
©
 2

01
7 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

Nature GeNetics  ADVANCE ONLINE PUBLICATION �

a n a ly s i s

Recent work has hinted at the linkage disequilibrium (LD)-
dependent architecture of human complex traits, where SNPs 
with low levels of LD (LLD) have larger per-SNP heritability. 
Here we analyzed summary statistics from 56 complex 
traits (average N = �0�,40�) by extending stratified LD 
score regression to continuous annotations. We determined 
that SNPs with low LLD have significantly larger per-SNP 
heritability and that roughly half of this effect can be explained 
by functional annotations negatively correlated with LLD, 
such as DNase I hypersensitivity sites (DHSs). The remaining 
signal is largely driven by our finding that more recent 
common variants tend to have lower LLD and to explain 
more heritability (P = 2.38 × �0−�04); the youngest 20% of 
common SNPs explain 3.9 times more heritability than the 
oldest 20%, consistent with the action of negative selection. 
We also inferred jointly significant effects of other LD-related 
annotations and confirmed via forward simulations that they 
jointly predict deleterious effects.

Estimating the heritability explained by SNPs1,2, and its distribution 
across chromosomes3,4, allele frequencies5, and functional regions6–10,  
has yielded rich insights into the polygenic architecture of human 
complex traits. Recent work has hinted at LD-dependent architec-
tures, defined as a dependence of causal effect sizes on LLD after 
conditioning on minor allele frequency (MAF), for several complex 
traits. LD-dependent architectures bias SNP heritability estimates11 
and downward biases have been observed for several traits11–13, sug-
gesting larger causal effect sizes for genetic variants with low LLD. 

Indeed, heritability is enriched in functional annotations such as 
DHSs7, histone marks8,10, and regions with high GC content9, which 
all have low LLD7,14,15. On the other hand, regions of low recombi-
nation rate, which have high LLD, are enriched for exonic deleteri-
ous and disease-associated variants16, suggesting an LD-dependent 
architecture of opposite effect.

Despite these observations, LD-dependent architectures have 
not been formally assessed, quantified, or biologically interpreted. 
Understanding which biological processes shaping the LD patterns 
of the genome are most directly linked to complex traits is challeng-
ing, as many of the corresponding annotations are correlated with 
each other. To investigate LD-dependent architectures, we extended 
stratified LD score regression8, a method that partitions the herit-
ability of a set of binary genomic annotations using genome-wide 
association study (GWAS) summary statistics, to continuous-valued 
annotations; our method produces robust results in simulations. 
We applied our method to a broad set of LD-related annotations, 
including LLD, predicted allele age, and recombination rate, to ana-
lyze summary statistics from 56 complex traits and diseases (average  
N = 101,401), including 18 traits from the 23andMe research database 
and 15 traits from the UK Biobank. We inferred jointly significant 
effects for several LD-related annotations on per-SNP heritability, 
including predicted allele age: common variants that are more recent 
tend to have lower LLD and to explain more heritability, which is con-
sistent with the action of negative selection, as selection has had less 
time to eliminate recent weakly deleterious variants. We confirmed 
via forward simulations that allele age and other LD-related annota-
tions associated with per-SNP heritability jointly predict the deleteri-
ous effects of a variant. Our results implicate the action of negative 
selection on deleterious variants that affect complex traits.

RESULTS
Overview of methods
Stratified LD score regression8 is a method for partitioning herit-
ability across overlapping binary annotations using GWAS summary 
statistics. The idea of this method is that, for a polygenic trait, LD 
with an annotation that is enriched for heritability will increase the 
χ2 statistic of a SNP more than LD with an annotation that is not 
enriched for heritability. We extended stratified LD score regression 
to quantify the effects on heritability of continuous-valued (and/or 
binary) annotations. Here the idea is that, if a continuous annotation  
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a is associated with increased heritability, LD to SNPs with large val-
ues of a will increase the χ2 statistic of a SNP more than LD to SNPs 
with small values of a.

More precisely, the expected χ2 statistic of SNP j can be written as 

E N l j c Nbj
c

c[ ] ( , ) ( )c t2 1 1= + +∑

where

l j c a k r
k

c jk( , ) ( )= ∑ 2

is the LD score of SNP j with respect to continuous values ac(k) of 
annotation ac, rjk is the correlation between SNPs j and k in a reference 
panel (for example, Europeans from the 1000 Genomes Project17),  
N is the sample size of the GWAS, τc is the effect size of annotation ac 
on per-SNP heritability (conditioned on all other annotations), and 
b is a term that measures the contribution of confounding biases18. 
We standardize estimated effect sizes t̂ to report per-standardized-
annotation effect sizes τ*, defined as the proportionate change in per-
SNP heritability associated with a 1 s.d. increase in the value of the 
annotation; we note that τ* can be compared across annotations and 
across traits. Analogous to ref. 8, standard errors on estimates of τ* are 
computed using a block jackknife (Online Methods). We have released 
open-source software implementing the method (see URLs).

We applied our extension of stratified LD score regression to LLD 
annotations, adjusted for MAF via MAF-stratified quantile-normalized  
LD score, as well as other LD-related annotations, including pre-
dicted allele age and recombination rate; we included ten MAF bins 
as additional annotations in all analyses to model MAF-dependent 
architectures. We also considered functional annotations from a 
‘baseline model’ (refs. 8,19) including 28 main annotations such as  
coding, conserved, DHSs, and histone marks (59 total annotations; 
Online Methods).

Although stratified LD score regression has previously been 
shown to produce robust results using binary annotations8, we  
performed additional simulations to confirm that our extension of 
stratified LD score regression produces robust results using continu-
ous-valued LD-related annotations and specifically that analyzing 
LD-related annotations using an LD-based method is appropriate 
(Online Methods).

SNPs with low LLD have larger per-SNP heritability
We applied our extension of stratified LD score regression to GWAS 
summary statistics from 56 complex traits and diseases, including 
18 traits from 23andMe and 15 traits from UK BioBank (average  
N = 101,401); for 5 traits we analyzed multiple data sets, leading 
to a total of 62 data sets analyzed (Supplementary Table 1). The 
standardized effect sizes τ* for the LLD annotation were consistently 
negative in all 62 data sets analyzed (Fig. 1 and Supplementary 
Table 2). In a meta-analysis across 31 independent traits, excluding 
genetically correlated traits20 in overlapping samples (Supplementary  
Table 3; average N = 84,686; Online Methods), the LLD annotation 
was highly statistically significant (τ* = −0.30, standard error (s.e.) = 
0.02; P = 2.42 × 10−80), confirming that SNPs with a low MAF-adjusted 
level of LD have larger per-SNP heritability. We also investigated two 
alternative MAF-adjusted measures of the level of LD, using a sliding- 
window approach to quantify the level of LD in a genomic region 
(LLD-REG)13 and using the D′ coefficient instead of the squared cor-
relation to compute LD scores (LLD-D′); we observed smaller but still 
significant effects for LLD-REG (τ* = −0.22, s.e. = 0.02; P = 2.86 × 
10−44) and LLD-D′ (τ* = −0.15, s.e. = 0.02; P = 2.22 × 10−12).

