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A model that unifies all types of selection (chemical, sociological, genetical, and every other kind of
selection) may open the way to develop a general ‘‘Mathematical Theory of Selection’’ analogous to
communication theory. [Note added by S. A. Frank: This previously unpublished manuscript was found
among Dr. Price’s papers when he died in 1975. In this paper Dr. Price did not provide a complete, general
theory of selection. Rather, he argued why such a theory is needed and what some of its properties might
be. The accompanying article provides commentary on this paper and describes Dr. Price’s significant
contributions to evolutionary genetics (S. A. Frank, 1995, J. theor. Biol. 175, 373–388).]
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Introduction

Selection has been studied mainly in genetics, but
of course there is much more to selection than just
genetical selection. In psychology, for example,
trial-and-error learning is simply learning by selection.
In chemistry, selection operates in a recrystallisation
under equilibrium conditions, with impure and
irregular crystals dissolving and pure, well-formed
crystals growing. In palaeontology and archaeology,
selection especially favours stones, pottery, and teeth,
and greatly increases the frequency of mandibles
among the bones of the hominid skeleton. In
linguistics, selection unceasingly shapes and reshapes

phonetics, grammar, and vocabulary. In history we see
political selection in the rise of Macedonia, Rome, and
Muscovy. Similarly, economic selection in private

enterprise systems causes the rise and fall of firms and

products. And science itself is shaped in part by
selection, with experimental tests and other criteria
selecting among rival hypotheses.

And yet, despite the pervading importance of

selection in science and life, there has been no
abstraction and generalization from genetical selection
to obtain a general selection theory and general

selection mathematics. Instead, particular selection

problems are treated in ways appropriate to

particular fields of science. Thus one might say that
‘‘selection theory’’ is a theory waiting to be born
—much as communication theory was 50 years ago.
Probably the main lack that has been holding back any
development of a general selection theory is lack
of a clear concept of the general nature or meaning of
‘‘selection’’. That is what this paper is about.

Let us pursue a little further the analogy with
communication theory. Probably the single most
important prerequisite for Shannon’s famous 1948
paper on ‘‘A Mathematical Theory of Communi-
cation’’ was the definition of ‘‘information’’ given
by Hartley in 1928, for it was impossible to have
a successful mathematical theory of communication
without having a clear concept of the commodity

‘‘information’’ that a communication system deals

with. Hartley gave what he described as a ‘‘physical as
contrasted with psychological’’ definition of infor-
mation, which omitted all considerations of the

meaningfulness of messages but measured attributes

relevant to the design of communication systems.
Similarly, for development of a useful mathematical
theory of selection, one needs a physical rather than

psychological definition of selection, which excludes

psychological factors of preferences and decision
making. It is my hope that the concept of selection
proposed in this paper will contribute to the future

development of ‘‘selection theory’’ as helpfully

as Hartley’s concept of information contributed to
Shannon’s communication theory.
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In addition, I have been endeavouring to develop

new mathematical treatments of selection appropriate

to the generalized selection concept to be explained

(Price, 1970, 1972). However, the present paper

excludes almost all formal mathematics of that sort,

since attention to mathematical details might distract

from the main purpose of explaining the nature of

selection.

Concepts of Selection

Two different main concepts of selection are

employed in science. These are illustrated in Fig. 1.

Historically and etymologically, the meaning of select

(from se-aside +legere to gather or collect) was to pick

out a subset from a set according to a criterion of

preference or excellence. This we will call subset

selection [Fig. 1(a)]. Darwin introduced a new meaning
(asWallace, 1916, pointed out to him), for offspring are
not subsets of parents but new entities, and Darwinian
natural selection [Fig. 1(b)] does not involve intelligent
agents who pick out. (Darwin distinguished ‘‘natural
selection’’ from ‘‘sexual selection’’. Of course the latter
does involve preferences and decisions.)

