The researcher methodologically conceptualizes the existing records method as utilizing two primary techniques-original data analysis and secondary data analysis. The method is also conceptualized to be distinct from other methods utilizing communications; that is, the existing records method is distinct from the historical, content analysis, and library methods.
```


${ }^{15}$ In many respects this measures to a degree part of what Futter, et al. (1979) refer to as school ethos.

16 This was accomplished using SFSSX procedures. Non-Indian cases were beighted using a determined weight factor of 26.4.

17The researcher agonized over the selection of terminology to use in this study. In another study (Edwards, 1986b), it was demonstrated that the term Indian invokes negative judgments about the subject, whereas specific tribal/national terms (e.g., faiute) or the term Native American did not. Regardless of this--indeed, in contempt of the researcher's own conclusions--the term Indian was selected because it was conceptualized as more recognizable by most potential readers (and stylistically easier to use).

18While most students are aware of the racial ideas often included in the definition, it is noted that those students who are least likely to self-identify as Indian are those who are of lower blood quantum (i.e., less than one-quarter) or who are culturally or ethnically isolated from other lndians. Hence it would seem that in reality Indian is culturally and not racially conceptualized.
${ }^{19}$ Analyses of the data based upon 669 cases are reported elsewhere by Edwards (1985a, 1986a).
$200 f$ these 149 variables, seven are applicable to Native American students only: 1) Is there a 506 Form on student? (FOFM506); 2) Who is Native American? (WHONA): उ) What is the student's nationality or tribal affiliation? (NATION); 4) What is the status of the student's nation or tribe? (NATSTA); 5) Did the student attend preschool? (PRESCH); 6) What type of preschool program? (TYSCH); and 7) Number of years in a preschool program (YRFFE).

21English as a Secend Language (ESL) and special education (SPED) were originally planned to be used as teacher evaluation factors. However, since students designated to such categories by teachers did not take e\%ams, these variables were controlled rather than incorporated.

22Urban residence was methodologically defined as being within the city limits of either Fieno or Sparks.
23^{3} number of sociocultural factors may be interacting to make the absence of telephones in the home environment a reality. Certainly economic and racial bias by the local economy and the phone company must be included. Cultural disapproval of telephones, along with cultural unfamiliarity are also important. On the reservation many phone calls would be long distance due to geographical location.

Dr. Carling Malouf has also pointed out that he is familiar with many cases were someone will get a telephone and all their relatives

```
use it and run up the bills thereby causing the removal of the
telephone from that home. Hence family cultural differences
indirectly lead to telephone possession and use patterns.
    24It is recognized that several of these listings are not unique
to ethnic/cultural groups; but rather the students' personal reference
group(s).
    25It is noted that enrollment figures for the variable on school
enrollmenc (SCHEN) in Table 25 are different from those for the total
number of students (STUTOT) in Table 34, which reflects the tremendous
difficulty in getting accurate measurements of even this simple
variable. The data did come from two different services--school
offices and school libraries--but made at about the same time.
    26While there may be logical reasons for these differences,
every student, faculty and staff person this researcher has interacted
with would much rather eat lunch and play/relax than go to the
library--unless of ccurse one is being disciplined by being sent to
the library!
\({ }^{27}\) Based upon these results, and informal interviews and observations, it would seem that the process of self-fulfilling prophecy also exists. That is, teachers and students believe that Indian students will fail, and they then do so.
28The term "suitable" means that the variables were somewhat correlated with the dependent variables, were not highly intercorrelated, did not have too great of a variance (or absence of variancel, and were appropriately measured for sophisticated analyses.
29 The researcher refers to this belief as ascribing to the theory of educational osmosis.
\({ }^{30}\) To some degree this same phenomenon was observed for the population as well.
```


FEFERENCES

```
Agresti, Alan and Earbara Finlay
    1986 Statistical Methods For the Social Sciences, 2md Edition.
        San Francisco: Dellen Fublishing Company.
Alwin, D.F. and L.B. Otto
    1577 "High school context effects on aspirations." Sociology of
        Education, 50:259-273.
Anderson, Kenmeth E., E. Gordon Collister, and Carl E. Ladd
    1953 The Educational Achievement of Indian Children. U.S.
        Department of the Interior, Eureau of Indian Affairs.
        [Washington, D.C.: U.S. Government Frinting Dfficel.
Aurbach, Herbert A.
    1457 Froceeding of the National Fiesearch Conference on American
    Indian Education. U.S. Department of Health, Education, and
    Welfare, Dffice of Education. [kalamazoo, MI: Society for
    the Study of Social Froblems].
Ballantine, Jeanne H.
    1983 The Sociology of Education: A Systematic Amalysis.
            Englewood Cliffs, NJ: Frentice-Hall, Inc.
Barlow, Donald L.
    1984 "The process of Native American influence on the education
                        of Native American children." Journal of Thought 19, 3
                        (Fal1): 163-171.
Eeatty, Willard W.
    1953 "Forward." Pp. xi-xvi in k. Anderson et al., The
    Educational Achievement of Indian Children. U.S. Department
    of the Interior, Bureau of Indian Affairs. [Washington,
    D.C.: U.S. Government Frinting Officel.
```

$\begin{array}{r} \text { Eerry } \\ 1968 \end{array}$	Erewton The Education of the American Indians: A Survey of Literature. U.S. Department of Health, Education; and Welfare, Dffice of Education, Eureau of Fesearch. [Washington, D.C.: U.S. Government Frinting Office].
Elalock, Hubert M., Jr.	
1979	Social Statistics, Revised Second Edition. New York: McGraw-Hill Book Company.
Boloz, Sigmund A. and Diana Jenness	
1984	"The sun is shining in my eyes: the Navajo child enters
	Kindergarten expecting to write and he can." Journal of
	American Indian Education 23,2 (May) 3 3-3t.
Boloz, 5 igmund A. and Richard Varrati198\% "Apologize or analyze: measuring academic achievement in the	
1983	Apologize or analyze: measuring academic achievement in the reservation school." Journal of American Indian Education
	22, 1 (0ctober):23-28.
Branchard, Ralph J.	
1753	"A comparative study of the intermediate grades of two
	Indian schools and two public schools in folette County."
	Fargo, ND: University of North Dakota, umpublished Master's thesis.
Bridge, F.G., C.M. Judd, and F.F. Moock	
1977	The Determinants of Educational Outcomes: The Impact of
	Families, Feers, Teachers, and Schools. Cambridge, MA:
	Eallinger Fublishing Company.
Erod, Fodney L.	
1975	Native American Academic Achievement and Fredictors of Grade
	Foint Average. Technical Feport, No. 1. Elack Fiver Falls,
	WI: School District Joint, No. 2.
197ta	Fredictors of Erade-Averaging Eias Among Teachers of Native
	American Students. Technical Feport, No. 2. Black Fiver
	Falls, WI: School District Joint, No. 2.
19760	"Major Eources of Native American academic
	under-achievement: evidenee against current sociological
	assessments." Paper presented at the annual meetings of the
	Social Sciance Division, American Association for the
	Advancement of Science, Facific Division, Missoula, MT.
1977	Fredicting School Attendance of Native Americans and Their
	Classmates. Tectmical fieport, No. 3. Black Fiver Falls,
	WI: School District Joint, No. 2.

```
Brod, Fodney L.
    1978 Fort Eelknap Educational Needs Assessment. Harlem, MT: Fort
    Eelknap Community Council, Educational Department.
    1979a Fort Eelknap Vocational Educational Needs Assessment.
        Harlem, MT: Fort Belknap Community Council, Educational
        Department.
    1979b Choctaw Education. Bo% Elder: MT: LFS & Associates.
Erod, Fodney L. and Mary Jean Erod
    1981 Educational Needs of the Colville Confederated Tribes. Eo:
    Elder, MT: LFS : Associates.
Erookover, Wilbur B., et al.
    1982 Creating Effective Schocls. Holmes Beach, FL: Learning
        Fublications.
Brookover, Wilbur B., et al.
    1973 Elementary School Social Environments and Achievements.
        East Lansing, MI: College of Urban Development, Michigan
        State University.
Erookover, Wilbur B., et al.
    1979 School Social Systems and Student Achievement: Schools Can
            Make A Difference. New York: Fraeger.
Erookover, Wilbur B. and Edsel L. Erickson
    1775 Sociology of Education. Homewood, IL: The Dorsey Fress.
Broolover, Wilbur B., Edsel L. Erickson and Lee M. Joiner
    1967 Self-Concept of Ability and School Achievement, III,
    Cooperative Fesearch Froject Mo. 2831. East Lansing, MI:
    Educational Fublication Services, Michigan State University.
Brookover, W.B., C. Eeady, F. Flood, J. Schweitzer, and J. Wisenbaker
    1979 School Social Systems and Student Achievement. New York:
        Fragger Publishing Company.
Brookover, Wilbur E. and Jeffrey M. Schneider.
    1975 "Academic environments and elementary school achievement."
            Journal of Research and Development in Education, 8: 52-91.
Eryde, John S.
    1965 "The Siou% Indian student: a study of scholastic failure
        and personality conflict." Denver, CO: University of
        Denver, unpublished Doctoral dissertation.
    1970 The Siou* Indian Student: A Study of Scholastic Failure and
        Personality Conflict. Vermillion, SD: Dakota Press.
```

```
Campbell, Ernst 0. and C.N. Alexander
    1965 "Structural effects and interpersonal relationships."
    American Journal of Sociology, 71:204-289.
Chadwick, Eruce A.
    1972 "The indelible feast." Fp. 131-145 in H.M. Bahr et al.,
            (eds.), Native finericans Today: Sociological Ferspectives.
            New York: Harper & Fow.
Cicourel, Aaron V. and John I. Kitsuse
    196% The Educational Decision-Makers. Indianapolis, IN: The
    Eobbs-Merrill Company, Inc.
Coleman, James S., Ernest Q. Campbell, Carol J. Hobson, James
McFartland, Alexander M. Mood, Frederic D. Wainfeld, and Robert L. York
    1966 Equality of Educatiomal Opportunity. U.S. Department of
    Health, Education, and Welfare, Office of Education.
    [Washington D.C.: U.S. Government Printing Office].
Coleman, James S. Thomas Hoffer, and Sally Kilgore
        1982 High School Achievement. New York: Basic Books, Inc.,
        Fublishers.
Cocmbs, L. Madison.
    1970 The Educational Disadvantage of the American Indian
        Student. Las Cruces, NM: New Mexico State University Fress.
Coomos, L. Madison, Falph E. Kron, E. Gordon Collister, and
Kenneth E. Anderson
    1958 The Indian Child Goes to School: A Study of Interracial
                        Differences. Washington, D.C.: U.S. Department of the
                        Interior, Bureau of Indian Affairs, U.S. Government Frinting
                        Office.
Dale, George A.
        1955 Education for Better Living: A Study of the Fine fidge
            Educational Frogram. Washington, D.C.: U.S. Department of
                        the Interior, Eureau of Indian Affairs, U.S. Government
                        Frinting Office.
Dankworth, Richard T.
        1969 Educational Achievement of Indian students in Public
            Secondary Schools as Fielated to Eight Variables, Including
            Residential Environment. Washington, D.C.: U.S. Department
            of Health, Education, and Welfare, Office of Education,
            Bureau of Fiesearch, U.S. Government Frintirig Office.
```

```
Day, Harry
    1983 "Trends in academic achievement among Indian students in
    public schools." F'p 2-1 to 2-2t in Development Associates,
        Inc., Academic Performance, Attendance, and E%pectations of
        Indian Students in Fublic Schools. Monograph 1. Arlington,
        VA: Development Associates, Inc. (ED 237 277)
Development Associates, Inc.
    1983 Academic Ferformance, Attendance, and Expectations of Iridian
        Students in Fublic Schools. Monograph 1. Arlington, VA:
        Development Associates, Inc. (ED 237 277)
DiSilvestro, I. Anthony
    1961 "An analysis of the language achievement of Indian children
            in Washoe County elementary schools with proposals for
            improvement." Reno, NV: University of Nevada, unpublished
            professional paper.
Dolan, Dan
    1987 "Does Montana treat female mathematics and science students
            poorly?" MSU Mathematics Newsletter, ड0, 2 (Jan):7-8.
Dooley, David
    1984 Social Fesearch Methods. Englewood [liffs, NJ:
        Frentice-Hall, Inc.
Dorn, Doriald D.
    1954 "A comparative study of Indian and white children in the
            intermediate grades of the Cass Lake Fublic Schools."
                        Fargo, ND: University of North Dakota, unpublished Master's
                        thesis.
Dorris, Michael
    1924 "Thoughts on Native American studies: the process of
                'unlearning'." Journal of Thought 17, J (Fall):74-80.
Driessen, Jon and Delbert S. Elliott
    1968 "Occupational and educational aspirations of high school
                        students: a longitudinal study." Eoulder, co: Universjty of
                        Colorado, unpublished manuscript, Institute of Eehavioral
                        Science, Delinquency and Opportunity Project.
Edington, Evertt D.
    1969 "Academic achievement of American Indian students--review of
        recent research." San Francisco, CA: The fural Sociological
        Society. (ED OS2 163)
```

```
Edwards, karl 0.
    1985a "A comparison of Native American and Non-Native American
        elementary school student academic achievement in a large
        western school district." Paper presented at the annual
        meetings of the Education Section, American Association for
        the Advancement of Science, Pacific Division, Missoula, MT.
    1985b "The dialectics of Indian education and sacialization."
        Faper presented at the annual meetings of the kyi-Yo Indian
        Youth Conference, Missoula, MT.
    1986a "Descriptive characteristics of Indian and non-Indian
        achievement in Washoe County School District." Unpublished
        paper.
    1986t "Indian is a dirty word." Eillings, MT: Focky Mountain
        College. (Mimeographed)
Elljott; Delbert 5. and Harwin L. Voss
    1971 Delinquency and Dropout. Eoulder, CO: University of
        Colorado.
Flying Earth, Fatricia Locke and Dean Chavers
    1984 "The status of Indian education." Journal of Thought 19, 3
        (Fall):31-47.
Foster, Carl G.
    1964 "knowledge, 5kijls, attitude, achievement: An Indian program
            that workEd." Journal of Thought 19, 3 (Fall):149-152.
Fuchs, Estelle and Robert J. Havighurst
    1972 To Live on This Earth: American Indian Education. Garden
            City, NY: Doubleday and Company, Inc.
Glass,G.V.
    1976 "Primary, secondary, and meta-analysis of research."
        Educational Fesearch 5, 10:3-9.
    1978 "Integrating findings: the meta-analysis of research."
        Feview of Fesearch in Education 6:351-379.
Goldsamt, Milton and Earl Jones
    1983 "Reading and mathematics achievement test score patterns of
        Indian students served by the Title IV, part A projects in
        public schools." Fp. 9-2 to 9-94 in Development Associates,
        Inc., Academic Performance, Attendance, and Exploration of
        Indian Students in Public Schools. Monograph 1. Arlington,
        VA: Development Associate. (ED 237 277)
```

Gordon, Sandra L. and Barbara J. Eoseker 1984 "Enriching education for Indian and non-Indian students." Journal of Thought 19,3 (Fall):143-148.	
Graham, cleanora L.	
1951	"An analysis of the errors made in the standardized
	achievement tests by Indian children in grades 6,7 , and 8 in Becker County, Minnesota." Greeley, CO: Colorado State
	College of Education, unpublished Master's thesis.
Greenbaum, Paul E.	
1985	"Nonverbal differences in communication style between
	American Indian and Anglo elementary classrooms," American
	Educational Fesearch Journal 22, 1 (Spring):101-115.
Havighurst, Robert J.	
1970	The Education of Indian Children and Youth: Summary and
	Recommendations. The National Study of American Indian
	Education, Series IV, No. 6. Training Center for Community
	Frograms, Center for Urban and fegional Affairs.
	Minneapolis, MN: University of Minnesota.
1957	"Education among American Indians: Individual and cultural
	aspects." The Annals of the American Academy of folitical
	and Social Science 311 (Mav):105-115.
Hertztarg, Hazel Witman	
1984	"The all Indian Fueblo council school." Journal of Thought 15, 3 (Fall):128-13t.
Heyns, 8.	
1974	"Social selection and Etratification within schools.
	American Journal of Sociology, 79:1434-1451.
1978	Summer Learning. New York: Academic Press.
Hill, L. Erooks and Fhilip D. Lujan	
1984	"Symbolicity among Native Americans." Journal of Thought
	19, З (Fall):109-120.
Hopkins, David A.	
1951	"A brief history of Indian education on the Tonque fiver
	[Northern Cheyenne] Fieservation." Missoula, MT: Montana
	State University, unpublished Master's thesis.

$\begin{gathered} \text { Hopstock, } \\ 1983 \end{gathered}$	Faul "Summary and conclusions concerning academic performance of Indian students in Part A projects in public schools." Fp 9-1 to 9-4 in Development Associates, Inc., Academic Ferformance, Attendance, and Expectations of Indian Students in Fublic Schools. Monograph 1. Arlington, VA: Development Associates, Inc. (ED 237277)
$\begin{gathered} \text { Hur } 1 \text { burt } \\ 1984 \end{gathered}$	Graham and Gurney Toews "Education for employment: a Manitoba model." Journal of_ Thought 19, 3 (Fall):159-162.
$\begin{gathered} \text { Isac, } 5 \\ 1785 \end{gathered}$	phen and William E. Michael Handbook in Fiesearch and Evaluation. Second edition. San Diego, CA: EdITS Fublishers.
$\begin{gathered} \text { Jencks, } \\ \text { Cohen, Hel } \\ 1972 \end{gathered}$	ristopher, Marshall 5mith, Henry Acland, Mary Jo Eane, David bert Gintis, Barbara Heyns; and Stephen Michelson Inequality: A Feassessment of the Effect of Family and Schooling in America. New York: Easic Eooks.
$\begin{gathered} \text { Jensen, } \\ 1969 \end{gathered}$	thur F . "How much can we boost 10 and scholastic achievement?" Harvard Educational Feview 39:1-123.
$\begin{gathered} \text { Jones, fu } \\ 1985 \end{gathered}$	5ell A. Fesearch Methods in the Social and Eehavioral Sciences. Sunderland, MA: Sinaur Associates, Inc.
$\begin{gathered} \text { Kayser } \\ 1963 \end{gathered}$	yce "Schclastic performance and athnicity." Journal of American Indian Education 3, 1 (0ct):27-30.
$\begin{gathered} \text { Kerlinger } \\ 1986 \end{gathered}$	Fred N. Foundations of Eehavioral Fesearch. Third Edition. New York, NY: Holt, Finehart and Winston, Inc.
Kincheloe 1984	```Joe L. and Teresa Scott Kincheloe "The radical impulse: AIM's struggle for an Indian educational alternative." Journal of Thought 19, 3 (Fal1):91-103.```
$\begin{gathered} \text { Kinchelot } \\ 1984 \end{gathered}$	Joe L. and George H. Staley "Indian studies on the reservation: no easy answers." Journal of Thought 19, 3 (Fall):81-86.
$\begin{gathered} \text { Kinchel of } \\ 1984 \end{gathered}$	Joe L., Teresa Scott Kincheloe and George H. Staley (Eds.) "Indian education: 1984." Journal of Thought 19, 3(Fall):1-171.


```
Mehan, H.
    1979 Learriing Lessons: Social Organization in the Classroom.
    Cambridge, MA: Harvard University Fress.
Meriam, Lewis, Foy A. Brown, Henry Koe Cloud, Edward Everett Dale,
Emma Duke, Herbert R. Edwards, Fayett Avery Mckenzie, Mary Louise
Mark, W. Carson Tyan, Jr., and William J. Spillman
    1928 The Problem of Indian Administration. [The Meriam Feport].
    Ealtimore, MD: The John Hopkins Press.
Mosteller, F. and D.F. Moynihan (Eds.)
        1972 On Equality of Educational Opportunity. New York: Vintage
            Books.
Nelson, J.I.
        1972 "High school context and college plans: the impact of social
                        structure on aspirations." American Sociological Review,
                37:143-148.
Farmee, Edward A.
        1968 A Modern Apache Indian Community and Government Education
                        Frograms. Tucson, Al: The University of Arizona Fress.
Feters, Herbert D.
        1963 "Ferformance of Hopi children of four intelligence tests."
        Journal of American Indian Education 2, 2 (Jan):27-J1.
Peterson, Shailer
    1948 How Well Are Indian Children Educated? Lawrence, ks:
        Haskell Institute frint Shop. (ALSO: Summary Supplenent,
        12F:`.
Fhilips, Susan U.
    1983 The Invisible Culture. New York: Longman.
Flowden Report
    1967 Children and Their Frimary Schools. London: HNSO.
Freuss, Marjorie C.
    1969 "An investigation of background factors in American Indian
                                    academic performance." Feno, NV: University of Nevada,
                                    unputlished Master's thesis.
Furkey, S. and H. Smith
    1982 Effective Schools -- A Frview. Madison, WI: University of
    Misconsin at Madison, Wisconsin Center for Educational
    Fiesearch.
```

```
Quirk, Virginia C.
    1965 "A comparative analysis of the educational achievement of
    Indian and non-Indian students enrolled in the Orvis fing
    elementary school and the E. Otis Vaughn junior high
    school." Fieno, NV: University of Nevada, unpublished
    Master's thesis.
Reynolds, Faul D.
    1971 A Frimer in Theory Construction. Indiamapolis, IN:
                        Ecbbs-Merrill Educational Publishing.
Fist, Severt R.
    1961 "Shoshone Indian education: a descriptive study based on
        certain influential factors affecting academic achievement
        of Shoshone Indian students, Wind River Feservation,
        Wyoming." Missoula, MT: Montana State University,
        unputlished Master's thesis.
Fitzer, Georga
    1990 Sociology: A Multiple Faradigm Science, Fevised Edition.
        Eoston, MA: Allyn and Eacon, Inc.
Rudes, Elair
    1783 "Summary and conclusions concerning Indian student Fublic
        school attendance and retention/dropout." Fp 13-1 to 13-4
        in Development AEsucjates, Inc., Academic Ferformance,
        Attendance, and Expectations of Indian Students in Fublic
        Schools. Monograph 1. Arlington, VA: Development
        Associates, Inc. (ED 237 277)
Rutter, Michael, Barbara Maughan, Peter Mortimore, Janet Ouston
and Alan Smith
    197% Fifteen Thousand Hours: Secondary Schools and Their Effects
        on Children. Cambridge, MA: Harvard University Press.
Safer, Dwight
    1964 "An exploratory study of mental maturity, achievement, and
        personality test results in relation to the academic
        progress of Indians and Non-Indians in grades four through
        eight in si% public school districts and one parochial
        school in Fremont County, Wyoming." Laramie, WY: University
        of Wyoming, unpublished Doctoral dissertation.
Saslow, H.L. and M.J. Harrover
    1968 "Research on psychosocial adjustment of Indian youth."
        Amarican Journal of Fsychiatry, 125:224-231.
```

```
Shea, B.M.
    1976 "School and its antecedents: Substantive and methodological
    issues in the status attainment process." Fieview of
    Educational Research, 46:465-526.
Siegel, Sidney
    1956 Nonparametric Statistics for the Behavioral Sciences. New
        York: McGraw-Hill Book Company.
Silverman, David
    1985 Qualitative Methodology and Sociology. Brookfield, VT:
        Gower Fublishing Company.
Stockard, Jean and Maralee Mayterry
    1987 "School environments and student achievement: Toward a
        framework for understanding environmental influences."
        Paper presented at the annual fileetings of the Facific
        Sociological Association, Eugene, DR.
Summers, A.A. and B.L. Wolfe
    1977 "Do schools make a difference?" American Economic Revieu,
        65:659-652.
Sza5z, Margaret C.
    1977 Education and the American Indian: The foad to Self-
    (1974) Determination Since 1928. Albuquerque, NM: University of
        New Me:ico Fress.
Thomas, Linda Sue
    1984 "Ethical considerations for planned social change in the
            education of American Indian people." Journal of Thought
            19, % (Fal1):153-158.
Thompson, Hildegard
    1757 "Education among American Indians: Institutional aspects"
        The Amnals of the American Academy of Folitical and Social
        Science 311 (May):95-104.
Thompson, Thomas
    1978 The Schooling of Native America. Department of Health,
        Education and Welfare, U.S. Dffice of Education, Teacher
        Corps. [Washington, D.C.: American Association of Colleges
        for Teacher Education].
Uhlman, Esther F.
    1753 "A comparative study of achievement and intelligence of
        Indians and whites in the public schools of Lapwai, Idaho."
        Hoscow, ID: Uriversity of Idaho, unpublished Master's thesis.
```

```
United States Senate
    1969 Indian Education: A National Tragedy-A National Challenge.
            [The Kennedy Keport]. 915t Congress, lst Session.
            Washington, D.C.: U.S. Government Frinting Office.
Van Otten, George A. and S. Harry Tsutsui
    1984 "Reflections on Indian education." Journal of Thougtit 19, 3
            (Fal1):137-142.
Wallace, Walter L.
    1971 The Lagic of Science in Sociology. New York, Ny: Aldine
            Fublishing Company.
Washoe County School District (W.C.S.D.)
    1984 Needs Assessment. Title IV A Indian Education Proposal for
                a Chapter 2 Block Grant. Feno, NV: Washoe County Echool
                District.
Wa:, Murray
    1764 Formal Education in an American Indian Community. An
                Society for the Study of Social Froblems Monograph. Social
                Froblems, Emory University, Atlanta, GA: Society for the
                Study of Social Froblems. [Also: U.S. Department of Health,
                Education and Welfare, Office of Education].
Whiteman, Henrietta V.
    1984 "Educational excellence: an Indian perspective." Journal of
                        Thought 19, J (Fall):65-73.
Wiatrowski, M.D., S. Hansell, C.R. Massey, and D.L. Wilson
    1982 "Curriculum tracking and delinquency." American
            Sociological Feview, 47:151-160.
Williams, Frederick
    1986 Reasoning With Statistics: How to Fead Quantitative
        Research, Third Edition. New York: Holt, Finehart and
        Winston.
Witherspoon, Y.T.
    1962 "The measurement of Indian children's achievement in the
            academic tool subjects." Journal of American Indian
            Education 1, 3 (May):5-9.
Witthuhn, Jan
    1984 "Fatterns of student performance on mathematics strands for
            American Indians and others." Journal of Experimental
            Education 53 (Fall):58-63.
Wright, Susan E.
    1986 Social Science Statistics. Eoston: Allyn and Bacon, Inc.
```

```
Wynne, E.A.
    1980 Looking at schools: Good, Ead and Indifferent. Lexington,
        MA: Lexington Books.
Young, Malcolm B., Fobert fussell, John Reimer, Paul Hopstock, Milton
Goldsamt, Howard Fleischman and Blair Rudes
    1983 The Evaluation of the Impact of the Part A Entitlement
        Program Funded Under Title IV of the Indian Education Act.
        Final Feport. Arlington, VA: Development Associates, Inc.
        (ED 237 276)
```


AFFENDIX A

DISTRICT INFDRMATION

Table A－1．Fesearch Fopulations and Samples

	Number of	Number of	Fercentage of	Number of
School	Students	IndianStudents	Indian	Non－Indian Students
Number in School	in Sample	Students	in Sample	

Elementary Schools

1	357	1		0.2		12
2	439	3		0.7		15
3	434	57	く5ち号	13.1	（12．9）${ }^{\text {a }}$	13
4	278	0		0.0		10
5	390	11		2.8		15
6	437	13	（14）	3.0	（3．2）	13
7	h60	5		0.8		22
8	578	6		1.0		19
9	405	7		1.7		14
10	480	22	（18）	4.6	（3．8）	16
11	384	2		0.5		13
12	366	4	（2）	1.1	（0．5）	12
1.3	365	2		0.5		13
14	285	3	（1）	1.0	（0．4）	9
15	4.35	8	（7）	1.8	（1．6）	15
16	147	0		0.0		5
17	42.1	6	（3）	1.4	（0．7）	14
18	445	4		0.9		15
19	67	2		3.0		2
20	500	5		1.0		17
21	539	12	（10）	2.2	（1．9）	18
22	390	2		0.5		13
23	444	1	（2）	0.2	（0．4）	15
24	225	6		2.7		7
25	422	11	（10）	2.6	（2．4）	14
26	430	15	（12）	3.5	（2．8）	13
27	451	11	（8）		（1．8）	15
28	133	116	$(113)^{6}$	87.2	（84．9）${ }^{6}$	22 d
29	32.7	6	（4）	1.8	（1．2）	11

[^1]Table A-1. (continued)

School Number	Number of Students in School	Number of Indian Students in Sample	Percentage of Indian Students	Number of Non-Indian Students in Sample
Elementary Schools (continued)				
30	360	6 (5)a	1.7 (1.4) ${ }^{\text {a }}$	12
31	147	$0(7)^{\circ}$	$0.0(4.8){ }^{\text {c }}$	0
32	382	10 (8)	2.6 (2.1)	13
33	558	47 (42)	8.4 (7.5)	18
34	286	10	3.5	10
35	188	13	6.9	6
36	418	11 (8)	2.6 (1.7)	14
37	620	17	2.7	22
38	527	17 (16)	$3.2(3.0)$	17
39	417	4 (3)	1.0 (0.7)	14
40	107	3 (2)	2.8 (1.7)	4
41	323	4	1.2	11
42	339	5	1.5	11
	15909	488 (456)	3.1 (2.9)	544
Middle Schools				
43	619	8	1.3	21
44	680	13	1.9	22
45	287	3	1.0	10
46	596	16	2.7	20
47	655	3	0.5	22
48	793	10	1.3	26
49	710	3	0.4	24
50	473	12	2.5	16
51	464	30	S. 5	$\frac{15}{176}$
	5277	98	1.9	176

a--Numbers in parentheses () are those provided by district records, other numbers are based on the school's records.
b--Includes 7 th and Bth grade students.
c--School has only special education students.
d--Indicates that the non-Indian population was deliberately oversampled.

```
Table A-1. (continued)
```

School Number	Number of Students in School	Number of Indian Students in Sample	Fercentage of Indian Students	$\begin{gathered} \text { Number of } \\ \text { Non-Indian Students } \\ \text { in Sample } \\ \hline \end{gathered}$
	High Schools			
52	51	4	7.8	2
53	1114	22	2.0	37
54	330	2	0.6	11
55	1005	12	1.2	34
56	1662	31	1.9	55
57	1415	10	0.7	47
58	1320	26	2.0	44
59	482	22	4.6	16
60	1704	27	1.6	57
	8927	156	1.7	30.3

```
a--Numbers in parentheses () are those provided by district
    records, other numbers are based on the school's records.
b--Includes 7th and 8th grade students.
C--School has only special education students.
d--Indicates that the non-Indian population was deliberately
    oversampled.
```


Table A-2. District, Middle and
 High School Transiency Reports (1979-1984)

School Number	$\begin{gathered} 1983-84 \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} 1982-83 \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} 1981-82 \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} 1980-81 \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} 1979-80 \\ (\%) \end{gathered}$	$\begin{gathered} 1978-78 \\ (\%) \\ \hline \end{gathered}$
District Totals						
All Schools	53	46	52	55	59	52
Middle Schools						
43	45	30	36	37	32	29
44	34	30	35	34	38	38
45	40	27	24	N/A	N/A	N/A
46	50	47	57	62	63	64
47	37	39	40	40	41	43
48	30	28	32	32	31	32
49	35	27	39	28	14	32
50	60	57	65	83	90	64
51	46	51	48	90	97	73
Average	41	37	42	48	47	45
High Schools						
52	26	23	26	52	56	29
53	87	50	52	60	56	53
54	38	38	38	46	66	44
55	56	40	N/A	N/A	N / A	N/A
56	48	30	34	40	43	41
57	43	31	29	27	29	30
58	85	48	55	58	58	57
60	68	41	49	57	56	4 B
Average	62	39	42	47	49	45

```
Table A-3. Teacher Frequency Distributions
    For Schoole by Grade Level and Sex
```

School Number	Grade Level and Se:									
	$\begin{gathered} 2 n d \\ M \end{gathered}$	Grade F	$\begin{gathered} 3 \mathrm{rd} \\ M \end{gathered}$	Grade F	$4 \mathrm{th}$	Grade F	$5 \mathrm{th}$	Grade F	$s t h$	Grade F
01	0	2	0	2	0	3	0	3	0	2
02	0	2	0	2	0	2	1	2	0	3
$03^{\text {a }}$	0	3	0	2	0	3	1	2	1	3
104	0	2	0	2	0	1	1	1	1	1
05	0	2	0	2	0	2	2	0	2	1
06	0	2	1	1	0	1	0	2	1	1
07	1	2	1	3	1	2	0	3	2	1
08	0	3	1	2	0	3	0	2	1	2
09	0	3	0	2	1	1	1	1	1	2
10	0	3	1	2	0	2	1	1	3	0
11	0	2	0	2	0	2	0	2	1	1
12	0	2	0	1	0	2	1	2	2	0
13	0	2	1	1	0	2	0	2	0	2
14	0	2	1	2	$1)$	2	0	1	1	1
15	0	3	0	2	0	2	1	1	1	1
16	0	1	0	1	0	1	0	1	0	1
17	0	3	0	2	2	1	1	1	2	0
18	0	2	0	4	1	3	1	2	-	-
19	0	1	0	1	0	1	0	1	-	-
20	0	3	0	2	0	3	1	2	2	2
21	1	2	0	2	0	3	1	2	2	1
22	0	2	0	2	0	2	1	1	2	0
23	0	3	0	2	0	3	0	2	1	2
24	0	2	0	1	10	1	0	1	0	1
25	0	2	0	2	0	2	1	1	2	2
26	0	3	0	4	0	2	-	3	0	3

a--Indicates school with sizable Indian student population.