(1)(1)

Correlations between LLD and other LD-related annotations
We investigated other LD-related annotations, including MAF-
adjusted allele age as predicted using ARGweaver21, MAF-adjusted 
LLD measured in African populations (LLD-AFR), recombination 
rate22,23, nucleotide diversity15, a background selection statistic 
(McVicker B statistic)24, GC content15, CpG dinucleotide content, 
replication timing25, and centromeres and telomeres15. We used the 
Oxford recombination map23 and a window size of ±10 kb for recom-
bination rate and a window sizes of ±10 kb for nucleotide diversity,  
±1 Mb for GC content, ±50 kb for CpG content, ±5 Mb for centro-
meres and the first/last 10 Mb for telomeres, as these choices pro-
duced the most significant signals, although other choices produced 
similar results (see below and Online Methods). We also considered 
the 28 main functional annotations from our baseline model. Many of 
these annotations are highly correlated with LLD and with each other  
(Fig. 2 and Supplementary Table 4); these correlation patterns inform 
the interpretation of our heritability results below. In particular, nearly 
all of the functional annotations from the baseline model are nega-
tively correlated with LLD, with the strongest negative correlations 
(−0.20 < r < −0.10) for histone marks (H3K27ac, H3K4me1, and 
H3K9ac), conserved regions (GERP NS), and super-enhancers; only 
repressed regions (r = 0.05; depleted for heritability8) and transcribed 
regions (r = 0.02) exhibited positive correlations.

One surprising observation was that predicted allele age was pos-
itively correlated with LLD (r = 0.22; more recent SNPs had lower 
LLD), whereas a negative correlation might be expected because the 
LD between two SNPs decays with time. To confirm this observation, 
we performed coalescent simulations26 using a realistic demographic 
model for African and European populations27 (Supplementary Note). 
We observed that, while the LLD of a SNP defined using a fixed set of 
older SNPs decreased with allele age, older SNPs acquired additional 
LD with more recent SNPs; the latter effect leads to a positive correla-
tion between predicted allele age and LLD (Supplementary Figs. 1 
and 2). We also observed, in both real data and simulations, that allele 
age was more strongly correlated with LLD-AFR than LLD, as demo-
graphic events (for example, bottlenecks) that occurred in European 
populations distort the relationship between LLD and allele age.

Multiple LD-related annotations impact complex trait 
architectures
We applied our extension of stratified LD score regression to each 
of the 13 LD-related annotations defined above, analyzing each 
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Figure 1 Effect sizes of MAF-adjusted LLD on 20 highly heritable complex 
traits. Results are displayed for the 20 traits with the highest SNP 
heritability (subject to low genetic correlation20 between traits). Numerical 
results for all 56 complex traits are reported in supplementary Table 2. Error 
bars represent jackknife 95% confidence intervals. BMI, body mass index; 
FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity.
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annotation in turn. We performed meta-analysis of the results 
across 31 independent traits (Fig. 3a and Supplementary Tables 
2 and 3). All annotations except telomeres were highly significant 
after correction for multiple testing (Supplementary Table 3), and 
8 of the remaining 12 annotations remained significant when fitted 
jointly (Supplementary Tables 5 and 6). The predicted allele age  
(τ* = −0.78, s.e. = 0.03; P = 6.27 × 10−175) and nucleotide diversity  
(τ* = −0.78, s.e. = 0.04; P = 1.79 × 10−79) annotations produced the 
largest absolute standardized effect size. Interestingly, SNPs in regions 
with high recombination rates (corresponding to low LLD; r = −0.49) 
had smaller per-SNP heritability (τ* = −0.54, s.e. = 0.06; P = 2.39 × 
10−18), which was inconsistent with the direction of the LLD effect 
but consistent with the fact that negative selection is more effective in 
regions with high recombination rates as a consequence of the Hill–
Robertson effect28. Thus, per-SNP heritability was most enriched in 
SNPs with low LLD in regions with low recombination rates, and the 
opposing effects of these two annotations were stronger when they 
were conditioned on each other (Supplementary Fig. 3). Opposing 
effects were also observed for the background selection statistic anno-
tation, which was positively correlated with LLD (r = 0.35) but had the 
opposite direction of effect (τ* = 0.51, s.e. = 0.05; P = 5.06 × 10−26).

To assess how much of the LLD effect is explained by known func-
tional annotations (and because results of stratified LD score regression 
may be biased in the presence of unmodeled functional annotations8), 
we analyzed each of the 13 LD-related annotations while condition-
ing on the 59 functional annotations of the baseline model (Fig. 3b  
and Supplementary Tables 3 and 7). The effect size of the LLD annotation  
remained highly significant but was smaller in magnitude  
(τ* = −0.11, s.e. = 0.02; P = 2.57 × 10−11), primarily owing to its cor-
relation with DHSs (Supplementary Fig. 4). Thus, more than half of 
the initial LLD signal is explained by known functional annotations. 
The LLD-REG annotation13 was no longer significant in this analysis  
(P = 0.19), indicating that the regional LLD signal is entirely explained 
by known functional annotations. Predicted allele age produced the 
largest absolute standardized effect size and the most significant sig-
nal (τ* = −0.46, s.e. = 0.02; P = 2.38 × 10−104); the sign of this effect 
was consistent across 55 of the 56 traits (positive but not significantly 
different from zero for glycated hemoglobin concentration (Hb1AC); 
Supplementary Table 7). This indicates that more recent alleles have 

larger per-SNP heritability after conditioning on both MAF and known 
functional annotations. Many other LD-related annotations remained 
significant (after correction for multiple testing) in the conditional anal-
ysis, although LLD-D′, replication timing, and centromeres were no 
longer significant (Supplementary Fig. 4 and Supplementary Table 3).