These two concepts are seemingly discordant.
What is needed, in order to make possible the
development of a general selection theory, is to
abstract the characteristics that Darwinian natural

F. 2. A solution selection example.

selection and the traditional subset selection have in
common, and then generalize. This will lead us to a
concept of selection as a certain type of transformation
that may occur as the result of a natural force or
as the result of preference, optimization calculation,
and decision making by an intelligent agent. What
we consider here is just the act or process of
transformation, and not any preferring, calculating, or
deciding that may have given rise to it. Inasmuch as
Darwin’s concept of selection exercised by a natural
force is familiar to workers in all fields of science, no
confusion should arise from this use of a ‘‘physical as
contrasted with psychological’’ definition of selection.
(In contrast, there has been confusion from the
communication theory definition of ‘‘information’’
without reference to semantic content. We may say
that Hartley defined the right concept, but chose a
wrong name for it.)

We now proceed to describe a general model fitting
all forms of selection, which will unify the seemingly
discordant cases illustrated in Fig. 1.

A General Model for Selection

Webeginwith a very simple example. Line 1 of Fig. 2

shows that at a certain time (t) before selection there

is an erlenmeyer flask containing a certain amount w
of solution of concentration x. Selection involves
pouring some of the solution from the flask into the

beaker, so that at time t' (after selection) the beaker

contains amount w' of solution of concentration x'.
(In this example x'=x, but this restriction does not
hold in all selection cases.)

Now suppose that we have N such flask and
beaker pairs, each containing the same kind of solution

though not all at the same concentration, as is
F. 1. Conventional concepts of selection. (a) Subset selection. (b)

Darwinian selection.
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indicated in Fig. 2 (where the darkness of shading

indicates the solution concentrations). Let us suppose

that we are interested in the change in (weighted)

average concentration from the N flasks at time t to the

N beakers at time t'. That is, if the initial solutions in

all flasks at time t had been (we imagine) mixed

together, the concentration of the total mixed solution

would have been

X=(S wixi )/S wi

summed over i=1 to N (provided that amounts and

concentrations are measured in mass units). Similarly,

if the solutions in the beakers after selection were

mixed together, the concentration in the mixture

would be

X '=(S w'i x'i )/S w'i .

Let DX=X '−X, the change in (weighted) average
concentration. Suppose that large amounts of the

more concentrated solutions and small amounts

of the less concentrated solutions are poured into

the beakers. Then we will ordinarily expect DX to be
positive. Evidently ‘‘selection’’ means taking different

amounts of the different solutions in relation to their

concentrations. Therefore we might consider measur-

ing the degree or amount of selection occurring in

the Fig. 2 example by calculating the correlation or

covariance between the concentrations xi and the

amounts w'i of solution poured into the beakers.
Now we are ready to generalize. In Fig. 2 the

important elements are the flasks at time t and the
beakers at time t'. Therefore it suffices to show only
these elements, as in Fig. 3(a). And Fig. 3(a) leads

immediately to the idea of a schematic representation

as in Fig. 4.
Figure 4 is the general selection model. It shows a

pre-selection set or population P of ‘packages’ pi , and
a post-selection set or population P ' of packages
p'i . Each pre-selection package has an amount wi

(symbolized by the area shaded) of something which

has a quantitative property x, of numerical magnitude
xi (symbolized by the darkness of shading). Similarly,

each post-selection package has an amount w'i of

something with numerical value x'i for property x. The
arrows from P to P ' symbolize the selection process,

with arrow thickness roughly representing the

fractional amount selected,

si=w'i /wi ,

which we will term the selection coefficient. The
X 4 X ' at the bottom represents the change produced

by the selection process in a population property X
related to property x of individual set members.
(For example, X might be the arithmetic mean of the

F. 3. Three selection examples arranged in the pattern of the
general selection model. (a) The essential elements of the Fig. 2
example. (b) How the Fig. 1(a) example is fitted to the general model.
(c) Moussorgsky’s selection of ‘‘Pictures from an Exhibition’’.

xi or their variance, and correspondingly for X ' and

the x'i values.) Selection itself is illustrated in the
figure by the association between darkness of shading

of pre-selection packages and the thickness of the

corresponding arrows.