```
Table A-S. (continued)
```


a--Indicates school with sizable Indian student population.

CODING MANUAL

variable category content and coding system

Column Numbers	Abbreviated Variable Name Code	$\begin{gathered} \text { Variable } \\ \text { Description } \end{gathered}$	Variable Coding Description
	Personal and Academic Characteristics		
1-4	S1D	Study ID Number	Enter number
5-6	SCODE	School Code	Enter number
7-12	ID	Student ID Number	Enter number
13-16	GRID	Grid Number	Enter numbar
17	SFED	Special Education Code	See Coding Suppl. 1
18-19	LEVEL	Grade Level, 1983-84	Enter number
20	SEX	Student's Sex	$\begin{aligned} \text { Enter } 0 & =\text { Male } \\ 1 & =\text { Female } \end{aligned}$
21	RESID	Student's Fesidence	$\begin{aligned} & \text { Enter } \text { =Urban/fieno- } \\ & \text { Sparks area } \\ & 1=\text { Colony } \\ & 2=\text { Rural/County } \\ & \text { S=Resarvation } \end{aligned}$
22	TELE	Student's Fhone Listed	$\text { Enter } \begin{aligned} 0 & =\text { no } \\ & =\text { yes } \end{aligned}$
23-28	BdATE	Student's Birthdate	Enter number (mmdeyy)
29	BIFTH	Student's Eirthplace	$\text { Enter } \begin{aligned} & 0=\text { Reno/Sparks } \\ & 1=\text { Schurz, NV } \\ & 6=0 u t s i d e ~ t h e ~ \\ & \text { U.S. } \\ & 7=\text { Elsewhere in } \\ & \text { Nevada } \\ & 8=\text { Out of State } \\ & 9=N / A \end{aligned}$
30	PREATT	Frevious W.C.S.D. Attendance	$\text { Enter } \begin{aligned} 0 & =\text { no } \\ 1 & =y e s \\ g & =N / A \end{aligned}$

Column Numbers	Abbreviated Variable Name Code	Variable Description	Variable Coding Description
31	FEG	Racial Ethnic Group	Enter $\begin{aligned} & 0=N / A \\ & 1=\text { Indian } \\ & 2=\text { Asian } \\ & 3=E l \text { ack } \\ & 4=\text { White } \\ & 5=H i s p a n i c \end{aligned}$
32-33	LASTEC	Last School Attended	```Enter School Number 00=0utミide H.C.G.D. 99=N/A```
34	fathefi	Is Father Living?	$\begin{aligned} \text { Enter } 0 & =\text { no } \\ 1 & =y \mathrm{y} \end{aligned}$
35	FASTA	Father's Status	$\text { Enter } \begin{aligned} 0 & =\text { Natural } \\ 1 & =\text { Step } \\ 2 & =G u a r d i a n \\ & =N / A \end{aligned}$
$35-37$	FACC	Father's occupation	See Coding Suppl. 2
38	FAEMLO	Father's Employer Located Cutside Conimuter Area	$\text { Enter } \begin{aligned} 0 & =\text { no } \\ 1 & =y e s \\ g & =\mathrm{N} / \mathrm{A} \end{aligned}$
39	MOTHER	Is Mother Living?	$\begin{aligned} \text { Enter } 0 & =\text { no } \\ 1 & =\text { yes } \end{aligned}$
40	mosta	Mother's Status	$\begin{aligned} \text { Enter } & 0=\text { Natural } \\ & 1=\text { Step } \\ & 2=G u a r d a n \\ & 9=N / A \end{aligned}$
41-42	MOOC	Mother's Occupation	See Coding Suppl. 2
43	MOEMLO	Mother's Employer Located Outside Commuter Area	$\text { Enter } \begin{aligned} 0 & =n o \\ 1 & =y e s \\ q & =N / A \end{aligned}$

VARIABLE/CATEGORY CONTENT AND CODING SYSTEM

Column Numbers	Abbreviated Variable Name Code	Variable Description	Variable Coding Description
44	FAESENT	Number of Parents Absent	```Enter 0=Both Fresent 1=Father Absent 2=Mother Absent S=Eoth Absent```
4亏	EMPLOY	Number of Farents Emplayed	```Enter 0=Both 1=Father Only 2=Mothar Only 3=Neither```
46	EMEFFEF	Emergency Contact Person Listed	$\begin{aligned} \text { Enter } 0 & =\text { no } \\ 1 & =y e s \end{aligned}$
47	EMERTEL	Emergency Contact Telephone Listed	$\begin{aligned} \text { Enter } 0 & =n 0 \\ 1 & =\text { yes } \end{aligned}$
40-49	TTRANS4	Number of Transfers Since Starting W.C.S.D. Schools	Enter number
50	Transeb4	Number of Transfers During 1983-84	Enter number
51-52	MODIST84	Number of Continuous Months With District (1983-84)	Enter number
53	RETAINS 4	Was Student Retained? $(1982-83)$	$\begin{aligned} \text { Enter } & =\text { no } \\ 1 & =\text { yes } \end{aligned}$
54	TRETAING4	Number of Times Retained (1983-84)	Enter number
55	FAEIRTH	Father's Eirthplace	Use Eirth Codes used for students
56	MOEIETH	Mother 5 Birthplace	Use Birth Codes used for students
57-60	AFE4	Arithmetic Grade (83-84)	See Coding Suppl. 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Column Numbers	Abbreviated Variable Name Code	Variable Description	Variable Coding Description
61-64	HW84	Handwriting Grade (83-84)	See Coding Suppl. 3
65-68	LAE4	Language Grade (83-84)	See Coding Suppl. 3
69-72	FES4	Feading Grade (93-84)	See Coding Suppl. 3
73-76	$5 \mathrm{HB4}$	Science/Health Grade $(83-84)$	See Coding Suppl. 3
77-80	50084	Social Studies Grade (83-84)	See Coding Suppl. 3
81-84	SPS4	Spelling Grade (83-84)	See Coding Suppl. 3
85-88	AFTB4	Art Grade (83-84)	See Coding Suppl.
89-92	MUS34	Music Grade (83-84)	See Coding Suppl. 3
98-86	C284	Citizenship Grade (83-84)	See Coding Suppl. 3
97-101	DF94	Number of Days Fresent (83-84)	Enter number
102-105	DAS4	Number of Days Absent $(83-84)$	Enter number
10t-110	DNE84	Number of [avs Not Eniroiled (93-84)	Enter number
111	TFANSOS	Number of Transfers During 1982-83	Enter number
112-113	MODISTOS	Number of Continuous Months With District (82-8.3)	Enter number
114	RETAINQS	Was Student Retained? $(81-82)$	$\text { Enter } \begin{aligned} 0 & =\text { no } \\ & 1=\text { yes } \end{aligned}$

VARIABLE/CATEGORY CONTENT AND CODING SYSTEM

Column Numbers	Abbreviated Variable Name Code	Variable Description	Variable Coding Description
115	TRETN8S	Number of Times Retained (82-83)	Enter number
116-119	ARES	Arithmetic Grade (82-83)	See Coding Suppl. 3
120-123	HWBS	Handwriting Grade $(82-9.3)$	See Coding Suppl. 3
124-127	LA日 3	Language Grade (82-83)	See Coding Suppl. 3
128-131	REBS	Reading Grade (82-8\%)	See Coding Suppl. 3
132-135	5483	Science/Health Grade (82-83)	See Coding Suppl. 3
136-139	S0C83	Social Studies Grade (82-83)	See Coding Suppi. 3
140-143	SF33	Spelling Grade (82-53)	See Coding Suppl. 3
144-147	ARTES	Art Grade (82-83)	See Coding Suppl. J
148-151	MUSSE	Music Grade (82-83)	See Coding Suppl. 3
152-155	C283	Citizenship Grade (82-83)	See Coding Suppl. ${ }^{\text {S }}$
156-150	DFES	Number of Days Fresent (82-83)	Enter Number
161-164	DABS	Number of Days Absent (82-85)	Enter Number
165-169	DHESS	Number of Days Not Enralled (82-83)	Enter Number
170	TFORM	Test Form	See Coding Suppl. 4
171-172	SKLSE	Reading Word Study Skills Score	Enter number

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VARIABLE/CATEGORY CONTENT AND CODING SYSTEM

Column Numbers	Abbreviated Variable Name Code	Variable Description	Variable Coding Description
173-174	HORDR	Reading Word Study Score	Enter number
175-176	READF	Reading Comprehension Score	Enter number
177-178	FEF	Reading Score	Enter number
177-151	FEADTF	Feading Test Total Score	Enter number
182-183	VOCE	Vocabulary knowledge Score	Enter number
194-185	LIETK	Listening Comprehension Score	Enter number
186-188	AUDITR	Auditory Test Total Score	Enter number
189-170	SFELLF	Spelling Score	Enter number
191-192	LANGF'	Language knowledge Score	Enter number
193-194	LASFTF	Language and Spelling Total Score	Enter number
195-196	MATHF	Math Concepts Score	Enter number
197-198	COMPR	Math Computation Knowledge Score	Enter number
199-200	AFFLF	Math Applications Score	Enter number
201-203	MATHTF	Math Test Total Score	Enter number
204-205	50cse	Social Science Score	Enter number

Column Numbers	Abbreviated Variable Name Code	Variable Description	Variable Coding Description
206-207	SCIF	Science Knowledge Score	Enter number
208-210	TOTLER	Total Battery Score	Enter number
211	FORMSO6	Is There a 50 form on Student?	$\begin{aligned} \text { Enter } 0 & =n 0 \\ 1 & =\text { yes } \end{aligned}$
212	WHONA	Who is Native American?	See Coding Suppl. S
213-215	NATION	What is Student's Nationality or Trital Affiliation?	See Coding Suppl. 6
216	NATSTA	What is Student's National or Tribal Status?	See Coding Suppl. 7
217	GIFT	Participation in the Gifted Student Frogram	$\begin{aligned} \text { Enter } 0 & =n 0 \\ 1 & =y e s \end{aligned}$
218	FRESCH	Preschool Attendance	$\begin{aligned} \text { Enter } 0 & =n o \\ 1 & =y e s \end{aligned}$
210	TYSCH	Type of Freschool	Enter $0=N / A$ 1=Reno Colony Headstart 2=Fyramid Lake $3=0$ ther $4=$ Both $1 \& 2$
220	YFFFE	Number of Years in Freschool	Enter number
221-223	TEACHE 4	Teacher for 1983-84	Enter Teacher Number

Column Numbers	Abbreviated Variatle Name Code	Variable Description	Variable Coding Description
224	MEAL	Farticipation in the Federal Lunch Program	Enter 0=Not in Program 1=Free Lunch 2=Fieduced Fare Lunch
225	THELD	Total Number of Retentions in W.C.S.D.	Enter number
226	SAT	Took SAT Test in 1984	$\text { Enter } \begin{aligned} 0 & =n 0 \\ 1 & =y e s \end{aligned}$
227	MOVE	Moved Out of 5chool District Frior to Test in 1994	$\begin{aligned} \text { Enter } 0 & =\text { no } \\ & =y \text { yes } \end{aligned}$
228	DATA	Types of Data Available on Student	See Codinig Suppl. 7
229	ESL	Does Student Participate in the csL Frugram?	$\begin{aligned} \text { Enter } 0 & =n o \\ & =\text { yes } \end{aligned}$
230-232	AGE	Student's Age in Months at Time of Test	Enter number
$\frac{\text { Contertual/School Characteristics }}{(\text { CAFD NO. } 2)}$			
1-2	SCHOOL	School Code	Enter number
3-6	SCHEN	School Enrallment (May)	Enter number
7-10	DATELIE	```Date of Library Inventory```	Enter number (mnyy)
11-15	B6583	Number of Eooks Inventoried in 1993	Enter number

VAFIAELE/CATEGORY CONTENT AND CODING SYSTEIA

Column Numbers	Abbreviated Variable Name Code	Variable Description	Variable Coding Descriotion
16-18	EKSLOST	Number of Eooks Lost or Missing in 1983-94	Enter number
19-22	EKSDIS	Number of Books Discarded in 1983-84	Enter number
23-2t	EKSADD	Number of Bool:s Added in 1993-84	Enter number
27-31	EOOKS	Total number of Books in Collection at b/84	Enter number
32-33	Encycss	Total Number of Encyclopedia Sets in 1983	Enter number
34-35	ENCYCE4	Total Number of Encyclopedia Sets in 1984	Enter numbar
$36-37$	Encycli	Number of Encyclopedia Sets in the Library	Enter number
38-39	Encycel	Number of Encyclopedia Sets in Classrooms	Enter number
40-41	ENCYCMI	Number of Encyclopedia Sets Missing Volumes	Enter number
42-45	FILMS	Number of Filmstrips	Enter number
46-49	AUDTAFE	Number of Audio Tapes	Enter number
50-53	AUDREC	Number of Audio Fiecordings	Enter number
54-56	VIDTAFE	Number of Video Tapes	Enter number
57-59	SOFTWARE	Number of Software Programs	Enter number

VARIAELE/CATEGORY CONTENT AND CODING SYSTEM

Column Numbers	Abbreviated Variable Name Code	Variable Description	Variable Coding Description
$60-63$	MICRO	Number of Microforms	Enter number
64-67	FICHE	Number of Microfiche	Enter number
68-72	SLIDE	Number of slides	Enter number
73-76	TRSPAF	Number of Transparencies	Entar number
77-80	KITS	Number of Instructional kits	Enter number
81-82	LOOFS	Number of Film Loops	Enter number
83-84	GLOEE	Number of Globes	Enter number
85-86	MCDEL	Number of Models	Enter number
87-91	AV	Total A.V. Materials	Enter number
92-93	MAG	Number of Magazine Subscriptions	Enter number
94-95	HEHS	Number of Newspaper Subscriptions	Enter number
96	CERTLIE	Number of Certified Librarians	Enter number
97	LIEAST	Number of Library Assistants	Enter number
98-99	STUAID	Average Number of Student Library Aides Fer Day	Enter number
100	AIDES	Number of Paid Aides	Enter number
101-103	OFENE	Number of Minutes Library is Open Before School	Enter number

VARIAELE/CATEGORY CONTENT AND CODING SYSTEM

Column Numbers	Abbreviated Variable Name Code	Variatle Description	Variable Coding Description
104-105	OFENL	Number of Hinutes Library is Open During Lunch	Enter number
10t-108	OFENA	Number of Minutas Litrary is Open After School	Enter number
109-112	CIFCUL	Weakly Average Circulation	Enter number
113-116	STUUSE	Weekly Average Student Use	Enter number
117-117	STUE:	Number of Students in Kindergarten	Enter number
120-122	STU1	Number of Students in First Grade	Enter number
123-124	STU2	Number of Students in Second Grade	Enter number
125-127	STUS	Number of Students in Third Grade	Enter number
128-129	STU4	Number of Students in Fourth Grade	Enter number
$130-131$	STUS	Number of Students in Fifth Grade	Enter number
132-133	STU6	Number of Students in Si\%th Grade	Enter number
134-136	STUTDT	Total Number of Students	Enter number
137-140	TEACHK	Number of Kindergarten Teachers	Enter number

VARIAELE/CATEGORY CONTENT AND CODING SYSTEM

Column Numbers	Abbreviated Variable Name Code	Variable Description	Variable Coding Description
141-144	TEACH1	Number of First Grade Teachers	Enter number
145-148	TEACH2	Number of Second Grade Teachers	Enter number
149-152	TEACHE	Number of Third Grade Teachers	Enter number
$153-156$	TEACH4	Number of Fourth Grade Teachers	Enter number
157-160	TEACH5	Number of Fifth Grade Teachers	Enter number
161-164	TEACHG	Number of Sixth Grade Teachers	Enter number
165-169	teachto	Total Number of Teachers	Enter number
170-172	ASSTK	Number of Kindergarten Aides/Assistants	Enter number
173-175	ASSTI	Number of First Grade Aides/Assistants	Enter number
176-178	ASST2	Number of Second Grade Aides/Assistants	Enter number
179-181	ASSTE	Number of Third Grade Aides/Assistants	Enter number
182-184	ASST4	Number of Fourth Grade Aides/Assistants	Enter number
185-187	ASSTS	Number of Fifth Grade Aides/Assistants	Enter number
138-190	A5ST6	Number of Sixth Grade Aides/Assistants	Enter number

VAFIABLE/CATEGORY CONTENT AND CODING SYSTEM

Column Numbers	Atbreviated Variable Name Code	Variable Description	Variable Coding Description
191-194	ASSTTOT	Total Number of Aides/Assistants	Enter number
195-196	SEK	Number of Special Education Students, Kindergarten	Enter number
197-179	SE1	Number of Special Education Students, First Grade	Enter number
199-200	SE2	Number of Special Education Students, Second Grade	Enter number
201-202	SES	Number of Special Education Students, Third Grade	Enter number
203-204	SE4	Number of Special Education Students, Fourth Grade	Enter number
205-20t	SES	```Number of Special Education Students, Fifth Grade```	Enter number
207-203	SE6	Number of Special Education Students, Si:th Grade	Enter number
209-211	SETOT	Total Number of Sperial Education Students	Enter number
212-216	SETEACH	Total Number of Special Education Teachers	Enter number
217-2.8	ESLSTUK	Number of ESL Students, Kindergarten	Enter number

Column Numbers	Aibreviated Variable Name Code	Variable Description	Variable Coding Description
219-220	ESLSTUI	Number of ESL Students, First Grade	Enter number
221-222	ESLSTU2	Number of ESL Students, Second Grade	Enter number
223-224	ESLSTU3	Number of ESL Students, Third Grade	Enter number
225-226	ESLSTU4	Number of ESL Students, Fourth Grade	Enter number
227-228	ESLSTUS	Number of ESL Students, Fifth Grade	Enter number
229-230	ESLSTUG	Number of ESL Students, Si\%th Grade	Enter number
231-232	TOTESL	Total Number of ESL Students	Enter number
$233-236$	ESLTEACH	Total Number of ESL. Teachers	Entar number
237-240	FESTEACH	NLimber of Library/ Fesource Teachers	Enter number
241-244	FEDS	Nunter of Federal Employees	Enter number
245-248	COLNSEL	Nunber of Counselors	Enter number
249-253	STAFE	Total Staff	Enter number
254-255	schage	Hige of Schoal in 1984	Enter number
256-257	IMPROV	Number of Improvements	Enter number
250-259	Fioums	Total Number of Classroums	Enter number

Column Numbers	Abtreviated Variable Name Code	Variable Description	Variable Coding Description
260-257	SEFT	Total Square Footage	Enter number
258-273	ACRE	Site Acreage Size	Enter number
274-281	CDST	Total Cost of School Construction	Enter number

COMFUTED VARIAELES

Abbreviated Variable Name Code	Variable Description	Computation Description
ZAUDIT	Standardized Auditory Test Total Score	$\begin{aligned} & \text { COMFUTE ZAUDIT }=-1 \\ & \text { IF (TFORMEQ []) ZAUDIT }= \\ & \text { (AUDITR - [mean])/[SD] } \end{aligned}$
2SFELL	Standardized Spelling Score	```COMFUTE 2SFELL = -1 IF (TFOFM EQ [j) ZSFELL = (SFELLR - [mean])/[SD]```
ZLANG	Standardized Language Knowledge Score	```COMPUTE ZLANG = -1 IF (TFORM EQ []) ZLANG = (LANGR - [mean])/[SD]```
2LASPT	Standardized Language and Spelling Total Score	COMFUTE ZLASFT $=-1$ IF (TFOFM EQ []) ZLASFT = (LASFTF - [mean])/[SD]
ZMATH	Math Concepts Score	COMFUTE $Z M A T H=-1$ IF (TFORM EQ []) ZMATH = (MATHF - [mean])/[SD]
2COMF	Math Comprahension Score	COMFUTE ZCOMF $=-1$ IF (TFORM EQ []) ZCOMF = (COMPR - [mean])/[SD]
ZAFFL	Math Applications Score	COHFUTE ZAFFL $=-1$ IF (TFOFM EQ []) ZAFPL = (AFFLF - [meanj)/[SD]
ZCOAF	Math Comprehension and Applications Score	COMFUTE ZCOAF $=-1$ IF (TFORN EQ []) ZCOAF = (COAFR - [mean])/[SD]
ZMATHT	Math Test Total Score	COMFUTE ZMATHT $=-1$ IF (TFORM EQ []) ZHATHT = (MATHTF - [mean])/[SD]
2ENV	Environment Score	COMFUTE ZENV $=-1$ IF (TFORM EQ []) ZENV = (ENVF - [mean])/[SD]

COMPUTED VAEIAELEE

Abbreviated		
Variable	Variable	Computation
Name Code	Description	Description
25CI	Science Knowledge Score	```CDNFUTE ZSCI = -1 IF (TFOFMM EQ []) 2SCI = (SCIF - [mean])/[SD]```
25005	Social Science Score	$\begin{aligned} & \text { COMPUTE } 250 C 5=-1 \\ & \text { IF (TFORM ED }[\text {]) } 250 C S= \\ & \text { (SOCSR - [mean }] /[5 D] \end{aligned}$
ZSCIENCE	Science Krowledge Score	```COMFUTE ZSCIENCE = -1 IF (ZSCI NE-1) ZSCIENICE = 2SCI IF (ZENU NE-1) ZSCIENCE = LENV```
GARE4	Standard Arithmetic	COMFUTE GAE4 = - 1
	Grade Foint in 1984	IF (AR EQ B.00) GARS4 $=4.00$
		IF (AF EO 7.60) GAROU $=3.40$
		IF (AF EQ 7.40) GAF84 = 3.60
		IF (AF EQ 7.00) GARO4 $=2.00$
		IF (AR EQ S.60) GAFS4 $=1.40$
		IF (AF EQ 6.40) GAFE4 $=0.60$
		IF (AR EQ 6.00) GAFEA $=0.00$
		IF (AR LT 5.00) GAFE4 = AFSS
		IF (AF EQ 5.00) GARS4 $=-1$
GLAQ4	Standard Language Grade Feint in 1584	See above
GFEE4	Standard Feading Grade Foint in 1984	See above
GSHE4	Standard Science/Health Grade Foint in 1984	See above
650084	Standard Social Studies Grade Foint in 1984	See above
GSFP4	Standard Spelling Grade Foint in 1984	See above
GC284	Standard Citizenship Grade Foint in 1984	See above

COMFUTED VARIAELES

Abbreviated Variable Name Code	Variable Description	Computation Description
GAFBS	Standard Arithmetic Grade Foint in 1984	See above
GLABS	Standard Language Grade Foint in 1993	See above
GRE8S	Standard Reading Grade Fint in 1983	See atove
GSHES	Standard Science/Health Grade Foint in 198.	See above
gsoces	Standard Sccial Studies Grade Foint in 1983	See above
GEF83	Standard Spelling Grade Foint in 195.3	See above
60283	Standard Citizenship Grade Foint in 178.3	See above
GFA84	Grade Point Average for 1983-84	```COMFUTE GPAB4 = (EARSA + GLAB4 + GREE4 + GSH54 + 650[84)/5```
GFABS	Grade Foint Average for 1982-83	```COMPUTE GFABS = GGARSS + GLABS + GREES + 6SH83 + G50C8.j:5```
AGFA	Average Grade Foint Average	```COMFUTE AGFA = \GARE4 + GLA84 + GREB4 + G5H54 = GSOCE4 + GAFSS + GLASS + GREBS + GSH83 + GSOC83)/10```
TRANS	Did student change schools or transfer between the 1952-93 and 1983-84 school years?	```COMFUTE TRANS = D IF ((LASTSC - SCODE) = 0) TFANS = 1```
Stuses	Student median family income level	```COMFUTE STUSES = -1 IF (GRID EQ []) STUSES = []```

COMFUTED VAFIIABLES

Abbreviated Variable Name Code	Variable Description	Computation Description
XIMFFOV	Number of improvements per student	COMFUTE XIMFROV $=$ IMPROV/SCHEN
XROOMS	Number of classroons per student	COMFUTE XROOMS = RODMS/SCHEN
KSOFT	Square footage per student	COMFUTE XSQFT $=$ SRFT/SCHEN
XACFE	Site acreage size per student	COMFUTE XACFE = ACRE/ECHEN
$x \operatorname{cost}$	Cost of school construction per student	COMFUTE XCOST $=$ COST/SCHEN
XFERLOS	Percentage of books lost per student	COMPUTE XFEFLOS = FEFILDST/ECHEN
XPERDIS	Fercentage of books discarded per student	COMFUTE XFERDIS $=$ PERDIS/SCHEN
YPERAD	Fercentage of books added per student	COMFUTE XFERADD $=$ PEFADDISCHEN
XOFENE	Number of minutes library is open before school per student	COMFUTE XOPENE $=$ OPENE/SCHEN
XOFENL	Number of minutes library is open during lunch per student	COMFUTE XOFENL $=$ DPENL/SCHEN
XOPENA	Number of minutes library is open after school per student	COMFUTE XOFENA $=$ OPENA/SCHEN
xERSES	Number of books inventoried in 1983 per student	COMFUTE XEKSES/SCHEN

COMFUTED VARIAELES

Abbreviated Variable Name Code	Variable Description	Computation Description
XEKSLOS	Number of books lost in 1985-84 per student	COMFUTE XBKSLOS = EKSLOST/SCHEN
XBKSDIS	Number of books discarded in 1983-84 per student	COMPUTE XEKSDIS = BKSDIS/SCHEN
$\triangle B K S A D D$	Number of books added in 1983-84 per student	COMPUTE XEKSADD = EKSADD/SCHEN
XENCYES	Number of encyclopedia sets in 150. per student	COMFUTE XENCYSS = ENCYCES/ECHEN
XENCYE4	Number of encyclopedia sets in 1984 per student	COMFUTE XENCY84 = ENCYE84/SEHEN
XENCYLI	Number of encyclopedia sets in the library per student	COMFUTE XENCYLI = ENCYCLI/SCHEN
XENCYCL	Number of encyelopedia sets in classroons per studerit	COMPUTE XENCYCL = ENCYCCL/ECHEN
XEOOKS	Number of tooks in collection at 6/84 per student	COMFUTE XEOOKS = EDOKS/ECHEN
XENCYMI	Number of encyclopedia sets missing volumes per student	COMPUTE XENCYMI = ENCYCMI/SCHEN
XFILMS	Number of filmstrips per student	COMPUTE XFILMS $=$ FILMS/SEHEN
XAUDTAF	Number of audio tapes per student	COMFUTE XAUDTAF = AUDTAFE/SChEH
XAUDREC	Number of audio recordings per student	COMFUTE XAUDFEC = AUDFEC/SCHEN

COMPUTED VARIABLES

Abbreviated Variable Name Code	Variable Description	Computation Description
XUIDTAP	Number of video tapes per student	COMFUTE XVIDTAP = VIDTAFE/SCHEN
XSOFT	Number of software programs per student	COMFUTE XSDFT = SOETWARE/SCHEN
XMICFO	Number of microforms per student	COMFUTE XMICFO = MICFO/ECHEN
XFICHE	Number of microfiche per student	COMFUTE XFICHE = FICHE/SCHEN
PSLIDE	Number of slides per student	COMFUTE XSLIDE = ELIDE/SCHEN
XTREPAF	Number of transparencies per student	COMFUTE XTESPAF = TREFAR/SCHEN
XVITS	Number of instructional kits per student	COMPUTE XKITS = KITS/SCHEN
XLDOFS	Number of film loops per student	COMFUTE XLOOFS $=$ LOOFS/SCHEN
XGLDEE	Number of globes per student	COAFUTE XGLOBE $=$ GLOEE/SCHEN
XMODEL	Number of models per student	COMFUTE XMODEL $=$ NODEL/SCHEN
XAV	Total A.V. materials per student	COMFUTE XAV = AV/SCHEN
XMAG	Number of magazine subscriptions per student	COMFUTE XMAG = MAg/ECHEN
XNEWS	Number of newspaper subseriptions per student	COMFUTE XNEWS = NEWSISCHEN
XCRTLIE	Number of certified librarians per student	COMFUTE XCFitlie = CEFTLIE/SCHEN

COMFUTED VARIAGLES

Variable Name Code	Variable Description	Computation Description
XLIEAST	Number of library assistants per student	COMFUTE XLIEAST $=$ LIEAST/SCHEN
XSTUAID	Average number of student library aides per day per student	COMFUTE XSTUAID = STUAIDISCHEAN
XAIDES	Number of paid aides per student	COMFUTE XAIDES $=$ AIDES/SCHEN
XCIFICUL	Weakly average circulation per student	COMFUTE XCIFCUL $=$ CIRCUL/SCHEN
xstuuse	Weekly average student use per student	compute xstuuse = stuuse/Echen
XFATIOK	Student-teacher ratio in kindergarten	COMFUTE XFATIOK = TEACHK/ETUK
XRATIOI	Student-teacher ratio jn first grade	COMFLIE XFATIOI = TEACHI/STU1
XFATIO2	Student-teacher ratio in second grade	COMPUTE XEATIO2 $=$ TEACH2ISTU2
XFATIOS	Student-teacher ratio in third grade	COMFUTE XIATIOS = TEACHS/STUS
XFATIO4	Student-teacher ratio in fourth grade	COMPUTE XRATIO4 $=$ TEACH4/STU4
XFATI05	Student-teacher ratio in fifth grade	COMFLLTE XFATIOS $=$ TEACHS/STUS
ZRATIOG	Student-teacher ratio in sioth grade	COMFUTE XRATIOS = TEACHS/STUÓ
XFATIOT	```Overall student-teacher ratio```	COMFUTE XFATIOT = TEACHTO/STITOT

COMFUTED VAFIAELES

Abbreviated Variable Name Code	Variable Description	Computation Description
Xfatse	Student-teacher ratio for special education students	COMFUTE XFATSE $=$ SETEACH/SETOT
XFATESL	```Student-teacher ratio for ESL students```	COMPUTE XRATESL = ESLTEACH/TOTESL
XHELFK	Ratio of aides/ assistants to students in kindergarten	COMPUTE XHELFK = ASSTK/STUK
XHELPK	Ratio of aides/ assistants to students in :indergarten	COMFUTE XHELFK = ASETK/ETUR
XHELPI	Fatio of aides/ assistants to students in first grade	COMFUTE XHELP1 = ASST1/STU1
XHELF2	Fatio of aides/ assistants to students in second grade	COMFUTE \times HELF2 $=$ ASET2/STU2
XHELFS	Ratio of aides/ assistants to students in third grade	COMPUTE XHELFS = ASSTS/STUS
XHELP4	Fatio of aides/ assistants to students in fourth grade	COMFUTE XHELFA $=$ ASET4/ETLA
XHELFS	Fiatio of aides/ assistants to students in fifth grade	COMFUTE XHELFS = AESTS/ETUS
XHELPG	Ratio of aides/ assistants to students in sixth grade	COMFUTE XHELFG $=$ ASSTE/STUS
XHELFT	Overall râio of aides/ assistants to students	COMFUTE XHELFT = ASSTTDT/ETUTOT

Abbreviated		
Variable	Varjable	Computation
Name Code	Description	Description
XSFECK	Fercentage of special education students in kindergarten	COMFUTE XSPECK = SEK/STUK
XSFEC 1	Fercentage of special education students in first grade	COMFUTE XSFEC1 $=$ SE1/STUI
XSFEC2	Fercentage of special education students in second grade	COMFUTE XSPEC2 $=$ SE2/5TU2
XSPECS	Fercentage of special education students in third grade	COMFUTE XSFEC3 = SESTSTUS
XSFEC4	Percentage of special education students in fourth grade	COMPUTE XSFEC4 $=$ SE4/STU4
XSPECS	Fercentage of special education students in fifth grade	COMPUTE XSPECS $=$ SES/STUS
XSFECE	Fercentage of special education students in sixth grade	COMFUTE XSFECG = SEG/STUS
XSPECT	Overall perceritage of special education students	CONFUTE XSFECT $=$ SETOT/STUTET
XESLE	Fercentage of ESL students in kindergarten	COMFUTE XESLK = ESLSTUK/STUK
XESL1	Fercentage of ESL students in first grade	COMFUTE XESL1 $=$ ESLETU1/5TU1
XESL2	Fercentage of ESL students in second grade	COMFUTE XESL2 = ESLSTUZ/STU2

COMPUTED VARIABLES

Abbreviated Variatle Name Code	Variable Description	Computation Description
XESLS	Percentage of ESL students in third grade	COMFUTE XESLS $=$ ESLETUJ/STUS
KESL4	Fercentage of ESL students in fourth grade	COMFUTE XESLA $=$ ESLSTUA/STU4
XESLS	Percentage of ESL students in fifth grade	COMFLUTE XESLS $=$ ESLSTUS/STUS
XESLE	Percentage of ESL students in si\%th grade	COMPUTE XESLG $=$ ESLSTUE/STUS
XESLT	Overall percantage of ESL students	COMFUTE XESLT = TOTESL/ETUTOT
MEESOUS	Number of litrary/ resource teachars per student	COMFIJTE XFESOUFi $=$ FESTEACH/SCHEN
XFEDS	Number of federal employees per studant	COHFUTE XPEDS = FEDS/SCHEN
y.couns	Number of counselors per student	COMFLTE XCOUNS $=$ COUNSEL/SCHEN
XSTAFF	Total staff per student	COMFUTE XSTAFF $=$ STAFF/SEHEN
colony	Farticipated in Colony Head Start program	```COMFUTE COLONY = 0 IF (TYSCH = 1) COLONY = 1```
FEEEF	Farticipated in Fieservation Head Start program	COMFUTE RESEF $=0$ IF (TYSCH = 2) FESER = 1
WTFACTOR	Population weighting factor	COMPUTE WTFACTOF $=1$ IF (REG EQ O) WTFACTOF $=26.4$

FECODED UAEIABLES

Abbreviated Variable Name Code	Variable Descrigtion	Fiecoded Description
OFENB	Number of minutes library is open before school	RECODE OFENB ($10=15$)
OPENL	Number of minutes library is open during lunch	RECODE DPENL ($10=15$)
OFENA	Number of minutes library is open after school	RECODE OPENA (10 = 15)
FASTA	Father's status	$\begin{gathered} \text { FECODE FAETA }(0=0)(1,2,9=1) \\ 0=\text { Natural } ; 1=\text { Other } \end{gathered}$
mosta	Mother's status	$\begin{aligned} & \text { FECODE MOSTA }(0=0)(1,2,9=1) \\ & 0=\text { Natural } ; 1=\text { Other } \end{aligned}$
EIRTH	Student's birthplace	$\begin{aligned} & \text { FECODE EIRTH }(0,1,7=0) \\ & (6,8,9=1) \\ & 0=\text { Nevada; } 1=\text { Elsewhere } \end{aligned}$
FAOC	Father's occupation	```FECODE FAOC (O1 THKU 22 = 0) (25 = 0) (28 THFUU 32 = 0) (34 THFU 35 = 0) (00 = 1) (23 THFU 24 = 1) (26 THFU 27 = 1) (35 = 1) (37 THRU 38 = 1) O = Working; 1 = Not Working```
MOOC	Mother's occupation	$\begin{aligned} & \text { FECODE MOOC }(01 \text { THFU } 22=0) \\ & (25=0)(28 \text { THRU } 32=0) \\ & (34 \text { THRU } 36=0)(00=1) \\ & (23 \text { THRU } 24=1) \\ & (26 \text { THRU } 27=1)(33=1) \\ & (37 \text { THFU } 3 B=1) \\ & 0=\text { Working; } \\ & 1=\text { Not Working } \end{aligned}$

FECDDED VAKIAELES

Abbreviated Variable Name Code	Variable Description	Fiecoded Descriotion
RESID	Student's residence	```FECODE FESID (0, 1=0) (2,3=1) 0 = Reno-Sparks/ Reno-Sparks Indian Colony (urban) 1 = Washoe County/Fyramid Lake Indian Feservation (rural)```
FAESENT	Number of parents absent	```FECODE FAESENT (0=0) (1,2,3=1) 0 = Eoth Fresent 1 = One or Eath Atsent```
EMPLOY	Number of parents employed	```FECODE EMFLOY (0, 1=0) (2, S=1) 0 = Eoth or Father Mrly Employed 1 = Neither or Nother Only Employed```
MEAL	Farticipation in the federal lunch program	$\begin{aligned} & \text { RECODE MEAL }(0=0) \quad(1,2=1) \\ & 0= \text { Not in the Lunch } \\ & \text { Frogram } \\ & 1= \text { In the Lunch Frogran } \end{aligned}$
THELD	Tutal number of retentions in the W.C.S.D.	$\begin{gathered} \text { RECODE THELD } \quad(2=1) \\ 0=n 0 ; 1=y e 5 \end{gathered}$
FEG	Fiacial ettinic group	```RECODE REG (1=1) (2 THRU 5 = 0) 0 = Non-Indian; 1 = Indian```
WHONA	Who is Mative American?	$\begin{aligned} & \text { RECODE WHONA }(7,8=0) \\ & (1,2,3,5,6,7=1) \quad(0=-1) \\ & 0=\text { Student/Farents } \\ & 1=\text { Other } \end{aligned}$
FRESCH	Freschool attendance	RECDDE PRESCH (-1=0)

RECODED VAFIAELES

Abbreviated Variatle Name Code	Variable Description	Fiecoded Description
YFPRE	Number of years in preschool	$\begin{aligned} & \text { FECODE YFFFE }(0=0) \quad(1=1) \\ & (2, \Xi=2) \\ & 0=\text { Unknown } \\ & 1=1 \text { year } \\ & 2=2 \text { or more years } \end{aligned}$

CODING SUPPLEMENTS

1
$6=$ Deaf

Special Education Codes (SPED)
$0=$ Not in progran
$1=$ Mentally Handicapped (Mild)
2 = Learning Disabled
$3=$ Multiple Handicapped
$4=$ Eavtionally Handicapped
5 = Fhysically Handicapped
7 = Speech Handicapped Hard of Hearing
Elind 3
Partially Sighted 4
Homebound 6
Mentally Handicapped (Severe) 8
Hentally Handicapped (Moderate)
Actual District Codes

E
[
5

1
7

2

硅

ELANK
A
E

CODING SUPPLEMENTS

3 Class Grade Conversion Chart

Non-Traditional Grades Traditional Grades Traditional Grades

$D=8.40$	$N A=5.00$	
$O-=7.60$	$A+=4.40$	$C=2.00$
$S+=7.40$	$A=4.00$	$C-=1.60$
$S=7.00$	$A-=3.60$	$D+=1.40$
$S-=6.60$	$B+=3.40$	$D=1.00$
$I+=6.40$	$B=3.00$	$D-=0.60$
$I=6.00$	$E-=2.60$	$F+=0.40$
$I-=5.60$	$C+=2.40$	$F=0.00$

4 Test For Codes (IFORM)

```
1 = Differential Aptitude Test, Grade 8
2=82 Stanford Ach lest Int I Fora E
3=82 Stanford Ach Test Int 2 Fora E
4=82 Stanford Ach Test Advanced Form E
5 = 82 Stanford Ach Test Priol Fora E
b=82 Stanford Ach Test Pria 2 Fora E
7=82 Stanford Ach Test Pris 3 Fora E
```

5 Who Is Listed on the For 505 as Indian for Eligitility (whona)