Finally, we built a model consisting of the 59 functional annota-
tions from the baseline model and the 6 LD-related annotations that 
remained significant (after correction for multiple testing) when 
conditioned on each other as well as the baseline model (Fig. 3c and 
Supplementary Tables 8 and 9); we call this model the baseline-LD 
model (Online Methods). We determined that this model produced 
similar results when using different window sizes for windows-based 
annotations (for example, recombination rate, nucleotide diversity, 
and CpG content) or different data sources for recombination rate 
(Supplementary Fig. 5), when performing derived allele frequency 
(DAF) adjustment instead of MAF adjustment, when using the UK10K 
Project29 (instead of the 1000 Genomes Project) as the reference panel 
(Supplementary Fig. 6), and across different data sets for the same 
trait (Supplementary Fig. 7). Predicted allele age remained the anno-
tation with the largest absolute standardized effect size (τ* = −0.24, s.e. 
= 0.02; P = 1.08 × 10−23), but its effect size decreased owing to its high 
correlation with the LLD-AFR annotation (Supplementary Fig. 8).  
The effect sizes of LLD-AFR and CpG content increased, owing to 
opposing effects with the recombination rate and background selec-
tion statistic annotations. Effect sizes of the recombination rate, 
nucleotide diversity, and background selection statistic annotations 
decreased because they compete with each other, and LLD and GC 
content were no longer significant (after correction for multiple test-
ing) because of their high correlation with LLD-AFR and CpG con-
tent, respectively (Supplementary Table 10). Psychiatric diseases and 
autoimmune diseases exhibited significantly stronger effects for the 
predicted allele age and background selection statistic annotations, 
respectively (Supplementary Table 11 and Supplementary Note), 
possibly owing to the role of selection at different time scales in shap-
ing the genetic architecture of these diseases30,31.

To provide a more intuitive interpretation of the magnitude of 
the LD-related annotation effects, we computed the proportion of 
heritability explained by each quintile of each annotation in the 
baseline-LD model and by each quintile of MAF for comparison  
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purposes (Fig. 4, Supplementary Fig. 9, and Supplementary Tables 9  
and 12). These proportions are computed on the basis of a joint fit 
of the baseline-LD model but measure the heritability explained by 
each quintile of each annotation while including the effects of other 
annotations—in contrast to standardized effect sizes, τ*, which are 
conditioned on all other annotations and measure the additional 
contribution of one annotation to the model. The youngest 20% 
of common SNPs (based on MAF-adjusted predicted allele age) 
explained 3.9 times more heritability than the oldest 20%. This 
is even larger than MAF-dependent effects, in which the 20% of 
common SNPs with the largest MAFs (>38%) explained 1.8 times 
more heritability than the 20% with the smallest MAFs (<10%). 
(We note that slightly smaller per-SNP heritability for less com-
mon variants is consistent with somewhat larger per-allele effect 
sizes for less common variants as expected under realistic levels 
of negative selection9, because less common variants with the 
same per-allele effect size explain less heritability in proportion 
to p(1 − p), although larger per-SNP heritability for less common 
variants is theoretically possible under exceedingly strong levels 
of negative selection; see Supplementary Fig. 10 and below for 
additional discussion of MAF-dependent effects.) The heritability 
explained by quintiles of recombination rate was roughly flat (in 
contrast to τ*, which conditions on effects of other annotations; 
Fig. 3c) owing to the inclusion of opposing effects of the LLD-
AFR (correlation of −0.39 versus same signs of τ*; Supplementary  
Table 13) and CpG content (correlation of 0.18 versus opposite signs 
of τ*; Supplementary Table 14) annotations; we note that the effect 
of recombination rate is dominated by its largest (fifth) quintile (that 
is, recombination rate hotspots; Supplementary Fig. 11), explaining 
the significant decrease in heritability explained between the fourth 
and fifth quintiles (Fig. 4).

LD-related annotations predict deleterious effects
Our finding that common variants that are more recent tend to explain 
more complex trait heritability is potentially consistent with the action 
of negative selection on variants affecting complex traits, as selec-
tion has had less time to eliminate recent weakly deleterious variants.  
We hypothesized that our results for other LD-related annotations 
might also be explained by the action of negative selection. To investi-
gate this hypothesis, we performed forward simulations32 using a demo-
graphic model for African and European populations27 and a range 
of selection coefficients for deleterious variants (Online Methods).  
We jointly regressed the absolute value of the selection coefficient 
against the allele age (now using true allele age instead of predicted allele 
age), LLD-AFR, recombination rate, and nucleotide diversity annota-
tions from the baseline-LD model to assess whether these annotations 
are jointly predictive of deleterious effects (the background selection 
statistic and CpG content annotations could not be investigated as 
they rely on empirical data). We observed that these four annotations 
were all significant in the joint analysis (Fig. 5 and Supplementary  
Table 15), with effect sizes roughly proportional to the standardized 
effect sizes for trait heritability reported in Figure 3c. This suggests 
that the joint impact of each of these annotations on trait heritability is 
a consequence of their predictive value for deleterious effects. Indeed, 
consistent with theory, recent variants are more likely to be deleteri-
ous because selection has had less time to remove them33, variants in 
regions with low recombination rates are more likely to be deleterious 
owing to reduced efficiency of selection (Hill–Robertson effect28), 
and variants in regions with low nucleotide diversity are more likely 
to be deleterious because these regions tend to have a greater fraction 
of sites under purifying selection34. In addition, the LLD-AFR annota-
tion contains information complementary to allele age, recombina-
tion rate, and nucleotide diversity; we note that LLD-AFR contains 
roughly the same amount of information (that is, the same effect) as 
LLD measured in an ancestral population sampled just before the 
out-of-Africa event (Supplementary Fig. 12). We further deter-
mined that the predictive value of the nucleotide diversity annotation  
is contingent on the non-homogeneous distribution of selection coef-
ficients and that the predictive value of the LLD-AFR annotation is 
largely contingent on the out-of-Africa bottleneck, as the LLD effect  
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20% of SNPs explain 20% of heritability).
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Figure 3 Effect sizes of LD-related annotations subjected to meta-analysis 
over 31 independent traits. (a) Meta-analysis results for nine LD-related 
annotations. (b) Meta-analysis results for nine LD-related annotations, 
conditioned on the baseline model. (c) Meta-analysis results for six LD-
related annotations, conditioned on each other and on the baseline model. 
Results are displayed for the six LD-related annotations that are jointly 
significant when conditioned on each other and on the baseline model 
(in c). In a and b only, results are also displayed for the remaining LLD 
annotations. Numerical results for all annotations analyzed are reported in 
supplementary Table 3 (for a and b) and supplementary Table 8 (for c). 
Numerical results for all 56 complex traits are reported in supplementary 
Table 2 (for a), supplementary Table 7 (for b), and supplementary Table 
9 (for c). Asterisks indicate significance at P < 0.05 after Bonferroni 
correction (0.05/43, 0.05/43, and 0.05/6 for a–c, respectively). Error 
bars represent 95% confidence intervals.
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disappears in a model with constant population size with a homogeneous  
distribution of selection coefficients (Supplementary Fig. 13).  
We finally note that we did not expect our results for LD-related anno-
tations to be a signature of positive selection on variants affecting  
complex traits, as beneficial alleles tend to have increased LD35 and 
more efficient selection in regions with high recombination rates28, 
each of which would be inconsistent with the results in Figure 3c; 
indeed, forward simulations involving beneficial mutations confirmed 
that the LD-related annotations associated with per-SNP heritability 
do not predict beneficial effects (Supplementary Fig. 14).