Figure 4 illustrates the possibilities that w'i qwi

(see line N) and x'i $xi (see line i ). Both these

possibilities result from Darwin’s extension of the

selection concept, since offspring can exceed parents in

number and mass and can differ from them in many

ways. We will speak of the change xi 4 x'i in line i as

an instance of property change. In general, the change
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F. 4. The general selection model.

definition (except that he left the logarithmic

base unrestricted). However, Shannon somewhat

extended Hartley’s definition, indicating that the

original definition was too narrow. Furthermore, both

Hartley and Shannon defined ‘‘information’’ in terms

of selection procedures. From this it is clear that

selection is a much broader concept than ‘‘infor-

mation’’ (in the communication theory sense).

Therefore a fairly broad definition is desirable.

The meaning of the definition will become clearer as

we consider some examples.

Unification of Selection Concepts

Now let us see how the Fig. 1 examples can be fitted

to the general model. Figure 3(b) shows how the

Fig. 1(a) subset selection example is handled by the

device of showing an ‘‘empty package’’ with w'i =0
if apple i is not selected. Thus the 12-to-7 relation is
converted into a one-to-one relation. We might define
w to be apple mass. Alternatively, we might define w
as the number of apples per package. In this case we
would probably write n instead of w, with ni=1 for all
i, and n'i =0 or 1 according as apple i is not or is
selected. In either case, we would probably define x as
some measure of apple quality, with X measuring the
average quality.

In order to fit the Fig. 1(b) genetical selection
example to the model, we expand it into the system
shown in Fig. 5, in which in fact the pattern of the
Fig. 4 model occurs twice. In Fig. 5, subscripts 1 and 2
label parent and offspring generations, respectively.
Column P1 is identical with the left column of Fig. 1(b)
except for the addition of rectangles to symbolize the
package concept, plus the portrayal of a ‘‘representa-
tive cell’’ beside each animal. Similarly, P'2 is identical
with the right column of Fig. 1(b) except for the
addition of rectangles and representative cells. The
two intermediate columns show sets of ‘‘successful

gametes’’ in P'1 and newly conceived offspring in P2.

The tiny circles in the representative cells, gametes and
fertilized eggs portray the gene constitution at some
gene locus, with the black circles representing type ‘G’

genes and the open circles representing any other genes

(not of type G) present at that gene locus.
It should be noticed in Fig. 5 that the steps from P1

to P'1 and from P2 to P'2 are labelled as selection,
whereas the middle step, from P'1 to P2, is described as

redistribution. If one counts the two types of tiny

circles, it will be found that gene numbers change in the
selection steps, but do not change in the redistribution
step. In fact, set P'1 consists essentially of the genetical

material of P2 members sorted out according to the

parents from which they came. The advantage from

DX will be partly caused by selection and partly caused
by such changes in individual x values.

Particularly to be noted is the one-to-one
correspondence between P and P '. This should be
contrasted with the 12-to-7 relation of the two sets in
Fig. 1(a), and the complicated, criss-crossed 6-to-7
relation in Fig. 1(b). We will say that a set P ' is a
corresponding set to a set P if there exists a one-to-one
correspondence such that, for each member pi of P,
there is a corresponding member p'i of P ' which (if not
empty) is composed partly or wholly of the same
material as pi , or has been derived directly from pi , or
contains one or more replicas of pi or some part of pi ,
or has some other special close relation to pi . Using this
concept of a ‘‘corresponding set’’, we can now define

selection as follows:

Selection on a set P in relation to property x is the act

or process of producing a corresponding setP ' in away

such that the amounts w'i (or some function of them
such as the ratios w'i /wi ) are non-randomly related to
the corresponding xi values.

Accordingly, ‘‘random selection’’ is not selection—
as in fact any housewife would insist if she had bought

what were labelled as ‘‘Selected Eggs’’, and then

learned that they had been ‘‘selected’’ at random.
If we compare the proposed ‘‘selection’’ definition

with Hartley’s definition of ‘‘information’’, it may

appear that I have failed to accomplish something

similar since the ‘‘selection’’ definition is quite
broad whereas Hartley gave a precise mathematical



   393

F. 5. A genetical selection example [showing how the Fig. 1(b) example is fitted to the general selection model].

this arrangement is that the selection steps are simple

and orderly, and therefore convenient for analysis and

calculation; while the complicated tangle of Fig. 1(b)

is confined to the redistribution step, which for many

purposes can be ignored since total gene numbers do

not change there.