```
O=NA
1= Mother
2 = Father
3 = Both Mother and Father
4 = Student theaself
5 = Grandsother
6=6randfather
7 = Grandparents
B Student and Parent
Q = Other
```


CODING SUPFLEMENTS

6 Aterican Indian Nationality (Tribal) Codes (NATION)

000	None Given	041	Maricopa-Piad	080	Maidu
001	Hashoe of NV \& CA	042	Kickapoo	081	Klacath/Paiute
002	Ft. McDeraitt Paiute	043	Duckwater Shoshone	082	Hidat5a/Hashoe
003	Hashoe/Paiute	044	Hopi/Faiute	083	Paiute/Apache
004	Haulapi/Paiute/Havasupa		Lovelock Faiute	084	Medwankton Sioux
005	Pyranid Lake Paiute	046	Blackfoot (hT)	085	Southern Paiute
006	Cherokee of OK	047	Blackfoot (OH [?])	086	Shoshone/Kaidu
007	Apache/Mavajo	048	Sioux/Apache	087	Athabaskin/Alaskan Native
008	Yurok	049	Modoc	088	Cherokes/Oneida
009	Oglala Siouk	050	Paiute/Navajo	089	Iuni
010	Northern Paiute	051	Acoaa (Pueblo)	090	Delanare/Pamnee
011	Paiute	052	Ely Shoshone	091	Duck Valley Shoshone/Paiute
012	Mewak	053	Cherokee/Wyandot	092	Pisa
013	Navajo	054	Seainole/Creak	093	Tule
014	Nez Perce/Paiute	055	Pit River	094	Hintun
015	Cheyenne	056	Yakiaa Confederated	095	Kiowa
016	Choctan	057	Turtle Mt. Chippenas	096	Cree
017	Western Shoshona/	058	Acona/Shoshone	097	Apache
	Te-Hoak Bands	059	Karok	098	Tass (Pueblo)
018	Dakota Siouk	060	Eskimo	099	NA
019	Hino	061	Southern Shoshone/	100	Ta05/Paiute
020	Ciil ppeara-Cree		Paiute	101	Rocky Boy Chippewa-Crae
021	Fallon Faiute/Shoshone	062	Numlaki/hylaki	102	Goshute
022	Paiute-Shoshone	063	Cold Lake Chippema/	103	Iroquois
023	Hingit		Crom	104	Navajo/Paiute [same as 50?]
024	Blackfeet	064	Ft. Hall Shoshone-	105	Wylike
025	Paiute/mono		Bannock	106	Paiute/Chippewa-Cree
026	Shoshone	065	Shoshone/Goshute	107	Paiute/Hashoe/Miwok
027	Shamnee	066	Navajo/Shoshone	108	Cheyenne River [Sioux]
028	Ute	067	Hashoe/Salt River	109	Santee Sioux
029	Rosebiud Sioux		Pina/Maricopa	110	Cheyenne/Arapaho
030	Cherokee/Winnebago	068	Assiniboine/Sioux	111	Chickasam
031	Yoaba/Shoshone	069	Mohawk	112	Eastern Cherokee
032	Western Nevada	070	Tigua	113	Concow/Maidu [?]
	Shoshone	071	Ute/hintu	114	Delamare
033		072	Seainole		
034	Chumash	073	Paiute/Sioux		
035	Ft. Bidmell Paiute	074	Crow		
036	Halker River Faiute	075	Chuchasisi [?]		
037	Comanche/Cherakee	076	Sunait Lake Paiute		
038	Cherokee/Choctaw	077	Northern Cheyenne		
039	K! ${ }^{\text {anath }}$	078	Potamatoai		
040	Ft. Peck (MT) Siouk	079	Heott		

7
National (Tribal) Status Codes (NATSTA)

```
O = NA
1 = Federally Fecognized
2 = Eskimo/Alaskan Native
Z = Eoth Federally Recognized
    and Eskimo/Alskan Native
4 = NOT Federally Recognized
5 = Terminated
```

5 School Codes (SCODE/SCHOOL)

$43=$ School number 01	$83=5 c h o o l ~ n u m b e r ~ 22 ~$
bo = School number 02	$64=$ School number 23
41 = Schoal number 03	$4 t=$ School riumber 24
$45=$ School number of	$42=$ School number 25
$72=$ School number 05	$53=$ School rumber 26
$54=$ School number 0t	$68=$ School number 27
$80=$ School number 07	$69=$ School number 28
$35=$ School number 08	
$48=$ Schoal number 09	70 = School number 30
$51=$ School number 10	$57=$ School number 31
81 = School number 11	$71=5 c h o o l ~ n u m b e r ~ 32 ~$
$47=$ School number 12	$40=$ School number 33
$82=$ School number 13	$73=$ School number 34
$79=$ School number 14	$61=$ School number 35
$55=5 c h o a l$ number 15	
	$75=5$ chool number 37
57 = School number 17	$58=$ School number 33
$59=$ School number 18	$65=$ School number 39
50 = School number 19	$76=5$ chool number 40
$63=$ School number 20	77 = School number 41
$52=$ School number 21	$52=5$ chool number 42

43 = School number 01
60 = School number 02
$41=$ School number 03
School number
54 = School number 0t
$80=$ School number 07
Se Sehool number 08
$51=$ School number 10
81 = School number 11
47 = School number 12

- Schaol number 13
$55=$ Schoal number 15
$56=$ School numider 16
= School number 17
$65=$ School number 39
$50=$ School number 19
$76=5$ 5chool number 40
77 = School number 41
52 = School number 42

Types of Data Available (DATA)

```
O = Have enrollment form, perm record, and SAT scores
1 = Have enrollment form and perm record
2 = Have enrollment form and SAT scores
3 = Have perm record and SAT scores
4 = Have enrollment form
5 = Have perm record
6 = Have SAT scores
```

Table [-1. Variables Used in Study

Dependent Yariables ${ }^{\text {a }}$		
2SKLS (I)	ZVOC (I)	ZMATH (I)
ZSEND (I)	ZLIST (I)	2matht (I)
ZREADT (I)	ZAUDIT (I)	ZSCIENCE (I)
	2SFELL (I)	
Independent Yariables		
Student Achievement Variables ${ }^{\text {a }}$		
AGFA (I)	GS0CBS (I)	G5FE4 (I)
GFASS (I)	GSF93 (I)	DFPS (I)
GFAE4 (I)	GARB4 (I)	DF'84 (I)
Gfiges (I)	GLA84 (I)	DASE (I)
GLAES (I)	GREB4 (I)	DA84 (I)
GEESS (I)	GSHO4 (1)	LNEES (I)
65H83 (I)	650C84 (1)	DNEE4 (I)
Teacher Evaluation Variables ${ }^{\text {a }}$		
GC283 (I)	RETAING4 (N)	
GCzE4 (I)	THELD (0)	
GIFT (N)		
Fersonal/Eackoround Variablesa		
AGE (I)	FORMEO6 (N) ${ }^{\text {a }}$	EMPLOY (N)
TFANS (I)	WHONA (N) ${ }^{\text {b }}$	FASTA (N)
MODISTSS (I)	NATION (N) ${ }^{\text {b }}$	FACC (N)
MODISTG4 (I)	NATSTA (N) ${ }^{\text {P }}$	MOSTA (N)
RESID (N)	PFESCH (N) ${ }^{\text {P }}$	M00E (N)
BIFTH (N)	TYSCH (N) ${ }^{\text {b }}$	MEAL (0)

[^2]Table $[-1$. (continued)


```
a--See Appendi: B for explanation and coding procedures of
    variables. Letter in parentheses indicates data scale:
    (I)=interval data; (O)=ordinal; (N)=nominal.
b--Variable applicade to Native American students only.
```


AFFENDIX D

DESCRIFTIUE STATISTICS FOR VARIABLES

```
Table D-1. Variable Descriptive Statistics for Population
```

Variablea Mean Standard Deviation	

Dependent Variables

ZSKLS	.28	.86	439
ZFEAD	.37	.75	441
ZREADT	.36	.76	439
ZVOC	.20	.88	436
ZLIST	.16	.07	436
ZAUDIT	.15	.96	429
ZSFELL	.20	.91	441
ZMATH	.11	.92	441
ZMATHT	.27	.90	4.38
ZSCIENCE	.36	.82	438

Independent Variables

ACRE	6.78	3.13	452
AGE	119.27	17.39	457
AGFA	2.75	. 60	459
AIDES	. 03	. 17	452
AUDREC	145.39	151.07	452
AUDTAFE	524.58	356.34	452
AV	1762.79	9.96 .33	452
EIFTH	. 45	. 50	459
BKS83	6249.78	1627.22	454
EKSADD	283.61	184.54	454
EkSDIS	217.85	285.56	454
EkSLQST	34.11	20.49	454
EOOKS	6304.75	1549.96	459
CEFTLIE	. 0.3	. 17	452
CIFCUL	633.17	277.96	434
cost	569719.44	441883.71	459
COUNSEL	. 45	. 27	448
DABS	9.34	7.86	450)
DAB4	9.71	7.94	459
DNES ${ }^{\text {d }}$	4.94	21.05	447
DNEB 4	. 35	3.22	457
DF8S	163.39	24.43	452

a--See Appendix B for explanation of variable names.

Table D-1. (continued)

Variablea	Mean	Standara Deviation	N
DF94	169.81	8.71	459
Employ	. 15	. 36	459
EMERTEL	. 89	.31	459
EMERFEF	. 90	. 30	459
ENCYC8S	7.14	4.85	459
ENCYC84	8.22	5.90	459
ENCYCCL	6.92	4.17	4.59
ENEYCLI	4.71	3.45	459
Encycmi	1.99	2.64	459
ESLSTUS	. 71	1.67	448
Fioc	. 08	. 27	423
FASTA	. 16	. 37	426
FATHER	1.00	. 07	433
FEDS	. 35	. 6.3	448
FICHE	0.00	0.00	452
Films	730.95	321.32	452
GAFBS	3.00	. 75	459
GARE4	2.93	. 75	459
6czes	3.15	. 81	449
GC284	3.23	. 77	455
GIFT	. 07	. 25	459
GLASS	2.88	. 51	459
GLAEA	2.87	. 79	459
GLOEE	3.66	5.69	452
GFABS	2.75	. 62	459
GF'AS 4	2.76	. 68	459
GREES	2.86	. 87	457
GRE84	2.86	. 82	459
G5HBJ	2.48	. 76	459
GSHE4	2.60	. 81	459
G50CE3	2.45	. 79	459
GSOCP 4	2.54	. 87	459
GSP83	3.10	. 86	457
G5FB4	3.22	. 75	459
INFROV	4.30	2.22	459
KITS	57.24	53.69	452
LEVEL	3.77	1.44	459
LIEAST	. 93	. 26	452
LOOFS	12.99	19.93	452

a--See Appendix B for explanation of variable names.

Table D-1. (continued)

Variatlea	Mean	Standard Deviation	N
MAG	7.08	3.88	4.52
MEAL	. 17	. 37	459
MICRO	0.00	0.00	452
MODEL	6.43	7.70	452
Modistas	8.67	1.27	452
modiste 4	8.99	. 17	459
MOOC	. 35	. 48	450
mosta	. 04	. 20	443
MOTHER	1.00	. 01	457
NEHS	0.00	0.00	452
OFENA	14.13	14.55	434
OFENE	13.28	17.29	4.34
OFENL	20.35	28.33	432
FAESENT	. 20	. 40	457
FERADD	5.34	4.72	454
FERDIS	3.50	4.79	454
PEFiLOST	. 56	. 32	454
FEG	. 03	. 17	457
FESID	. 35	. 48	459
RETAINO4	. 04	. 19	459
FOOMS	18.51	4.38	459
SCHAGE	23.75	13.27	459
SCHEN	414.27	106.14	459
SCHSES	23921.70	3846.87	450
SEX	. 52	. 50	459
SLIDE	255.17	205.61	452
SOFTWARE	16.08	51.03	452
S0FT	31931.63	836.3.08	459
STAFF	19.86	4.44	448
STUAID	1.68	2.49	452
STUSES	24200.42	4754.33	433
STUUSE	379.81	450.56	339
TELE	. 94	. 25	459
THELD	. 12	. 35	459
TfiANS	. 44	. 50	459
TRANSS 4	. 18	. 46	444
TRSFAK	220.07	340.39	452
Ttriane 4	1.07	1.38	431
UIDTAFE	.21	. 64	452

a--See Appendi: E for explanation of variable names.

Table D-2. Variable Descriptive Statistics for Indians

Variablea	Mean	Made	Median	Fiange	Variance	N
	Dependent Variables					
ZSKLE	-. 12	. 14	. 03	3.94	. 74	193
2FEAD	-. 07	-. 37	. 00	3.82	. 67	192
ZFEADT	-. 08	-1.41	-. 06	3.67	. 53	172
2VOC	-. 39	-. 83	-. 44	3.62	. 77	194
ZLIST	-. 24	-. 76	-. 23	4.61	. 75	194
2AUDIT	-. 33	. 80	-. 26	4.04	. 74	153
2SPELL	-. 09	. 60	-. 03	3.98	. 84	197
2HATH	-. 43	-. 42	-. 42	4.60	. 79	157
ZMATHT	-. 22	-1.04	-. 13	4.53	. 74	196
zscience	-. 05	-1.23	. 05	4.13	. 68	175

Independent Variables

ACFE	7.90	12.58	6.00	13.99	13.54	201
AGE	124.07	138.00	125.00	74.00	325.90	201
AGPA	2.40	2.38	2.44	3.30	. 43	201
AIDES	. 12	0.00	0.00	1.00	. 11	198
AUDFEC	163.75	106.00	120.00	499.00	13472.92	193
aUdTAFE	518.66	245.00	410.00	1600.00	91699.20	198
AV	2016.81	938.00	1870.00	4227.00	1150435.69	198
EIRTH	2.72	0.00	0.00	9.00	13.33	201
BKSES	6255.00	4355.00	6718.00	5500.00	2685390.50	200
EKSADD	259.65	188.00	188.00	793.00	37499.60	200
EKSDIS	183.80	68.00	68.00	1209.00	61948.85	200
EKSLOST	31.67	23.00	24.00	79.00	310.90	200
E00kS	6350.97	4430.00	6718.00	5372.00	2745373.00	201
CEFTLIE	0.00	0.00	0.00	0.00	0.00	198
CIRCUL	578.40	320.00	600.00	1000.00	64343.12	192
COET	462410.67	423650.00	423550.00	1893657.00	$5.44 \mathrm{E}+10$	201
DABS	11.51	3.00	9.50	50.00	78.64	198
DAE4	11.89	4.00	9.00	70.50	107.50	201
DHES 3	3.02	0.00	0.00	135.00	220.78	197
DHE84	1.43	0.00	0.00	113.00	108.74	201
DFBS	163.59	175.00	168.50	138.00	373.14	199
DF84	166.87	176.00	171.00	119.50	190.85	201
EMFLOY	1.27	0.00	1.00	3.00	1.30	201

a--See Appendix B for explanation of variable names.

Table D-2. (continued)

Variablea	Mean	Mode	Median	Range	Variance	N
CMEFPER	. 92	1.00	1.00	1.00	. 07	201
EMERTEL	. 82	1.00	1.00	1.00	. 15	201
ENCYCBS	5.15	3.00	3.00	21.00	17.68	201
Encyce 4	5.92	2.00	4.00	25.00	22.12	201
ENCYCCL	5.98	3.00	6.00	17.00	11.87	201
ENCYCLI	4.32	3.00	3.00	14.00	7.08	201
ENCYCMI	2.19	1.00	1.00	10.00	5.93	201
ESLSTUS	. 52	0.00	0.00	7.00	2.11	193
FAOC	21.59	25.00	25.00	38.00	120.67	156
FASTA	. 58	0.00	0.00	9.00	3.32	167
FATHEF	. 96	1.00	1.00	1.00	. 04	171
FEDS	. 5.7	0.00	. 50	2.70	. 45	193
FICHE	0.00	0.00	0.00	0.00	0.00	198
FILMS	214.30	350.00	801.00	1285.00	160556.50	195
FOFME06	. 70	1.00	1.00	1.00	. 21	201
GARES	2.63	3.00	3.00	4.00	. 78	201
GAFSA	2.54	3.00	2.60	4.00	. 72	201
GC283	3.00	3.00	3.00	4.00	. 77	199
60284	2.99	4.00	3.00	4.00	. 75	195
GIFT	.03	0.00	0.00	1.00	. 03	201
glas 3	2.52	3.00	2.60	4.00	. 73	201
GLAE 4	2.49	3.00	2.60	4.00	. 82	201
GLDEE	2.30	2.00	2.00	21.00	15.99	198
[FASS	2.40	2.32	2.44	4.00	. 49	201
GFABA	2.41	2.12	2.48	3.88	. 52	201
GRES 3	2.49	2.00	2.60	4.00	. 75	201
GFEB4	2.42	2.00	2.60	4.00	. 75	201
65 H83 $^{\text {3 }}$	2.21	2.00	2.00	4.00	. 65	201
G5H54	2.27	2.00	2.00	4.00	. 63	201
GS0CES	2.15	2.00	2.00	4.00	. 68	201
6S0C84	2.30	2.00	2.00	4.00	. 67	201
GSPG3	2.89	3.00	3.00	4.00	. 98	201
GSFBA	2.92	5.00	3.00	4.00	. 85	201
IMFROV	4.40	5.00	5.00	9.00	3. 84	201
KITS	55.50	30.00	30.00	198.00	1874.10	178
LEVEL	4.10	5.00	4.00	5.00	1.95	201
LIEAST	. 97	1.00	1.00	1.00	. 03	198
LOOFS	17.37	0. 00	9.00	92.00	482.36	198
MAG	7.13	8.00	7.00	15.00	14.05	198
MEAL	. 5	0.00	0.00	2.00	. 54	201

a--See Appendix B for explanation of variable names.

Table D-2. (continued)

Variablea	Mean	Mode	Median	Fiange	Variance	N
MICFD	0.00	0.00	0.00	0.00	0.00	198
MODEL	9.69	9.00	9.00	36.00	49.60	198
MODIST83	8.82	9.00	9.00	7.00	. 66	198
MODIST84	8.92	9.00	9.00	6.00	. 32	201
HOOC	24.00	37.00	25.00	37.00	90.72	151
mosta	. 10	0.00	0.00	9.00	. 51	194
MOTHER	1.00	1.00	1.00	1.00	. 01	201
NATION	15.87	0.00	5.00	105.00	667.67	201
NATSTA	3.67	1.00	1.00	9.00	13.89	201
NEWS	0.00	0.00	0.00	0.00	0.00	178
OFENA	11.80	0.00	15.00	45.00	165.21	192
OPENE	7.27	0.00	0.00	60.00	230.84	192
OFENL	27.89	30.00	15.00	90.00	804.82	192
FABSENT	. 47	0.00	0.00	3.00	. 46	201
PEFADD	4.43	4.33	4.35	17.64	12.97	200
FERDIS	2.92	1.57	1.57	20.74	14.75	200
FEFLOST	. 52	. 53	. 53	1.17	. 07	200
FRESCH	1.00	1.00	1.00	1.00	0.00	62
REG	1.00	1.00	1.00	1.00	0.00	201
FESID	1.53	3.00	2.00	3.00	1.43	201
FETAINB4	. 03	0.00	0.00	1.00	. 02	201
Fooms	17.70	10.00	19.00	21.00	31.14	201
Schage	23.35	12.00	21.00	68.00	135.66	201
SCHEN	375.30	134.00	450.00	603.00	25595.69	201
SCHSES	20700.33	18100.00	20630.00	15990.00	8857754.4B	201
SEx	. 57	1.00	1.00	1.00	. 25	201
SLIDE	233.31	180.00	184.00	700.00	17708.76	198
SOFTWARE	15.22	0.00	0.00	253.00	1526.88	198
SQFT	29803.19	17146.00	35800.00	34459.00	90981408.90	201
STUAID	1.00	0.00	0.00	9.00	3.50	198
STUSES	20298.61	18100.00	19614.00	20157.00	9672854.35	197
stuuse	477.39	200.00	200.00	2000.00	43611.19	155
TELE	. 75	1.00	1.00	1.00	. 19	201
THELD	. 17	0.00	0.00	2.00	. 15	201
TRANS	. 45	0.00	0.00	1.00	. 25	201
TRSFAR	199.90	18.00	47.00	1450.00	97485.53	198
TYSCH	1.52	1.00	1.00	3.100	. 35	62
VIDTAFE	. 56	0.00	0.00	3.00	1.26	198
WHONA	4.66	4.00	4.00	B. 00	6.55	201
YRFFE	1.55	2.00	2.00	2.00	. 28	62

a--See Appendix E for explanation of variable mames.

Table D-3. Variable Descriptive Statistics for Non-Indians

Variablea	Mean	Mode	Median	Range	Variance	N
Dependent Variables						
ZSKLS	. 27	1.03	. 49	5.08	. 74	247
2READ	. 38	. 79	. 50	3.42	. 56	248
zREADT	. 37	. 54	. 54	3.86	. 56	247
ZVOC	. 22	-. 76	. 37	4.37	. 76	245
ZLIET	. 17	. 42	. 31	5.49	. 76	245
ZAUDIT	. 16	1.10	. 25	5.98	. 93	241
2SFELL	. 21	. 88	. 47	4.24	. 82	248
ZMATH	. 13	. 69	. 22	4.47	. 84	248
ZMATHT	. 28	-.33	. 45	4.35	. 81	246
ZSCIENCE	. 37	. 75	. 50	4.75	. 68	246

Independent Variables

ACRE	6.74	10.00	6.00	14.07	9.64	254
AGE	119.13	107.00	118.00	79.00	301.60	257
AGPA	2.76	2.90	2.78	3.26	. 35	2ちら
AIDES	. 03	0.00	0.00	1.00	. 03	254
AUDEEC	142.79	0.00	106.00	757.00	23125.20	254
AUDTAFE	524.76	351.00	408.00	1738.00	128245.32	254
AV	1961.41	968.00	1715.00	4453.00	989722.61	254
EIFTH	3.84	0.00	1.00	8.00	15.08	258
EKS33	6249.60	2875.00	5649.00	5749.00	2651512.56	255
EKSADD	294.35	0.00	294.00	793.00	33978.18	255
EKSDIS	220.92	0.00	100.00	1209.00	22230.75	255
EKSLOST	34.18	28.00	28.00	70.00	423.63	255
E00kS	6303.38	3369.00	6718.00	5372.00	2396495.80	253
CERTLIE	. 03	0.00	0.00	1.00	. 03	254
CIFCUL	634.80	1000.00	600.00	1127.00	77702.40	244
COST	571856.63	256635.00	466954.00	1893657.00	$1.998+11$	255
DA83	9.27	0.00	7.00	46.50	61.25	253
DAS4	9.65	5.00	8.00	42.00	61.64	258
DNE83	5.00	0.00	0.00	135.00	450.57	251
DNE84	. 32	0.00	0.00	35.00	7.42	259
DFBS	163.39	179.00	170.00	156.00	604.69	254
DFP4	169.90	175.00	172.00	50.00	72.32	250
EMERFEF	. 90	1.00	1.00	1.00	. 09	258

[^3]Table D-3. (continued)

Variabie ${ }^{\text {a }}$	Mean	Mode	Median	Range	Variance	N
EMERTEL	. 89	1.00	1.00	1.00	. 10	258
EMPLDY	. 64	0.00	0.00	3.00	. 67	258
ENCYC83	7.19	6.00	6.00	21.00	23.60	258
ENCYCR4	8.28	2.00	6.50	25.00	35.109	258
ENCYCCL	6.95	7.00	7.00	17.00	17.59	259
ENCYCLI	4.72	3.00	4.00	14.00	12.09	25E
ENCYCMI	1.98	0.00	1.00	10.00	6.98	250
EsLSTUS	. 72	0.00	0.00	7.00	2.81	252
FAOC	23.79	25.00	25.00	38.00	45.26	239
FASTA	. 22	0.00	0.00	9.00	. 51	240
father	. 98	1.00	1.00	1.00	. 02	415
FEDS	. 32	0.00	0.00	2.70	. 39	252
FICHE	0.00	0.00	0.00	0.00	0.00	254
FILMS	720.48	315.00	705.00	1285.00	101580.20	254
Gar83	3.01	3.00	3.00	4.00	. 56	25.
GAFP4	2.94	3.00	3.00	3.40	. 55	258
GC283	3.16	4.00	3.00	4.00	. 65	252
GC284	5.24	4.00	3.60	3.00	. 58	256
GIFT	. 07	0.00	0.00	1.00	.06	259
GLABS	2.88	3.00	3.00	4.00	. 65	258
Glab4	2.90	3.00	3.00	3.40	. 61	258
GLOBE	3.70	1.00	1.00	21.00	32.84	254
GFAGS	2.74	3.00	2.72	3.88	. 38	258
GFAB4	2.78	2.60	2.84	2.96	. 46	259
GFEES	2.87	3.00	3.00	4.00	. 75	258
GREE4	2.87	3.00	3.00	3.80	. 66	258
GSHES	2.48	2.00	2.00	4.00	. 58	259
GSHE4	2.61	2.00	2.00	3.40	. 65	258
650C83	2.46	2.00	2.00	4.00	. 61	258
GSuc84	2.55	2.00	2.00	4.00	. 74	258
ESPE3	3.10	3.60	3.00	4.00	. 74	257
GSP84	3.22	4.00	3.50	3.40	. 55	258
IMPROV	4.30	5.00	5.00	9.00	4.95	258
KITS	57.26	47.00	40.00	198.00	2917.85	254
LEVEL	3.76	2.00	4.00	5.00	2.07	258
LIBAST	. 93	1.00	1.00	1.00	. 07	254
LOOPS	12.80	0.00	0.00	82.00	394.12	254
MAG	7.08	8.00	7.00	15.00	15.14	254
MEAL	. 25	0.00	0.00	2.00	. 38	258

a-See Appendix E for explanation of variatle names.

Table 0-3. (continued)

Variablea	Mean	Mode	Median	Range	Variance	N
MICRO	0.00	0.00	0.00	0.00	0.00	254
MODEL	6.34	0.00	4.00	36.00	59.35	254
MOUISTBS	8.67	9.00	9.00	7.00	1.65	254
MODIST84	8.99	9.00	9.00	2.00	. 02	258
MOOC	26.00	25.00	25.00	29.00	46.60	253
MOSTA	. 106	0.00	0.00	2.00	. 09	249
mothef	1.00	1.00	1.00	1.00	0.00	458
NEHS	0.00	0.00	0.00	0.00	0.00	254
OPENA	14.20	0.00	15.00	45.00	213.25	244
OFENE	13.46	0.00	0.06	69.00	300.41	244
OFENL	20.12	0.00	0.00	90.00	802.05	243
PAESENT	. 24	0.00	0.09	3.00	. 27	257
PEFADD	5.37	0.00	4.34	17.64	22.60	255
FERDIS	3.52	0.00	1.57	20.74	23.20	255
PEFLLST	. 50	. 39	. 46	1.37	. 10	255
FEG	. 44	0.00	0.00	1.00	. 25	457
RESID	. 72	0.00	0.00	3.00	1.00	255
RETAINQ 4	. 05	0.00	0.00	1.00	. 03	457
fooms	18.53	21.00	19.00	23.00	18.80	259
gCHAGE	25.76	20.00	24.60	65.00	177.47	25s
SCHEN	415.42	430.00	425.06	603.00	10817.61	258
SCHEES	24016.77	21689.00	24384.00	19655.00	14635883.60	258
SEX	. 52	1.00	1.00	1.00	. 25	255
SLIDE	255.82	0.00	221.00	847.00	43060.55	254
SUFTWARE	16.10	0.00	0.00	253.00	2540.29	254
SQFT	31994.44	86215.00	34736.00	34457.00	67307759.26	258
STUAID	1.71	0.00	0.00	9.00	0.30	254
stuses	24320.24	24384.00	24678.00	23892.00	22559374.50	245
stulise	376.00	0.00	350.00	2000.00	195710.51	19.9
TELE	. 94	1.00	1.00	1.00	. 0	255
THELD	. 12	0.00	0.00	1.00	. 11	25E
TRANS	. 44	0.00	0.00	1.00	. 25	255
TRSFAR	220.67	0.00	85.00	1450.00	116002.25	234
vidtafe	. 20	0.00	0.00	3.00	. 5	254

[^4]AFFENDIX E

CORRELATION MATRICES

Table E-1. Correlations Between Dependent Achieveaent Test Score Variable and Independent Predictor Variables

Independent Variables ${ }^{\text {d }}$	Dependent Variables ${ }^{\text {d }}$									
	ISKLS	LREAD	LREADT	2VOC	LLIST	2 LAUDIT	2SPELL	2MATH	ZHATHT	LSCIEMCE
A. Academic Achievement										
DA83	. 03	. 03	. 02	$.10^{2}$. 06	.08d	.03	. 02	-. 01	-. 00
GPABJ	. 385	. 505	. $52{ }^{5}$. 465	. 455	. 405	. 496	. 516	. 556	. 485
6RE日 3	. $40{ }^{5}$. 505	. $54{ }^{\text {C }}$. 505	. 446	. 445	. $52{ }^{6}$. 456	. 505	. $42^{\text {c }}$
B. Student Evaluations										
6 6283	$.13{ }^{\text {b }}$	$.15{ }^{\text {b }}$. 15^{5}	. 12^{6}	. 14^{6}	$.11^{\text {b }}$. 235	. $10^{\text {d }}$. $14^{\text {b }}$	$.11^{6}$
GIFT	. 154	.235	. 225	. 245	. 186	. 226	. 22^{6}	. $24{ }^{\circ}$. 255	. 198
THELD	-. $17^{\text {c }}$	-. 185	$-.235$	$-.13^{\text {b }}$	-. $22^{\text {c }}$	-. 155	-. 20 c	$-.11^{\text {b }}$	-.16	-.08a
C. Background Characteristics										
AGE	. 05	-. 01	. 02	. 03	$.10^{2}$	-. 02	. 02	.156	. $13{ }^{36}$. $24{ }^{\text {C }}$
emertel	. 155	. 155	. 185	. 19 C	. 15 C	. 195	. 07	$.14{ }^{6}$	$.13{ }^{6}$. 10^{6}
EMPLOY	-. 02	-. 06	-. 04	-. $1.3{ }^{6}$	-. 06	-. 07	-.00	-. 03	-. 06	-.093
FASTA	-.09a	-.093	$-.12{ }^{\text {b }}$. 02	. 01	. 95	-.09a	-. 019 d	-. 098	$-.12{ }^{\text {b }}$
MEAL	-. 04	-.16 5	$-.12^{\text {b }}$	-. 236	-. 19c	-. 175	-. 05	$-.12^{\text {b }}$	-. 089	$-.12{ }^{\text {b }}$
PABSENT	-. 01	-. 07	-. 06	-. 198 d	-. 00	-. 02	-. 098	-. 04	-. 00	-. 02
REG	-.09a	$-.10^{\text {a }}$	$-.10^{\text {a }}$	$-.12^{\text {b }}$	-.09a	-.08a	-. 05	-. $10^{\text {d }}$	-. 098	-.09a
RESID	-. $12{ }^{\text {b }}$	-. 06	$-.10^{\text {d }}$	-. 03	$-.10^{2}$	-. 06	-. 22^{5}	$-.10^{8}$	-. 07	-. $088^{\text {a }}$
SEX	$.14{ }^{6}$.093	.130	-. 06	. 04	-. 03	. 186	-. 01	. 02	-. 07
tele	$.10^{\text {a }}$. 12 b	. $12^{\text {b }}$. 186	. $17{ }^{5}$. 15^{5}	$.13{ }^{\text {b }}$. $17{ }^{5}$. 155	$.11^{6}$
trans	. 06	.19C	. 166	.205	. 215	. 185	. 093	$.12{ }^{6}$. $14^{\text {b }}$	$.10{ }^{\circ}$
D. School Environment and Learning Contexts										
LEVEL	. 12^{3}	. 06	$.10^{\text {a }}$	$.10^{2}$. 195	. 04	. $01{ }^{\text {a }}$. 195	. 165	. 266^{5}
SCHAGE	. 155	. 02	. 098	. 05	. 04	. 05	$.11{ }^{6}$. 093	. 08	$.10^{3}$
SCHEN	.156	$.11^{\text {b }}$.14C	-. 02	. 02	. 01	. $07{ }^{\text {d }}$	-. 03	-. 00	. 04
SCHSES	. 12^{6}	. 200	. 211^{6}	. 215	. 175	. 155	. 205	. 165	. 145^{5}	. 206
KACRE	-. 26 [-. $23{ }^{\text {C }}$	-. 285	-.190	-. 165	-. 165	-. 305	-.145	$-.13^{6}$	-. $22^{\text {c }}$
XCIRCUL	-.08a	-. $13{ }^{\text {b }}$	-. $14^{\text {b }}$	$-.11^{6}$	$-.11^{6}$	-. $08{ }^{\text {a }}$	$-.13^{6}$	$-.14{ }^{6}$	$-.14^{6}$	-. 156
\times ¢OST	$\cdots{ }^{-13}$	-. 03	-.09a	-. 05	$-.03$	-. 03	$-.10{ }^{6}$	-. 07	-. $08 \mathrm{~B}^{\text {a }}$	-.09a
xencycss	. 15^{5}	. $15^{\text {c }}$. 13^{6}	. 195	. 16^{5}	. 16^{5}	. 196	. $08{ }^{\text {a }}$. 098	. 196
XMAG	$-.13^{\text {b }}$	-. 16 c	-. 186	-. 155	-. 175	-. 098	-. 16^{6}	-.08 ${ }^{\text {a }}$	-.08a	$-.12{ }^{\text {b }}$
XDPENA	. 04	$.10^{\text {a }}$	$.10^{\text {a }}$	$.11^{\text {b }}$	$.13{ }^{\text {b }}$. 07	. 02	. $08{ }^{3}$.08 ${ }^{\text {d }}$. $10^{\text {d }}$
XPERADD	-. 115	-. 12 l	-. 196	$-.10^{\text {a }}$	$-.11^{\text {b }}$	-. 06	-. 196	-. 130	-. 145	-. $21{ }^{\text {c }}$
XPERLOS	$-.175$	$-.12 \mathrm{l}$	-. 18 C	$-.12{ }^{\text {b }}$	-. 08 d	-. 08 d	-. 216	-. $12^{\text {b }}$	$-.13^{\text {b }}$	-. 06
х¢PEC2	-. 165	-. $14{ }^{\text {b }}$	-. 198	$-.13^{\text {b }}$	-. $14^{\text {b }}$	-. 098	$-.216$	-. 16^{6}	$-.10^{\text {a }}$	$-.15{ }^{\text {b }}$
XSTAFF	-. 205	-. 2 j c	$-.27{ }^{5}$	$-.12^{3}$	$-.10^{\text {a }}$	-. 08 a	-. $22^{\text {c }}$	$-.10^{\text {a }}$	-. 090	-. $14^{\text {t }}$
ב--p<.05 b--p<.01 c--p<.001										
d--See Appendix B, Coding Manual for variable code fiage translati										

Table E-2. Intercorrelations for Keading Model Predictors

```
2. \(\frac{1.160}{-160}\) 3. 4. 5. b. i. 8. 9. 10. 11. 12. 13. 14. 15. 15. 17. 18. 19. 20.
2. \(-.16^{\mathrm{c}}\)
3. \(-.07 \quad .02\)
4. \(\quad .02 \quad-.04 \quad-.01\)
5. . \(13^{b}-.13^{6}-.07-.04\)
b. \(\begin{array}{llllll}.07 & .290 & .01 & -.04 & -.06\end{array}\)
7. \(\begin{array}{llllll}.255 & -.08{ }^{\mathrm{d}} & .02 & .04 & .04 & -.02\end{array}\)
8. \(-.06 \quad .51^{c} \quad .08^{\mathrm{a}} \quad .04-.05 \quad .04-.02\)
9. \(.12^{\mathrm{b}}-.12^{\mathrm{b}}-.09^{\mathrm{a}}-.01 \quad .16^{\mathrm{c}} \quad .09^{\mathrm{a}} \quad .14^{\mathrm{c}}-.11^{\mathrm{b}}\)
10. . 30 c \(-.23 \mathrm{c}-.06 \quad .35 \mathrm{c} \quad .06-.14^{b} \quad .01-.06 \quad .14^{b}\)
11. \(-.06 \quad .00-.03-.10^{\mathrm{a}} \quad .07-.02-.08^{\mathrm{a}}-.08^{\mathrm{a}}-.09^{\mathrm{a}}-.12^{\mathrm{b}}\)
12. \(-.11^{b} \quad .15^{c}-.03 \quad .10^{a} \quad .01-.08^{a}-.07-.07-.12^{b}-.08^{a} \quad .00\)
13. \(-.02 \quad .02 \quad .06 \quad .145 \quad .04-.02 \quad .145-.03 \quad .04-.01 \quad .07-.01\)
14. .09a \(-.22^{c}\). 00 . \(08^{\text {a }} \quad .15^{5}-.09^{a} \quad .07-.02 \quad .17^{\text {c }} \quad .20^{\text {c }}\). \(04-.15^{\text {b }}-.00\)
```