DISCUSSION
In this study, we assessed the LD-dependent architecture of human 
complex traits by extending stratified LD score regression8 from binary 
to continuous annotations, an approach that produces robust results in 
simulations (Fig. 6, Online Methods, and Supplementary Table 16). 
We determined that SNPs with low LLD have larger per-SNP heritabil-
ity across all 56 complex traits analyzed. More than half of this signal 
can be explained by functional annotations that are negatively corre-
lated with LLD and enriched for heritability, such as DHSs and histone 
marks. The remaining signal is largely driven by MAF-adjusted pre-
dicted allele age, as more recent alleles have larger per-SNP heritability 
in 55 of the 56 complex traits analyzed, but we also observed multiple 
jointly significant effects of other LD-related annotations. We showed 
via forward simulations that all of these jointly significant effects are 
consistent with the action of negative selection on deleterious vari-
ants. As noted above, recent variants are more likely to be deleterious 
since selection has had less time to remove them33, variants in regions 
with low recombination rates are more likely to be deleterious owing 
to reduced efficiency of negative selection (Hill–Robertson effect28), 
and variants in regions with low nucleotide diversity are more likely 
to be deleterious because these regions tend to have a greater fraction 
of sites under purifying selection34; we also observed higher per-SNP 
heritability for SNPs with low values of LLD-AFR, capturing a prop-
erty of variant history that is currently unknown. We note that our 
genome-wide results on recombination rate differ from the results of 
Hussin et al.16, who determined that regions of low recombination rate 
are enriched for exonic deleterious and disease-associated variants: 
although we do observe a similar recombination rate effect (consistent 
with the Hill–Robertson effect28) for jointly estimated effect sizes τ*, 

which are conditioned on other annotations and measure the addi-
tional contribution of one annotation to the model, this effect is largely 
canceled out when including the opposing effects of other annotations 
(Fig. 4 and Supplementary Tables 13 and 14).

While negative selection has long been hypothesized to shape genetic 
diversity24 and previous studies have emphasized the importance  
of allele age21,36,37 and recombination rate16, our study demonstrates 
the impact of negative selection on complex traits on a polygenic, 
genome-wide scale. Specifically, our results demonstrate that com-
mon variants associated with complex traits are weakly deleterious, 
confirming a hypothesized relationship between the effect size of a 
variant and its selection coefficient s (refs. 38–41). One of the implica-
tions of this finding is that we expect larger per-allele effect sizes for 
less common variants, consistent with only slightly smaller (per-SNP) 
heritability explained (Fig. 4); this expectation also applies to rare 
variants, which we do not analyze here.

Our results on LD-dependent architectures have several impli-
cations for downstream analyses. First, recent work has suggested 
that the problem of LD-related bias in SNP heritability estimates11,12 
could be addressed by modeling regional LD (LD-REG) in addition 
to MAF13. On the other hand, our baseline-LD model contains a con-
siderably larger number of parameters, increasing model complexity 
but more accurately resolving the underlying signal; in particular, 
our results suggest that modeling predicted allele age may be more 
informative than modeling regional LD (Fig. 4). Second, previous 
studies have shown limited improvements in polygenic prediction 
accuracy7,42 and association power43,44 using functional annotations, 
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(see text). Numerical results are reported in supplementary Table 15. 
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coefficient estimates.

–1.0

–0.5

0.0

0.5

1.0

E
st

im
at

ed
 �

* 
– 

tr
ue

 �
*

a

LL
D

P
re

di
ct

ed
 a

lle
le

 a
ge

LL
D

–A
F

R

R
ec

om
bi

na
tio

n 
ra

te

N
uc

le
ot

id
e 

di
ve

rs
ity

B
ac

kg
ro

un
d 

se
le

ct
io

n 
st

at
is

tic

C
pG

 c
on

te
nt

b

LL
D

P
re

di
ct

ed
 a

lle
le

 a
ge

LL
D

–A
F

R

R
ec

om
bi

na
tio

n 
ra

te

N
uc

le
ot

id
e 

di
ve

rs
ity

B
ac

kg
ro

un
d 

se
le

ct
io

n 
st

at
is

tic

C
pG

 c
on

te
nt

Figure 6 Simulations to assess the extension of stratified LD score 
regression to continuous LD-related annotations. (a,b) We report bias 
(estimated versus true τ*) across 10,000 simulations for null simulations 
with MAF-dependent architecture (a) and causal simulations with MAF- + 
LD-dependent architecture (b). Results for null simulations with MAF-
independent architecture are reported in supplementary Figure 15. 
The median value of each bias is displayed as a band inside each box. 
Boxes denote values in the second and third quartiles. The length of 
each whisker is 1.5 times the interquartile range (defined as the height 
of each box). All values lying outside the whiskers are considered to be 
outliers. The red line indicates no bias. Numerical results are reported in 
supplementary Table 16.
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perhaps because the annotations analyzed in those studies have perva-
sive LD between in-annotation and out-of-annotation SNPs7; however, 
our LD-related annotations by definition should not have this limita-
tion, making them potentially more useful in those contexts. Third, 
although SNPs with low LLD have larger causal effect sizes, SNPs 
with high LLD may have larger χ2 statistics if they tag multiple causal 
variants. In the presence of multiple causal variants, fine-mapping  
strategies based on ranking P values45 might thus favor high-LLD 
non-causal variants over causal low-LLD variants. For this reason, 
approaches that explicitly model multiple causal variants while incor-
porating LD-dependent architectures using integrative methods46 
might improve fine-mapping accuracy. Fourth, we observed that 
predicted allele age is substantially smaller (>0.1 s.d. below average) 
in transcription start site (TSS), coding, conserved, and UTR regions 
and below average for all functional annotations except repressed 
regions (Supplementary Table 17), consistent with stronger selec-
tion. The identification of functional noncoding regions under strong 
selective constraint could be used to improve variant prioritization in 
whole-genome sequencing studies40,47.