Suppose that we are interested in the effect of

selection in changing the frequency of gene G in

domestic fowl populations. As amount measure we use

the number of tiny circles shown in a package, which

we will represent by n. Thus n=2 for all P1 and P2

members. For P'1 , n'=2, 4, 4, 0, 5, or 3. And for P'2 ,

n'=2 for individuals that survive to hatching, but

equals 0 for individuals 3 and 9, which die before

hatching. As individual and population properties,

we use the individual and population frequencies of

gene G, which however we will represent by q and

Q, respectively, instead of by x and X. To find these
frequencies, we simply count the tiny black circles that

represent type G genes, and divide by total numbers of

tiny circles.

For example, q1,5, the gene G frequency in

member no. 5 of set P1, =1/2; and q'1,5, the gene G

frequency in package no. 5 of set P'1 , =3/5. Similarly,

to find population frequencies, we count all tiny circles

in a column. Thus Q1=7/1210.58, and Q'1=9/

18=0.50. In generation 1, we can measure the

fecundities of individuals by s1i=n'1i /n1i , which is the

number of offspring conceived by individual i if we

credit a parent with half of each offspring conceived.

It can be seen that Fig. 5 illustrates negative correlation

between the frequencies q1i and the fecundities s1i ,
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which constitutes selection against gene G, resulting

in a decrease DQ1=Q'1−Q1=−0.08. Similarly,

the right-hand side of Fig. 5 illustrates negative

correlation between the frequencies q2i and the survival

coefficients s2i=n'2i /n2i , resulting in a further decrease

DQ2=Q'2−Q2=−0.07.

Thus the general selection model fits both Fig. 1

cases, thereby unifying the two seemingly discordant

concepts of selection.

A further advantage resulting from the selection

model and the point of view of selection that

is associated with the model, is that the simple and

orderly one-to-one pattern tends to clarify complex

selection cases and in some cases can lead to perception

of surprisingly simple mathematical relationships. For

example, on the left below is a genetical selection

equation recently published in Nature (O’Donald,

1969):

Dx̄=
2KV(u−x̄)−Km3

1−a−K(u−x̄)2−KV
=

Cov(w, x)
w̄

=Dx̄.

(1)

The Fig. 4 point of view leads to recognition of the
much simpler relation shown on the right above, which

is equivalent to equation (1) of Price (1970). (Here

w=1−a−K(u−x)2 as defined in O’Donald (1969),
Cov(w, x) is the covariance or first order central
product moment of w and x, and the equivalence of the
expressions given above can be verified by use of the

standard equations relating central moments and

moments around the origin.) It needs to be mentioned

here that this covariance relationship has been widely

misunderstood because it can be expressed also in

terms of a regression coefficient, and this has resulted

in confusion with conventional uses of regression

coefficients to give linear approximations in totally

dissimilar and much less accurate selection equations.

But it appears that the covariance selection equations

of Price (1970, 1972), despite their simplicity, have not

been recognized earlier—yet it is almost inevitable to

recognize them if one thinks of selection in terms of the

Fig. 4 model.

Use of the General Selection Model

It is always possible to find the Fig. 4 pattern in any
case of selection, but until one has gained some

experience with this it can be puzzling to recognize

the pattern and decide how to define amount

and property variables. One difficulty is that some

elements of the pattern may be present only implicitly

or as mathematical constructs. Thus set P'1 in Fig. 5 is
such a construct inasmuch as the ‘‘successful gametes’’

that give rise to a new generation are not likely all to

be in existence at any given instant of time, let alone

to be separated from other gametes and sorted out as

in Fig. 5.

In some cases the very simplicity of a selection case

may make it difficult to see that all the elements of the

model are present. For example, suppose that we pick

out a single book from a bookcase. Here P is the

set of N books originally in the bookcase, and P ' is one

package containing the selected book plus N−1 empty

packages. The usual choice for amount measure would

be number of books, so that ni=1 for all i, and n'1 and

si=1 for the selected book and =0 for all other books.