```
1. 1983 Keading Grade
4. Student's Sex
7. Gifted Frogran
10. 1983 Citizenship Grade
13. Number of Days Absent in 1982-1983
16. Nuaber of Parents Alsent
19. Percentage of Books Lost Fer Student
t 2
20. Nuaber of Parents Enplay
2. Acreage Per Student
5. Emergency Telephone
8. Cost of School Per Student
11. Father's Status
14. Howe Fhone Listed
14. Howe Fhone Listed
17. Student's kesidence 15. Magazine Subscriptions Fer Student
```

a--pi. 05 b--pi. 01 c--p<. 001

Table E-3: Intercorrelations Among Math Fool Predictors

	1983 Grade Point Averzge	Gifted Progran	Student's Age	Percentage of Books Lost Fer Student	$\begin{gathered} 1983 \\ \text { Citizenship } \\ \text { Grade } \end{gathered}$	$\begin{aligned} & \text { Hoce } \\ & \text { Fhone } \\ & \text { Listed } \end{aligned}$	Student's Sex	Acreage Fer Student	Library Open After School Per Student
Gifted Progras	. $22{ }^{5}$								
Student's Age	.09a	. 02							
Fercentage of Eooks Lost Per Student	$-.03$	-. 04	. 02						
1983 Citizenship Grade	. $38{ }^{5}$. 01	-. 06	-. 275					
Hoae Phone Listed	. 155	. 07	. 00	$-.17^{7}$	$.20{ }^{\text {c }}$				
Student's Sex	. 07	. 04	-. 01	$-.05$	$.35{ }^{6}$.08 ${ }^{\text {d }}$			
Acreage Fer Student	$-.12{ }^{\text {b }}$	-.08 ${ }^{\text {a }}$. 02	. $51{ }^{\text {c }}$	-.235	$-.22^{2}$	-. 04		
Library Open After School	. 06	-. 02	. 01	.275	$-.14{ }^{\text {b }}$	-.09a	-. 04	$.29{ }^{\circ}$	
Grade Level	$.14{ }^{5}$. $08{ }^{\text {a }}$. $94{ }^{\text {c }}$	-. 01	-. 16	. 04	. 02	-. 01	-. 00
a--p<.05	b--p<.01	c--p	. 001						

AFFENDIX F

STEFWISE MULTIFLE REGRESSION RESULTS

Table F-1. Stepwise Multiple Regression Results

DEPENDEAT VARIABLES/ FREDICTORS	Cort	B	BETA	SE BETA	\% OF TABL VAFIANC	
Word Study Skills						
1983 Reading Grade	. 394	. 340	. 350444	. 042	13.81	Multiple $\mathrm{R}=.476$
Acreage Fer Student	-. 254	-9.956	-. 181 143	. 042	4.60	$\mathrm{R}^{2} \quad=.227$
Sex	. 134	. 201	.119**	. 041	1.59	Adjusted $\mathrm{R}^{2}=.218$
Grade Level	. 119	. 067	.114in	. 041	1.36	SE $=.745$
Eaergency Telephone	. 149	. 238	.089*	. 042	1.31	
Constant		-1.079			22.67	
Reading Coaprehension						
1983 Reading Grade	. 492	. 357	. 421 + 47	. 042	20.68	Multiple $\mathrm{R}=.549$
Acreage Per Student	-. 225	-10.904	$-.227 \pm * *$. 048	5.08	$\mathrm{R}^{2}=.302$
Library Open After						Adjusted $\mathrm{R}^{2}=.293$
School Fer Student	. 098	2.430	.118¥\%	. 042	1.16	SE $\quad=.620$
Gifted Program	. 222	. 269	. 0904	. 041	2.00	
Cost of School Per						
Student	$-.031$	7.8E-5	.1154	. 046	-. 35	
Change of Schools	. 178	. 134	. 0917	. 040	1.61	
Constant		-. 727			30.18	
Reading Test Total						
1983 Reading 6rade	. 531	. 417	. $491 \pm \pm \pm$. 040	26.04	Multiple $R=.617$
Acreage Per Student	-. 281	-11.387	-.2364**	. 040	6.85	$\mathrm{R}^{2} \quad=.380$
Library Open After						Adjusted $\mathrm{F} 2=.369$
School Per Student	. 099	2.579	. $125 \pm 4 *$. 039	1.23	SE $\quad=.587$
Sex	. 128	. 208	.141***	. 240	1.81	
Esergency Telephone	. 178	. 264	.1127\%	. 038	1.99	
Grade Level	. 097	. 044	. 085	.037	. 82	
Father's Status	-. 111	-. 174	-.084\%	. 038	. 93	
1983 Citizenship Grade	. 153	-. 088	-.045*	. 043	-1.44	
Constant		-.916			38.01	
Vocabulary Knowledge						
1983 Reading 6rade	. 484	. 411	. 418 ± 4	. 041	20.23	Multiple $R=.554$
Free : Reduced Lunch	-. 227	-. 370	$-.162743$. 040	3.57	$\mathrm{R}^{2} \quad=.307$
Change of Schools	. 195	. 178	. $1044 \pm$. 040	2.03	Adjusted $\mathrm{R}^{2}=.298$
Eaergency Telephone	. 172	. 281	. 103 ± 4	. 040	1.78	$5 E=.716$
Grade Level	. 097	. 055	.093;	. 039	. 90	
Gifted Progra	. 235	. 309	.089*	. 141	2.09	
Constant		-1.406			30.70	

Table F-1. (continued)

DEPENDENT VARIABLES/ PREDICTORS	Corr	B	BETA	SE BETA	\% OF TABL YARIANC	
Listening Coaprehension						
1983 Reading Grade	. 425	. 384	. 38.3 ± 4 +	. 041	16.71	Multiple $\mathrm{F}=.531$
Grade Level	. 180	. 113	. 19144 \%	. 040	3.44	$\mathrm{R}^{2}=.282$
Change of Schools	. 204	. 253	.151***	. 041	3.08	Adjusted $\mathrm{R}^{2}=.271$
Magazine Subscriptions						SE
. 725						
Per Student	-. 160	-7.203	-.0937	. 041	1.49	
Free \& Reduced Lunch	$-.183$	-. 242	-. 106 ± 4	. 041	1.95	
Number of Parents						
Absent	-. 004	. 242	. 115 **	. 042	-. 05	
Hoae Phone Listed	. 155	. 336	.097\%	. 042	1.60	
Constant		-1.609			28.22	
Auditory Test Total						
1983 Reading Grade	. 424	. 386	. $3614 *$. 043	15.28	Multiple $\mathrm{R}=.480$
Eeergency Telephone	. 185	. 365	.123**	. 042	2.28	$8{ }^{2}$ 相 $=.231$
Free \& Reduced Lunch	-. 170	-. 286	-. 114 t*	. 042	1.94	Adjusted $\mathrm{R}^{2}=.222$
Gifted Program	. 214	. 366	. 0974	. 043	2.08	SE $\quad=.820$
Change of Schools	. 174	. 159	. 085 \%	. 043	1.47	
Constant		-1.325			23.05	
Spelling						
1983 Reading Grade	. 511	. 497	. 486 ± 44	. 039	24.82	Multiple $\mathrm{R}=.619$
Student's Residence	-. 213	-. 343	-. 184***	. 041	3.93	$\mathrm{R}^{2}=.384$
Sex	. 182	. 273	. 154 ***	. 037	2.79	Adjusted $\mathrm{R}^{2}=.374$
Acreage Per Student	-. 302	-5.223	-. 090	. 048	2.71	SE $\quad=.705$
Encyclopedia Sets Per Student	. 188	9.151	.114**	. 039	2.13	
Percentage of Books						
Lost Per Student	-. 201	-109.480	-. 100%	. 044	2.00	
Nuaber of Parents						
Eaployed	-. 004	. 203	.082\%	. 038	-. 03	
Constant		-1.183			38.35	

[^5]Table F-1. (continued)

DEPENDENT VARIAELES/ PREDICTORS	Corr	B	BETA	SE BETA	\% OF TABL VARIANCE	
Math Concepts						
1983 Grade						
Foint Average	. 497	. 720	. 496444	. 045	24.64	Multiple $R=.551$
Gifted Progras	. 23.3	. 400	.1094*	. 040	2.54	$\mathrm{R}^{2}=.304$
Grade Level	. 185	. 057	.091\%	. 040	1.68	Adjusted $\mathrm{R}^{2}=.295$
Percentage of Books						$5 \mathrm{E}=\mathrm{F}$. 757
Lost Per Student	-. 121	-135.793	-. 12248	. 041	1.48	
1983 Citizenship Grade	. 098	-. 154	-. $1364 \pm$. 045	-1.34	
Hoae Phone Listed	. 164	. 313	.085*	. 041	1.40	
Constant		-1.710			30.40	
Math Test Total						
1983 Grade						
Point Average	. 537	. 781	. 551 ± 54	. 043	29.60	Multiple $R=.573$
Gifted Prograc	. 247	. 446	. 125 ± 4	. 040	3.09	$\mathrm{R}^{2} \quad=.328$
Percentage of Eooks						Adjusted $\mathrm{R}^{2}=.322$
Lost Per Student	-. 125	-145. 554	-. 1344 ± 4	. 040	1.67	SE $\quad=.725$
1983 Citizenship Grade	. 129	-. 132	-. $119 *$. 044	-1.54	
Constant		-1.275			32.82	
Science Knamledge						
1983 Grade						
Point Average	. 446	. 497	. 38674	. 041	17.22	Multiple $R=.545$
Age in Months at						$\mathrm{R}^{2} \quad=.297$
Tiae of Test	. 235	. 009	.20044*	. 040	4.68	Adjusted $\mathrm{R}^{2}=.287$
Acreage Fer Student	-. 214	-10.415	-.199tat	. 041	4.25	SE $\quad=.676$
Library Open Aiter						
School Per Student	. 095	2.654	. 11974	. 041	1.13	
Sex	-. 069	-. 160	-. 1004*	. 040	. 69	
Gifted Progran	. 187	. 295	.091*	.041	1.70	
Constant		-1.935			29.66	

\#--p<.05 $\$ 4--p i .01 \quad * *+--p<.001$

Table F-2. Stepnise Multiple Regression Results Hithout Grade Level

DEPENDENT VARIABLES: PREDICTORS	Corr	B	EETA	SE BETA	\% OF TABI VARIANCE	
Hord Study Skills						
1983 Reading Grade	. 394	. 346	. $3574 \pm$. 042	14.07	Multiple $R=.472$
Acreage Fer Student	-. 254	-10.005	-. 182 \%**	. 042	4.63	$\mathrm{R}^{2}=.223$
Sex	. 134	. 208	.123¥\#	. 042	1.65	Adjusted $\mathrm{R}^{2}=.214$
Age in Months at						SE $\quad=.747$
Tise of Test	. 059	. 005	.095;	. 042	. 55	
Emergency Telephone	. 148	. 246	. 092 z	. 042	1.36	
Constant		-1.401			22.26	
Reading Conprehension						
1983 Reading Grade	. 492	. 357	. $421+1{ }^{\text {a }}$. 042	20.68	Multiple $R=.549$
Acreage Per Student	-. 225	-10.904	-.2274**	. 048	5.08	$\mathrm{R}^{2} \quad=.302$
Library Open After						Adjusted $\mathrm{R}^{2}=.293$
School Per Student	. 098	2.430	.118*+	. 042	1.16	SE $\quad=.620$
Sifted Prograc	. 222	. 269	. 0904	. 041	2.00	
Cost of School						
Per Student	-.031	7.8E-5	.115**	. 046	-. 35	
Change of Schools	. 178	. 134	. 091 *	. 040	1.61	
Constant		-. 727			30.18	
Reading Test Total						
1983 Reading Grade	. 531	. 419	. 493 *4*	. 040	26.18	Multiple $R=.611$
Acreage Per Student	-. 281	-11.479	-.238***	. 040	6.68	$\mathrm{R}^{2}=.373$
Library Dpen After						Adjusted $\mathrm{R}^{2}=.363$
School Per Student	. 098	2.558	.124**	. 039	1.21	$5 \mathrm{E}=\mathrm{F} 59$
Sex	. 129	. 214	. $145 \pm 4 *$. 040	1.86	
Emergency Telephone	. 178	. 260	.1114\%	.138	1.96	
1983 Citizenstip Grade	. 153	-. 095	-.103*	. 043	-1.56	
Father's Status	-. 111	-. 179	-. 0864	. 038	. 96	
Constant		-. 732			37.29	
Vocabulary Knowledge						
1983 Reading Grade	. 484	. 412	. 420414	. 041	20.31	Multiple $R=.558$
Free \& Reduced Lunch	-. 227	-. 350	-. 153 +4*	. 040	3.47	$\mathrm{F}^{2}=.312$
Change of Schools	. 195	. 155	.090t	. 040	1.75	Adjusted $R^{2}=.301$
Eaergency Telephone	. 172	. 261	.0964	. 040	1.66	SE $\quad=.714$
6ifted Program	. 235	. 289	. 0847	. 041	1.96	
Nuaber of Davs Absent in 1982-1983	. 094	.010	.089*	. 040	. 83	
Magazine Subscriptions						
Per Student	-. 141	-6.536	-.084*	. 040	1.19	
Constant		-1.211			31.18	

[^6]Table F-2. (continued)

DEPENDENT VARIAELES/ PREDICTORS	Corr	B	EETA	SE BETA	\% OF TABL VAFIANCE	
Listening Coaprehension						
1983 Reading Grade	. 425	. 401	. 4104 ± 4	. 041	17.43	Multiple $R=.524$
Change of Sichools	. 204	. 251	.147***	. 042	3.00	$R^{2}=.275$
Age in Manths at						Adjusted $\mathrm{R}^{2}=.262$
Time of Test	. 099	. 006	.13147	. 042	1.29	$5 E \quad=.730$
Hagazine Substriptions						
Per Student	-. 160	-6.343	-.082\%	. 041	1.31	
Free \& Reduced lunch	-. 185	-. 240	-. 105 ± 4	. 041	1.93	
Nurber of Farents Absent	-. 004	. 235	. 111 **	. 042	-. 05	
Howe Phone Listed	. 185	. 353	. 102 t	. 042	1.68	
Student's Residence	-. 101	-. 155	-. 0874	. 042	. 88	
Constant		-2.029			27.47	
Auditory Test rotal						
1983 Reading Grade	. 424	. 386	. $3014 \pm$. 043	15.28	Multiple $\mathrm{F}=.480$
Emergency Telephone	. 185	. 365	. 123 +*	. 042	2.28	$\mathrm{F}^{2} \quad=.231$
Free \& Reduced Lunch	-. 170	-. 286	-.114**	. 042	1.94	Adjusted $\mathrm{F}^{2}=.222$
Gifted Prugran	. 214	. 366	.097*	. 043	2.08	$5 E=.820$
Change of Scriools	. 174	. 159	. 0854	. 043	1.47	
Constant		-1.325			23.05	
Spelling						
1983 Reading Erade	. 511	. 497	. $4864 * *$. 039	24.82	Multiple $R=.619$
Student' 5 Residence	-. 213	-. 343	-. 194444	. 041	3.93	$\mathrm{R}^{2} \quad=.384$
Sex	. 182	. 273	.154***	. 037	2.79	Adjusted $\mathrm{R}^{2}=.374$
Acreage Per Student	-. 302	-5.223	-. 090	. 048	2.71	SE $\quad=.705$
Encyclopedia Sets Per Stuvent	. 188	9.151	. $114+4$. 039	2.13	
Percentage of Books						
Lost Per Student	-. 201	-109.480	-. 1004	. 044	2.00	
Nuaber of Parents						
Eaployed	-.004	. 203	.082*	. 338	-. 03	
Constant		-1.183			38.35	

Table F-2. (continued)

DEPENDENT VARIABLES/ PREDICTORS	Carr	B	EETA	SE BETA	\% OF TAEL VARIANCE	
Math Concepts						
1993 Grade						
Point Average	. 497	. 726	. 500 \%tt	. 044	24.87	Hultiple $\mathrm{F}=.553$
Gifted Program	. 233	. 419	. 114 ± 4	. 040	2.56	$\mathrm{R}^{2}=.305$
Age in Months at						Adjusted $\mathrm{R}^{2}=.296$
Time of Test	. 147	.005	. 096%	. 040	1.41	$5 E \quad=.757$
Percentage of Books						
Lost Fer Student	-. 121	-139.716	-. 12644	. 041	1.52	
1983 Citizenship Grade	. 098	-. 157	-.1394*	. 045	-1.37	
Home Phone Listed	. 164	. 321	.087*	.040	1.43	
Constant		-2.102			30.52	
Math Test Total						
198.3 Srade						
Point Average	. 537	. 781	. 551 14*	. 143	29.60	Multiple $\mathrm{R}=.573$
Gifted Prograa	. 247	. 446	.125**	. 040	3.09	$\mathrm{R}^{2} \quad=.328$
Percentage of Books						Adjusted $\mathrm{R}^{2}=.322$
Lost Per Student	-. 125	-145.554	-. 1才44it	. 040	1.67	$\mathrm{SE}=.725$
1983 Citizenship Grade	. 129	-. 132	-. 119\#\#	. 044	-1.54	
Constant		-1.275			32.82	
Science Knowledge						
1983 Grade						
Point Average	. 446	. 497	. 386 ± 4	. 141	17.22	Multiple $R=.545$
Age in Months at						$\mathrm{R}^{2}=297$
Tias of Test	. 235	. 009	. 2007 ± 3	. 040	4.68	Adjusted $\mathrm{R}^{2}=.287$
Acreage Per Student	-. 214	-10.415	-. $199 * *$. 041	4.25	$\mathrm{SE}=.676$
Library Dpen After						
Sex	-. 069	-. 160	-. 10073	. 040	. 68	
Gifted Progras	. 187	. 295	. $091 \pm$.041	1.70	
Constant		-1.935			29.66	

[^7]
Fopulation Models

Word study skills

In Comparing the two word study skills models (Table G-1; or Table 36), it was found that father's status and student's 1993 citizenship grade had been added to the population word study skills model. All variables that had previously entered, also accounted for slightly more variance. Taken together the variables in the population model explained 2% more (or 25%) of the total variance (i.e., multiple f^{2}, the explained variance, increased from . 227 to .24g), which still left 75% of the variance yet to be erplained by variables not included in this analysi玉.

Feading Comprehension

Student's se\%, 1983 ritizenship grade, participation in the federal lunch prograin, and whether an emergency phone number was listed were all additional predictors in the population reading comprehension model (Table $5-1$; or Table 36 . The 195 . reading grade, however, was the only variable that explained more variance in the population model, with all other previously entered variables explaining slightly less variance than they had in the original model. Dverall, 2.2% more, or 32% of the total, variance was explained, which left 68% of the variance to te explained by factors othar than those included in this analvsis.

Reading Test Total

As indicated above, no structural changes were made between the

Table 6-1. Population Stepwise and Forced Entry Multiple Regression Fiesults

DEPENDENT VARIABLES/ PREDICTORS	Corr	B	BETA	SE BETA	\% OF TAELE UARIGNCE	
Word Study Skills						
1983 Readjing Grade	. 394	. 352	. 360 \#fi	. 047	14.32	Multiple $R=.498$
Acraage Per Student	-. 254	-10.579	-. 192474	. 058	4.89	$\mathrm{R}^{2}=248$
Sex	. 133	. 222	.132**	. 046	1.75	Adjusted $R^{2}=.218$
Grade Level	. 119	. 058	.098*	.104	1.17	SE $\quad=.745$
Eaergency Telephone	. 148	. 251	.0974	. 043	1.44	
Father's Status	-. 086	-. 154	-.065	. 043	. 56	
1993 Citizenship Grade	. 129	$-.075$	-. 071	. 049	-. 92	
Other ${ }^{\text {a }}$					1.62	
Constant		-1.033			24.84	
Reading Compretension						
1985 Reading Grade	. 492	. 377	. 444 **	. 045	21.85	Multiple $R=.569$
Acreage Per Student	-. 224	-9.399	-.1954*	. 054	4.38	$R^{2}=.324$
Litrary Open After						Adjusted $\mathrm{R}^{2}=.298$
School Fer Student	. 098	2.041	.199\%	. 043	. 97	SE $\quad=.618$
Gifted Program	. 222	. 204	. 068	. 042	1.52	
Cost of School						
Per Student	-.031	6.3E-5	. 0937	. 047	-. 29	
Change of Schools	. 178	. 127	. 086	. 042	1.52	
Sex	. 681	.140	.095\%	. 143	. 77	
Eaergency Telephone	. 149	. 179	. 076	. 041	1.14	
Free \& Reduced Lunch	-. 159	-. 142	-. 072	. 042	1.14	
1983 Citizenship Erade	. 126	$-.093$	-.100 ${ }^{\text {a }}$. 047	-1.26	
Other ${ }^{\text {a }}$. 08	
Constant		-. 804			32.42	
Reading Test Tota!						
1983 Reading Grade	. 531	. 412	. $4854 * *$. 143	25.74	Multiple $R=.026$
Acreage Fer Student	-. 281	-9.725	-.181***	. 052	5.09	F^{2} = 392
Library Open After						Adjusted $\mathrm{R}^{2}=.367$
School Per Student	. 198	1.977	. 196	. 143	. 94	SE $\quad=.588$
Sex	. 128	. 207	. 140414	. 041	1.80	
Emergency Telephone	. 178	. 248	. 105 ± 4	. 639	1.87	
Grade Level	. 097	. 039	. 0767	. 039	. 73	
Father's Status	-. 111	-. 168	-.0817	. 038	. 90	
1993 Citizenship Grade	. 153	-. 095	$-.1034$. 044	-1.57	
Other ${ }^{\text {a }}$					T. 69	
Constant		-. 945			39.18	

Table 6-1. (continued)

dEPENDENT VARIAELES/ PREDICTORS	Corr	B	EETA	SE PETA	$\%$ OF TABL UARIGNCE	
Vocabulary Knowledge						
1983 Reading Grade	. 484	. 420	. $428 \pm 4 \pm$. 044	20.70	Multiple $R=.583$
Free \& Feduced Lunch	-. 227	-. 300	-. $131 \pm * *$. 041	2.97	$\mathrm{R}^{2}=.340$
Change of Schools	. 195	. 132	. 077	. 042	1.50	Adjusted $\mathrm{R}^{2}=.312$
Emergeney Teleptione	. 172	. 229	.084*	. 041	2.45	SE $\quad=.708$
Grade Level	. 097	. 042	. 172	. 64 :	. 69	
Gifted Prograa	. 23.4	. 241	. 070	. 042	1.63	
Library Open After School Fer Student	.100	1.657	. 070	. 044	. 74	
Magazine Subscriptions						
Per Student	-. 141	-5.050	-. 065	. 145	. 92	
Number of Daya Absent						
Hose Phone Listed	. 177	. 315	. 0907	. 042	1.59	
Other ${ }^{\text {a }}$. 93	
Constant		-1.537			34.02	
Listening Comprehension						
1983 Frading Grade	. 425	. 385	.392***	. 1045	16.67	Multiple $\mathrm{R}=.554$
Grade Level	. 190	. 100	. 169 ***	. 042	3.04	$\mathrm{R}^{2}=.307$
Change of Schools	.204	. 231	.185**	. 043	2.76	Adjusted $\mathrm{R}^{2}=.277$
Magazine Subscriptions						$5 \mathrm{SE} \quad=.722$
Fer Student	-. 160	-6.915	-.0904	. 046	1.43	
Free : Reduced Lunch	-. 183	$-.253$	-.111**	. 142	2.03	
Nuaber of Parents						
Absent	-. 004	. 220	.104*	. 047	-. 04	
Home Phone Listed	. 165	. 325	. $0 ¢ 94$. 043	1.55	
Library Open After						
School Fer Student	. 121	1.801	. 076	. 045	. 09	
Eaergency Telephone	. 150	. 224	. 0837	. 342	1.24	
Student 5 Residence	-. 100	-. 160	-. 1904	. 045	. 91	
Other ${ }^{\text {d }}$					1.04	
Constant		-1.875			30.72	

[^8]Table 6-1. (continued)

DEPENDENT VARIAELES/ PREDICTORS	Corr	8	BETA	SE BETA	\% OF TABL VARIANCE	
Auditory Test Total						
1983 Reading Grade	. 424	. 416	. 389×4	. 047	16.46	Multiple $\mathrm{R}=.513$
Energency Telephone	. 185	. 325	.110**	. 043	2.03	$\mathrm{R}^{2}=.263$
Free \& Reduced Lunch	-. 170	-. 251	-. 1007	. 043	1.71	Adjusted $\mathrm{R}^{2}=.231$
Gifted Prograa	. 214	. 260	. 069	. 044	1.48	SE $=.816$
Change of Schools	. 173	. 167	. $090 \pm$. 045	1.55	
Student's Residence	-. 060	-. 189	-.097\%	. 046	. 59	
Father's Status	. 046	. 180	. 069	. 043	. 32	
Nuaber of Days Absent in 1982-83	. 080	. 009	. 077	. 043	.62	
Nusber of Parents						
Absent	-. 024	. 186	. 080	. 048	-. 19	
Howe Phone Listed	. 154	. 330	. 087	. 044	1.33	
Other ${ }^{\text {a }}$. 39	
Constant		-1.737			26.29	
Spelling						
1983 Reading Ofade	. 511	. 495	. 484 ± 4	. 042	24.72	Multiple $\mathrm{R}=.629$
Student'5 Residenca	$-.213$	-. 335	-. 1804 ± 4	. 043	3.84	$\mathrm{R}^{2}=.396$
Sen	. 181	. 277	. $156+4$. 041	-.. 2.82	Adjusted $\mathrm{R}^{2}=.371$
Acreage Fer Student	-. 302	-5.611	-. 097	. 051	2.91	SE $\quad=.706$
Encyclopedia Sets Per Student	.188	8.500	. 106 ± 4	. 042	1.98	
Percentage of Rooks						
Lost Per Student	-. 201	-116.557	-. 1067	. 047	2.13	
Nuaber of Parents						
Eaployed	-. 004	. 279	.112**	. 043	-. 04	
Other ${ }^{\text {d }}$					1.25	
Constant		-1. 104			39.61	

a--Fredictors forced into equation, but not significant at or beyond the . 15 level.

Table 6-1. (continued)

DEPENDENT VARIAELES/ PREDICTORS	Corr	B	BETA	SE BETA	\% OF TABL VARIANC		
Math Concepts							
1983 Grade							
Point Average	. 497	. 697	. 4804 \#\#	. 045	23.86	Multiple	$R=.558$
Gifted Prograı	. 233	. 407	.111*4	. 040	2.59		$=.312$
Grade Level	. 185	. 059	.094*	. 040	1.75	Adjusted R	$\mathrm{R}^{2}=.298$
Percentage of Books						SE	$=.756$
Lost Per Student	-. 121	-129.568	-.117**	. 047	1.41		
1983 Citizenship Grade	. 098	-. 137	-. 121 +	. 048	-1.19		
Home Phone Listed	. 164	. 302	.082\%	. 041	1.34		
Library Open After							
School Fer Student	. 077	2.106	.084*	. 042	. 65		
Other ${ }^{\text {a }}$. 75		
Constant		-1.709			31.16		
Math Test Total							
1993 6rade							
Point Average	. 537	. 746	. 526 +4*	. 044	28.26	Multiple	$R=.585$
Gifted Prograe	. 247	. 443	. 124 ± 4	. 040	3.07		$=.342$
Percentage of Books Adjusted $\mathrm{R}^{2}=.329$							
Lost Fer Student	-. 125	-143.137	-.1324i	. 044	1.55	SE	$=.721$
1983 Citizenship Grade	. 129	-. 127	-. 115 **	. 047	-1.49		
Age in Months at							
Library Open After							
School Per Student	. 078	1.941	. 079%	. 041	. 61		
Other ${ }^{\text {d }}$					1.21		
Constant		-1.864			34.20		
Science Knowledge							
1983 Grade							
Point Average	. 446	. 514	.399\#\#\#	. 045	17.80	Multiple	$\mathrm{F}=.546$
Age in Months at						F^{2}	$=.298$
Time of Test	. 235	. 009	.1964**	. 040	4.61	Adjusted R	$2=.284$
Acreage Per Student	-. 214	-10.938	$-.20974$. 047	4.47	SE	$=.677$
Library Dpen After							
Sex	-. 068	-. 140	-. 098	. 042	. 60		
Gifted Progran	. 187	. 281	.0874	. 041	1.62		
Other ${ }^{\text {a }}$					-. 33		
Constant		-1.906			29.84		
\#--p<. 05 t\#--p<.01	+44--p<. 001						
a--Predictors forced into equation, but not significant at or beyond the . 15 level.							

```
original and population reading test total models \Table G-1: or Table
36). Student's 1983 citizenEhip grade, however, contributed a larger
suppression effect, while other previously entered variables accounted
for slightly less variance (see below for discussion of thjs). Taken
together all entered variables accounted for 39%, or 1.2% more, of the
total variance, leaving 31% of the variance to be explained by factors
outside of this analysis.
```


Vocabulary knowledge

The comparative results (Table G-1; or Table 3 G) indicated that the number of minutes after school that the library was open per student, the number of magazine subscriptions per student, the number of days a student was absent in 1982-83, and whether a home telephone number was listed were all additional predictors in the new population

- vocabulary knowledge model. In looking at the explained variance, previous reading grades explained slightly fore variance in the population than in the original model, but all other previously entered variatles accounted for slightly less variance. The jargest total amount of increased variance was found for the population vocabulary lnowledge model, as it explained 34% or 3.3% more, of the total variance. Thus, 66% of the total variance in vocabulary knowledge test scores was left unexplained by the factors in this analysis.

Listening Comprehension

The numiter of minutes that the litrary was open atter school per

```
student, whether an emergency telephone number was listed, and
student's residence were added to the listening comprehension model
(Table G-1; or Table 3b). Most variables that entered the original
model accounted for slightly less variance in the population model,
although participation in the federal lunch program explained slightly
more of the variance. Taken together, the variables in the population
model explained 5i%, or 2.5% more, of the total variance in listening
comprehension test scores, which left 69% of the variance yet to be
enplained by factors not included in this analysis.
```

Auditory Test Total
Structurally, five additional variables were added to the
population auditory test total model: student's residence, father's
status, the number of days the student was absent, the number of
parents absent, and whether a home telephone number mas listed. While
the 1983 reading grade explained slightly more variance, all other
variables that had previously entered into the original model
explained slightly less variance in the population model. The
population model e\%plained 26%, or 3.2% more, of the total variance in
auditory test total scores, which left 74% of the variance yet to be
explained by factors not included in this analysis.
Spellino

```
    No structural snanges were otserved (Table {-1; or Tatle 36)
titween the original and population spelling models. Student's sex,
jcreage per student, percentage of toaks lost per student, and number
```

```
Of parents employed all accounted for slightly more variance in the
population madel, while the 1983 reading grade, student's residence,
and number of encyclopedia sets per student explained slightly less
variance in the population than in the original model. The population
model e%plained 1. 3% more, or 40%; of the total variance in spelling
achievement test scores. Thus, factors outside this analysis
accounted for 60% of the variance in spelling achievement.
```


Math Concents

```
    The number of minutes that the library was open after school per
student was the only structural addition to the math concepte
popuiation model (Table G-1; or Table St) which alEo had the Eecond
smallest amount of change (. 3%) in e%plained total variance.
Student'e grãde level and gifted program participation toth axalajned
slightly more variance in the population model, while dygg giade point
average, percentage of tooks lost per student, and whether a hone
phona was listad each explained slightly less variance in the
population than in the original model. Taken together: all variatiles
accounted for \Xi 1% of the variance in math concepts achievement, thus
leaving 6%% of the variance yet to be explained by variables not
included in tris analysis.
```

Math Test Total

Student's age and the mumber of minutes that the litury was open
after schoe! per student were added to the math test catal pupulation