Although our work has provided insights on the genetic architec-
ture of human complex traits, it has several limitations. First, our 
extension of stratified LD score regression assumes a linear effect of 
each continuous annotation (equations (1) and (3); Online Methods), 
which may not always hold; however, this assumption appears reason-
able in the continuous annotations that we analyzed (Fig. 4). Second, 
we restricted all of our analyses to common variants (Online Methods 
and Supplementary Note), as stratified LD score regression has sev-
eral limitations when applied to rare variants8. Third, while the allele 
age predictions produced by ARGweaver21 were of critical value to 
this study, they have >10% missing data, were computed on only 54 
sequenced individuals (including only 13 Europeans), and rely on a 
demographic model with constant population size; the development 
of computationally tractable methods for predicting allele age remains 
a research direction of high interest. Fourth, while the effect directions 
of the LD-related annotations we analyzed were remarkably consistent 
across all 56 complex traits analyzed, this result does not imply that 
negative selection acts directly on each of these traits, as selection may 
be acting on pleiotropic traits48. Fifth, while our results suggest that 
negative selection has a greater impact than positive selection on the 
genetic architecture of human complex traits, we cannot draw broader 
conclusions about the roles of negative and positive selection in shap-
ing the human genome49,50. In addition, our forward simulations did 
not include balancing selection, whose main genomic signature (in 
contrast to negative selection) is increased nucleotide diversity51 
and would not explain the results in Figure 3c, or stabilizing selec-
tion, which uses negative selection to favor intermediate values of 
phenotypes over extreme values. Sixth, the interpretation of some 
LD-related annotations remains unclear. The LLD-AFR annotation 
captures a property of variant history that is currently unknown. The 
CpG content annotation is highly correlated to the GoNL local muta-
tion rate map annotation52 (r = 0.86; Supplementary Table 18), but 
that annotation does not have a significant effect on trait heritability 
when conditioned on the baseline model (Supplementary Table 19), 
suggesting that the CpG content annotation might instead tag some 
functional process absent from the baseline model; indeed, some of 
our LD-related annotations could be viewed as proxies for currently 
unknown functional annotations. Despite all of these limitations, our 
results convincingly demonstrate the action of negative selection on 
deleterious variants that affect complex traits, complementing efforts 
to learn about negative selection by analyzing much smaller rare  
variant data sets.

URLs. ldsc software and tutorials, http://www.github.com/bulik/ldsc; 
baseline-LD annotations, https://data.broadinstitute.org/alkesgroup/
LDSCORE/; 1000 Genomes Project Phase 3 data, ftp://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/release/20130502; PLINK software, https://www.
cog-genomics.org/plink2; ARGweaver allele ages, http://compgen.cshl.
edu/ARGweaver/CG_results/download; Oxford recombination map, 
http://www.shapeit.fr/files/genetic_map_b37.tar.gz; African-American 
and deCODE recombination maps, http://www.well.ox.ac.uk/~anjali/
AAmap/maps_b37.tar.gz; BEDTools software, http://bedtools.readthe-
docs.io/en/latest; human reference sequence, ftp://ftp-trace.ncbi.nih.
gov/1000genomes/ftp/technical/reference/human_g1k_v37.fasta.gz; 
GCTA software, http://cnsgenomics.com/software/gcta/#Download; 
ARGON software, https://github.com/pierpal/ARGON; BOLT-LMM 
software, https://data.broadinstitute.org/alkesgroup/BOLT-LMM; 
UK Biobank, http://www.ukbiobank.ac.uk/; UK Biobank Genotyping 
and QC Documentation, http://www.ukbiobank.ac.uk/wp-content/
uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.
pdf; SLiM software, https://messerlab.org/slim/.

METHODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Extension of stratified LD score regression to continuous annotations. The 
derivation of stratified LD score regression using binary annotations has pre-
viously been described8. Here we extend the method to continuous-valued 
annotations.

Suppose that we have a sample of N individuals and a vector y = (y1, …, yN) 
of quantitative phenotypes, standardized to mean 0 and variance 1. We assume 
the infinitesimal linear model 

y X= +b e ( )2

where X is an N × M matrix of standardized genotypes, β = (β1, …, βM) is the 
vector of per-normalized-genotype effect size, and ε = (ε1, …, εN) is a mean 
0 vector of residuals with variance se

2. Here we are interested in modeling β 
as a mean 0 vector whose variance depends on C continuous-valued annota-
tions, a1, …, ac

var( ) ( ) ( )b tj
c

c ca j= ∑ 3

where ac(j) is the value of annotation ac at SNP j and τc represents the per-SNP 
contribution of one unit of the annotation ac to heritability. This is a gener-
alization of stratified LD score regression8, with ac(j) ∈ {0,1} if annotation ac 
has binary values.

Under this model 

E N l j cj
c

c[ ] ( , ) ( )c t2 1 4= +∑

where 

l j c a k r
k

c jk( , ) ( )= ∑ 2

is the LD score of SNP j with respect to annotations ac and rjk is the correlation 
between SNPs j and k (Supplementary Note). Given a vector of χ2 statistics 
and LD scores computed from a reference sample, this equation allows us to 
obtain estimates t̂c  of τc (ref. 8).

We were interested in both comparing the estimated effect sizes of the 
different annotations and performing meta-analysis of them across different 
traits. For this reason, we focused on per-standardized-annotation effect sizes 
tc

*, defined as the additive change in per-SNP heritability associated with a 1 
s.d. increase in the value of the annotation, divided by the average per-SNP 
heritability over all SNPs for the trait, and computed as 

t tc
h c

g
c

M

h
g* :
.

( )=
2

2 5
sd


where hg
2  the estimated SNP heritability of the trait computed as 

h a j cg
j

j
j C

c
2 = =∑ ∑∑var( ) ( )b t  

Mhg
2  is the number of SNPs used to compute hg

2  , and sdc is the standard 
deviation of the annotation ac. The standard error of t̂c  was computed using 
a block jackknife over SNPs with 200 equally sized blocks of adjacent SNPs8 
and was used to compute a z score to test for the significance of tc

* .
To interpret the heritability explained by a continuous-valued annotation ac, 

we computed the expected heritability of each quintile of its annotations. Let 
Cc,q denote the qth quintile of annotation ac, so that h Cg c

2
1( ),  and h Cg c

2
5( ),  

represent the heritability explained by the 20% of SNPs with the lowest and 
highest values of ac, respectively. We used the equation 

h C a cjg c q
j C c

c
c q

2 ( ) ( ),
,

= ′
∈ ′

′∑ ∑ t
 

to estimate h Cg c q
2 ( ), .