The appropriate choice for property x would depend

on our purposes and interests. Thus it might be a

measure of useful information or of the entertainment

value in a book.

It is interesting to note that Hartley’s way of defining

‘‘information’’ involved the same sort of selection
pattern as in the book selection example, with selection
of a single symbol (at any one time) from the set of all
possible symbols for the given communication system.
Shannon modified Hartley’s definition by taking into
account the probability pi ( j) that an information
source in state i would produce (or select) symbol j. We
can represent these probabilities in our model as
amounts w, for example writing wt (i ) to represent the
probability that symbol i will be selected under the

conditions that exist at time t.
Next, we note that P ' can contain elements

quite different from those in P, as a consequence of
some of the possibilities allowed in our definition
of corresponding set. For example, in ‘‘Pictures at
an Exhibition’’ [see Fig. 3(c)] Moussorgsky made a
selection of pictures about which to compose music,
and made further selection in respect to the amount of
music composed in relation to a given picture. Here we
can define P as the set of sketches at the 1874 Hartman
exhibition, and define p'i as the music (possibly none)

related to picture i. Possible amountmeasures are ni=1
picture for all i, and n'i =the number of bars of music
related to picture i. Then, if one could define interesting

attributes of mood and subject matter that could be

quantitatively evaluated in the paintings, one could
measure (using definitions of ‘‘selection intensity’’
given in Price, 1972) the degree to which Moussorgsky

selected for or against these.

Lastly, it may be helpful to explain some points

about choosing appropriate properties to play the role

of the ‘‘individual property’’ x. Property x can be a
‘‘primary selection property’’ or ‘‘primary criterion of
selection’’ that directly influences the selection process,

or it can be a property that has only an indirect or

remote relation to the selection process. For example,
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if gold and silver are associated in some mineral, with

the gold being easily apparent from its colour but the

silver being difficult to recognize, then the gold content

would be a primary selection property for a prospector

who selected samples on the basis of appearance, while

the silver content would be an associated property that

would be indirectly influenced through the direct

selection on a gold. Another possibility is that x can

represent a composite property such as the sum or

product of a number of more elementary properties.

Also, in many selection cases there can be two or more

independent selection properties, x1, x2, . . . , with

selection simultaneously occurring in respect to each of

these. In selection cases of practical interest it will

usually be obvious how to define property x (or

properties x1, x2, . . .), but one can easily be puzzled for

a while if one seeks to invent odd selection cases to test

whether the Fig. 4 model can be fitted to them.

Developing ‘Selection Theory’

When Shannon’s ‘‘Mathematical Theory of
Communication’’ appeared in 1948, many scientists

must have felt surprise to find that at so late a date

there had still remained an opportunity to develop

so fundamental a scientific area. Perhaps a similar

opportunity exists today in respect to selection theory.

If we compare the high level of communication

technology reached 50 years ago with the very

disappointing results usually reached nowadays in

computer simulations of evolution (for example, as

described by Bossert, 1967), and if we note the degree

of understanding of communication systems shown

in the 1928 papers of Nyquist (1928) and Hartley

(1928) and then consider that it took another 20 years

before Shannon’s (1948) paper appeared, we can

reasonably predict that much difficult work will

be required before an interesting and useful

‘‘Mathematical Theory of Selection’’ can be devel-

oped. The remainder of this paper contains suggestions

for readers who may wish to consider working on this

problem themselves.

My main suggestion is that one should become

well-acquainted with biological selection complexities,

but work mathematically on abstract, generalized

selection systems rather than on biological selection or

other real selection systems. The reason for the

first part of the suggestion is that unless one knows

something about the range of remarkable things

that happen in biological selection, one’s ideas about

what to investigate in mathematical models are almost

certain to be too simple and unimaginative. (For

example, who would ever think of inventing

arrhenotokous reproduction if it did not actually

occur? Yet is a highly successful system, characterizing

those remarkably successful insects the ants, bees, and

wasps.) The reason for the second part of the

suggestion is obvious, so that it might seem to be

unnecessary to make such a suggestion if it were not for

the fact that mathematical biologists working on

selection seem almost always to deal with actual rather

than generalized systems. Therefore it may be helpful

to say something further about abstract, generalised

selection systems. Some possibilities are illustrated in

Fig. 6.
Here an individual is represented as a point in a

property space which may be of any desired
dimensionality (x1, x2, . . .), though only two dimen-
sions are shown in the figure. Figure 6(a) shows

successive stages in a multistep selection process

involving alternate steps of property change without

selection, and selection without property change. In

F. 6. Generalized ‘‘property space’’ treatment of selection.
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the first step, first time 0 to 1, the 15 points