```
was the only varizble from the original model to account for more
variance in the population model. Talsen together, all variables in
the population math test total model explaineo 34%, or 1.4% more, of
the total variance, which left tb% of the variance to be explained by
variables not included in this anmlysis.
Science goomledoe
    The least amolint of change between the original and populatien
models was for science knowiedge {Table G-1; or Table Sij. Therewere
no etructural changes, and the population model drily accounted for . i%
more of the variance. Internally, several moderate charges jid occur
as the 1985 grade point average and acreage per student variables
accuunted for slightly more variance and the other oreuictore
Expiained slightly less varlance. Taken together the gopulation
science knowledge model expiainEd 30% of the variance, which meant
that 70% of the variance in science achievement test scores was left
to ba explained by variables not incluted in this analysis.
```


Table 6-2. Fopulation Stepwise and Forced Entry Multiple
 Regression Results Hithout Grade Level

DEPENDENT VARIABLES/ PREDICTORS	Corr	B	EETA	SE BETA	$\%$ OF TAB VARIANC	
Word Study Skills						
1983 Reading Grade	. 394	. 359	. 37044	. 048	14.59	Multiple $R=.495$
Acreage Per Student	-. 254	-10.398	-. 189***	. 058	4.81	$\mathrm{R}^{2}=.246$
Sex	.134	. 230	.1354*	. 045	1.82	Adjusted $\mathrm{R}^{2}=.215$
Age in Monthis at						SE $\quad=.747$
Tiae of Test	. 058	. 004	. 080	. 044	. 47	
Emergency Telephone	. 148	. 266	. 0997	. 043	1.47	
Father's Status	-. 085	-. 153	-. 065	. 043	. 56	
1983 Citizenship Grade	. 129	-. 082	-. 077	. 049	-1.00	
Other ${ }^{\text {a }}$					1.83	
Constant		-1.294			24.55	
Freading Cosprehension						
1983 Reading Grade	. 492	. 377	.444***	. 045	21.85	Multiple $\mathrm{R}=.569$
Acreage Per Student	-. 225	-9.399	-.195**	. 054	4.38	$\mathrm{R}^{2}=.324$
Library Open After						Adjusted $\mathrm{R}^{2}=.298$
Sthool Per Student	. 098	2.041	.099\%	. 043	. 97	$5 E=.618$
Gifted Prograc	. 222	. 204	. 068	. 042	1.52	
Cost of School						
Per Student	-. 031	6.3E-5	.0934	. 047	-. 29	
Change of Schools	. 178	. 127	. 0864	. 042	1.52	
Sex	. 081	. 141	. 0954	. 044	. 77	
Energency Telephone	. 149	. 179	. 075	. 041	1.14	
Free \& Keduced Lunch	-. 159	-. 142	-. 072	. 142	1.14	
1983 Citizenship Grade	. 125	-. 093	-. 1000	. 047	-1.26	
Other					. 68	
Constant		-. 904			32.42	
Reading Test Total						
1983 Reading Grade	. 531	. 416	. $49014+4$. 043	26.00	Multiple $\mathrm{R}=.624$
Acreage Per Student	-. 281	-8.534	-. 177 fm	. 052	4.97	$\mathrm{R}^{2} \quad=.389$
Library Open After						Adjusted $\mathrm{R}^{2}=.364$
School Per Student	. 1198	1.925	.074*	. 143	. 91	SE $=.589$
Sex	. 128	. 212	. $144 * * *$. 041	1.34	
Eaergency Telephone	. 178	. 250	. 106 **	. 039	1.89	
1983 Citizenship Grade	. 153	-. 101	-. $1098 \pm$. 044	-1.05	
Father's Status	-. 111	-. 169	-. 0824	. 169	. 90	
Other ${ }^{\text {d }}$					4.05	
Constant		-1.064			38.40	

*-pर.05 $\quad \$ 4-\rho<.01 \quad \$ * *--p<.001$
a--Fredictors forced into equation, but not sagnificant at or beyond the . 15 level,

Table 6-2. (continued)

DEPENDENT VARIABLES/ PREDICTORS	Corr	B	BETA	SE BETA	2 OF TABL VARIANCE	
Vocabulary knowledge						
1983 Reading Erade	. 484	. 425	. 432 tat	. 044	20.92	Multiple $R=.581$
Free \& Reduced Lunch	-. 227	-. 298	-. 13044	. 041	2.95	$\mathrm{k}^{2} \quad=.338$
Change of Schools	. 195	. 130	. 076	. 042	1.48	Adjusted $\mathrm{R}^{2}=.309$
Emergency Telephone	. 172	. 230	. 085	. 041	1.46	SE $\quad=.710$
6ifted Program	. 234	. 253	. 073	. 042	1.71	
Nuaber of Days Absent in 1982-83	. 094	. 011	.098*	. 041	. 92	
Library Open After						
School Per Student	. 106	1.640	. 069	. 044	. 74	
Hoae Phone Listed	. 177	. 322	.092\%	. 042	1.65	
Other ${ }^{\text {a }}$					1.96	
Constant		-1.858			33.77	
Listening Coaprehension						
1983 Reading Grade	. 425	. 394	. 404 +t*	. 048	17.17	Multiple $R=.544$
Change of Schools	. 204	. 230	.134**	. 044	2.75	$\mathrm{R}^{2} \quad=.296$
Age in Manths at						Adjusted $\mathrm{R}^{2}=.266$
Time of Test	. 099	. 006	. $127 \pm+$. 042	1.25	SE = 728
Magazine Subscriptions						
Per Student	-. 160	-6.673	-. 086	. 046	1.38	
Free \& Reduced Lunch	-. 183	-. 247	-. 10984	. 042	1.99	
Number of Parents						
Absent	-. 004	. 212	. 1014	. 047	-. 04	
Hone Phone Listed	. 165	. 341	.098*	. 043	1.62	
Student's Residence	-. 100	-. 183	$-.1034$. 045	1.03	
Library Open After						
Eaergency Telephone	. 150	. 229	.085*	. 042	1.27	
Other ${ }^{\text {a }}$. 30	
Constant		-2.261			29.62	

a--Predictors forced into equation, but not significant at or beyond the .15 level.

Table 6-2. (continued)

DEPEMDENT VARIABLES/ PREDICTORS	Corr	B	BETA	SE BETA	\% OF TABLE VARIANCE	
Auditory Test Total						
1983 Reading Grade	. 424	. 416	. $38984 *$. 047	16.48	Multiple $R=.513$
Esergency Telephone	. 185	. 324	. 109 ± 4	. 043	2.02	$\mathrm{R}^{2} \quad=.263$
Free a Reduced Lunch	-. 170	-. 251	$-.100 \%$. 043	1.71	Adjusted $\mathrm{R}^{2}=.231$
Gifted Progra	. 214	. 262	. 070	. 044	1.49	$5 E=.816$
Change of Schools	. 173	. 165	.088\$. 045	1.53	
Student' 5 Residence	-. 060	-. 197	-.1024	. 046	. 61	
Father : Status	. 046	. 179	. 069	. 043	. 32	
Nuaber of Days Absent in 1982-83	. 080	. 009	. 079	. 043	. 63	
Number of Parents						
Absent	-. 024	. 182	. 079	. 048	-. 19	
Howe Phone Listed	. 154	. 315	. 0874	. 044	1.34	
Other ${ }^{\text {d }}$. 33	
Constant		-1.690			26.27	
Spelling						
1983 Reading Grade	. 511	. 497	. 485 \#\#\#	. 042	24.79	Multiple $R=.629$
Student's Residence	-. 213	-.356	-.1807t*	. 043	3.85	$R^{2}=.396$
Sex	. 181	. 279	. $155+4$. 041	2.84	Adjusted $\mathrm{R}^{2}=.371$
Acreage Per Student	-. 302	-5.583	-. 096	. 050	2.90	SE $\quad=.706$
Encyclopedia Sets						
Percentage of Lost						
Books Per Student	-. 201	-117.263	-.1074	. 047	2.15	
Nuaber of Parents						
Other ${ }^{\text {a }}$					1.13	
Constant		-1.175			39.51	

\#-p<. 05 :4--p<.01 \quad **--p<. 001
a--Predictors forced into equation, but not significant at or beyond the . 15 level.

Table 6-2. (continued)

DEFENDENT VARIABLES/ PREDICTORS	Corr	B	BETA	SE BETA	\% OF TABL VARIANC	
Math Concepts						
1983 Grade						
Point Average	. 497	. 705	. 486 ± 54	. 045	24.14	Multiple $R=.559$
Gifted Program	. 233	. 424	. 116 ± 7	. 040	2.70	$\mathrm{R}^{2}=.312$
Age in Months at						Adjusted $\mathrm{R}^{2}=.299$
Time of Test	. 147	. 005	.098 \ddagger	. 040	1.43	SE $=.755$
Percentage of Lost						
Books Per Student	-. 121	-133.849	-. 12044	. 047	1.46	
1983 Citizenship Grade	. 098	-. 143	-. 12643	. 048	-1.24	
Hoae Phone Listed	. 164	. 311	.084*	. 141	1.39	
Library Open After						
Sthool Per Student	.077	2.076	. UB3t	. 041	. 64	
Other ${ }^{\text {a }}$. 73	
Constant		-2.100			31.25	
Hath Test Total						
1983 Grade						
Point Average	. 537	. 746	. 526444	. 044	28.26	Multiple $\mathrm{E}=.585$
Gifted Progra	. 247	. 44.5	. 124 ± 4	. 040	3.07	$\mathrm{R}^{2} \quad=.342$
Percentage of Sooks						Adjusted $\mathrm{R}^{2}=.329$
Lost Fer Student	-. 125	-143.137	-.1324	. 046	1.65	$5 E=.721$
1983 Citizenship Grade	. 129	-. 127	-. 115 ± 4	. 047	-1.49	
Age in Months at						
Time of Test	. 124	. 004	. 072	. 039	. 89	
Library Open After						
School Fer Student	. 078	1.941	.079*	. 041	. 61	
Other ${ }^{\text {a }}$					1.21	
Constant		-1.954			34.20	
Science Knouledge						
1983 Grade						
Point Aver age	. 446	. 514	. 39934	. 045	17.80	Hultiple $\mathrm{R}=.546$
Age in Months at						$\mathrm{R}^{2} \quad=.298$
Time of Test	. 234	. 009	. $1964 \pm$. 640	4.61	Adjusted $\mathrm{R}^{2}=.284$
Acreage Per Student	-. 214	-10.938	-.209\#**	. 047	4.47	SE $\quad=.677$
Library Open After						
School Per Student	. 095	2.526	.113**	. 042	1.07	
Sex	-. 058	-. 140	-.0884	. 042	. 60	
Sifted Progras	.187	. 281	.087*	. 041	1.62	
Other ${ }^{\text {a }}$					-. 33	
Constant		-1.906			29.84	

t--p<. 05 tt--pt.01 tat--p<. 001
a--Predictors forced into equation, but not significant at or beyond the .l5 level.

AFFENDIX H

INDIAN STEFWISE AND FORCED ENTFY

MULTIFLE FEGRESSION RESULTS

Indian Models

Word study Skills

Fieading Comprehension

As expected, the previous (1983) reading grade was the best
predictor (32%) of reading comprehension achievement (Table H-1; or
Table 39). However, only two other variables, gifted program
participation (2\%) and the number of encyclopedia sets per student
(3%), were significant (p (.15) predictors. Taken together all

Table H-1. Indian Stepmise and Forced Entry Multiple Regression Results

DEPENDENT VARIABLES; PREDICTORS	Corr	B	BETA	SE BETA	$\%$ OF TAB VAKIANCE	
Word Study Skills						
1985 Reading Grade	. 427	. 424	.437***	. 074	18.67	Multiple $\mathrm{F}=.572$
Father's Status	-. 220	-. 449	-. $200 * *$. 063	4.40	$\mathrm{R}^{2}=.27$
Grade Level	. 075	.103	.1704\%	. 067	1.28	Adjusted $\mathrm{F}^{2}=.258$
Magazine Subscriptions						$\mathrm{SE}=.720$
Per Student	-.183	-10.583	-.217**	. 078	4.09	
Eaergency Telephone	-.018	-. 221	-. 102	. 071	. 19	
Other ${ }^{\text {a }}$					4.07	
Constant		-1.320			32.69	
Keading Compretension						
1983 Reading Grade	. 572	.307	. 55010%	. 071	31.46	Multiple $\mathrm{R}=.610$
Encyciopedia Sets						$\mathrm{R}^{2} \quad=.373$
Per Student	. 205	13.554	. 1483	. 065	3.05	Adiusted $\mathrm{R}^{2}=.318$
Gifted Progra	.229	. 470	. 100	.063	2.30	SE = . 659
Other ${ }^{\text {d }}$. 46	
Constant		-1.560			37.27	
Reading Test Total						
1983 Reading Grade	.610	. 522	.6107\#*	.066	37.23	Multiple $\mathrm{R}=.684$
Magazine Subscriptions						$\mathrm{R}^{2}=2.468$
Per Student	-. 172	-8.090	-. 199**	. 069	3.23	Adjusted $\mathrm{R}^{2}=.421$
Grade Level	-. 021	. 055	. 103	. 060	-. 22	$5 \mathrm{E}=.564$
Esargency Telephone	-.012	-. 236	-. 124*	. 063	. 15	
Father's Status	-. 100	-. 198	-. 100	. 056	1.01	
Gifted Program	. 258	. 441	. 102	. 058	2.61	
Other ${ }^{\text {a }}$					2.74	
Constant		-1.358			46.75	
Vocabulary knowledge						
1983 Reading Grade	. 4.44	. 472	. $475 \ddagger \ddagger$. 179	20.59	Multiple $\mathrm{F}=.521$
Grade Level	. 027	.093	. 150%	. 070	. 40	$R^{2} \quad=.272$
Encyclopedia Sets						Adjusted $\mathrm{h}^{2}=.208$
Per Student	. 178	10.276	. 104	.070	1.86	SE $\quad=.766$
Other ${ }^{\text {a }}$					4.30	
Constant		-1.996			27.15	

a--Fredictore forced into equation, but not significant at or beyond the . 15 level.

dEPENDENT VARIARLES: PREDICTORS	Corr	8	EETA	SE RETA	\% OF TAEL VARIANCE	
Listening Comprehension						
1983 Reading Grade	. 374	. 387	. 394 ***	.080	14.75	Multiple $\mathrm{F}=.496$
Percentage of Sooks						$\mathrm{K}^{2}=.246$
Lost Fer Student	-. 131	-138.846	-. 215 **	. 087	2.82	Adjusted $\mathrm{R}^{2}=.181$
Father's Status	. 116	. 255	. 113	. 057	1.31	$5 E=.770$
Encyclopedia Sets						
Per Student	. 201	11.159	. 114	. 1711	2.30	
Student's Residence	. 108	. 244	. 144	. 075	1.55	
Other ${ }^{\text {d }}$					1.90	
Constant		-1.439			24.63	
Auditory Test Total						
1985 Feading Grade	. 446	. 401	. 475 +4*	. 077	21.18	Multiple $\mathrm{R}=.552$
Percentage of Books						$\mathrm{R}^{2}=.305$
Lost Per Student	-. 143	-109.53t	-.170\%	. 094	2.43	Adjusted $\mathrm{R}^{2}=.245$
Gifted Frogran	. 260	. 603	. 122	.067	3.18	SE $\quad=.731$
Encyclopedia Sets						
Per Student	. 205	11.129	. 116	. 068	2.37	
Grade Level	.001	. 073	. 121	. 058	. 00	
Other ${ }^{\text {d }}$					1.35	
Constant		-1.307			30.51	
Spaliong						
1983 Reading Grade	. 483	. 456	. $436 \pm 4 *$. 072	21.02	Multiple $\mathrm{R}=.604$
Number of Days Absent						$R^{2}=.355$
in 1902-93	-. 258	-. 016	-. 15544	. 053	4.17	Adjusted $\mathrm{R}^{2}=.310$
Father 5 Status	-. 127	-. 310	-.129*	. 061	1.63	SE = .754
Gifted Prograc	. 256	. 737	.139\%	.063	3.55	
Number of Parents						
Absent	-. 126	-. 360	-.194**	. 072	2.45	
Emergency Telephone	-. 032	-. 265	-. 115	. 059	. 36	
Free \& Reduced Lunch	-. 158	-. 238	-.129*	. 062	2.03	
Student's Residence	-. 007	-. 228	-. 126	. 070	. 18	
Nuaber of Parents						
Eaployed	-. 033	. 346	. 1894	. 077	-. 61	
Other ${ }^{\text {d }}$					1.86	
Coristant		-. 747			36.54	

--p<.05 tt--p:.01 t\#t-p<.001
a--Predictors forced into equation, but not significant at or beyond the . IS level.

Table H-1. (continued)

DEPENDENT VARIAELES: FREDICTORS	Corr	B	BETA	SE BETA	\% OF TAE VAETANC	
Math Concepts						
1903 Grade						
Foint Average	. 544	. 707	.5624*	. 069	30.57	Multiple $R=.510^{\circ}$
Percentage of Books						$\mathrm{R}^{2} \quad=.375$
Lost Fier Student	-. 187	-119.377	-. 17944	. 057	3.34	Adjusted $\mathrm{R}^{2}=.353$
Sex	-. 072	-. 176	$-.100$. 062	. 71	SE $\quad=.707$
Gifted Progra	. 274	. 499	. 097	. 061	2.45	
Other ${ }^{\text {a }}$. 28	
Coristant		-2.083			37.5	
Math Test Total						
1993 Grade						
Point Average	. 570	. 659	.575***	.0t日	32.77	Multiple $i=.622$
Fercentage of jooks						$\mathrm{R}^{2}=.387$
Lost Per Student	-. 173	-128.319	-. 199**	. 067	3.46	Adjusted $R^{2}=.365$
Gifted Program	. 277	. 493	. 099	. 060	2.75	SE = . 376
Other ${ }^{\text {a }}$					-. 30	
Constant		-1.699			38.68	
Science Knowledge						
1993 Grade						
Point Average	. 369	. 529	. 4554.4	. 174	16.81	Multiple $\mathrm{F}=.503$
Percentage of Books						$\mathrm{R}^{2} \quad=.294$
Lost Per Student	-. 223	-159.302	-.259***	. 072	5.78	fidusted $\mathrm{R}^{2}=.259$
Grade Level	. 121	.130	.23***	. 164	2.69	SE $=.678$
Gifted Prograí	. 296	. 642	. 135	. 065	3.99	
1985 Citizenstip Grade	. 134	-. 110	-. 118	. 1975	-1.58	
Other ${ }^{3}$. 72	
Constant		-1.285			28.41	

*-pर. 05 **--p<.01 ***-p<.001
a--Predictors forced into equation, but not significant at or beyond the .15 level.

```
variables entering the equation accounted for 37% of the total
variance, thus leaving 63% of the variance to be e:plained by factors
not included in this analysis.
```


Reading Test Total

A total of six variatles entered into the reading test total model of achievement (Table H-1; or Table 30) at or beyond the level of significance (p 夭. 15). All entering factors accounted for 47% of the explained variance, which meant that 53% of the variance in reading test total achievement for Indian students was yet to be explained by variables outside this analysis. Again, as expected, the 199 s reading grade explained the most variance (37\%). The number of magaine subscriptions per student accounted for 3% of the variance, while the gifted program (3\%), father's status (1\%), emergency telephone number (. 2%), and grade level (-. 2%) variables were the other predictors. Vocabulary Kiouledqe

The number of encyclopedia sets per student ekplained 2%, grade level accounted for $.2 \%$, and the 1983 reading grade explained 21% of the total variance in vocabulary knowledge test scores for Indian students (Table H-1; or Table 39). These predictors, along with the other variables in the equation that were not significant (i.e., p ..15), explained 27% of the total variance in vocabulary knowledge achievement for Indian students, meaning that 63% of the variance was left unexplained; that is, was accountable by factors not in this analysis.

Listening Comprehension

Taken together, all variables entering into the listening comprehension achievement model (Table $\mathrm{H}-1$; or Table 39) for Indian students explained 25% of the do'served variance. Thus, 75% of the variance in listening comprehension achievement for Indian students must te attributed to variables not included in this analysis. Specifically, the 1783 reading grade contributed 15% to the total variance, while student's residence accounted for 2%, percentage of books lost per student 3%, father's status 1%, and the number of encyclopedia sets per student 2% of the total variance.

Auditory Test Total

While the 1983 reading grade explained 21% of the tutal variance, gifted program participation accounted for 3%, the percentage of books lost per student 3%, and the number of enc\%clopedia sets per student 2% of the total variance in auditory test total scores (Table H-1; or Table 39). Interestingly, grade level entered into the equation, but contributed less than one one- hundredth of a percentage (i.e., 0\%) to the total observed variance in Indian students' auditory test total scores. Taken together, all entering variables explained 30% of the auditory test total score variance for Indian students, leaving 70% of the total variance to be explained by factors not in this analysis.

Spelling Knowledoe

While the 1983 reading grade was the best predictor 221% of the explained variance) of spelling knowledge (Table $H-1$; or Table 34),

```
the number of days absent in 1982-93 was the next best predictor (4%),
followed by gifted program participation (4%), number of parents
absent (2%), participation in the federal lunch program (2%), father's
status (2%), and emergency telephone number (.4%). All entering
variables, including those that were not statistically significant
(i.e., p >.15), explained 36% of the total variance in Epelling
knowledge achiavement test scores for Indian students. Hence, 64% of
the variance in spelling achievement test scores for Indian students
must be attributed to factors not included in this analysis.
```


Math Eoncepts

Nearly 31% of the variance in math concept achievement test scores (Tade $\mathrm{H}-1$; or Table 39) for Indian students was accounted for by the student's 1983 grade point average. Participation in the gifted program and the percentage of books lost per student both e\%plained 3% of the total variance, while student's sex accounted for another 1% of the variance. Taken together, all entering variables explained 38% of the Indian students math concepts achievement, leaving 62% of the total variance to be explained by factors not in this analysis.

Math Test Total

With the enception that student's se: was not a predictor in math test total model of achievement for Indian students (Table H-1; or Table 39), the same variables entered as in the math concepts model. That is, the student's 1983 grade point average explained 33% gifted student program participation accounted for 3%, and tne percentage of

Table H-2, Indian Stepmise and Forced Entry Multiple Fegression kesults without Grade Level

DEPENDENT VARIAELES/ FREDICTORS	Corr	B	BETA	SE BETA	\% OF TABL VAFITANC	
Hord Study Skills						
1983 Reading Grade	. 427	. 426	. 435474	. 076	18.73	Multiple $\mathrm{K}=.565$
Father's Status	-. 220	-. 455	-. 204 +4	. 063	4.47	$\mathrm{R}^{2}=.320$
Magazine Subscriptioris						Adjusted $\mathrm{n}^{2}=.264$
Per Student	-. 188	-10.101	-.207**	. 078	3.89	$5 \mathrm{E}=.724$
Age in Months at						
Time of Test	. 022	. 007	.144*	. 069	. 31	
Eurergency Telephone	-. 018	-. 248	-. 114	. 071	. 21	
Other ${ }^{\text {a }}$					4.36	
Constant		-1.739			32.00	
Reading Comprehensicn						
fleg keaing Grade	. 572	. 496	.535***	. 172	30.79	Multiple $\mathrm{F}=.610$
Encyclopedia Sets						$\mathrm{R}^{2}=.372$
Per Student	. 205	13.296	. 1464	. 055	2.99	Adjusted $\mathrm{R}^{2}=.318$
Gifted Frogram	. 2.9	. 504	. 149	. 062	2.49	$S E \quad=.659$
Other ${ }^{\text {a }}$. 96	
Constant		-1.346			37.23	
Reading Test Total						
1983 Keading Grade	.610	. 514	.602ta*	. 067	35.69	Multiple $\mathrm{R}=.679$
Magazine Subscriptionis						K^{2}, $=.401$
Per Student	-. 172	-7.583	-. 17544	. 069	3.6	Adjusted ${ }^{2}=.414$
Eaergency Telephone	-. 012	-. 255	-.134*	.105	. 16	$3 E=.568$
Gifted Frograc	. 258	. 487	.1123	. 059	2.89	
Father's Status	-. 100	-. 203	$-.103$. 0.6	1.05	
Other ${ }^{\text {d }}$					2.30	
Constant		-1.381			45.10	
Vocabulary knowledge						
1583 Reading Grade	. 433	. 474	. $4784 * *$. 080	20.72	Muitiple $R=.517$
Gifted Pragraa	. 229	. 518	.103	. 059	2.35	$\mathrm{R}^{2} \quad=.267$
Encyclopedia Sets						Adjusted $R^{2}=.204$
Per Student	. 178	10.475	. 106	. 170	1.90	$5 E=.769$
Age in Manths at						
Time of Test	-. 020	. 1106	.133	.671	-. 20	
Other ${ }^{\text {d }}$					2.01	
Coristant		-2.405			26.72	

t-0.0. 05 **-p<.01 ***--pr.001
a--fredictors forced into equation, but not 51 gnificant at or beyond the . 15 bevel.

Tatle H-2. (continued)

DEPENDENT VARIAELES; PREDICTORS	Cori	B	BETA	SE BETA	\% OF TABL YARIGNC	
Listening Coaprehension						
1983 Reading Grade	. 374	. 387	.3944**	. 081	14.76	Multiple $\mathrm{R}=.494$
Fercentage of Books						$\mathrm{R}^{2}=244$
Lost Per Student	-. 131	-135.037	-.211*	. 087	2.76	Adjusted $\mathrm{R}^{2}=.179$
Father's Status	. 116	. 251	. 111	.067	1.29	$5 \mathrm{SE} \quad=.771$
Encyclopedia Sets						
Per Student	. 201	11.232	. 115	. 071	2.32	
Student $\mathrm{s}^{\text {Residence }}$. 109	. 235	. 138	. 075	1.49	
Other ${ }^{\text {a }}$					1.80	
Constant		-1.645			24.42	
Auditory Test Total						
1983 Reading Grade	. 446	. 461	. $476 \pm \pm \pm$. 078	21.19	Multiple $R=.549$
Percentage of Books						$R^{2}=.301$
Lost Fier Student	-. 143	-1.04.736	-. $164 \pm$. 084	2.34	Adjusted $\mathrm{R}^{2}=.240$
Gifted Prograa	. 260	. 645	.1314	. 066	3.40	SE $=.733$
Encyclopedia Sets						
Per Student	. 205	11.254	. 117	. 169	2.39	
Age in Months at						
Tige of Test	-. 0145	. 005	. 100	. 067	. 45	
Other ${ }^{\text {a }}$. 34	
Constant		-2.084			30.11	
Spelling						
1983 Reading $6 r a d e$. 483	. 443	. $4233+4$. 072	20.43	Multiple $\mathrm{i}=.606$
Nuaber of Days Absent						$R^{2}=.367$
in 1982-83	-. 269	-. 016	-.157**	. 063	4.20	Hediusted $\mathrm{F}^{2}=.312$
Father's Status	-. 127	-.311	-.129\%	. 061	1.64	SE $\quad=.752$
Gifted Prograa	. 256	. 768	. 1444	. 065	3.70	
Number of Farents						
Absent	-. 126	-. 359	-. 194 4*	. 072	2.44	
Eaergency Telephone	-. 032	-. 276	-. 119	. 058	. 38	
Free \& Reduced Lunch	-. 158	-. 226	-.123i	. 061	1.93	
Student's Kesidence	-. 007	$-.230$	-. 127	. 070	. 68	
Number of Parents						
Eaployed	-0.033	. 345	. 888	. 076	-. 01	
Other ${ }^{\text {a }}$					2.54	
Constant		-. 412			35.73	

[^9]Table H-2. (continued)

DEPENDENT VARIABLES/ PREDICTORS	Corr	B	BETA	SE EETA	$\%$ OF TAB VARIANC	
Math Concepts						
198? Srade						
Point Average	. 544	. 696	. $5553+4$. 070	30.08	Multiple $\mathbb{R}=.610$
Percentage of Books						$\mathrm{R}^{2} \quad=.372$
Lost Fer Student	-. 187	-114.889	-. 172 ± 4	. 067	3.22	Adjusted $\mathrm{R}^{2}=.349$
Student' Sex	-. 072	-. 175	-. 099	. 062	. 71	$5 E=.709$
Gifted Prograg	. 274	. 540	.105	. 051	2.87	
Other ${ }^{\text {a }}$. 31	
Constant		-2.097			37.19	
Math Test Total						
1983 Grade						
Point Average	. 570	. 699	. 569 ***	. 069	32.38	Multiple $\mathrm{F}=.621$
Percentage of Books						$\mathrm{R}^{2} \quad=.386$
Lost Per Student	-.173	-125.431	-. 195 **	. 066	3.39	Adjusted $\mathrm{R}^{2}=.363$
Gifted Progran	. 277	. 519	. 104	.060	2.90	$5 E=.677$
Other ${ }^{\text {d }}$					-. 11	
Constant		-1.573			38.55	
Science Knowledge						
1993 Grade						
Point Average	. 369	. 532	. $458 \pm 4 \pm$. 075	16.39	multiple $\mathrm{F}=.524$
Percentage of Books						$R^{2}=274$
Lost Fer Student	-. 223	-153.796	-. $25014 \pm$. 072	5.58	Adjusted $R^{2}=.248$
Age in Months at						SE $\quad=.703$
Time of Test	.073	. 009	. 10974	. 085	1.45	
Gifted Program	. 296	. 700	. 1474	. 065	4.36	
1993 Citizenship Grade	. 134	-. 113	-. 121	. 076	-1.53	
Other ${ }^{\text {d }}$. 76	
Constant		-1.880			27.41	

*-~p<.05 \quad z--p..01 $\$ * *--p .001$
a-afredictors forced into equation, but not significant at or beyond the . 15 level.

AFFENDIX I

```
MODIFIED INDIAN STEFWISE AND FORCED ENTFY
    MULTIFLE FEGRESSIUN RESULTS
```

Table 1-1. Indian Modified Stepwise and Forced Entry Multiple Regression Kesults

DEPENDENT VARIABLES/ PREDICTORS	Corr	B	BETA	SE BETA	\% OF TABL VARIAHCE	
Hord Study Skills						
1983 Reading Grade	. 427	. 818	.4304t*	. 075	18.37	Multiple $\mathrm{R}=.575$
Father's Status	-. 220	-. 449	-.2017\%	. 063	4.41	R2 $=.330$
Grade Level	. 075	. 096	.158\%	. 069	1.19	Adjusted $\mathrm{R}^{2}=.260$
Kagazine Subscriptions						SE $\quad=.724$
Per Student	-. 188	-10.014	$-.205 \pm \pm$. 079	3.86	
Other ${ }^{\text {a }}$					5.21	
Constant		-1.102			33.04	
Reading Comprehension						
1983 Reading Grade	. 572	. 508	.5527it	. 072	31.55	Multiple $R=.613$
Encyclopedia Sets						$R^{2}=.376$
Per Student	. 205	15.109	.16644	. 067	3.40	Adjusted $\mathrm{R}^{2}=.310$
Gifted Program	. 229	. 467	. 100	. 064	2.28	SE $\quad=.663$
Other ${ }^{\text {a }}$. 36	
Constant		-1.790			37.59	
Reading Test Total						
1983 Reading Grade	. 610	. $52!$.609t**	. 067	37.16	Multiple $\mathrm{R}=.685$
Magazine Subscriptions						$\mathrm{R}^{2} \quad=.469$
Per Student	-. 172	-8.076	-.1887*	. 071	3.22	Adjusted $\mathrm{R}^{2}=.413$
Grade Level	-. 021	. 055	. 104	. 062	-. 22	SE = . 568
Eaergency Telephane	-. 012	-. 245	-. 1288	. 064	. 15	
Father's Status	-. 100	-. 198	-. 100	. 056	1.01	
Gifted Prograa	. 258	. 440	. 101	. 058	2.61	
Other ${ }^{\text {a }}$					2.96	
Constant		-1.481			46.99	
Vocabulary Knowledge						
1983 Reading Grade	. 434	. 455	. 458 ¢ \ddagger	. 078	19.87	Multiple $R=.535$
Reservation Head Start	-. 085	-.311	-. 127	. 085	1.09	$\mathrm{R}^{2} \quad=.286$
Encyclopedia Sets						Adjusted $\mathrm{R}^{2}=.207$
Per Student	. 178	11.622	. 118	. 072	2.11	SE $\quad=.767$
Grade Level	. 027	. 076	. 122	. 070	. 33	
Other ${ }^{\text {d }}$					5.21	
Constant		-1.970			22.61	

*-pर. $05 \quad$ ti--p<.01 t+t--p<. 001
a--Predictors forced into equation, but not significant at or beyond the . 15 level.

Table I-1. (continued)

DEPENDEHT VARIAELES/ PREDICTORS	Corr	B	BETA	SE BETA	\% OF TAB VARIANCE	
Listening Coaprehension						
1983 Reading Grade	. 374	. 383	. 3904 \%	. 081	14.60	Multiple $\mathrm{R}=.504$
Percentage of Books						$R^{2} \quad=.254$
Lost Per Student	-. 131	-138.862	-.2154i	. 088	2.82	Adjusted $\mathrm{R}^{2}=.175$
Father's Status	. 116	. 257	. 114	. 068	1.32	SE =. 773
Encyclopedia Sets						
Per Student	. 201	10.792	. 111	. 074	2.23	
Student's Residence	. 108	. 241	. 142	. 077	1.53	
Other ${ }^{\text {d }}$					2.87	
Constant		-1.079			25.37	
Auditory Test Total						
1983 Reading Grade	. 446	. 452	. 466454	. 078	20.76	Multiple $\mathrm{R}=.559$
Fercentage of Books						$\mathrm{R}^{2} \quad=.312$
Lost Per Student	-. 143	-104.128	-. 163 \%	. 084	2.33	Adjusted $\mathrm{R}^{2}=.240$
Gifted Program	. 260	. 558	. 113	. 067	2.94	SE =.733
Grade Level	. 001	. 066	. 109	. 069	. 01	
Encyclopedia Sets						
Per Student	. 205	11.765	.122	. 071	2.50	
Other ${ }^{\text {a }}$					2.60	
Constant		-1.616			31.23	
Spelling						
1983 Reading Grade	. 483	. 451	. 431 **	. 073	20.79	Multiple $R=.606$
Nusber of Days Absent						$\mathrm{R}^{2} \quad=.368$
in 1992-83	-. 268	-. 016	-. 16047	. 064	4.29	Adjusted $\mathrm{R}^{2}=.301$
Father's Status	-. 127	-. 309	-.1284	. 061	1.63	$5 \mathrm{E}=.759$
Gifted Progra	. 256	. 708	. 1337	. 064	3.40	
Nuaber of Farents						
Absent	-. 126	-. 362	-. 19547	. 073	2.47	
Eaergency Telephone	-. 032	-. 269	-. 115	. 070	. 37	
Free \& Reduced Lunch	-. 158	-. 240	-. 1304	. 062	2.05	
Student's Residence	-. 007	-. 228	-. 126	. 072	. 08	
Number of Parents						
Eaployed	-. 033	. 344	. 1874	. 077	-. 61	
Other ${ }^{\text {d }}$					2.31	
Constant		-. 628			36.77	

[^10]Table I-1. (continued)

DEPENDENT VARIABLES/ PREDICTORS	Corr	B	BETA	$\%$ Of TABLE		
Math Concepts						
1983 Grade						
Point Average	. 544	. 722	.5745\%	. 070	31.23	Multiple $R=.621$
Percentage of Books $\quad \mathrm{R}^{2} \mathrm{l} 385$						
Lost Per Student	-. 187	-118.798	-. 179×4	. 067	3.33	Adjusted $\mathrm{R}^{2}=.353$
Preschool Attendance	-. 013	. 184	. 097	. 062	-. 13	SE $\quad=.707$
Sex	-. 072	-. 169	-. 096	. 062	. 68	
Hoes Phone Listed	. 135	. 194	. 096	. 065	1.30	
Otner ${ }^{\text {a }}$					2.10	
Constant		-2.142			38.51	
Math Test Total						
1993 Grade						
Point Average	. 570	. 721	.593***	. 068	33.84	Multiple $R=.636$
Percentage of Books						$R^{2}=.405$
Lost Per Student	-. 173	-128.320	-. 199**	. 066	3.46	Adjusted $\mathrm{R}^{2}=.374$
Freschool Attendance	. 050	. 256	. 140%	. 061	. 70	$\mathrm{SE}=.672$
Other ${ }^{\text {a }}$					2.84	
Constant		-1.903			40.48	
Science Knowledge						
1983 Grade						
Point Average	. 369	. 525	. $452 \mathrm{~F} \ddagger$. 075	16.67	Multiple $R=.534$
Percentage of Books						$\mathrm{R}^{2} \quad=.286$
Lost Per Student	-. 223	-160.937	-.262***	. 073	5.84	Adjusted $\mathrm{R}^{2}=.248$
Grade Level	. 121	. 127	.218***	. 066	2.65	SE $\quad=.703$
Sifted Prograe	. 296	. 637	. 1344	. 066	3.97	
1983 Citizenship Grade	. 134	-. 110	-. 118	. 076	-1.58	
Other ${ }^{\text {a }}$					1.03	
Constant		-1.112			28.55	

*-pर. 05 \#\#--p<.01 \quad \#t--p<. 001
a--Fredictors forced into equation, but not significant at or beyond the .15 level.

Table I-2. Indian Modified Stepwise and Forced Entry Multiple Regression Results without Grade Level

dependent variables/ PREDICTORS	Corr	-	BETA	SE BETA	: OF TAB VAFIANCE	
Hord Study Skills						
1983 Reading Grade	. 427	. 418	. 431 ± 54	. 076	18.39	Multiple $R=.569$
Father's Status	-. 220	-. 456	-.204**	. 064	4.48	$\mathrm{R}^{2}=.324$
Magazine Subscriptions						Adjusted $\mathrm{R}^{2}=.253$
Per Student	-. 188	-9.500	-. 195**	. 079	3.66	SE $=.728$
Age in Months at						
Other ${ }^{\text {d }}$					5.59	
Constant		-1.451			32.40	
Reading Comprehension						
1983 Reading Grade	. 572	. 497	. 5404 ± 4	. 073	30.86	Multiple $\mathrm{R}=.612$
Encyclopedia Sets						$\mathrm{R}^{2}=.375$
Per Student	. 205	14.743	.1624	. 068	3.32	Adjusted $\mathrm{r}^{2}=.310$
Gifted Program	. 229	. 503	. 108	. 063	2.46	$5 \mathrm{E}=.663$
Other ${ }^{\text {d }}$. 87	
Constant		-1.565			37.51	
Reading Test Total						
1983 Reading Grade	. 610	. 51.3	. $599 \pm \pm$. 068	36.56	Multiple $R=.680$
Magazine Subscriptions						$\mathrm{R}^{2}=.463$
Per Student	-. 172	-7.500	-. 174 +*	. 071	2.99	Adjusted $\mathrm{R}^{2}=.406$
Esergency Telephone	-. 012	-. 263	-.138*	. 064	. 16	SE $\quad=.572$
Gifted Prograa	. 258	. 481	. 111	. 058	2.85	
Father's Status	-. 100	-. 204	-. 104	. 157	1.04	
Other ${ }^{\text {d }}$					2.66	
Constant		-1.472			46.26	
Vocabulary Knowiedge						
1983 Reading Grade	. 434	. 459	. $462 \times 4 \pm$. 079	20.04	Multiple $\mathrm{f}=.533$
Reservation Head Start	-. 086	-. 315	-. 129	. 085	1.10	$\mathrm{R}^{2}=284$
Gifted Program	. 229	. 506	. 100	. 068	2.30	Adjusted $\mathrm{R}^{2}=.204$
Encyclopedia Sets						$5 \mathrm{E}=.768$
Per Student	. 178	11.763	. 120	. 072	2.13	
Age in Months at						
Tiae of Test	-. 020	. 005	. 112	. 071	-. 22	
Other ${ }^{\text {d }}$					3.05	
Constant		-2.228			28.40	

a--Predictors force: into equation, but not significant at or beyond the . 15 level.

Table I-2. (continued)

DEPENDENT VARIARLES/ PREDICTORS	Corr	B	BETA	SE BETA	\% OF TAB VARIANCE	
Listening Coaprehension						
1983 Reading Grade	. 374	. 383	. $3904 \pm$. 082	14.60	Multiple $\mathrm{k}=.502$
Percentage of Books						$\mathrm{R}^{2}=252$
Lost Per Student	-. 131	-135.155	-.211*	. 088	2.77	Adjusted $\mathrm{R}^{2}=.174$
Father 's Status	. 116	. 253	. 112	. 068	1.30	SE = . 774
Encyclopedia Sets						
Per Student	. 201	10.902	. 112	. 074	2.25	
Student's Residence	. 108	. 232	. 137	. 076	1.48	
Other ${ }^{\text {a }}$					2.81	
Constant		-1.264			25.21	
Auditory Test Total						
1983 Reading Grade	. 446	. 452	. 4664 ± 4	. 079	20.76	Hultiple $R=.556$
Percentage of Books						$\mathrm{R}^{2} \quad=.309$
Lost Per Student	-. 143	-100.518	-. 158	. 084	2.25	Adjusted $\mathrm{R}^{2}=.237$
Gifted Program	. 260	. 592	. 120	. 067	3.12	$5 \mathrm{E}=.735$
Encyclopedia Sets						
Per Student	. 205	11.909	. 124	. 071	2.53	
Dther ${ }^{\text {d }}$					2.27	
Constant		-1.859			30.93	
Spelling						
1983 Reading Grade	. 483	. 438	.418*+*	. 073	20.17	Multiple $R=.608$
Nuaber of Days Absent						$\mathrm{R}^{2}=.370$
in 1982-93	-. 268	-. 016	-. 160 ± 4	. 064	4.30	Adjusted $\mathrm{R}^{2}=.304$
Father's Status	-. 127	-. 310	-. 128 *	. 061	1.63	$5 E \quad=.757$
Gifted Progra	. 256	. 735	. 1384	. 064	3.53	
Number of Parents						
Absent	-. 126	-. 362	-. 195 **	. 073	2.46	
Eaergency Telephone	-. 032	-. 276	-. 118	. 070	. 39	
Free \& Reduced Lunch	-. 158	-. 230	-.124*	. 052	1.96	
Student's Residence	-. 007	-. 232	-. 128	. 072	. 08	
Nuaber of Parents						
Enployed	$-.033$. 342	. 1867	. 077	-. 61	
Other ${ }^{\text {d }}$					3.09	
Constant		-. 246			36.99	

a--Predictors forced into equation, but not significant at or beyond the . 15 level.

Table [-2. (continued)

dependent variables/ PREDICTORS	Carr	B	BETA	SE BETA	\% OF TAE VARIANC	
Math Concepts						
1983 Grade						
Point Average	. 544	. 712	.565ift	. 071	30.79	Multiple $R=.618$
Percentage of Books						$\mathrm{R}^{2} \quad=.381$
Lost Per Student	-. 197	-114.502	-. 172**	. 067	3.21	Adjusted $\mathrm{R}^{2}=.349$
Preschool Attendance	-. 013	. 177	. 094	. 062	-. 12	SE = . 709
Sex	-. 072	-. 166	-. 094	. 063	. 67	
Gifted Program	. 274	. 481	. 094	. 061	2.56	
Hoam Phone Listed	. 135	. 193	. 096	. 066	1.29	
Other ${ }^{\text {d }}$					-. 26	
Constant		-2.184			38.14	
Math Test Total						
1983 Grade						
Point Average	. 570	. 716	.58844	. 069	33.56	Multiple $R=.635$
Percentage of books						$R^{2}=.403$
Lost Per Student	-. 173	-125.642	-. 1954	. 066	3.39	Adjusted R2 $=.372$
Preschool Attendance	. 050	. 253	. 1384	. 061	. 69	SE =.673
Gifted Progran	. 277	. 448	. 090	. 060	2.50	
Other ${ }^{\text {a }}$. 18	
Constant		-1.945			40.32	
Science Knowledge						
1983 Grade						
Point Average	. 369	. 527	. $453 \pm 4 *$. 076	16.73	Multiple $\mathrm{R}=.525$
Percentage of Eooks						$\mathrm{R}^{2} \quad=.276$
Lost Per Student	$-.225$	-155.241	-.252+4*	. 073	5.64	Adjusted $\mathrm{R}^{2}=.238$
Age in Months at						SE $\quad=.708$
Tiae of Test	. 073	. 009	.1924*	. 067	1.41	
Gifted Progran	. 296	. 690	. 1454	. 066	4.29	
1983 Citizenship Grade	. 134	-. 112	-. 121	. 075	-1.62	
Dther ${ }^{\text {d }}$					1.12	
Constant		-1.665			27.57	

[^11]
APFENDIX J

POPULATION STEPWISE AND FORCED ENTRY

multiple regression fesults gy grade level

Fooulation Grade Level Modei