Application of stratified LD score regression was performed using the 
guidelines from Finucane et al.8 and was restricted to data sets of European 
ancestry (Supplementary Note).

(2)(2)

(3)(3)

(4)(4)

(5)(5)

Baseline model and functional annotations. The 59 functional annotations 
that we used to define the baseline model consist of the 53 binary annotations  
from ref. 8 and an additional 6 annotations. The 53 annotations are derived 
from 24 main annotations, including coding, UTR, promoter, and intronic 
regions, the histone marks monomethylation (H3K4me1) and trimeth-
ylation (H3K4me3) of histone H3 at lysine 4, acetylation of histone H3 at 
lysine 9 (H3K9ac), and two versions of acetylation of histone H3 at lysine 27 
(H3K27ac), open chromatin as reflected by DHSs, combined chromHMM and 
Segway predictions (which make use of many Encyclopedia of DNA Elements 
(ENCODE) annotations to produce a single partition of the genome into seven 
underlying chromatin states), regions that are conserved in mammals, super-
enhancers, and FANTOM5 enhancers. The 53 annotations also include 500-bp 
windows around each of the 24 main annotations, 100-bp windows around 
4 of the main annotations, and an annotation containing all SNPs. We added 
four binary annotations based on super-enhancers and typical enhancers53, 
as previously described19. We also added two conservation annotations based 
on GERP++ scores54, including one continuous annotation based on the neu-
tral rate score (NS) and one binary annotation based on a rejected substitu-
tions (RS) score ≥4, as we observed significant effects for these annotations 
(Supplementary Table 20). We did not include 500-bp windows around the 
GERP-NS annotation (which is a continuous annotation) or the GERP-RS 
annotation (which is defined separately for each base pair).

MAF adjustment and LLD annotations. To investigate the LD-dependent 
architecture of human complex traits, it is essential to account for the rela-
tionship between MAF and LD. Indeed, common variants have both higher 
LD scores and higher per-SNP heritability5,9. For this reason, all of our strati-
fied LD score regression analyses included ten MAF bins coded as ten binary 
annotations (all with MAF ≥ 0.05; Supplementary Table 21) in addition to 
an annotation containing all SNPs.

To quantify the LLD of reference SNPs, we first computed LD scores, defined 
as the sum of the squared correlations of each SNP with all nearby SNPs in a 
1-cM window, using the ldsc software. Then, we adjusted these values for MAF 
via MAF-stratified quantile normalization: for each MAF bin, LD scores were 
quantile normalized to a normal distribution of mean 0 and variance 1. The 
LLD of rare variants (MAF < 0.05) was fixed to 0. Because stratified LD score 
regression is designed to quantify the heritability explained by common SNPs 
and the heritability explained by rare variants is hypothesized to be relatively 
low1,5,55, we excluded rare variants from all MAF-adjusted annotations. For 
the LLD model (Fig. 1), we thus modeled the variance of the per-normalized 
genotype effect size of SNP j as 

var LLDMAF bin LLD( )b t t tj
m

j m m j= + +
=

∈∑0
1

10
1

where τ0 is an intercept term modeling the per-SNP contribution of each 
SNP to heritability, 1j ∈ MAF bin m is an indicator function with value 1 if SNP 
j belongs to MAF bin m and 0 otherwise, τm is the per-SNP contribution of a 
SNP in MAF bin m to heritability, and τLLD is the contribution of one unit of 
the annotation LLD to heritability.

The LLD-D′ annotation of a SNP was measured by summing the D′ coef-
ficients of that SNP with all nearby SNPs in a ±0.5-cM window. Version 1.90b3 
of PLINK 2 software56 (see URLs) was used to compute D′ coefficients for 
each pair of SNPs. The LLD of a genomic region (LLD-REG) was measured 
by averaging in 100-kb windows the LD scores computed in 20-Mb regions 
(ignoring LD r2 < 0.01), as previously described13, using the --ld-score-region 
option of version 1.25.1 of GCTA software2. LLD-D′ was adjusted for MAF via 
MAF-stratified quantile normalization. LLD-REG was quantile normalized 
without MAF adjustment because it is a regional annotation.

The LLD-AFR annotation was measured by computing the LD scores of 
reference SNPs in 440 unrelated African samples from Phase 3 of the 1000 
Genomes Project (the ACB and ASW populations were removed because 
of the presence of European admixture). LD scores for reference SNPs that  
were absent in African samples were set to 1. LLD-AFR was also adjusted for 
MAF via MAF-stratified quantile normalization, using the same European 
MAF bins.

(6)(6)
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Other LD-related annotations. We used allele age as predicted by the 
ARGweaver21 method, estimated using 54 unrelated sequenced individu-
als (including 13 Europeans; see URLs). This annotation was also adjusted 
for MAF via MAF-stratified quantile normalization, as common variants 
tend to be older (the correlation for common reference SNPs between avail-
able ARGweaver allele ages and MAF is 0.16). 10.2% of common reference 
SNPs had missing values for predicted allele age; these values were excluded  
during the MAF-stratified quantile normalization process, and correspond-
ing MAF-adjusted predicted allele ages were set to 0. Adding a binary anno-
tation indicating missing allele age information for common reference  
SNPs did not change the effect size estimates for predicted allele age 
(Supplementary Table 22).

Recombination rate, nucleotide diversity, GC content, and CpG content 
were computed using windows of different sizes around each SNP: ±10 kb, 
±50 kb, ±100 kb, ±500 kb, and ±1,000 kb. Recombination rates (measured 
in cM/Mb) were computed from three recombination maps (see URLs): 
the Oxford map, which estimates recombination rates from LD patterns in 
African, European, and Asian populations from HapMap 2 (refs. 22,23); the 
African-American map, which estimates recombination rates from admixture 
patterns in African-American individuals57; and the deCODE map, which 
estimates recombination rates from Icelandic parent–offspring pairs58. These 
recombination maps measure recombination rates at different time scales: the 
deCODE map measures recombination that occurred in recent generations, 
the African-American map measures recombination that occurred in the past 
~20 generations, and the Oxford map measures recombination that occurred 
further back in time. The genetic positions of surrounding windows were 
interpolated linearly from recombination maps using PLINK. We determined 
that the Oxford map provided the most significant results (Supplementary 
Table 3), suggesting that the impact of recombination rate on trait heritability 
operates over a long time scale; we thus used the Oxford map in all primary 
analyses. Nucleotide diversity was measured as the number of reference SNPs 
(with minor allele count ≥5) per kilobase. Measuring diversity on all 1000 
Genomes Project SNPs (down to singletons or doubletons) or the fraction of 
rare variants59 (that is, the diversity of rare variants with allele count <5) did 
not furnish more significant results (data not shown). GC content and CpG 
content were measured using version 2.17.0 of BEDTools software60 and the 
human reference sequence used for the 1000 Genomes Project (see URLs).