(representing a population of 15 individuals) spread

apart as though by a diffusion or repulsion process.

The next step, from time 1 to 2, is a selection step, with

si=0formost of the points, but si=2or 3 for five points

with relatively low x1 and high x2 values. (The points

at time 2 would be superimposed so that only five could

be seen, but they have been drawn slightly displaced so

that separate points can be distinguished.) The final

view, at time 2n, shows the result after n cycles of

property change followed by selection.

There are a great number of possible ways in which

the Fig. 6(a) system might be varied. One possibility

that is suggested by Fig. 5 involves noticing that

the individual gene frequencies in P1, P2 and P'2 are

restricted to the three values 0, 1/2, and 1. This suggests

that we quantize the property variables x1, x2, . . . , to

k possible values (2EkEa), resulting in a lattice

distribution as illustrated in Fig. 6(b) (where again

some points are shown slightly displaced so that

separate points can be distinguished). The change

illustrated in Fig. 6(b) involves property change

without selection. Lastly, Fig. 6(c) illustrates a

transformation analogous to sexual reproduction,

with a ‘‘mating pair’’ in the first diagram and

their ‘‘offspring’’ in the second diagram, and with both

property change and selection with sq1. (Other

population members besides those shown are

supposed present.)
With such systems it should be possible to

investigate many interesting and important problems.

Here are two examples:
(i) Selection requires variation and acts to reduce

variation: this results in a competing relationship

between selection and entropy increase about which it

would be interesting to have deeper understanding.

What happens can be briefly described as follows.

Since selection depends upon variation and uses up

variation, multistage selection requires processes to

produce new variation. When the selection intensity is

high, such variation production enables selection

to operate rapidly to create complexity and order;

but if the selection intensity is low, these processes

of variation production cause deterioration of

complexity and order. Therefore selection is needed

to maintain whatever order has been produced

by selection. In terms of the Fig. 6 examples, it should

be noted that the property change steps have been

shown as increasing variation—which is why repulsion

and diffusion processes were mentioned rather

than attraction or coagulation. It may also be noted

that lattice distributions with k=3 (as in the great

majority of multicellular species) result in low variance

for genes with population frequencies near 0 to 1, and

high variance for genes at intermediate frequencies.

This gives rapid selection while a gene is changing from

high to low or from low to high frequency, but slow

selection, given much stabilization against entropy

increase, once the gene has reached low or high

frequency. It would be of great interest and value to

have a general equation unifying and clarifying these

and other matters of selection versus entropy increase.

(ii) A problem of great basic interest has been stated

by Hamilton (1970): ‘‘How much does the evolved

complexity of life owe to its physical setting? Cracked,

contorted continents; tidal oceans; a blanket of

capricious vapors—were these the necessary cradle for

life? Are they a continuing incentive?’’ In other words,

given a uniform world with constant weather, would

the negentropy of solar radiation suffice to produce the

necessary variation for natural selection to act upon?

Or, stated more generally, are different types of

variation in all ways interchangeable subject only to

the limits set by the Second Law of Thermodynamics?

Or are there different categories of variation such that

two systems of equal negentropy can have very

different capabilities in ‘‘fuelling’’ selection processes,

and not be interconvertible even in theory?
Consideration of questions such as these, though

in terms of abstract models rather than genes or

continents, should lead to deepening understanding of

selection much that in time someone will have

the insight to take a very large step forward like that

taken by Shannon in 1948.

I thank Professor Cedric A. B. Smith for scientific help,
Mr. Alick Newman and Mr. Richard Bryant for the
illustrations, and the Science Research Council for financial
support.
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