```
Comparisen of Word Study Stills Achievement Ey Grade Levei
The results（Table J－1 to J－5；or Table 52）of the analyses of word study skills for grades two through si\％in the washae bounty School District clearly demonstrated that factors which centributed to such achlevement varied corisiderably by grade level．Structurally， the models varied from as few as three in the third and foutth graje modele to as many as eight predictors \(1 \pi\) the second giade model mot including the＂uthar＂variables foread into the eupetionsi．With respect to the percentage of the variarce accounted for，a low of \(3 \mathrm{~J} \%\) was explained by three predictorj in the third graje model and a high of \(5 \mathrm{~g} \%\) of the variante was attratuted to three variaties in the fourth． gríde riodei．
```

```
    In contrest tu pieviously duscussed results, theseresuits
```

 In contrest tu pieviously duscussed results, theseresuits
 indicated that the previous (1985) reading grade wa三 not always the
indicated that the previous (1985) reading grade wa三 not always the
test predictor of academic actijevement by grace level, nar was the
test predictor of academic actijevement by grace level, nar was the
factar EOnsistent in the amount of variance it E:%ialnaむ. For
factar EOnsistent in the amount of variance it E:%ialnaむ. For
example, in the second grade, both the length of time the imtiary was
example, in the second grade, both the length of time the imtiary was
open after school per student (%%) and student's se% (Ś:) variables
open after school per student (%%) and student's se% (Ś:) variables
accounted for more variance than previous grades is%:. Nometheies\#,
accounted for more variance than previous grades is%:. Nometheies\#,
previous grades were the best predictor in the other grade ;evel word
previous grades were the best predictor in the other grade ;evel word
study stills mudels, and explajned nearly 44% uithe variarte 2m tha
study stills mudels, and explajned nearly 44% uithe variarte 2m tha
fourth grade model.
fourth grade model.
Iri comparisen to the population model of word stadv sl:1l:
Iri comparisen to the population model of word stadv sl:1l:
achievement (without grade level), the models by graje, Evel were

```
achievement (without grade level), the models by graje, Evel were
```

Table J-1. Second Grade Population Stepwhe and Forced Entry Multiple Reqression kesults

DEPENDENT VARIABLES/ PREDICTORS	Corr	B	BETA	SE BETA	\% IF TABL VAFIANCE	
Hord Study Skills						
Library Open After						
School Per Student	. 294	8.608	.2874 4	. 107	8.43	Multiple $R=.612$
Sex	. 194	. 571	. $314 \pm 4 \pm$. 094	6.09	$\mathrm{R}^{2}=.374$
1983 Reading Grade	. 207	. 303	.269:\%	. 099	5.54	Adjusted $\mathrm{R}^{2}=.256$
Change of Schools	$-.103$	-. 674	-.37144	. 104	3.81	SE $=.785$
Percentage of Books						
Lost Per Student	-.040	-352.033	-.25974	. 104	1.03	
1993 Citizenship Srade	-. 126	-. 241	-.219*	. 096	2.75	
Hoee Phone Listed	.135	. 672	. 164	. 099	. 57	
Encyclopedia Set5						
Per Student	. 184	13.380	. 193	. 101	3.56	
Other ${ }^{\text {d }}$					5.62	
Constant		1.197			37.41	
Reading Comprehension						
1983 Reading Grade	. 426	. 359	. $445+4$. 095	18.97	Multiple $\mathrm{F}=.647$
Library Open After						$R^{2}=.418$
School Per Student	. 313	6.032	. 282 +**	.103	8.84	Adjusted $\mathrm{R}^{2}=.309$
Hoae Phone Listed	. 073	. 545	. 1867	. 095	1.35	SE $\quad=.540$
Free \& Reduced Lunch	-. 207	-. 313	-.165	. 088	3.44	
Age in Months at						
Tine of Test Nuaber of Parents	$-.147$	$-.022$	-. 144	. 088	2.12	
Eaployed	-. 134	-. 375	-.2174	. 093	2.90	
Esergency Telephone	. 223	. 394	. 167	. 093	3.72	
Number of Days Absent in 1982-83	. 093	. 014	.187*	. 096	1.74	
1983 Citizenship Grade	-. 022	-. 150	-.172*	. 093	. 43	
Other ${ }^{\text {a }}$					-1.66	
Constant		. 766			41.85	

a--Predictors forced into equation, but not significant at or beyond the . 15 level.

Table J-1. \{continued)

dependent variables/ PREDICTORS	Corr	B	BETA	SE BETA	\% OF TAELE VARIANCE	
Reading Test Total						
1983 Reading Grade	. 389	. 366	. 41.744	. 092	16.03	Multiple $R=.674$
Library Open After						$\mathrm{R}^{2}=.454$
School Per Student	. 371	8.074	. 344 4i*	. 100	12.74	Adjusted $\mathrm{R}^{2}=.352$
Howe Phone Listed	. 058	. 647	. 2017	. 092	1.18	$5 \mathrm{E}=.574$
Age in Months at Tine of Test	$-.151$	-. 026	-. 154	. 085	2.32	
Nuaber of Days Absent						
Sex	. 102	. 314	. $2204 *$. 089	2.24	
Father's Status	-. 117	-. 260	-. 133	. 089	1.56	
1983 Citizenship Grade	-. 073	-. 203	-. 22554	. 090	1.71	
Encyclopedia Sets						
Per Student	.!19	7.787	. 143	. 094	1.70	
Change of Schools	. 040	-. 375	-.264**	. 097	-1.05	
Percentage of Books						
Lost Per Student	$-.017$	-171.987	-. 161	. 197	. 28	
Other ${ }^{\text {d }}$					5.15	
Constant		1.430			45.45	
Vocabulary Knowledge						
1983 Reading Grade	. 429	. 477	. 4344 ± 4	. 093	18.62	Multiple $R=.668$
Library Open After						$\mathrm{R}^{2}=.446$
School Per Student	. 364	10.479	. 360 +44	. 100	13.07	Adjusted $\mathrm{R}^{2}=.341$
Free \& Aeduced Lunch	$-.243$	-. 418	-. 163	. 086	3.96	SE $\quad=.718$
Nuaber of Days Ausent						
in 1982-83	. 123	. 024	.2324\%	. 194	2.86	
Student' 5 Sex	-. 218	-. 232	-. 131	. 089	2.89	
Number of Farents						
Eaployed	-. 137	-. 529	-. 225 +4	. 091	3.08	
Acreage Fer Student	-. 111	17.584	. 156	. 092	-1.74	
1983 Citizenship Grade	-. 075	-. 158	-. 148	. 190	1.11	
Hose Phone Listed	-. 050	. 691	. 173	. 093	-. 86	
Other ${ }^{\text {d }}$					1.58	
Constant		. 748			44.57	

a--Predictors forced inito equation, but not significant at or beyond the . 15 level.

Table 3-1. (continued)

DEPENDENT VARIABLES/ PREDICTORS	Corr	B	BETA	SE BETA	\% OF TABLE VARIANCE	
Listening Coaprehension						
Library Open After						
School Per Student	. 438	12.807	. 413 ***	. 086	18.10	Multiple $R=.718$
1983 Reading Grade	. 316	. 308	. 26384	. 084	8.30	$\mathrm{R}^{2}=.515$
Hose Phone Listed	. 110	1.370	. 322 ***	. 086	3.55	Adjusted $\mathrm{R}^{2}=.430$
Nuaber of Days Absent in 1992-83	. 140	. 019	.169*	. 083	2.37	$\mathrm{SE}=.712$
Nuaber of Parents						
Employed	-. 124	-1.013	-.404*i*	. 096	5.02	
Nunber of Parents						
Absent	. 264	. 911	. $410 \pm \pm *$. 102	10.84	
Magazine Subscriptions						
Per Student	$-.123$	-11.012	-. 115	. 080	1.41	
Other ${ }^{\text {a }}$					1.89	
Constant		-3.019			51.48	
Aucitory Test Total						
Library Open After						
School Per Student	. 403	10.777	.3674**	. 087	14.78	Multiple $R=.716$
1983 Keading Grade	. 368	. 343	. 309 +**	. 085	11.39	$\mathrm{R}^{2} \quad=.512$
Nunber of Farents						Adjusted $\mathrm{R}^{2}=.426$
Eaployed	-. 162	-1.072	$-.451 \pm 4 *$. 096	7.29	SE $\quad=.676$
Number of Parents						
Absent	. 268	. 940	. 446 7xi	. 102	11.98	
Houe Phone Listed	. 035	1.148	.285***	. 088	1.01	
Number of Days Absent						
in 1982-83	. 122	. 020	. 188%	.084	2.30	
Free \& Reduced Lunch	-. 198	-. 323	-. 125	. 080	2.44	
Student's Kesidence	. 007	. 262	. 147	. 084	. 10	
Other ${ }^{\text {d }}$					-. 08	
Constant		-. 698			51.21	

[^12]Table J-1. (continued)

DEPENDENT VARIAELES; PREDICTORS	Corr	B	BETA	SE BETA	\% OF TAEL VARIANCE	
Spelling						
1983 Reading Grade	. 402	. 341	. 32045	.092	12.84	Multiple $\mathrm{R}=.679$
Father's Status	-. 328	-. 820	-.3504*4	. 088	11.46	$\mathrm{R}^{2}=.462$
Library Open After						Adjusted $\mathrm{R}^{2}=.360$
School Per Student	. 287	5.241	. 185	. 096	5.32	SE $\quad=.689$
Sex	. 108	. 314	. 1837	. 087	1.97	
Nuaber of Days Abserit						
in 1982-83	. 072	. 017	. 167	. 090	1.19	
Gifted Prograg	. 309	. 738	. 185 \%	. 090	5.72	
1983 Citizenship Grade	. 035	-. 150	-. 145	. 089	-. 47	
Change of Schools	. 152	-. 248	-. 145	. 098	-2.21	
Encyclopedia Sets						
Per Student	.313	16.213	. 248	. 098	7.75	
Other ${ }^{\text {d }}$					2.59	
Constant		1.579			46.16	
Math Concepts						
1983 6rade						
Point Average	. 318	. 733	. 415 ***	. 106	13.10	Multiple R $=.507$
1983 Citizenship Srada	$-.062$	-. 297	-.2614*	. 104	1.62	$\mathrm{R}^{2}=257$
Age in Months at						Adjusted $\mathrm{R}^{2}=.188$
Tiae of Test	. 189	. 041	. 1904	. 090	3.60	SE = 819
Acreage Fer Student	. 071	19.018	. 164	. 085	1.16	
Percentage of Books						
Lost Per Student	. 036	-231.966	-. 171	. 100	-. 61	
Library Dpen After						
School Per Student	. 199	5.540	. 185	. 102	3.67	
Other ${ }^{\text {d }}$					3.12	
Constant		-5.680			25.63	

--p<. 05 \#\#-pर.01 \quad **--p<.001
a--Fredictors forced into equation, but not significant at or tevend the . 15 leval.

Table J-1. (continued)

DEPENDENT VARIAELES/ FREDICTORS	Corr	8	BETA	SE BETA	VARIANC	
Math Test Total						
1985 Grade						
Point Average	. 424	. 949	. 5174 ± 4	. 100	21.91	Multiple $\mathrm{R}=.580$
1983 Citizership Grade	-. 097	-. 361	-.3193\%	. 098	2.76	$\mathrm{R}^{2}=.337$
Acreage Fer Student	. 062	22.483	.198\%	. 090	1.15	Adjusted $\mathrm{R}^{2}=.276$
Gifted Progran	. 236	. 652	. 149	.039	4.26	EE $\quad=.802$
Library Open After						
School Fer Student	. 215	4.920	. 158	.096	3.41	
Other ${ }^{\text {a }}$. 20	
Constant		-4.256			33.69	
Science Knowledge						
Library Open After						
School Fer Student	. 420	9.602	. $32 \mathrm{Pa*}$. 092	13.77	Multiple $\mathrm{R}=.625$
1983 Grade						$\mathrm{R}^{2}=.390$
Point Average	. 389	. 771	. 445374	. 096	17.31	Adjusted $\mathrm{R}^{2}=.334$
1983 Citizenship Grade	-. 152	-. 306	-. 285 **	. 094	4.33	SE $\quad=.726$
Age in Months at						
Tine of Test	. 158	. 035	.185:	. 082	2.60	
Howe Phone Listed	. 010	. 543	. 135	. 084	. 14	
Other ${ }^{\text {d }}$. 88	
Constant		-5.266			39.03	

*--pr.05 t+--pi.01 ***-pर.001
a--Predictors forced into equation, but not significant at or beyond the . 15 level.

Table J-2. Third Grade Fopulation Stepwise and Forced Entry Multiple Regression Results

DEPENDENT VAFIABLES, PREDICTORS	Corr	B	BETA	SE BETA	\% OF TABL VARIANCE	
Hord Study Skills						
1983 Reading Grade	. 459	. 456	. 380 ± 4 \%	. 106	17.45	Multiple $R=.574$
Acreage Per Student	-. 154	-14.222	-. 147	. 096	2.26	$\mathrm{R}^{2}=.329$
Age in Konths at						Adjusted $\mathrm{R}^{2}=.206$
Tiee of Test	-. 348	-. 031	-. 196	. 106	6.81	$5 E=.821$
Other ${ }^{\text {d }}$					6.41	
Constant		2.524			32.93	
Reading Comprehension						
1983 Reading Grade	. 664	. 522	. $593 \pm 4 \pm$. 085	38.71	Multiple R $=.758$
Nuiber of Parents						$\mathrm{R}^{2}=.574$
Absent	-. 269	-. 305	-.1874	. 082	5.13	Adjusted $\mathrm{R}^{2}=.496$
Acreage Per Student	-. 129	-5.361	-. 115	. 076	1.49	SE $\quad=.488$
Father's Status	-. 065	-. 231	-. 126	. 075	. 82	
Nucber of Days Alsent						
in 1982-83	. 003	. 013	. 119	. 082	. 04	
Age in Months at						
Tive of Test	-. 362	-. 015	-. 170	. 084	4.72	
Other ${ }^{\text {d }}$					6.62	
Constant		. 725			57.43	
Reading Test Total						
1983 Readimy Grade	. 366	. 537	. 569 +74	. 084	37.94	Multiple R $=.777$
Acreage Per Student	-. 182	-13.011	-.170*	. 083	3.10	$\mathrm{R}^{2} \quad=.503$
Student's Residence	. 253	. 295	. 203 t	. 093	5.15	Adjusted $\mathrm{R}^{2}=.525$
Father's Status	-. 134	-. 346	-.179*	. 074	2.40	$5 E=.500$
Nuaber of Parents						
Absent	-. 180	-. 249	-. 145	. 080	2.60	
Age in Months at						
Tise of Test	-. 403	-. 017	$-.134$. 082	5.40	
Percentage of Books						
Lost Per Student	. 026	-115.963	-. 132	. 084	-. 34	
Other ${ }^{\text {d }}$					4.06	
Constant		1.304			60.31	

[^13]Table J-2. (continued)

DEPENDENT VARIABLES/ PREDICTORS	Corr	B	BETA	SE BETA	\% OF TABL VARIANCE	
Vocabulary Knowledge						
1983 Reading Grade	. 568	. 588	. 492 ± 4 \%	. 094	27.92	Multiple $\mathrm{R}=.704$
Library Open After						$\mathrm{R}^{2}=.496$
School Per Student	. 301	4.977	. 2057	. 101	6.16	Adjusted $\mathrm{Q}^{2}=.397$
Nuaber of Days Absent						SE = . 713
in 1982-83	. 097	. 026	.179*	. 089	1.72	
Father's Status	.136	. 317	. 130	. 084	1.77	
Sex	-. 068	-. 388	-.212\%	. 099	1.45	
Other ${ }^{\text {d }}$					10.60	
Constant		-1.819			49.62	
Listening Coaprehension						
1785 Reading Grade	.. 526	. 472	. 4433 +4	. 1999	23.28	Multiple $R=.642$
Father s Status	. 207	. 511	.234**	. 089	4.84	$\mathrm{R}^{2} \quad=.412$
Encyclopedia Sets						Adjusted $\mathrm{R}^{2}=.304$
Per Student	. 273	17.237	.208*	. 101	5.66	$5 E=.684$
Other ${ }^{\text {d }}$					7.41	
Constant		-1.389			41.19	
Auditory Test Total						
1983 Reading Grade	. 584	. 550	. 488 ± 4	. 094	28.51	Multiple $\mathrm{R}=.710$
Library Open After						$\mathrm{R}^{2} \quad=.503$
School Fer Student	. 296	4.754	.207*	. 100	6.13	Adjusted $\mathrm{R}^{2}=.405$
Father 5 Status	. 181	. 455	.197*	. 083	3.57	$5 \mathrm{E}=.668$
Sex	-. 053	-. 301	-. 174	. 098	. 9.3	
Emergency Telephone	. 246	. 386	. 135	. 081	3.32	
Chanie: of Schools	. 119	-. 253	-. 145	. 095	-1.72	
Other ${ }^{\text {a }}$					9.60	
Constant		-1.473			50.34	
Spelling						
1983 Reading Grade	. 639	. 749	.7484**	. 090	47.79	Multiple $\mathrm{F}=.739$
Percentage of Books						$\mathrm{R}^{2} \quad=.545$
Lost Per Student	-. 088	-244.379	-.2624*	. 081	2.30	Adjusted $\mathrm{R}^{2}=.457$
1983 Citizenship Grade	. 007	-. 186	-. 187	. 100	-. 13	$5 E=.567$
Free \& Reduced Lunch	-. 002	. 3106	. 151	. 086	-. 03	
Emergency Telephone	. 037	-. 481	-. 190%	. 088	-. 71	
Other ${ }^{\text {d }}$					5.41	
Constant		-. 612			54.63	

[^14]Table J-2. (continued)

DEPENDENT VARIABLES; PREDICTORS	Corr	B	BETA	SE BETA	$\%$ OF TAB VAFIANC	
Math Concepts						
1983 Grade						
Point Average	. 412	. 828	. 494***	. 110	19.96	Multiple $R=.556$
Percentage of books						$\mathrm{R}^{2}=.310$
Lost Per Student	-. 075	-293.752	-. 27847	. 103	2.08	Adjusted $\mathrm{R}^{2}=.244$
1983 Citizenship Srade	-. 095	-. 193	-. 171	. 112	1.62	$5 \mathrm{E}=.757$
Hoae Phone Listed	. 243	. 560	. 199 \%	. 096	4.85	
Other ${ }^{\text {a }}$					2.46	
Constant		-2.514			30.97	
Hath Test Total						
1983 Grade						
Point Average	. 481	. 834	. 580 +4*	. 104	27.91	Multiple $\mathrm{R}=.617$
Percentage of Books						$\mathrm{R}^{2} \quad=.380$
Lost Per Student	-. 041	-245.442	-.2764*	. 098	1.13	Adjusted $\mathrm{R}^{2}=.321$
Sex	-. 126	-. 331	-.227*	. 099	2.88	SE = . 602
Home Phone Listed	. 255	.537	.229t+	. 091	5.81	
Acreage fer Studerit	-. 022	14.864	.193\%	. 093	-. 43	
Other ${ }^{\text {a }}$. 71	
Constant		-3.677			38.01	
Science Knowledge						
1983 Grade						
Point Average	. 446	. 556	. 383 ***	. 115	17.07	Multiple $\mathrm{F}=.497$
Sex	-. 099	-. 283	-. 192	. 109	1.90	$\mathrm{R}^{2}=.247$
Other ${ }^{\text {d }}$					5.76	Adjusted $\mathrm{R}^{2}=.175$
Constant		-. 207			24.73	$5 E=.670$

a--Predictors forced into equation, but not significant at or beyond the . 15 level.

Table J-3. Fourth Grade Population Stepwise and Forced Entry Multiple Regression Results

dependent variables/ PREDICTORS	Corr	B	BETA	SE BETA	\% OF TABL VARIANCE	
Hord Study Skills						
1983 Reading Grade	. 631	. 612	.697***	. 099	43.95	Multiple $\mathrm{R}=.765$
Sex	. 351	. 468	.274**	. 090	9.64	$\mathrm{R}^{2}=.585$
Nuaber of Parents						Adjusted $\mathrm{R}^{2}=.492$
Absent	$-.202$. 415	. 2224	. 114	-4.47	SE $=.585$
Other ${ }^{\text {a }}$					9.39	
Constant		-3.719			58.51	
Reading Comprehension						
1983 Reading Grade	. 412	. 334	. 3654 ± 4	. 107	15.05	Multiple R $=.698$
Change of Schools	. 317	. 577	. $320+4$. 099	10.16	$\mathrm{R}^{2}=.487$
Student's Residence	-.351	-. 563	-.300**	. 119	10.53	Adjusted $\mathrm{R}^{2}=.372$
Age in Months at						SE $\quad=.676$
Tias of Test	-. 280	-. 028	-.235*	. 108	6.59	
Father's Status	-. 237	-. 500	-. 174	. 102	4.11	
1983 Citizenship 6rade	. 157	-. 304	-.300*	. 123	-4.70	
Sex	. 230	. 350	. 197	. 104	4.53	
Other ${ }^{\text {a }}$					2.46	
Constant		3.448			48.73	
Reading Test Total						
1983 Reading Grade	. 610	. 442	. $516 \pm 4 \%$. 096	31.49	Multiple $\mathrm{F}=.766$
Student' 5 Residence	$-.421$	-.353	-. 190	. 107	7.99	$\mathrm{R}^{2}=.586$
Sex	. 343	. 354	.2137	. 094	7.30	Adjusted $\mathrm{R}^{2}=.493$
Change of Schools	. 285	. 313	. 1864	. 089	5.29	$5 E \quad=.568$
Other ${ }^{\text {d }}$					6.53	
Constant		-1.169			58.60	
Vocabulary Knowlodge						
Change of Schools	. 465	. 834	. $460 \pm 4 \pm$. 090	21.36	Multiple $\mathrm{F}=.776$
1983 Reading Grade	. 452	. 384	.419***	. 100	18.85	$\mathrm{R}^{2} \quad=.603$
Eaergency Telephone	. 344	. 922	. 39874%	. 088	13.68	Adjusted $\mathrm{R}^{2}=.513$
Gifted Prograa	. 230	. 586	. 173	. 089	3.97	SE $\quad=.599$
1983 Citizenship Grade	. 181	-. 323	-.317x*	. 111	-5.74	
Encyclopedia Sets						
Per Student	. 229	16.272	. 146	. 094	3.34	
Sex	. 178	. 319	. 1793	. 091	3.18	
Other ${ }^{\text {d }}$					1.62	
Constant		-1.707			30.26	

Table J-3. (continued)

DEPENDENT VARIABLES/ PREDICTORS	Corr	B	EETA	SE BETA	\% OF TAB VARIANC	
Listening Comprehension						
1983 Reading Grade	. 485	. 406	. 439 +4*	. 093	21.29	Multiple $\mathrm{R}=.795$
Change of Schools	. 396	. 503	.276+*	. 086	10.95	$\mathrm{R}^{2}=.632$
Eaergency Telephone	. 335	. 898	. 3868 ± 4	. 088	12.93	Adjusted $\mathrm{R}^{2}=.549$
Magazine Suascriptions						$5 \mathrm{E}=.578$
Per Student	-. 402	-19.685	-.2987*	. 108	11.60	
Cost of School						
Per Student	-. 111	. 000	. $2574 \pm$. 098	-2.85	
Number of Parents						
Eaployed	-. 014	. 483	.211*	. 097	-. 30	
Other ${ }^{\text {d }}$					9.61	
Constant		-. 901			63.23	
Auditory Test Total						
1983 Reading Grade	. 497	. 402	. $433 \mathrm{zi4}$. 087	21.51	Multiple $\mathrm{R}=.815$
Change of Schools	. 460	. 779	. 425 ± 4 \%	. 080	19.54	$R^{2} \quad=.664$
Euergency Telephone	. 352	. 945	. 404 :4*	. 082	14.61	Adjusted $\mathrm{R}^{2}=.588$
Gifted Program	. 271	. 644	. 1884	. 082	5.10	SE $\quad=.557$
Sex	. 230	. 285	. 158	. 084	3.63	
Encyclopedia Sets						
Per Student	. 249	16.310	. 145	. 087	3.60	
Student's Residence	-. 297	-. 335	-. 175	.104	5.21	
1983 Citizenship 6rade	. 280	-. 220	-. 213	. 104	-5.98	
Other ${ }^{\text {a }}$					-. 87	
Constant		-2.069			66.35	
Spelling						
1983 Reading Grade	. 565	. 622	. 523 \% 4	. 095	29.58	Hultiple $\mathrm{R}=.771$
Student's Residence	-. 533	-. 873	-. $35714 *$. 106	19.04	$\mathrm{R}^{2} \quad=.595$
Sex	. 337	. 520	.225*	. 093	7.58	Adjusted $\mathrm{R}^{2}=.503$
Nusber of Parents						SE = . 732
Enployed	. 110	. 517	. 175	. 097	1.93	
Other ${ }^{\text {a }}$					1.34	
Constant		-1.502			59.47	

[^15]Table J-3. (continued)

DEPENDENT VARIABLES/ PREDICTORS	Corr	B	BETA	SE BETA	: OF TABL VARIANCE	
Math Concepts						
1983 6rade						
Point Average	. 689	1.158	. $64044 \pm$. 088	44.07	Multiple $\mathrm{R}=.760$
Gifted Progra	. 380	1.180	.296**	. 096	11.25	$\mathrm{R}^{2}=.578$
Percentage of Books						Adjusted $\mathrm{R}^{2}=.529$
Lost Per Student	-. 128	-151.798	-. 160	.103	2.05	SE $=.694$
Other ${ }^{\text {a }}$. 45	
Constant		-2.676			57.82	
Hath Test Total						
1983 Jrade						
Point Average	. 581	. 950	. $548 \pm 4 \pm$. 088	31.83	Multiple $R=.760$
Sex	. 357	. 629	.311+4*	. 088	11.10	$\mathrm{R}^{2}=.577$
Gifted Progra	. 359	1.279	. 3354 ± 4	. 096	11.98	Adjusted $\mathrm{R}^{2}=.527$
Percentage of Eooks						$5 E \quad=.666$
Lost Per Student	-. 240	-326.296	-. 3593 ± 4	. 103	8.59	
1983 Citizenship 6rade	. 214	-. 347	-.3024\%	. 106	-6.44	
Other ${ }^{\text {a }}$. 64	
Constant		-2.855			$\overline{57.70}$	
Science Knowledge						
1983 Grade						
Point Average	. 575	. 758	. 551 +t*	. 104	31.70	Multiple $R=.643$
Percentage of Books						$\mathrm{R}^{2} \quad=.414$
Lost Fer Student	$-.232$	-172.678	-.240\%	. 121	5.57	Adjusted $\mathrm{R}^{2}=.345$
Other ${ }^{\text {a }}$					4.10	SE $\quad=.621$
Constant		-1.704			41.37	

--p<. 05 \$--p<. $01 \quad$ ***--pर. 001
a--Predictors forced into equation, but not significant at or beyond the .15 level.

Table J-4. Fifth Grade Population Stepuise and Forced Entry Multiple Regression Results

DEPENDENT VARIAELES; FREDICTORS	Corr	B	BETA	SE BETA	\% OF TABL VARIANCE	
Hord Study Skills						
1983 Reading Grade	. 591	. 713	. $628 \pm \pm 4$.103	37.08	Muitiple $R=.743$
Cost of School						$\mathrm{R}^{2} \quad=.551$
Per Student	-. 455	. 000	-.239\%	. 107	10.89	Adjusted $\mathrm{R}^{2}=.457$
Father's Status	-. 169	-. 401	-.186\%	. 088	3.14	$5 E \quad=.624$
Nuaber of Days Absent in 1982-93	. 216	. 014	. 152	. 097	3.28	
Nuaber of Parents						
Eaployed	. 084	. 433	. 172	. 088	1.44	
6ifted Program	. 182	-. 430	-. 162	. 099	-2.94	
Other ${ }^{\text {d }}$					2.26	
Constant		-3.430			55.14	
Reading Comprehension						
1983 Reading Grade	. 668	. 849	.752**	. 098	50.23	Multiple $\mathrm{R}=.773$
Age in Months at						$\mathrm{R}^{2} \quad=.597$
Tiae of Test	-. 074	. 044	. 255 ± 4	. 087	-1.88	Adjusted $\mathrm{R}^{2}=.512$
Magazine Subscriptions						SE $\quad=.587$
Per Student	-. 156	-10.940	-. 127	. 086	1.99	
Other ${ }^{\text {d }}$					9.37	
Constant		-7.938			59.71	
Reading Test Total						
1983 Keading Grade	. 664	. 844	.744**	. 086	49.42	Multiple $\mathrm{R}=.782$
Cost of Schand						k . $\quad=.611$
Per Student	-. 408	. 000	-. 186	. 100	7.59	Adjusted $R^{2}=.529$
Age in Months at						$5 \mathrm{E}=\mathrm{F} 500$
Tiae of Test	-. 154	. 033	. 187	. 086	-2.89	
Father's States	-. 112	-. 264	-. 123	. 082	1.37	
Nucber of Parents						
Enployed	. 054	. 391	. 156	. 091	. 83	
Other ${ }^{\text {a }}$					4.76	
Constant		-6. 350			51.09	

a--Predictors foresu into equation, but not significant at or beyond the . 15 level.

Table J-4. (continued)

DEPENDENT VARIABLES/ PREDICTORS	Corr	B	BETA	SE BETA	\% OF TAEL VARIANCE	
Vocabulary Knowledge						
1985 Reading Grade	. 679	. 623	. 5624 ± 7	. 090	38.13	Multiple $\mathrm{R}=.819$
Acreage Per Student	-. 472	-16.500	-.343***	. 092	16.17	$\mathrm{R}^{2} \quad=.671$
Age in Months at						Adjusted $\mathrm{R}^{2}=.607$
Time of Test	$-.103$. 040	.25247	. 076	-2.39	$5 \mathrm{E}=.518$
Father's Status	-. 190	-. 514	-.244***	. 074	4.63	
Nusber of Days Absent in 1982-83	. 259	. 017	.182*	. 081	4.71	
Nusber of Parents						
Enployed	-. 078	. 502	. 2044	.180	-1.64	
Se^	. 018	-. 250	-. 150	. 092	-. 27	
Other ${ }^{\text {a }}$					7.79	
Constant		-5.879			67.13	
Listening Coaprehension						
1983 Reading Grade	. 508	. 651	. $5784 \pm$. 093	29.36	Multiple $R=.793$
Student's kesidence	-. 284	-. 682	-.3854*4	. 079	10.98	$\mathrm{R}^{2}=.629$
Number of Parents						Adjusted $\mathrm{R}^{2}=.551$
Eaploved	. 151	. 916	. $327 * * *$. 088	4.95	SE $\quad=.562$
Free \& Reduced Lunch	-. 357	-. 494	-.219**	. 080	7.81	
Gifted Program	. 101	-. 857	-.3254*	. 090	-3. 27	
Change of Sthools	. 267	. 253	. 154	. 085	4.13	
Emergency Telephone	.003	-. 631	-.200**	. 682	-. 06	
Age in Manths at Tiae of Test	$-.138$. 023	. 134	. 084	-1.54	
Magazine Subscriptions						
Per Student	. 079	16.039	.187*	. 185	1.47	
Percentage of Books						
Lost Per Student	-. 271	-229.852	-.223*	. 097	6.05	
0ther ${ }^{\text {d }}$					3.32	
Constant		-4.206			62.90	

a--Fredictors forced into equation, but not significant at or beyond the . 15 level.

Table J-4. (continued)

DEPENDENT VARIABLES/ \qquad PREDICTORS	Corr	B	BEIA	SE BETA	\%. OF TA varianice	
Auditory Test Total						
Library Open After						Multiple $R=.700$
School Per Student	-. 447	-12.627	-. 4754 \#\#	. 114	21.23	$58^{2}=.490$
1983 Reading Grade	. 421	. 278	.210\%	.105	8.81	Adjusted $\mathrm{R}^{2}=.398$
Number of Parents						SE $\quad=.767$
Eaployed	. 048	1.109	. $377 \pm \pm \pm$. 107	1.81	
Student's Residence	-. 288	-. 462	-.222\%	. 084	6.37	
Free : Reduced Lunch	-. 294	-. 420	-. 159	. 091	4.64	
Age in Months at						
Time of Test	-.048	. 037	. 182	. 689	-. 88	
Other ${ }^{\text {d }}$					7.00	
Constant		-5.683			48.98	
Spelling						
1983 Readiug Grade	. 695	. 900	. 67244	. 087	46.72	Multiple $R=.819$
Student 5 Residence	-. 251	-. 488	$-.23244$. 074	6.105	$\mathrm{R}^{2}=.671$
Number of Parents						Adjusted $\mathrm{R}^{2}=.502$
Absent	-. 327	-. 616	-. 23043	. 089	7.53	$5 \mathrm{E}=.629$
Number of Parents						
Euployed	-. 040	. 601	. 2024	. 082	-. 81	
Father's Status	-. 019	-. 303	-. 120	. 076	. 23	
Magaiine Subscriptions						
Per Student	-. 189	-13.282	-. 130	. 080	2.46	
Free \& Reduced Lunch	-. 112	. 302	. 112	. 075	-1.26	
Change of Schools	. 107	-. 305	-. 154	. 081	-1.64	
Other ${ }^{\text {a }}$					7.85	
Constant		-3.200			4.15	

t-pi.0̀5 ti--pi.01 tit-p<. 001
a--Predictors forced into equation, but not significant at or beyond the . 15 level.

Table j-4. (continued)

DEPENDENT VARIABLES/	Corr	B	BETA	SE BETA	\% OF TAB VARIANCE	
Math Concepts						
1983 Grade						
Point Average	. 661	. 703	. 583744	. 099	38.49	Multiple $\mathrm{F}=.692$
Sex	-. 069	-. 272	-. 177	. 094	1.21	$\mathrm{R}^{2}=.480$
1983 Citizenship Grade	. 396	. 223	. 199	. 111	7.89	Adjusted $\mathrm{R}^{2}=.430$
Other ${ }^{\text {a }}$. 38	SE. $\quad=.575$
Constant		-2.792			47.96	
Math Test Total						
1983 Grade						
Point Average	. 670	. 842	. $6024 * *$. 098	40.35	multiple $R=.701$
Library Open After						$\mathrm{R}^{2} \quad=.491$
School Fer Student	-. 220	3.367	. 142	. 098	-3.12	Adjusted $\mathrm{R}^{2}=.442$
1983 Citizenship Grade	. 439	. 315	. 243	. 110	10.68	$55 \quad=.658$
Other ${ }^{\text {a }}$					1.19	
Constant		-3. 645			49.08	
Science Knowledge						
1983 Grade						
Point Average	. 570	. 635	. $511 \pm \ddagger$. 086	29.11	Multiple $k=.774$
Acreage Fer Student	-. 454	-21.680	-.4754**	. 091	21.54	$\mathrm{R}^{2} \quad=.599$
Age in Months at						Adjusted $\mathrm{R}^{2}=.560$
Time of Test	. 047	. 054	. 33244	. 077	1.57	SE $=.520$
Sex	-. 045	-. 372	-. 23044	. 083	1.05	
Home fhone Listed	. 179	-. 625	-.222**	. 082	-3.97	
Library Dpen After						
School Per Student	-. 294	4.174	. 198%	. 090	-5.83	
1983 Citizenship Grade	. 475	. 399	. 346347	. 098	16.45	
Other ${ }^{\text {d }}$					-. 08	
Constant		-9.698			59.86	

a--Predictors forced into equation, but not significant at or beyond the . 15 level.

Table J-5. Sixth Grade Population Stepmise and Forced Entry Multiple Regression Results

DEPENDENT VARIABLES/ PREDICTORS	Corr	B	BETA	SE BETA	\% OF TABL variance	
Word Study Skills						
1983 Reading Grade	. 386	. 279	. 963 ***	. 123	17.87	Multiple $\mathrm{F}=.621$
Father's Status	. 167	. 409	. 247	. 127	4.11	$\mathrm{R}^{2}=.385$
Change of Schools	. 210	. 246	. 218	. 126	4.57	Adjusted $\mathrm{R}^{2}=.229$
Eaergency Telaphone	. 233	. 339	. 209	. 117	4.87	SE $=.490$
Cost of School						
Per Student	. 023	. 000	. 282	. 131	. 66	
Dther ${ }^{\text {a }}$					6.48	
Constant		-1.719			38.56	
Reading Comprehension						
1983 Reading Grade	. 516	. 271	.4084**	. 113	31.06	Multiple $R=.718$
Sex	-. 124	-. 232	-.188	. 114	2.52	$\mathrm{R}^{2}=.516$
Nuaber of Parents						Adjusted $R^{2}=.393$
Eaployed	. 053	. 525	. 214	. 123	1.14	$5 E=0$
Number of Days Absent						
in 1982-83	-. 172	-. 125	-.268**	. 101	4.60	
Esergency Telephone	. 238	. 337	. 198	. 102	4.48	
Change of Schools	. 168	. 206	. 165	.111	2.78	
Age in Months at						
Time of Test	-. 115	-. 020	-. 176	. 122	2.01	
Free \& Reduced Lunch	-. 294	-. 714	-.299\%	. 130	8.77	
Other ${ }^{\text {a }}$					4.43	
Constant		2.931			51.59	
Reading Test Total						
1983 Feading Erade	. 558	. 325	.55947\%	.109	31.18	Nultiple $k=.738$
Change of Schools	. 207	. 236	.216*	.107	4.48	$R^{2} \quad=.545$
Cost of School						Adjusted $\mathrm{R}^{2}=.429$
Per Student	. 119	. 000	.271*	. 113	3.23	SE = . 407
Emergency Telephone	. 279	. 374	.239*	. 099	6.65	
Number of Days Rosent						
Other ${ }^{\text {d }}$					5.04	
Constant		. 571			54.51	

*-ṕ.05 H--pi.01 ¥it--p<.001
a--Fredictors forced into equation, but not significant at or beyond the . If level.
b-Equation is not signifitant; other equations are significant at or beyond the .os level.

Table J-5. (continued)

*-pi.05 \quad \#--pく.01 \#\#t-pr.001
a--Predictors forced into equation, but not shgnificant at or beyond the . 15 level.
b--Equation is not significant; other equataons are significant at or beyond the .05 level.

Table J-5. (continued)

DEPENDENT YARIABLES/ PREDICTORS	Corr	B	BETA	SE BEIA	\% DF TAB VARIANC	
Math Concepts						
1983 Grade						
Point Average	. 553	. 719	. 694 +4*	. 107	38.37	Multiple $R=.699$
5 s	-. 227	$-.838$	-.4714**	. 103	10.69	$\mathrm{R}^{2}=.488$
Other ${ }^{\text {d }}$					-. 24	Adjusted $\mathrm{R}^{2}=.430$
Constant		2.140			48.82	$5 E \quad=.667$
Math Test Total						
1983 Grade						
Point Average	. 592	. 680	.73044*	. 108	43.22	Multiple $\mathrm{R}=.697$
Sex	-. 129	-. 587	-. 3567 ± 4	. 103	4.70	$\mathrm{R}^{2} \quad=.485$
Acreage Per Student	.105	-13.276	-. 174	.101	1.83	Adjusted $\mathrm{R}^{2}=.427$
Age in Months at						SE $\quad=.601$
Time of Test	-.055	-. 030	-. 2054	. 104	1.10	
Other ${ }^{\text {a }}$					-2.33	
Constant		3.391			49.52	
Science Knawledge						
1983 Grade						
Point Average	. 425	. 432	. 6089 ± 4	. 108	25.82	Multiple $\mathrm{R}=.692$
Se^	-. 291	-. 596	-.4874*	. 104	14.17	$\mathrm{R}^{2} \quad=.478$
Age in Months at						Adjusted $\mathrm{R}^{2}=.419$
Time of Test.	-. 129	-.022	-. 192	. 102	2.49	$5 E \quad=.462$
Gifted Prograe	. 330	. 334	. 147	.100	4.95	
Other ${ }^{\text {a }}$. 49	
Constant		2.495			47.93	

a--Predictors forced into equation, but not significant at or beyond the . 15 level.
b--Equation is not significant; other equations are significant at or beyond the . 05 level.