The background selection statistic was computed as 1 − McVicker B statis-
tic24 to facilitate interpretation of the results. Background selection statistic 
values close to 1 represent nearly complete removal of diversity as a result of 
background selection, and values near 0 indicate little effect. Replication tim-
ing was based on the annotation of Koren et al.25. 0.19% and 0.27% of reference 
SNPs had missing values for background selection and replication timing, 
respectively; these were replaced by the median annotation value based on 
the remaining reference SNPs.

Finally, telomeres and centromeres were defined using window sizes of 5, 
10, and 15 Mb, as described by Smith et al.15.

We thus created 43 LD-related annotations in total (Supplementary  
Table 23). For annotations computed with different window sizes or using 
different data sources for recombination rate, the one producing the most 
significant P value after conditioning on the baseline model was selected as the 
primary annotation (Supplementary Table 3). Except for telomere and centro-
mere annotations that were not significant in this analysis, other annotations 
had consistent results with adjacent window sizes. To overcome overfitting, 
we used a Bonferroni threshold of 0.05/43 = 1.16 × 10−3 to assess statistical 
significance when analyzing one LD-related annotation at a time. We note that 
this procedure did not affect our final conclusions (Supplementary Fig. 5).

Choice of traits for main analyses and meta-analysis. Stratified LD score 
regression was applied to 29 publicly available GWAS summary statistic data 
sets61–81 (for age at menopause79, effect sizes are publicly available but sample 
sizes for each SNP were obtained through collaboration), 18 summary statistic 
data sets from 23andMe, and summary statistics of 15 traits from UK Biobank 
(Supplementary Note). This led to a total of 62 summary statistic data sets 
spanning 56 traits (5 traits were represented in multiple data sets) with an 
average sample size of 101,401 (computed using the largest single data set for 
each trait; the average sample size of the 62 data sets was 101,989). Analyses 

were restricted to traits for which the z score of total SNP heritability computed 
using the baseline model was at least 6 (Supplementary Table 1). The traits 
displayed in Figure 1 were selected by prioritizing according to the total SNP 
heritability, excluding traits with absolute genetic correlation >0.50 (ref. 20). 
Traits included in the meta-analyses were selected by prioritizing according 
to the z score of total SNP heritability and excluding genetically correlated 
traits in overlapping samples by measuring the intercept of cross-trait LD 
score regression20 as previously described8. We retained 31 independent traits 
(average N = 84,686; Supplementary Table 1) and performed random-effects 
meta-analyses using the R package rmeta.

Construction of the baseline-LD model. We first considered a model includ-
ing the eight LD-related annotations that were significant after being condi-
tioned on ten MAF bins and the baseline model (LLD, predicted allele age, 
LLD-AFR, recombination rate, nucleotide diversity, the background selection 
statistic, GC content, and CpG content) and also including ten MAF bins 
and the baseline model. We removed LD-related annotations that were not 
significant (in the meta-analysis of 31 independent traits) one at a time on the 
basis of the least significant P value (GC content was removed first, then LLD). 
This procedure produced a baseline-LD model with the 59 annotations of the 
baseline model, the 10 MAF bins, and the 6 remaining LD-related annotations, 
leading to a total of 75 annotations. We have made these annotations publicly 
available (see URLs).

Simulations to assess extension of stratified LD score regression to con-
tinuous LD-related annotations. To ensure that applying our extension of 
stratified LD score regression to continuous LD-related annotations does not 
produce false positive signals or biased results, we simulated quantitative phe-
notypes from chromosome 1 UK10K data29 (3,567 individuals and 1,041,378 
SNPs). In each simulation, we used the 1000 Genomes Project as the refer-
ence panel and evaluated all six LD-related annotations of the baseline-LD 
model (Fig. 3c), as well as the LLD annotation. We also included an annotation 
containing all SNPs and annotations for ten MAF bins. In each simulation, 
we set trait heritability to h2 = 0.5 and selected M = 100,000 causal SNPs. 
Causal SNPs were selected randomly from the 673,779 SNPs present in both 
the UK10K Project and 1000 Genomes Project, such that all causal SNPs were 
represented in the reference panel. In null simulations, the variance of per-nor-
malized-genotype effect sizes was simulated proportional to ( ( ))p p1 1− + a

for a variant of frequency p. We considered simulations with both MAF-inde-
pendent (α = −1; where all SNPs have the same contribution to variance) and 
MAF-dependent (α = −0.28; as previously estimated9) architectures. In causal 
simulations (MAF- + LD-dependent architecture), we used the τ coefficients 
estimated from the meta-analyses reported in Figure 3a and set the variance 
of per-normalized-genotype effect sizes using the additive model of equation 
(6), replacing the LLD annotation with the LD-related annotation of interest. 
These coefficients were rescaled to constrain the variance of each SNP to be 
positive and the total h2 of the 100,000 causal SNPs to be 0.5. Phenotypes were 
simulated with GCTA2 (see URLs). We performed 10,000 simulations for each 
of the three simulation scenarios (null MAF independent, null MAF depend-
ent, and causal MAF + LD dependent). In each simulation, we estimated the 
effect size t̂  using HapMap 3 SNPs as regression SNPs, to account for the 
possibility that causal SNPs were not included in the set of regression SNPs. 
Corresponding ˆ*t  values were computed using the simulated h2 value. (We 
were interested in the bias of the τ parameter, and not in the hg

2 parameter, 
which might be underestimated in simulation scenarios where rare variants 
have large effect sizes. We note that estimates of τ* in real phenotypes may be 
slightly biased by inaccurate hg

2  estimates, but that this will not lead to false 
positive nonzero τ* estimates.) We observed unbiased estimates of τ* for most 
annotations in both null simulations (Fig. 6a and Supplementary Fig. 15) and 
causal simulations (Fig. 6b) (numerical results in Supplementary Table 16). 
Only the recombination rate annotation exhibited very slight biases (between 
−0.028 and −0.025) that are nevertheless far from the estimates observed on 
real data (−0.540; Fig. 3a). We also confirmed accurate calibration of standard  
errors in both null and causal simulations (Supplementary Table 24). We 
repeated each of these simulations drawing causal SNPs from all UK10K SNPs 
(to simulate a scenario where causal SNPs are not represented in the reference 
panel). Results for null simulations were similar to those above, and results 



©
 2

01
7 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

Nature GeNetics doi:10.1038/ng.3954

for causal simulations produced slight biases opposite to (that is, slightly 
underestimating) true effects (Supplementary Fig. 16; numerical results in 
Supplementary Table 25).