```
quite different. The population model included seven predictors, of
which no more than three appeared in the models by grade level. The
largest congruency was at the third grade level where all three
predictors for that grade were also predictors in the population
model. The second and fifth grade models were particularly
different. Moreover, all modele by grade level accounted for 5% or
more of the total variance in word study skills than did the
population model.
Comparison of Fieading Comprehension Achievement by Grade Level
    The results (Table J-1 to j-5; or Table 52) indicated that between
three (5th grade) and nine (2nd grade) predictors accounted for
between 42% (2nd grade) and 60% (5th grade) of the observed variance
in reading comprehension achievement for students in the Washoe County
School District. Frevious (1983) reading grades contributed the
largest amount to all five grade level models, but accounted for as
little as 15% in the fourth grade model and as high as 50% in the
fifth grade model. Age was the next best predictor, as it alsa
entered all five models. While a number of variabies entered at
several grade levels, the contributions made at each grade varied
tremendously. For e:ample, age accounted for nearly 7% of the
variance in fourth grade reading comprehension model and as little as
2% in the second and si%th grade models. Moreover, age entered as a
suppressor variatle (-2%) in the fifth grade model.
    In contrast to word study stills, there was much more overall
congruence between the population model of reading comprehension
```

```
achievement and the models by grade level. Five of the nine
predictors in the second grade model, and five of the eight in the
sixth grade model, were also part of the ten predictors of reading
comprehension in the population model. On the other hand, while
greater than for word study slills, the similarities between the
population and grade level models for reading comprehension were still
very minimal. Additionally; all grade level models of reading
comprehension achievement accounted for 9% to 27% more of the total
variance than did the population model.
```

Comparison of Feading Test Total Achievement by Grade Level
The results (Table J-1 to J-5; or Table 52) indicate that eleven
predictors, of which five were also in the population model, accounted
for 45% of the variance in second grade reading test total scores,
while four antecedents, of which two were also in the population
model, explained 59% of the total fourth grade reading test total
variance. The largest amount of variance, bl\%, was accounted for by
the fifth grade model. While being the most structurally consistent
predictor, 1983 reading grades accounted for between 16% and 49% of
the total variance. Thus, as with the first two measures of
achievement, the results demonstrated very little congruence between
the population model of reading test total achievement and the models
by grade level. Considerable diversity between grade levels was also
evident both in terms of accountability and structures. All grade
levei models, moreover, accounted for between 7% and 22% more of the
total observed variance in reading test total achievement test scores.

Comparison of vocabulary Knowledae Achievement by Grade Level

The amount of variance accounted for by the five grade level vocabulary knowledge models (Table $J-1$ to $\mathrm{J}-5$; or Table 52) ranged from a low of 38% for the $5 i x t h$ grade model to a high of 67% for the fifth grade model. Structurally, the models included between three (6th grade) and nine (2nd grade) predictors. While entering as a predictor at all grade levels, the 1993 reading grade did not always account for the most variance. That is, in the fourth grade, if a student had changed schools was found to account for more vocabulary achievement variance. Moreqver, the length of time the library was open per student, emergency telephone number listing and acreage per student variables all explained nearly as much variance as previous grades.

Overall, in comparison to the population model of vocatulary knowledge, the models by grade level were found to be quite different, with the least congruence being with the fifth grade models and the most with the si\%th grade models. All grade level models accounted for between 4% and 35% more of the total variance than the population model of vocabulary knowledge.

```
Comgarison of Listenino. Comprahension Achievement by Grade Level
    Comparatively, there was greater congruence between the listening
comprehension models (Table J-1 to J-5; or Table 52) by grade levej
and the Washoe County School District population model, than for any
Of the previously discussed areas of achievement. There was, however,
considerable variability between the grade level models, both
```

```
structurally and in terms of accountability. The smallest amount of
total variance Emplained (41%), which was for the thiro grade model,
also involved the fewest (three) predictors, but had nearly 12% more
accountability than the population model. In comparison, the largest
amount of explained variance (6.%), in both the fourth and fifth grade
models that were composed of si% and ten predictors respectively, was
almost 34% more (or more than twice as much) than the population model.
    Unlike other achievement areas, the 1983 reading grade never
accounted for more than 29% of the total variance in listening
comprehensicr. Indeed, at all grade levels, except third grade,
previous grades contributed less than half of the total variance in
listaning comprehension achievement. Moreover, how long the library
was open after school accounted for more than twice the variance
accounted for by previous grades in the second grade, while
participation in the federal lunch program also explained slightly
more variance than the 1983 reading grade in the sioth grade. Uther
than the lggs reading grade, however, no variable was predictive of
listening comprehension at all grade level.
```


Comparison of Auditory Test Total Achievement by Grade Level

Ferhaps the most intriguing result for the auditory test total analyミes by grade level (Table $J-1$ to $J-5 ;$ or Table 52) was that the predictors, taken together, could account for no more than 20% of the variance at the si\%th grades level, yet explained 56% of the variance at the fourth grade level. The obvious conclusion of this result was that audicory test total achievement for si\%th graders was caused by

```
factors not included in this study. Indeed, the only predictor to
enter the 5ixth grade model at or beyond the . 15 level was the 1983
reading grade, and it accounted for only 8% of the variance.
    Almost as interesting, how long the library was open after school
per student was a better predictor than previous grades for both
second and fifth grade students. Indeed, the number of parents absent
was a better predictor than the 1983 reading grade in the second grade
too. As such, the congruency between the grade level models
themselves, as well as with the population model, was minimal, with
most grade level models having accounted for more variance and
included fewer predictors than the population model. Indeed, the
fourth grade model (66%) explained 40% more of the variance than did
the population model (26%) for auditory test total achievement.
```


Comparison of Spelling Achievement by Grade Level

The spelling models of achievement by grade level (Table J-1 to J-5; or Table 52) exhibited tremendous structural and explanatory variability, both between grade levels and in comparison with the population model. The sixth grade spelling model accounted for only 30% of the total variance, which was 9% less than explained by the population mooel. In comparison, the fifth grade model accounted for 67% or 28% more, of the total variance than the population model. The previous reading grade was clearly the best predictor, although father's status explained almost as much variance for second giaders. Structurally, all four of the predictors in the fourth grade model

```
were also part of the population model, but only three of the nine
predictors in the second grade were in the population spelling model.
Comoarison of Math Concepts Achievement by Grade Level
    Foth the 5econd (26%) and third (31%) grade models (Table J-1 to
J-5: or Table 52) accounted for less variance than the Washoe County
School District population model (40%) for math concepts, while the
fourth grade model explained 58%; or 18% more, of the total variance
than the population model. Structurally, however, the models
exhibited good congruency with the population model. Five of the si:
predictors for the second grade model, all four for the third grade
model, all three for the fourth grade model, two of the three for the
fifth grade model, and one of the two for the sixth grade model were
also part of the population model.
    Although it did not always account for the largest percentages of
the total variance, the 1983 grade point average was the best
predictor at all grade levels, contributing half or more of the
explained variznce. Indeed, the more variance e%plained by previous
grades, the greater was the percentage of total variance that was
accounted for by the model.
```


Comparison of Math Test Total Achievement by Grade Level

```
The math test total models by grade level \(\{\) Table J-1 to \(\mathrm{J}-5 ;\) or Table 52) were less congruent with the population model than for the math concept models, but more 50 than with the reading oriented measures of achievement. With respect to accountability of the
```

```
variance, the models were quite different, with the second grade model
(34%) explaining about the same amount of variance as the population
model (34%) while the fourth grade model (58%) accounted for almost
24% more of the total variance than the population math test total
model. In contrast to all other models, the 1983 grade point average
(or previous grades) was found to be progressively more important for
each successive grade level. Frevious grades, besides being the only
predictor to be included in all grade level models, also contributed
three times as much to the explained variance as any other factor.
Overall, then, there was considerable variability between models, and
no one variable was really the neat best predictor after previous
grades.
```


Comparison of Science Knowledqe Achievement by Grade Level

With only two predictors entering, both of which were part of the population model, the third grade model Table J-1 to $j-5$ a or Table 52) was found to account for 5% less of the variance in science knowledge achievement than the population model. In contrast, the fifth grade model 160% e\%plained 30% more of the total variance than the population model, with five of its seven predictors also having been included in the population model. Additionally, three of the five predictore in the second grade model, one of the two in the third grade model, and all four predictors in the sixth grade model were part of the population model of science knowledge achievenent. Thus, a fairly high degree of congruency was found between the grade level

```
and population movels, but a number of differences existed between the
grade level models themselves.
    The 198% grade point average entered into all the science
knowledge models by grade level and did account for the greatest
percentage of variance, but several other predictors also explained
nearly as much of the total variance. That is, in the second grade
model how long the library was open per student accounted for 14% \or
3% less than previous qrades) of the total variance, and acreage per
student explained 22% (versus 29% for previous grades) of the variance
in science knowledge achievement. Additionally, the 1983 citizenship
grade was found to contribute 16% to the total variance in the fifth
grade model, and student's se% e%plajred 14% of the variance jn the
Ei:th grade model of science knowledge achievement.
```


AFFENDIXK

INDIAN STEPWISE AND FORCED ENTRY
multifle regression fesults by grade level

Indian Grade Level Models

Comparison of Word Gtudy Skille Achievewent byGiade Level

The results（Tades K－1 to $K-5$ ；or Table 5ら）of the analyses of word study skills for Indian students in the second through sixth Grades in the Washoe County School District demonstrated that factors contributing to such achaevement varied by grade ievel．structurally： the modeis varied from two（in the second grade model）to four（in the fifth grade model；predictors，not ineluding the＂other＂variables forced into the equations．With respect to the percentage of variance accounted for，the secorid grade model explained a low of 42%（or io\％ more than the Indian modei without giade level），while the fourth grade model explained a high of 63%（or 34% more than the indan model）of the total vaiasace in wors study shills achavenent．

In comparison to all previousiy diseussed modelj of achievenient， no one variable was predictive of word study skills achievement at all grade levels for Indian students．That is，in all theresult thus far analyaed，previous grades had always been a predictor，૬ムこ七 wes not the case for the second grade word study skills model．Instead， the 198 S citizenship grade，which was the best predictor，and the number of transfers were the only predictors of ward study stiji achievament in the second grade．It shouid be noted，however，that the 1783 reading grade was one of the＂other＂predictors foreed inta the equation，but emolalned only 5% ip $=.29$ ）of the total yardance． Moreover， $1 t$ must be recalled that the overall equation isecond arade

Table K-1. Second Grade Indian Stepwise and Foried Entry Multiple Regression Kesults

dependent variables/ PREDICTORS	Corr	B	BETA	SE BETA	$\%$ OF TABLE VARIANCE	
Word Study Skills ${ }^{\text {a }}$						
1983 Citizenship Grade	. 426	. 540	. 476	. 240	20.28	Multiple $\mathrm{R}=.650$
Change of Sctiools	-. 076	-. 575	-. 349	. 213	2.65	$K^{2}=.422$
Other ${ }^{\text {b }}$					19.03	Adjusted $\mathrm{R}^{2}=.005$
Constant		1.219			42.23	SE = 822
Reading Comprehensiond						
1985 Reading Grade	. 376	. 520	. $509 *$. 201	19.13	Multiple $R=.662$
Cost of School						$\mathrm{R}^{2}=.439$
Fer Student	. 275	.000	. 365	. 202	10.05	Adjusted $\mathrm{R}^{2}=.032$
Other ${ }^{\text {b }}$					14.60	$3 \mathrm{E}=.790$
Constant		-1.968			45.78	
Reading Test Total ${ }^{\text {d }}$						
1983 Reading Grade	. 378	. 468	. 522 ± 4	. 194	14.74	Multiple $R=.692$
Age in Months at						$\mathrm{R}^{2}=2.479$
Tias of Test	$-.344$	-. 037	-.316	. 210	10.89	Adjusted $\mathrm{R}^{2}=.102$
Nuater of Davs Absent in 1982-85	. 116	. 030	. 387	. 215	4.50	SE $\quad=.667$
Other ${ }^{\text {b }}$					$\underline{12.75}$	
Constant		1.430			47.87	
Vocabulary Knowledge ${ }^{\text {a }}$						
1983 Reading Grade	. 566	. 731	.649**	.202	36.74	Multiple $\mathrm{K}=. \mathrm{bt0}$
Other ${ }^{\text {b }}$					6.83	$\mathrm{R}^{2}=20.436$
Constant		-3.907			43.57	Adjusted $\mathrm{R}^{2}=.028$
						$5 E=.873$
Listening Coaprehensiona						
1983 Reading Grade	. 503	. 777	.6467\%	. 187	32.47	Multiple $\mathrm{R}=.718$
Number of Parents						$\mathrm{R}^{2}=2.515$
Absent	. 118	. 595	. 304	. 181	3.57	Adjusted $\mathrm{R}^{2}=.165$
Other ${ }^{\text {b }}$					15.46	SE = . 964
Constant		-6. 012			51.50	

a--Equation is not significant; other equations are significant at or beyond the . 05 level.
b--Predictors forced into equation, but not 51 gnificant at or beyond the .15 level.

Table k-1. (continued)

dependent variables, PREDICTORS	Corr	8	BETA	SE BETA	$\%$ OF TABL VARIANCE	
Auditory Test Total ${ }^{\text {a }}$						
1983 Reading Grade	. 555	.75B	.670**	. 203	37.18	Multiple $\mathrm{R}=.655$
Other ${ }^{\text {b }}$					5.71	$R^{2}=.429$
Constant		-5.158			42.89	Adjusted $\mathrm{R}^{2}=.016$
						SE = . 883
Spelling ${ }^{\text {d }}$						
1983 Reading Grade	. 407	. 569	. 4264	. 189	17.33	Multiple $\mathrm{R}=.712$
Magazine Subscriptions						$\mathrm{R}^{2}=.506$
Per Student	. 286	28.930	. 340	. 180	9.74	Adjusted $\mathrm{R}^{2}=.150$
Student's Residence	-. 180	-. 752	-. 361	. 211	6.49	SE $\quad=.968$
Other ${ }^{\text {b }}$					17.06	-
Constant		-1.516			50.62	
Math Concepts ${ }^{\text {a }}$						
1983 6rade						
Point Average	. 389	. 727	. 300	. 204	11.66	Multiple $\mathrm{F}=.491$
Other ${ }^{\text {b }}$					$\underline{12.44}$	$R^{2}=241$
Constant	-2.534				24.10	Adjusted $\mathrm{R}^{2}=.020$
						SE $\quad=.883$
Math Test Total ${ }^{\text {a }}$						
1983 Grade						
Point Average	. 426	1.232	. 52048	. 187	22.18	Muitiple $R=.581$
Percentage of Books						$R^{2} \quad=.339$
Lost Fer Student	-. 269	-422.319	$-.415$. 224	11.11	Adjusted $\mathrm{R}^{2}=.141$
Other ${ }^{\text {b }}$. 46	$5 E=.805$
Constant		-3.974			33.75	
Science Knowledge ${ }^{\text {a }}$						
Age in Months at						
Tine of Test	. 157	. 041	. 311	. 199	4.89	Multiple R $=.513$
Howe Phone Listed	. 196	. 645	. 300	. 192	5.97	$R^{2}=.263$
Other ${ }^{\text {b }}$					15.55	Adjusted $\mathrm{F}^{2}=.048$
Constant		-6.208			26.32	SE $\quad=.776$

[^16]Table K-2. Third Grade Indian Stepwise and Forced Entry Multiple Regression Results

dependent variables/ PREDICTORS	Corr	B	BETA	SE EETA	\% OF TAB variance	
Hord Study Skills						
Father's Status	-. 476	-. 666	-.351*	. 147	15.79	Multiple $\mathrm{R}=.765$
1983 Reading Grade	. 320	. 455	.415**	. 148	13.29	$\mathrm{R}^{2}=.586$
Euergency Telephone	-. 124	-. 773	$-.297$. 173	3.67	Adjusted $R^{2}=.379$
Other ${ }^{\text {b }}$					25.81	SE $=.647$
Constant		$-.739$			58.56	
Reading Comprehensior						
1985 Reading Grade	. 558	. 295	. 353 *	. 154	19.73	Multiple $\mathrm{F}=.808$
Nunber of Days Absent						R^{2}, $=.653$
in 1982-93	-. 351	-.023	-.399**	. 140	14.0 .3	Adjusted $\mathrm{K}^{2}=.457$
Nuaber of Parents						3E $=.466$
Absent	.280	. 352	. 285	. 161	7.98	
Age in Monthe at						
Tias of Test	-. 337	-. 025	-.0.7	.136	6.98	
Other ${ }^{\text {b }}$					15.58	
Constant		2.020			65.30	
Reading Test Total						
Number of Days Atsent						
is 1982-83	$-.525$	-. 020	-. $454 * *$.144	23.75	Multaple $\mathrm{F}=.798$
1983 Reading Grade	. 508	. 300	. 5 E7*	. 158	19.67	$\mathrm{F}^{2} \quad=.63 \mathrm{~b}$
Earçency Telephone	-. 221	-. 672	-. 3564	. 159	7.87	Adjusted $\mathrm{R}^{2}=.430$
Free a feduced Lurich	-. 107	-. 377	-. 27%	. 171	2.95	$3 E=.448$
Other ${ }^{\text {b }}$					9.36	
Constant		2.090			63.51	
Vocabulary Kncwledged						
Encyclopedia Sets						
Per Student	. 374	45.125	. 57044	.185	21.34	Multiple R $=.715$
Cost of School						$\mathrm{R}^{2} \quad=.511$
Per Student	. 245	. 000	.489\%	. 199	11.93	Adjusted $\mathrm{R}^{2}=.267$
Free : Reduced Lunch	-. 290	-. 469	-. 270	. 159	7.85	SE $=.646$
Other ${ }^{\text {b }}$					10.00	
Constant		-1.394			51.12	

*-pr. 05 **--pi.01 ***-p<.001
a--Equation is not significant; other equations are significant at or beyond the . 05 level.
b.-Fredictors forced into equation, but not significant at or beyond the . 15 level.

Table k-2. (continued)

DEFENDENT VAEIAELES/			$\%$ OF TABLE			
PREDICTORS	Corr	B	BETA	SE BETA	VARIANCE	
Listening Comprehensiona						
Encyclopedia Sets						
Per Student	. 341	31.319	. 393	. 218	13.40	Multiple R $=.568$
Number of Parents						$\mathrm{R}^{2}=.323$
Eaployed	. 122	. 498	. 331	. 197	4.03	Adjusted $\mathrm{R}^{2}=-.015$
Other ${ }^{\text {b }}$					14.92	$5 E=.765$
Constant		-1.797			32.35	
Auditory Test Total ${ }^{\text {a }}$						
Encyclopedia Sets						
Per Student	. 384	37.619	.491*	. 211	19.35	Multiple $\mathrm{F}=.60{ }^{\text {c }}$
Nuaber of Farents						$\mathrm{R}^{2}=.357$
Eaployed	. 108	. 475	. 329	. 190	3.56	Adjusted $R^{2}=.050$
Other ${ }^{\text {b }}$					13.80	$5 \mathrm{E}=.712$
Constant		-1.171			36.69	
Speiling ${ }^{\text {d }}$						
Nusber of Days Absent						
in 1982-93	-. 376	-. 020	-. 268	. 174	10.10	Multiple $\mathrm{R}=.026$
Gifted Prograg	. 295	1.279	. 265	. 167	7.85	$\mathrm{R}^{2} \quad=.392$
Other ${ }^{\text {b }}$					21.22	
Constant		4.400			39.17	SE = . 755
Math Concepts ${ }^{\text {a }}$						
Library Open After						
School Fer Student	. 263	5.375	. 378	. 189	9.94	Multiple $R=.400$
Sen	-. 079	-. 602	-. 368	. 232	2.89	$\mathrm{R}^{2}=.160$
Other ${ }^{\text {b }}$					3.22	Adjusted $\mathrm{R}^{2}=-.042$
Constant		-. 290			16.64	$5 E=.727$
Math Test Total ${ }^{\text {a }}$						
Library Open After						
School Per Student	.300	4.648	. 356	. 190	10.68	Multiple $\mathrm{F}=.390$
Other ${ }^{\text {b }}$					4.5t	$\mathrm{R}^{2}=.152$
Constant		. 581			15.24	Adjusted $\mathrm{R}^{2}=-.052$
						SE = . 571
Science Knowledge ${ }^{\text {d }}$						
Gifted Frogram	. 327	1.370	. 329	. 173	10.75	Multiple $\mathrm{k}=.429$
0 ther ${ }^{\text {b }}$					7.64	$\mathrm{k} 2=.184$
Constant		-1.077			18.37	Adjusted $R_{2}=-.013$
						SE $\quad=.690$

[^17]Table K-3. Fourth Grade Indian Stepwise and Forced Entry Multiple Regression Results

DEPENDENT VARIAELES/ PREDICTORS	Corr	B	BETA	SE BETA	$\%$ OF table VARIANCE	
Word Study Skills						
1983 Reading Grade	. 718	1.005	.855***	. 152	61.35	Multiple $R=.811$
Father's Status	-. 024	-. 861	-.2727	. 134	. 67	$\mathrm{R}^{2}=.657$
Sex	-.901	-. 487	-. 251	.150	. 01	Adjusted $\mathrm{R}^{2}=.473$
Other ${ }^{\text {3 }}$					3.70	SE $=.695$
Constant		-.339			65.73	
Reading Coaprehension						
1983 Reading Grade	. 623	. 696	. 619 +4*	. 147	38.53	Multiple $\mathrm{R}=.810$
Magazine Subscriptions						$R^{2}=.655$
Per Student	-. 498	-23.653	-.389\%	. 159	19.29	Adjusted $\mathrm{R}^{2}=.491$
Other ${ }^{\text {d }}$					7.80	SE $=.653$
Constant		2.653			35.62	
Reading Test Total						
1983 Reading Grade	. 776	. 961	. 854 4\#4	. 121	66.25	Multiple $R=.884$
Acreage Per Student	-. 235	-9.194	$-.3034$. 126	7.27	$\mathrm{R}^{2}=2.701$
Age in Months at						Adjusted $\mathrm{R}^{2}=.676$
Time of Test	-. 255	$-.035$	-. 189	.115	4.81	SE $=.521$
Other ${ }^{\text {d }}$					-0.22	
Constant		1.882			78.11	
Vocabulary Knowledge						
Magazine Subscriptions						
Per Student	-. 608	-33.086	-.509**7	. 124	-0. 92	Multiple $\mathrm{R}=.861$
1983 Reading Grade	. 452	. 687	. 574 ***	. 129	25.95	$\mathrm{K}^{2}=.742$
Free \& Reduced Lunch	. 252	. 365	. 185	. 113	4.67	nidjusted $\mathrm{R}^{2}=.644$
1983 Citizanship Grade	. 103	-. 243	-. 250%	. 124	-2.58	¢E $=.582$
Library Open After						
School Per Student	-. 297	-6.097	$-.265$. 133	7.85	
Nusber of Farents						
Absent	-. 346	-. 396	$-.155$. 101	5.36	
Other ${ }^{\text {d }}$					1.09	
Constant		-. 678			74.17	

*--p<.05 **--p<.01 \quad tit--p<.001
a--Fredictors forced into equation, but not signiticant at or beyond the . 15 leval.

Table k-3. (continued)

DEPENDENT VARIAELES/ PREDICTORS	Corr	B	EETA	SE EETA	\% DF TAE VARIANC	
Listening Coaprehension						
1983 Reading Grade	. 475	. 562	.4744*	. 150	22.53	Multiple $\mathrm{R}=.802$
Free a Reduced Lunch	. 312	. 749	. $383 \pm \pm$. 138	11.04	
Age in Months at						Adjusted $\mathrm{R}^{2}=.471$
Time of Test	-. 412	-. 048	-. 245	. 134	2.47	$5 E \quad=.702$
Magazine Subscriptions						
Per Student	-354	-27.204	-. 423 F \%	. 161	14.94	
Other ${ }^{\text {a }}$					$\underline{12.43}$	
Constant		4.699			64.31	
Auditory Test Total						
Magazine Subscriptions						
Fer Student	-. 544	-35.203	-. 5364 ± 4	. 178	29.14	Multiple $\mathrm{F}=.860$
1983 Reading Grade	. 490	. 629	. $519 \pm \pm *$. 129	25.40	$\mathrm{R}^{2} \quad=.739$
Free : Reduced Lunch	. 284	. 615	. $3074 *$. 118	8.75	Adjusted $R^{2}=.313$
Age in Months at						$5 E \quad=.614$
Tine of Test	-. 394	-. 042	-. 211	. 114	8.30	
Other ${ }^{\text {a }}$					2.29	
Constant		4.066			73.88	
Spelling						
1983 Reading Grade	. 605	. 748	. 6324 ± 4	. 160	38.24	Multiple $\mathrm{R}=.767$
Student's Residence	-. 181	-. 527	-. 275	. 152	4.98	$\mathrm{h}^{2} \quad=.588$
Father's Status	-. 066	-. 574	-. 235	. 140	1.56	Adjusted $\mathrm{R}^{2}=.389$
1983 Citizenship Grade	. 392	. 279	. 289	. 163	11.32	SE =.753
Other ${ }^{\text {d }}$					2.67	
Constant		. 949			58.77	

*-p<. 05 **-p人. 01 ***-p人. 001
a--Predictors forced into equation, but not 5 ganificant at or beyond the . 15 level.

Table K-3. (continued)

DEPENDENT VARIABLES/ PREDICTORS	Corr	B	BETA	SE BETA	\% OF TAbL VARIANC	
Math Concepts						
1983 Grade						
Point Average	. 713	1.312	. $83144 \pm$. 088	59.28	Multiple $\mathrm{E}=.885$
Hone Phone Listed	. 181	. 843	. $3554+4$. 194	6.43	$\mathrm{R}^{2}=.780$
Percentage of Books						Adjusted $\mathrm{R}^{2}=.741$
Lost Per Student	-. 150	-182.145	-.216*	. 093	3.25	$5 \mathrm{E}=.524$
Age in Months at						
Tise of Test	-. 268	-. 046	-.2234i	. 081	5.99	
Gifted Program	. 243	. 916	. 159	. 089	3.39	
Other ${ }^{\text {d }}$					-0.31	
Constant		1.777			78.12	
Math Test Total						
1983 Grade						
Point Average	. 684	1.037	. 762474	. 113	52.13	Multiple $\mathrm{R}=.797$
Fercentage of Fooks						$\mathrm{R}^{2} \quad=.655$
Lost Fer Student	-. 102	-153.977	-. 212	. 120	2.16	Adjusted $\hat{R}^{2}=.570$
Age in Months at						SE $\quad=.532$
Tine of Test	-. 238	-. 033	-. 193	. 105	4.37	
Other ${ }^{\text {a }}$					4.81	
Constant		1.507			63.47	
Science Knowledge						
1983 Grade						
Point Average	. 519	. 850	. $715 \pm 4 \ddagger$. 134	37.12	Multiple $\mathrm{K}=.771$
Age in Months at						$\mathrm{R}^{2} \quad=.595$
Time of Test	-. 371	-. 038	-. 245	. 123	9.10	Adjusted $\mathrm{R}^{2}=.509$
Acreage Fer Student	-. 198	-7.172	-.283\%	. 139	5.62	SE $\quad=.544$
Howe Phone Listed	. 143	. 501	.281+	. 137	4.01	
1983 Citizenship Grade	. 026	-. 191	-. 246	.153	-. 65	
Dther ${ }^{\text {a }}$					4.30)	
Constant		3.327			59.50	

*--p<.05 ti--p.01 $\quad \$ *--p<.001$
a--Predictors forced into equation, but not significant at or beyond the . IS level.

Table K-4. Fifth Grade Indian Stepwise and Forced Entry Multiple Regression Results

dEPENDENT VARIAGLES/ PREDICTORS	Corr	B	BETA	SE BETA	Y OF TAEL VARIANCE	
Hord Study Skills						
1983 Reading Grade	. 538	. 379	. 394 ± 4	. 152	21.18	Multiple $\mathrm{F}=.736$
Father's Status	-. 430	-. 997	-.392\#\#	. 124	15.87	$\mathrm{R}^{2}=.542$
Magazine Subscriptions						Adjusted $\mathrm{R}^{2}=.377$
Per Student	-. 232	-16.278	-. 3104	.130	7.19	SE $\quad=.681$
Free \& Reduced Lunch	-. 287	-. 391	-. 226	. 119	6.48	
Other ${ }^{\text {a }}$					2.49	
Constant		. 917			54.21	
Reading Comprehension						
1983 Reading Grade	. 560	. 413	. 4264	. 160	23.86	Multiple $\mathrm{F}=.705$
Howe Phone Listed	-. 098	-. 495	-. 258	. 151	2.77	$\mathrm{K}^{2}=.497$
Encyclopedia Sets						Adjusted $R^{2}=.315$
Fer Student	. 217	26.764	. 260	. 141	5.64	$\mathrm{SE}=.721$
Other ${ }^{\text {d }}$					$\underline{17.39}$	
Constant		2.939			49.46	
Reading Test Total						
1983 Reading Grade	. 660	. 470	. 57744	. 138	35.14	Multiple $\mathrm{F}=.792$
Father's Status	-. 325	-. 516	-. 248 *	. 11.3	8.105	$\mathrm{R}^{2}=.527$
Percentage of Books						Adjusted $R^{2}=.492$
Lost Per Student	-. 197	-149.511	$-.255 *$. 128	5.04	$\mathrm{SE}=.560$
Encyclopedia Sets						
Per Student	. 149	19.137	. 206	. 122	3.05	
Other ${ }^{\text {a }}$					11.38	
Coristant		1.334			62.66	
Vocabulary Knowledge ${ }^{\text {b }}$						
1983 Feading Grade	. 428	. 498	. $5: 74$.180	22.54	Multiple $R=.608$
Se\%	-. 166	-. 497	-.295\%	. 143	4.91	$\mathrm{R}^{2} \quad=.370$
Other ${ }^{\text {d }}$					9.57	Adjusted $\mathrm{R}^{2}=.143$
Constant		-2.251			37.02	$\mathrm{SE}=.786$
Listening Coaprehensiorib						
1983 Reading Grade	. 400	. 320	. 349	. 189	13.97	Multiple $\mathrm{k}=.55 \mathrm{~L}$
Sex	-. 152	-. 373	-. 229	.156	3.49	$R^{2}=.304$
Other ${ }^{\text {d }}$					$\underline{12.93}$	Adjusted $\mathrm{R}^{2}=.052$
Constant		. 369			30.58	$5 \mathrm{E}=.801$
a--Predictors forced i b--Equation is nnt sig	ficant	ion, but other equ	5lgnific Cns are	at or b	ond the.	level. the . 05 level.

Table K-4. (continued)

DEPENDENT UARIAELES/					OF TAE	
PREDICTORS	Corr	B	BETA	SE BETA	VARIANC	
Auditory Test Total ${ }^{\text {b }}$						
1983 Reading Grade	. 487	. 502	. 5574	. 176	27.13	Multiple $R=.627$
Sex	-. 197	-. 427	-. 266	. 146	5.25	R^{2}. $=.393$
$00^{\text {a }}$ d ${ }^{\text {d }}$.		6.90	Adjustej $\mathrm{R}^{2}=.174$
Constant		-. 995			39.28	SE $=.736$
Spelling						
1983 Reading Grade	. 553	. 420	.421**	. 130	23.25	Multiple $\mathrm{R}=.822$
Free \& Reduced Lunch	-. 439	-.674	$-.375 \pm 4 *$. 099	16.47	. $\mathrm{R}^{2}=.676$
Nuaber of Farents						Adjusted $\mathrm{R}^{2}=.559$
Eaployed	. 038	. 583	. 3284	. 127	1.25	SE $=.595$
Magazine Subscriptions						
Fer Student	$-.185$	-21.207	-.389***	. 110	7.19	
Father's Status	-. 269	-. 390	-. 154	. 104	4.41	
Gifted Program	. 350	. 943	. 208	. 114	7.30	
Other ${ }^{\text {d }}$					7.74	
Constant		1.183			67.61	
Math Concepts						
1983 6rade						
Foint Average	. 598	. 547	.561***	. 114	33.55	Multiple $\mathrm{F}=.749$
Ses	-. 204	-. 369	-.241*	.110	4.91	$R^{2}=.561$
Acreage Fer Student	-. 342	-5.320	-. 230	. 131	7.88	Adjusted $\mathrm{R}^{2}=.499$
Gifted Progran	. 463	. 747	. 192	. 115	8.87	SE . $=.546$
Other ${ }^{\text {d }}$					0.85	
Constant		-1.22]			56.05	
Math Test Total						
1983 Grade						
Point Average	. 678	. 664	. 6264 ± 4	. 110	42.47	Multiple $\mathrm{F}=.768$
Acreage Per Student	-. 330	-8.289	-.32947	. 127	10.85	$\mathrm{R}^{2}=.589$
Other ${ }^{\text {d }}$					5.61	Adjusted $\mathrm{R}^{2}=.532$
Constant		. 368			58.93	SE $\quad=.575$
Science Knowledge						
1983 Grade						
Point Average	. 460	. 510	. $450 \pm$. 137	20.66	Multiple $R=.604$
Acreage Fer Student	-.333	-6.990	-. 250	. 157	8.66	$\mathrm{K}^{2}=.365$
Sex	-. 184	-. 379	-. 213	. 132	3.91	Adjusted $\mathrm{R}^{2}=.276$
Gther ${ }^{\text {d }}$					3.24	$\mathrm{SE}=.764$
Constant		-. 751			36.47	

[^18]Table K-5. Sixth Grade Indian Stepwise and Forced Entry Multiple Reqression Results

DEPENDENT VARIABLES: PREDICTORS	Corr	B	BETA	SE BETA	$\%$ OF TABL VARIANCE	
Hord Study Skilis						
1983 Reading Grade	. 533	. 320	. 429 F	. 169	22.84	Multiple fi $=.718$
Free:4 Reduced Lunch	. 296	. 476	. 352	. 185	10.41	$\mathrm{R}^{2} \quad=.515$
Nuaber of Days Absent						Adjusted $\mathrm{R}^{2}=.292$
in 1982-83	-.322	$-.020$	-. 268	. 183	8.62	SE = . 572
Other ${ }^{3}$					9.65	
Constant		-2.766			51.52	
Reading Comprehension						
1983 Reading Grade	. 695	. 547	. 707 \#fi	. 123	49.16	Hultiple $\mathrm{R}=.956$
Howe Phone Listed	-. 157	-.t54	-. 44344	. 120	6.09	$\mathrm{R}^{2}=.732$
Encyclopedia Sets						Adjusted $\mathrm{R}^{2}=.623$
Per Student	. 192	24.137	. 309 \%	. 124	5.92	SE $\quad=.432$
Nuaber of Parents						
Absent	-. 030	. 286	. 202	.120	-0.61	
Sea	-. 105	-.335	-.241*	. 110	2.52	
Qther ${ }^{\text {a }}$					10.17	
Constant		1.364			73.24	
Reading Test Total						
1983 Reading Grade	. 727	. 53.4	.739*47	. 141	53.72	Multiple $R=.805$
Hose Phone Listed	-. 098	-. 473	-.3304	. 144	3.21	$\mathrm{R}^{2} \quad=.548$
Other ${ }^{\text {a }}$					7.95	Adjusted $\mathrm{R}^{2}=.504$
Constant		-. 271			64.78	$5 \mathrm{E}=.4{ }^{\text {d }}$
Vocabulary Knowledge						
1983 Reating Grade	. 529	. 384	.405*	. 165	21.43	Multiole $R=.332$
Free : Kreduced Lunch	. 269	. 875	.510**	. 181	13.73	$\mathrm{R}^{2}=.535$
Sex	-. 201	-.46.3	-. 271	. 150	5.45	Adjusted $\mathrm{R}^{2}=.321$
Gifted Program	. 377	1.382	. 359 \%	. 159	13.50	SE $\quad=.710$
Other ${ }^{\text {a }}$					-0.60	
Constant		-4.538			53.52	

a--Predictors forced into equation, but not significant at or teyond the . 55 level.

Table k-5. (continued)

DEPENGENT VARIARLES/ PREDICTDRS	Cori	8	BETA	SE BETA	\% OF TAEL VARIANCE	
Listening Cosprehension						
1983 Reading Grade	. 472	. 287	. 343 \%	. 153	16.20	Multiple $\mathrm{E}=.771$
Se:	-. 312	-. 425	-. 2827	. 154	8.79	$\mathrm{F}^{2}=.594$
Fercentage of Eooks						Adjusted $\mathrm{R}^{2}=.429$
Lost Per Student	-. 323	-220.095	-.417**	. 160	13.52	SE -.575
Father's Status	.200	. 515	. 227	. 134	4.53	
Age in Morths at Tise of Test	-. 238	-. 037	-.352*	. 162	8.36	
Gifted Progras	. 427	. 928	. 243	.141	10.39	
Number of Davs Absent in 1982-83	$-.132$	030	.354*	. 170	-4.67	
0 ther ${ }^{3}$					2.34	
Constant		5.357			57.45	
Ruditory Test Total						
1983 Freading Grade	. 560	. 616	. 3604	. 158	20.16	Multiple $\mathrm{E}=.758$
Free : Keduced Lunch	. 200	.600	.43)	. 173	8.64	$\mathrm{F}^{2}=1574$
Sen	-. 265	-. 506	-.319*	. 144	8.49	Adjusted $\mathrm{R}^{2}=.378$
Gifted Program	. 43.6	1.59?	. 385	. 152	16.94	$5 \mathrm{E}=.632$
Other ${ }^{3}$					3.19	
Constant		-. 671			57.44	
Spelling						
1983 Reading Grade Nuaber of Days Atsent	. 625	. 501	. 5.1 \%f	. 127	33.18	$\begin{aligned} \text { Multiple } R & =.347 \\ \mathrm{R}^{2} & =.719 \end{aligned}$
in 1982-a3	-. 507	-.021	-. 218	. 139	11.04	Adjusted $R^{2}=.603$
Number of Farents Absent	-. 356	-. 658	-.3824 \%	. 130	13.61	$5 \mathrm{E}=.541$
Nuaber of Farents Emploved	-. 098	. 489	. 237 *	.130	-2.80	
Age in Manths at						
Father's Status	-. 154	-. 439	-. 171	. 113	2.64	
Other ${ }^{\text {a }}$					4.23	
Constant		3.028			71.40	

[^19]Table K-5. (continued)

DEPENDERT VARIABLES/ PREDICTORS	Corr	B	BETA	SE BETA	\% OF TABL UAFIANCE	
Math Concepts						
1983 6rade						
foint Average	. 674	. 840	. $760 \pm \pm 4$. 155	51.23	Multiple $\mathrm{R}=.765$
Acreage Fer Student	-.170	-5.388	-. 208	. 122	3.53	$\mathrm{R}^{2}=.584$
Age in Months at						Adjusted $\mathrm{R}^{2}=.507$
Tiae of Test	-. 342	-.039	-.2704	. 121	9.21	SE $\quad=.700$
1983 Citizenship Grade	. 286	-. 328	$-.300$. 157	-8.59	
Other ${ }^{\text {a }}$					3.07	
Constant		4.714			58.45	
Math Test Total						
1983 Grade						
Point Average	. 695	. 736	. 7104 ± 4	. 161	49.39	Multiple $\mathrm{R}=.741$
Other ${ }^{\text {a }}$					5.48	$\mathrm{R}^{2}=.549$
Constant		2.006			54.87	Adjusted $\mathrm{R}^{2}=.464$
						SE $\quad=.685$
Science Knowledge						
1983 Grade						
Point Average	. 565	.400	.4704*	. 136	26.56	Multiple $\mathrm{E}=.719$
Percentage of Eooks						$\mathrm{F}^{2}=.517$
Lost Fer Student	-. 352	-211.086	-.398\%	. 169	14.00	Adjusted $\mathrm{R}^{2}=.427$
Age in Months at						SE = . 582
Tise of Test	-. 350	-. 025	$-.234$. 130	8.42	
Other ${ }^{\text {a }}$					2.75	
Constant		3.645			51.71	

¥-pर. 05 *z--p<.01 ***--p<.001
a--Predictors forced into equation, but not significant at or beyond the . is ievel.

```
also accounted for more variance (16%) than previous grades (13%) in
the third grade model, and almost as much variance (17%) as previous
grades (21%) in the fifth grade model.
    In contrast to the lack of predictability by previous grades for
second grade lndian students, the 1983 reading grade accounted for
nearly two-thirds (61%) of the variance in word study skills for
fourth grade Indian students. Indeed, previous grades alone accounted
for almost twice as much variance as all varjatles in the Indian model
(32%). Thus, in comparison to each other and to the Indian models of
achievement, the models of Indjan student word study skills
achievement by grade lavel were all very different.
```


Comparisun of feading Comprehensiori Achievement by Graưe Level

In comparison to the Indian model, as well as to each other, the grade level models of reading comprehension (Tables k-1 to k-5: or Table s.j for Indian students exhitited little continuity or congruency. Indeed, except for the 1783 reading grade having been predictive for each grade, and the number of encyclopedia sets per student having been predictive of fifth and sixth grade Indian achievement, there was no similarity of predictors with the Indian model of reading comprehension achievement. Moreover, the cost of the school per student was found to account for 10% of the variance in second grade reading comprehension, which was the only indian student model that variable had entared thus far. It was also noted that participation in the gifted program, the third best contributor to the

```
Indian reading comprehension model, did not even statistically enter
any of the grade level models.
    Taker together, all variatles, including those forced into the
equation, accounted for between 44% (or 6% more than the Indian model)
and 73% (or 36% more than the Indian model) of the total variance in
reading comprehension achievement. Structurally, between two and five
predictors statistically entered into the equations.
Comgairison of Fieading Test Total Achievement by Grade Level
    Once again, very little conqruency was found between the Indian
model and the grade level models of reading test total achieveiment
(Tables k-1 to K-5, or Tatle 53). Indeed, only one of three variable\equiv
in the sacond grade model, two of four in the third grade model, one
of three in the fourth grade model, and one of two in the sixth grade
model were also part of the Indian nodea. Neither the number of
magazine sutscriptions per student nor farticipation in the gifted
program, which had entered into the Incian model, were predictive of
reading test tatal achievement by grade level for Indian students.
    All grade level models accounted for more variance in reading test
total achievement than the Indian model, but the lowest amount, 40%
for second grade, was only 2% more, while the largest, 78% for fourth
grade, was 32% more. The 1983 reading grade was the best predictor
for four of the grades, but it was lass predictive (20%) than the
number of days absent in 1982-E3 (24%) in the thira grade model. In
contrast, the 1983 reading grade accounted for two-thirds (65%) of the
```

```
total variance in fourth grade reading comprehension for Indian
students.
```

Comparison of Vocabulary knowledge Achievement by Grade Level
Anywhere between one and si: variables statistically entered into
the grade level models of vocatulary knowledge for Indian students
(Tables $K-1$ to $k-5 ;$ or Table 53), but only in the sixth orade model
Was more than one of the predictors also part of the Indian model.
Despite this, the grade level modela for Indian students accounted for
between 10% (in the fifth grade model) and 47% (in the fourth grade
model more of the total variance. Thus, the grade level models for
vocabuiary achievement had hardly any congruency with each other or
with the aggregate Indian vocabulary model.
With respect to the predictors themselves, no variable entered all
five grade model $\{i n c l u d i n g$ the 1 GgS reading grade, and the number of
magazine subscriptions per student explained more variance than
previous grades in the third grade model of vocabulary achievement.
Age, whicti was a predictor in the Indian model, did not enter any of
the grade level models, and school cost per student entered, once
again, inte the third grade model.
Comparison of Listening Comprehension Achievement bv Grade Level
Despite the fact that the second, third, and fifth grade listeminu
comprehension mudels (Tables k-1 to k-5; or Table 5 (S) were not,
overall, statistically significant, enough variables entered (toth
statistically and analytically by forcel into each model so that the

```
least amount of variance accounted for, 30% by the fifth grade model,
was still 6% more than in the Indian model. The largest amount of
variance explained by a grade level model of Indian listening
comprehension was 64% in the fourth grade model, which was 40% more of
the total variance (or twice as much) as axplained by the Indian
model. Structurally, the sixth grade model was the most similar to
the Indian model, but only three of si: variables were common to both.
    Once again, the 1983 reading grade did not enter into the third
grade model, where the number of encyclopedia sets per student was the
best predictor. In the sixth grade model, the percentage of books
lost (14%) explained almost as mucn of the total variance as previous
grades (16%). The 190S reading grade was not as large a contributor,
e%cept for second grade, in coniparison to either its overall
contribution or to other measures of achievement. Moreover, the
contribution of the l93S reading grade was actually less in the fifth
grade model (14%) than in the Indian model (15%). It was also noted
that student's residence, which had entered the Indian listerimg
comprehension achievement model, was not a predictor for Indian
students by grade leval,
Comparison of Auditory Test Total Achievement by Grade Level
    As with the listaning comprenension models \Tables k-1 to k-5; or
Tatle 53), the second, third, and fifth grade auditory test total
models were not overall statistically significant. Structurallv, only
between gne and four variables statistically entered into each grade
level model for Indian student auditory test total achievement, but
```

```
all models still accounted for between 7% (third gradei and 44%
(fourth grade) more of the total variance than the Indian auditory
test total model. In contrast to previously discussed models of
Indian achievement by grade level, half or all of the statistically
entering factors were also part of the Indian model of auditory test
total achievement. However, this was probatly more of an artifact of
how few predictors entered.
    Encyclopedia sets was once more the best predictor (19%) in the
third grade model, and the 1983 meading grade entered only when forced
into the model with the "other" variatles. Magazine subscriptions per
students was also a stronger predictor than the lggS reading grade in
the fourth grade model. More importantly, all predictors taben
together, accounted for nearly three-fourths (74%) of the total
variance in fourth grade auditory test total achievement for Indian
students.
```

Comparison of Spelling Achievement by Grade Level
Fesults of the regression analyses of Indian student spelling
achievement by grade level (Tables $k-1$ to $K-5 ;$ or Tatile 53) indicated
good congruence between them and the Imdian model of spelling
achievement, although large differences between grades were found.
That is, at most only one of the variables that had entered into the
grade level models of spelling achievement for Indian students was not
also a predictor of spelling achievement in the Indian model. In
contrast to the Indian model, which had nine predictors, the grade

```
level models contained only two (third grade) to six {fifth and sixth
grades) predictors.
    In comparison to the Indian model, all grade level models
accounted for between 2% (third grade) and 35% (siyth grade) more of
the total observed variance in spelling achievement. As with a number
of the other achievement areas, the lgGJ reading grade was not
statistically predictive of third grade spelling achievement. For
third graders, the best predictor was 1702-83 absenteeism; although in
the other grade level models, previous grades was the best predictor.
Additionally, it was found that many of the other predictore explained
consideratay more variance in the grade level models than in the
Indian mudel of spelling.
```

Comparison of Math Concepts Achievement bv Grade Level
Neither the second (24\%) nor third (15\%) grade models of math
cuncepts achievement for Indian students (Tables $K-1$ to $K-5 ;$ or Table
53) accounted for as much variance as the Indian model (37\%), but the
ather grade level models accounted for 17% (fifth grade), 21% (5 ixth
grade), and 41% (fourth grade) more of the total variance. In the
second grade model, the 198 s grade point average was the only
predictor to statistically enter, winile in the third grade model how
long the litrary was open after school per student and student's sex
were the only statistical $\langle\rho$ \&. 15 predictors. In contrast, the
fourth grade model involved five predictors, three of which were also
part of the Indian model. In both the fourth and sixth grade models,
the 1983 grade point average accounted for over one half of the total.

```
Comparisun of Math Test Total Achievement by Grade Level
    In contrast to other models of Indian achievement by grade level
discussed so far, fewer variables statistically entered the math test
total grade level models (Tables K-1 to K-5; or Table 5J), blit
participation in the gifted program, which was part of the Indian math
test total model was not part of any grade level models. As in other
models, previous grades were not found to be predictive of third grade
math test total achievement. Like the math concepts grade levej
models, the 178S grade point average accounted for considerably more
of the variance than the other facturs or than in the Indien math test
total modei. Moreover, as with math concepts achisvement, both the
second (34%) and third (15%) grade models of math test total
achievement accounted for lass variance than the Indian model (S.%).
In contrast, the other models accounted for 15% (sinth grade), 20%
(fifth grade), and 25% (fourth grade) more of the total variance.
    Structurally: the math test total achievement models by grade
level were often very similar to the Indian model; frobably because so
few variables were involved. Thas, both statistically significant
predictors of the second grade model, two of the thiree fourth grade
predictors, one of the two fifth grade predictors, and one of the
sixth grade predictors were also part of the Indian model. More
importantly, participation in the gifted program never entered, while
the one predictor in the third grade model, library hours, was not
part of the Indian model.
```

```
Comparison of Science knowledae Achievement by Grade Level
    As in the two math models, both the second (26%) and third (18%)
giade models of science achievement for Indian students by grade level
(Tables k-1 to k-5: or Table 5S) fajled to explain as much of the
total variance as the Indian models (27%). The 198j grade point
average failed to statistically enter either of these models as well.
Instead, the home telephone listing variable (6%) in the second grade,
and the gifted program variable (11%) (which was the only predictor)
in the third grade, were the best predictors in those models. The
Other grade levei science knowledge models, in which previous grades
were the best predictors, the models accounted for 9% (fifth grade),
24% (sixth grade), and 32% (fourth grade) more of the total observed
variance in science knowledge achievement. Structurally, the grade
level models exhibited very little congruence to either the Indian
model or with each each other.
```

```
AFFENDix L: maNifulfile and non-manifulable
    FFEDICTORS AND VARIANCES EY GFADE LEVEL
```

Table L-1. Percentages of Manipulable and Non-Manipulable Predictors and Yotal Variance by Grade Level for the Population

	2nd 6 rade			3rd 6rade			4th Grade		5th 6rade			tht Grade		
	Predictors		Variance	Predictors		$\begin{gathered} \text { Variance } \\ \vdots \\ \hline \end{gathered}$	Fredictors$\pi \quad \%$	$\begin{gathered} \text { Variance } \\ \vdots \\ \hline \end{gathered}$	$\begin{gathered} \text { Predictors } \\ \mathrm{n} \quad \% \end{gathered}$		$\begin{gathered} \text { Variance } \\ z \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Predictor } 5 \\ n \quad \% \\ \hline \end{gathered}$		$\begin{gathered} \hline \text { Variance } \\ 2 \\ \hline \end{gathered}$
	0	2	2	n	4									
Hord Study Skills														
Manipulable	5	62	21.32	2	67	19.71	133	43.95	4	67	48.30	3	60	23.40
Non-Manipulable	e 3	38	10.47	1	33	6.81	$2 \quad 67$	5.17	2	33	4.58	2	40	8.68
Other ${ }^{\text {a }}$			5.62			6.41		9.39			2.26			6.48
Total			37.41			32.93		58.51			55.14			38.56
Reading Comprehension														
Manipulable	6	67	35.05	3	50	40.24	$2 \quad 29$	10.35	2	57	52.22	3	38	30.14
Non-Manipulable	e 3	33	8.46	J	50	10.57	571	35.92	1	33	-1.88	5	62	17.02
Other ${ }^{\text {d }}$			-1.66			6.62		2.46			9.37			4.43
Total			41.85			57.43		48.73			59.71			51.59
Keading Test Total														
Manipulable	6	55	34.07	3	43	40.70	125	31.49	2	40	57.01	4	80	44.99
Non-Manipulable	E 5	45	6.25	4	57	15.55	375	20.56	3	60	-. 68	1	20	4.48
Other ${ }^{\text {a }}$			5.13			4.06		6.53			4.76			5.04
Total			45.45			60.31		58.60			61.09			54.51

d--Predictors forced into equation, but not significant at or beyond the . 15 level.
b--Equation was not significant; all other equation were significant at or beyond the .0s level.

Table L－1．〈Continued〉

	2nd 6rade			3rd 6 rade			4ith 6rade		5th 6rade			6th Grade		
	Predictors		$\begin{gathered} \text { Variance } \\ \hline \\ \hline \end{gathered}$	$\begin{gathered} \text { Predicturs } \\ \quad 1 \end{gathered}$		$\begin{gathered} \text { Variance } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \text { Predictors } \\ n \quad 2 \\ \hline \end{gathered}$	Variance\qquad	$\begin{gathered} \text { Predictars } \\ n \quad 2 \\ \hline \end{gathered}$		$\begin{gathered} \text { Variance } \\ 2 \end{gathered}$	Predictors n 2		$\underset{y}{v}$
	n	L												
Vocabul ary Knowledge														
Manipulable	5	55	33.92	3	60	35.80	571	34.10	3	43	59.01	1	33	13.71
Non－Hanipulable	e 4	45	9.07	2	40	3.22	227	24.54	4	57	． 33	2	67	14.68
Other ${ }^{\text {a }}$			1.58			10.60		1.62			7.79			9.83
Total			44.57			49.62		60.26			67.13			39.22
Listening Cuaprehension														
Manipulable	4	57	30.18	2	67	28.94	$4 \quad 67$	42.97	5	50	33.55	2	29	19.64
Non－Manipulable	3	43	19．41	1	33	4.84	233	10.65	5	50	26.03	5	71	34.71
Other ${ }^{\text {d }}$			1.89			7.41		9.61			3.32			． 71
Total			51.48			41.19		63.23			62.90			55.12
Auditory Test Total														
Manipulable	3	38	28.47	3	50	37.96	$5 \quad 62$	38.84	2	33	30.04	1	100	7.78
Non－Manipulable	5	62	22.82	3	50	2.78	338	28.38	4	67	11.94	0	0	0.00
Other ${ }^{\text {a }}$			－． 08			9.60		－． 87			7.00			12.70
Total			51.21			50.34		66.35			48.98			20.48^{6}

a－－Predictors forced into equation，but not significant at or beyond the ． 15 level．
b－－Equation was not significant；all other equation were significant at or beyond the ．U5 level．

Table L-1. Continued:

	2nd 6 rade			Sird Grade			4th Erade		Sth Grade			Sth Srade		
	Predictors		Variance\qquad	$\begin{gathered} \text { Fredictors } \\ n \quad 2 \\ \hline \end{gathered}$		Variance	$\begin{gathered} \text { Fredictors } \\ -\quad \% \quad \% \\ \hline \end{gathered}$	Variance	$\begin{gathered} \text { Fredictors } \\ n \quad \vdots \\ \hline \end{gathered}$		$\begin{gathered} \text { variance } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Predictors } \\ n \quad 2 \\ \hline \end{gathered}$		$\begin{gathered} \text { Variance } \\ \% \\ \hline \end{gathered}$
	ก	4												
Spalling														
Manipulatie	6	57	32.35	4	80	49.25	125	29.58	2	25	49.18	1	25	25.23
Non-Maripulable	3	33	11.22	1	20	-. 03	375	28.55	6	75	10.10	3	75	5.21
Qther ${ }^{\text {a }}$			2.59			5.41		1.34			7.85			-. 03
Total			45.16			54.53		59.47			67.13			30.41^{6}
Math Concepts														
Hanipulatle	5	85	18.95	3	75	23.36	3100	57.37	2	67	46.37	1	50	39.37
Nori-Manipulable	1	17	3.60	1	25	4.85	00	0.00	1	33	1.21	1	50	10.69
Other ${ }^{\text {a }}$			3.12			2.46		0.45			0.38			-. 24
Total			25.68			30.97		57.82			47.96			48.82

a--Predictors forced into equation, but not significant at or beyond the . 15 level.
6--Equation was not significant; all other equation were significont at or beyond the . 05 level.

Table L-1. (Continued)

	2nd Grade			3rd 6 rade			4th 6rade			5th Grade			Sth Grade		
	Predictors		Variance $\%$	Predictors ก		Variance	$\begin{gathered} \hline \text { Predictors } \\ n \quad 2 \\ \hline \end{gathered}$		Variance$\%$	Predictors π \%		Variance 2	$\begin{gathered} \text { Predictors } \\ n \quad 2 \end{gathered}$		$\begin{gathered} \text { Variance } \\ \% \\ \hline \end{gathered}$
	n	2													
Math Test Total															
Manipulable	5	100	33.49	3	60	28.51	4	80	45.96	3	100	47.89	2	50	45.05
Non-Manipulable	0	0	0.00	2	40	8.69	1	20	11.10	0	0	0.00	2	50	5.80
0ther ${ }^{\text {a }}$. 20			. 71			. 64			1.19			-2.33
Total			33.69			38.01			57.70			49.09			49.52
Science Knowledge															
Manipulable	3	36	35.41	,	50	17.07	2	100	37.27	4	57	61.28	2	5i)	30.68
Non-Manipulable	e 2	40	2.74	1	50	1.90	0	0	0.10	3	43	-1.34	2	50	16.66
Other ${ }^{\text {a }}$. 86			5.67			4.10			-. 08			. 49
Total			39.03			24.73			41.37			59.96			47.83

d--Predictors forced into equation, but not significant at or beyond the . 15 level.
b--Equation was not significant; all other equation were significant at or beyond the . 05 level.

Table L-2. Percentages of Manipulable and Non-Hanipulable Predictors

and Total Variance by Grade Level for Indian Students

	2nd 6 rade			3 ra 6rade			4th Grade		5th Grade			sth Grade		
	Prediciors		Variance	$\begin{gathered} \text { Predictors } \\ \pi \end{gathered}$		$\begin{gathered} \hline \text { Variance } \\ z \\ \hline \end{gathered}$	$\begin{gathered} \text { Fredictors } \\ n \quad 2 \end{gathered}$	$\begin{gathered} \hline \text { Variance } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \text { Fredictors } \\ n \quad \% \end{gathered}$		$\begin{gathered} \text { Variance } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \text { Predirtors } \\ n \quad \% \\ \hline \end{gathered}$		$\begin{gathered} \hline \text { Variance } \\ \% \\ \hline \end{gathered}$
	n	2												
Hord Study 5kills														
Manipulable	1	50	20.28	2	67	15.95	133	61.35	2	50	28.37	2	67	31.46
Non-Manipulable	1	50	2.65	1	33	15.79	$2 \quad 67$. 68	2	50	23.35	1	33	10.41
Other ${ }^{\text {a }}$			19.03			25.81		3.70			2.49			9.65
Total			$42.23^{\text {b }}$			58.56		65.73			54.21			51.52
Reading Comprehension														
Manipulable	2	100	29.18	2	50	33.76	2100	57.82	2	67	29.50	2	40	55.08
Non-Manipulable	0	0	0.00	2	50	14.96	0 o	0.00	1	33	2.27	3	510	7.99
Other ${ }^{\text {a }}$			14.60			16.58		7.80			17.89			10.17
Total			$43.78{ }^{6}$			65.30		65.62			49.66			33.24
Fieading Test Total														
Manipulable	2	67	24.24	3	75	51.30	$2 \quad 67$	73.52	3	75	43.23	1	50	53.72
Non-Manipulable	1	33	10.88	1	25	2.95	133	4.81	1	25	8.05	1	50	3.21
Other ${ }^{\text {a }}$			12.75			9.36		-. 22			11.38			7.85
Total			$47.87{ }^{6}$			63.61		78.11			62.66			64.78

a--Predictors forced into equation, but not significant at or beyond the .15 level.
b--Equation was not significant; all other equation were significant at or beyond the . 05 level.

Table L-2. (Continued)

	2nd 6rade			Jrd Grade			4th 6 rade		5 5th 6rade			6th Grade		
	$\text { Predictor } 5$		$\begin{gathered} \text { Variance } \\ \vdots \\ \hline \end{gathered}$	$\begin{gathered} \text { Predictors } \\ n \quad \% \end{gathered}$		$\begin{gathered} \text { Variance } \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \text { Predictors } \\ \mathrm{n} \quad \% \end{gathered}$	$\begin{gathered} \text { Yariance } \\ \% \end{gathered}$	$\begin{gathered} \text { Predictors } \\ n \quad \% \end{gathered}$		$\begin{gathered} \text { Variance } \\ \% \end{gathered}$	Predictors n $\%$		$\begin{gathered} \text { Variance } \\ \% \end{gathered}$
Vocabulary Knowledqe														
Manipulable	1	100	36.74	2	67	33.27	$4 \quad 67$	62.15	1	50	22.54	2	50	34.93
Nor-Manipulable	0	0	0.00	1	33	7.85	233	10.0.?	1	50	4.91	2	50	19.19
Othera			6.83			10.00		1.99			9.57			-. 60
Total			$43.57^{\text {b }}$			$51.12{ }^{\text {b }}$		74.17			$37.02{ }^{\text {b }}$			53.52
Listening Coaprehension														
Manipulable	1	50	32.47	1	50	13.40	250	37.47	1	50	13.97	4	57	35.43
Hon-Manipulable	1	50	3.57	1	50	4.03	250	14.41	1	50	3.48	3	43	21.68
Other ${ }^{\text {a }}$			15.46			14.92		12.43			12.93			2.34
Tota!			$51.50{ }^{\text {b }}$			$32.35{ }^{\text {b }}$		64.31			$30.38{ }^{\text {b }}$			59.45
Auditory Test Total														
Manipulable	1	100	37.18	1	50	19.33	250	54.54	1	50	27.13	2	50	37.10
Non-Manipulable	0	0	0.00	1	50	3.56	250	17.05	1.	50	5.25	2	50	17.15
Other ${ }^{\text {a }}$			5.71			13.80		2.24			6.90			3.19
Total			42.896			$36.69{ }^{\text {b }}$		73.88			$39.28{ }^{\text {b }}$			57.44

[^20]Table L-2. (Continued)

	2nd Grade			3 rograde			4th Grade		5 th 6 rade			6 th 6 rade		
	Predictors		$\begin{gathered} \text { Yariance } \\ \vdots \end{gathered}$	$\begin{gathered} \text { Predictor } 5 \\ n \quad 2 \\ \hline \end{gathered}$		$\begin{gathered} \text { Variance } \\ \vdots \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Predictors } \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Variance } \\ 2 \\ \hline \end{gathered}$	Predictors		$\begin{gathered} \hline \text { Variance } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \text { Fredictors } \\ 0 \quad 2 \end{gathered}$		$\begin{gathered} \hline \text { Variance } \\ \% \\ \hline \end{gathered}$
	n	2												
Spelling														
Manipulable	2	67	27.07	2	100	17.95	250	47.56	J	50	37.74	2	33	44.22
Non-Kanipulable	1	33	6.49	0	0	0.00	250	6.54	3	50	22.13	4	87	23.35
Other ${ }^{\text {a }}$			17.06			21.22		2.67			7.74			4.23
Total			$50.62{ }^{\text {b }}$			$39.17{ }^{6}$		58.77			67.61			71.80
Math Concepts														
Manipulable	1	100	11.66	1	50	9.94	360	65.91	3	75	52.30	3	75	46.17
Non-Manipulable	0	0	0.00	1	50	2.88	240	12.42	1	25	4.91	1	25	9.21
Other ${ }^{\text {a }}$			12.44			3.22		-. 31			0.85			3.07
Total			$24.10{ }^{\text {b }}$			16. 14.15		78.02			56.06			58.45

a--Predictors forced into equation, but not significant at or beyond the .15 level.
b--Equation was not sagnificant; all other equation were significant at or beyond the . 0 : level.

Table L-2. (Continued)

	2nd 6rade			3rd Grade			4th Grade		Sth 6rade			6 th 6rade		
	Predictors		Variance $\%$$\qquad$	$\begin{gathered} \text { Predictors } \\ 0 \quad \vdots \\ \hline \end{gathered}$		$\begin{gathered} \text { Variance } \\ \vdots \\ \hline \end{gathered}$	$\begin{gathered} \text { Predictors } \\ n \\ \hline \end{gathered}$	$\begin{gathered} \text { Yariance } \\ \vdots \end{gathered}$	$\begin{gathered} \hline \text { Predictars } \\ \mathrm{n} \quad \% \\ \hline \end{gathered}$		$\begin{gathered} \text { Variance } \\ \vdots \end{gathered}$	$\begin{gathered} \text { Predictors } \\ n . ~ \\ \hline \end{gathered}$		$\begin{gathered} \text { Variance } \\ \% \end{gathered}$
	0	1												
Math Test Total														
Manipulable	2	100	33.29	1	100	10.68	267	54.29	2	100	53.32	1	100	49.39
Non-Manipulable	-	0	0.06	0	0	0.00	133	4.37	0	0	0.00	0	0	0.00
Other ${ }^{\text {a }}$. 46			4.56		4.81			5.61			5.48
Total			$33.75{ }^{\text {b }}$			$15.24{ }^{\text {b }}$		63.47			58.93			54.87
Science Knouledge														
Manipulable	0	0	0.100	1	100	10.73	360	42.09	2	67	29.32	2	67	40.56
Non-Manipulable	2	160	10.76	0	0	0.00	240	13.11	1	33	3.91	1	33	8.42
Other ${ }^{\text {d }}$			15.56			7.64		4.30			3.24			2.73
Total			26.32 b			$18.37^{\text {b }}$		59.50			36.47			51.71

a--Predictors forced into equation, but not significant at or beyond the . 15 level.
b--Equation was not significant; all other equation were significant at or beyond the . os level.

[^0]: (1) Participation in the gifted program (that is, being in the gifted program is associated with higher achievement when controlling for previous grades); and
 (2) The percentage of books lost (from the library) per student (that is, having fewer books lost per student is associated with higher achievement test scores).

 C12: Holding other relevant variables constant, student absenteeism is not a good predictor of student achievement.
 $C_{13}:$ Residence (i.e., living in either the urban
 Reno-Sparks/Colony area or the rural Washoe County/Pyramid Lake Indian Feservation areal is not a determinant predictor of standardized achievement test scores for Indian students.
 $C_{14}:$ Multivariate models of academic achievement for Indian students tend to have fewer predictors, but account for more variance, and are more likely than the population models to have variables that are potentially manipulable by the school system.

 C14a: Multivariate models of academic achievement by grade level for Indian students tend to have few predictors, but account for more variance, and are more likely than the population models by grade level to have variables that are potentially manipulable by the school system.

 C14b: In multivariate models, antecedent predictors that are potentially manipulable by the school system, although nearly equal in numbers in the variable pools, account for three to five times as much variance in standardized achievement test scores as do variables that are non-manipulable by the school system.
 $C_{15}:$ Holding other relevant variables constant, non-manipulable variables account for significantly more variance in population reading oriented models, than in the Indian student models, of academic achievement.

 C 16 : Holding other relevant variables constant, a significant number of the predictors of standardized achievement test scores for Indian students by grade level are different from the predictors for the Washoe County School District in general.

[^1]: a－－Numbers in parentheses（）are those provided by district records，other numbers are based on the school＇s records．
 b－－Includes 7 th and Bth grade students．
 C－－School has only special education students．
 d－－Indicates that the non－Indian population was deliterately oversanpled．

[^2]: a--See Appendix 8 for explanation and coding procedures of variables. Letter in parentheses indicates data scale: (I)=interval data; (0)=ordinal; (N)=nominal.
 b--Variable applicable to Native American students only.

[^3]: a--See Appendix B for explanation of variable names.

[^4]: a--See Appendi: E for explanation of Variatle mames.

[^5]:

[^6]:

[^7]: *--p<.05 t+-p<.01 **i-p<.00!

[^8]: *-pर.05 **--pर.01 ***--pर.001
 a--Fredictors forced into equation, but not significant at or beyond the . 15 level.

[^9]:
 a--Fredictore forced into equation, but not significant at or beyond the . 15 level.

[^10]:
 a--Predictors forced into equation, but not significant at or beyond the . 15 level.

[^11]: *--p<.05 **--p幺.01 ***--pへ.001
 a--Predictors forced into equation, but not significant at or beyond the . 15 level.

[^12]: *--p<. 05 **--p<.01 ***--p<. 001
 a--Predictors forced arto equation, but not significant at or beyond the . 15 level.

[^13]: *--pr. 05 t+-pर.01 \quad \#\#--pर. 001
 a--Firedictors forced into equation, but not significant at or beyond the . 15 level.

[^14]:
 a--Predictors forced into equation, but not significant at or beyond the . 15 level.

[^15]: *--p<.05 : : - pr.01 84t--pく.00!
 a--Predictors forced into equation, but not significant at or beyond the . 15 level.

[^16]: t--pく. 05 t+--p. 01 t+t--p<. 001
 a--Equation is not significant; other equations are significant at or beyond the . Of level.
 b--Predictors forced into equation, but not significant at or beyond the .15 level.

[^17]:
 d--Equation is not 51 ginificant; otner equations are 5 ggnificant at or teyond the . (ls level. b--Predictors forced into equation, but not signjficant at or beyond the . 15 level.

[^18]: t-p<. 05 t+-p<.01 $\pm \pm$--pi.001
 a--Predictors forced into equation, but not significant at or beyond the . 15 level.
 b--Equation is not significant; other equations are significant at or beyond the .is level.

[^19]:
 a--Predicters forced into equation, but not significant at or tevond the . ls level.

[^20]: a--Predictors forced into equation, but not significant at or beyond the .15 level.
 b--Equation was not significant; all other equation were significant at or teyond the . 0 s level.