Forward simulations to assess the connection between LD-related anno-
tations and negative selection. To investigate the connection between the 
LD-related annotations of the baseline-LD model (predicted allele age, LLD-
AFR, recombination rate, and nucleotide diversity; note that the background 
selection statistic and CpG content cannot be assessed in simulations as they 
rely on empirical data and that these simulations used true allele age instead 
of predicted allele age) and the selection coefficient s, we performed forward 
simulations under a Wright–Fisher model with selection using version 1.8 of 
SLiM software32 (see URLs). We simulated 1-Mb regions of genetic length 
1 cM. To ensure realistic recombination rate patterns, we divided the 1-Mb 
regions into three recombination environments16, including a 475-kb coldspot 
region containing 4.1% of recombination events (0.08 cM/Mb) and a 140-kb 
region with high recombination rate containing 58.6% of recombination events 
(4.18 cM/Mb). The mutation rate was again set to 1.65 × 10−8 mutations per 
base per generation82. New mutations had probabilities d of being deleterious 
with a dominance coefficient of 0.5 and a selection coefficient s drawn from a 
gamma distribution with parameters −0.05 and 0.2 (as suggested in the SLiM 
manual) and 1 − d of being neutral (s = 0). To study the impact of a non-homo-
geneous distribution of d across the genome, we divided each recombination 
environment into two subregions and assigned alternate probabilities d1 and 
d2 of being deleterious in these subregions (results reported in Fig. 5 used  
d1 = 0.60 and d2 = 0.90). We performed simulations spanning 100,000 genera-
tions under two different demographic scenarios. First, we started from a fixed 
population size of 7,300 individuals, used the realistic demographic model of 
Gravel et al.27 for the last 5,920 generations, and output 500 European genomes  
and 500 African genomes. Second, we considered a fixed population size of 
10,000 individuals and output 500 individual genomes at the last generation. 
We simulated 200 1-Mb regions in each demographic scenario. LD scores 
were computed independently in each 1-Mb fragment on the basis of SNPs 
with minor allele count ≥5; allele age and LLD-AFR or LLD (depending 
on the demographic scenario) were adjusted for MAF via MAF-stratified 
quantile normalization after merging the 200 1-Mb regions. We performed 
a multivariate linear regression of the absolute value of the (known) selec-
tion coefficients |s| against the ten MAF bin annotations, the MAF-adjusted  
allele age, the MAF-adjusted LLD-AFR or LLD (depending on the demo-
graphic scenario), the true recombination rate, and the nucleotide diversity 
measured in a ±10-kb window around each SNP. The above simulations did 
not include beneficial mutations, but we also performed simulations with 
beneficial and neutral mutations only to confirm that positive selection cannot 
explain the observed results of the LD-related annotations of the baseline-LD 
model (Supplementary Fig. 13).

Data availability. The ldsc software, baseline-LD annotations, and a tutorial 
on how to use ldsc with continuous-valued annotations are available online 
(see URLs). Links to all publicly available summary statistics are provided in 
Supplementary Table 1. UK Biobank summary statistics have been submit-
ted to the UK Biobank data showcase. A Life Sciences Reporting Summary 
is available.
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    Experimental design
1.   Sample size

Describe how sample size was determined. Our work is based on summary statistics. We restricted ourself to datasets 
with sufficient sample size, SNP heritability and polygenicity by measuring 
the z score of total SNP heritability estimated by stratified LD score 
regression, such as recommended in Finucane et al. 2015 Nat Genet. (See 
"Choice of traits for main analyses and meta-analysis." online method 
section)

2.   Data exclusions

Describe any data exclusions. Our study was restricted to data sets of European ancestry (see last line of 
first Online Method section "Extension of stratified LD score regression to 
continuous annotations" + Supplementary Notes "23andMe dataset." and 
"UKBiobank dataset." for specific criteria applied on these 2 datasets) 

3.   Replication

Describe whether the experimental findings were reliably reproduced. No overall replication was performed as we meta-analyzed data from 
more than 30 studies and we obtained strongly significant Pvalues (from 
P=10-100 to P<10-20). 
However, Supplementary Figures 5, 6, and 7 show that our resuts across 
different definition of the analyzed annotations, and accross traits with 
different summary statistics available.

4.   Randomization

Describe how samples/organisms/participants were allocated into 
experimental groups.

NA. We only analyzed summary statistics in this study.

5.   Blinding

Describe whether the investigators were blinded to group allocation 
during data collection and/or analysis.

We did not collect data for this study, but analyzed publicly available 
summary statistics, summary statistics from 23andMe, and summary 
statistics from UK Biobank.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or the Methods 
section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample 
was measured repeatedly. 

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. p values) given as exact values whenever possible and with confidence intervals noted

A summary of the descriptive statistics, including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this study. The principal software used for this study is ldsc, developped in our lab. It 
is publicly available and the link is referenced in the paper. 
We also put online a tutorial explaining how to use ldsc with continuous 
annotation (https://github.com/bulik/ldsc/wiki/Partitioned-Heritability-
from-Continuous-Annotations).

For all studies, we encourage code deposition in a community repository (e.g. GitHub). Authors must make computer code available to editors and reviewers upon 
request.  The Nature Methods guidance for providing algorithms and software for publication may be useful for any submission.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of unique 
materials or if these materials are only available for distribution by a 
for-profit company.

23andMe Inc summary statistics used in this study are not publicly 
available. 
However, all the results derived from these data have no restriction.

9.   Antibodies

Describe the antibodies used and how they were validated for use in 
the system under study (i.e. assay and species).

No antibodies used.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell line used.

b.  Describe the method of cell line authentication used. No eukaryotic cell line used.

c.  Report whether the cell lines were tested for mycoplasma 
contamination.

No eukaryotic cell line used.

d.  If any of the cell lines used in the paper are listed in the database 
of commonly misidentified cell lines maintained by ICLAC, 
provide a scientific rationale for their use.

No eukaryotic cell line used.
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived materials used in 
the study.

No animal used.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population characteristics of the 
human research participants.

This study used human genetic data generated by different sources. We 
did not directly perform research on human participants.
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