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In the first part of this two-part article (Nature 280, 361-367), mathematical models of directly
transmitted microparasitic infections were developed, taking explicit account of the dynamics ofthe
hostpopulation. The discussion is now extended to both microparasites (viruses, bacteria andprotozoa)
and macroparasites (helminths and arthropods), transmitted either directly or indirectly via one or more
intermediate hosts. Consideration is given to the relation between the ecology and evolution of the
transmission processes and the overall dynamics, and to the mechanisms that can produce cyclic
patterns, or multiple stable states, in the levels of infection in the host population.
 

In the first part of this article’ we considered the dynamics of
microparasitic infections with direct transmission between

hosts. We now extend the discussion to other kinds of parasites
and transmission processes, and examine the general relations
between population behaviour and parasite life cycle structure.

The conclusions are broadly similar to those in the first part', but
there are interesting similarities and differences both in the

mathematical structure and in the biological conclusions.
Wethengive a brief discussion of general evolutionary trends,

and end with a survey of the main mechanisms that can produce

cyclic patterns, or multiple stable states, in the levels of infection
in the host population.

Life cycle structure and disease dynamics
Macroparasites with direct life cycies tend to produce persistent
infections, with the host harbouring populations of parasites for
jong periods, due to continual reinfections. Among many

examples are the hookworm species of man, Ancylostoma
duodenale and Necator americanus (see Table 1}, in endemic

areas the prevalence of these infections may approach’ 100%.
For such systems, the pathogenicity to the host, the rate of
production of transmission stapes of the parasite and any resis-
tance of the host to further infection all typically depend on the

number of parasites present in a given host. A crude division of
the host population into susceptible, infected and immune clas-

ses is therefore not helpful, and a detailed description of the
dynamics needs to deal with the full probability distribution of
parasites within the host population’(that is, with the number
of hosts harbouring i parasites N{i), where i=@, 1, 2,...).
Figure 1, which is to be compared with Fig. 3 of the first part of
this article’, depicts the essential structure of such models.

It is often useful to simplify these models by making a
phenomenological assumption about the statistical distribution
of parasites among hests*’'° (or even, cocasionally, by making
assumptions that permit this distribution to be deduced
theoretically''’*}. A usual phenomenological assumptionis that
the parasite distribution is a negative binomial?7°°'*"*, with
the parameter & providing an inverse measure of the degree of

parasite ‘clumping’ or overdispersion within the host popu-
lation; the limit & > 00 corresponds to the parasites being dis-
tributed in an independently random or Poisson form, while
very small k corresponds to very high clumping. It is then

possible to use such statistical moments of the N(i) distribution
as the total host population (N = 3).N()), the number of unin-
fected hosts (X = N(0)), the total parasite population (P=
3, ING), and the mean parasite burden per host (m = P/N). In
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this way, models of the kind depicted in Fig. 1 can be brought

into correspondence with the coarser models of the kind dis-

cussed in Part I (see Fig. 3 of Part I)’.
The most detailed study of this type** draws on a synaptic

collection of data for direct Hfe cycle parasites (mainly
helminths), and describes the dynamics in terms of three
differential equations, for the number of hosts N, parasites F’,

and free-living infective stapes w:
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Here the birth and death rates @ and 4 are as defined in the first
part’ of this article, as is the transmission parameter 8 (hosts

acquire individual adult parasites at a rate propmrtional te the
number of contacts between hosts and parasite infective stages,
BwN), The parasite-induced host death rate for, equivalently,
depression of the birth rate) is taken to be linearly proportional
to the parasite burden in a given host, at a rate a per parasite.
The parasites are distributed as 2a negative binomial with

parameter k; w is the natural mortality rate of adult parasites; A
is the rate of production of infective stapes by an adult parasite;
and c is the death rate of these infective stages. The biological
underpinning of these equations, and their dynamical

behaviour, have been expounded in, detail elsewhere*’.
A rough understanding of the relation between this system of

equations for typical macroparasites with direct transmission,

and the earlier set of equations (8}-(10) of Part I for directly
transmitted microparasites, ca be obtained as follows. First,
note that the lifespan of the free-living infective stagesis usually

much shorter than that of the host and the adult parasite
(compare Table 1). Thus the set of differential equations can be
decoupled, by assuming the ‘short lived’ infective stages are
adjusted essentially instantaneously to their equilibrium level

(dw/dt = 0} for any given value of N’ and P. This gives

 

aN/dt=rN - ak (4)

ANP | ale + DP? .
3 fom- _ i JO an enemas {aP/d Hot (ertbralP kN (5)

(where r=a—5 and Ho=c/8). Second, a phase-plane analysis
now lays bare the properties of this pair of equations.
Three patterns of dynamical behaviour are possible**. (1) If

An(atbtaj>tk+D/k (8)
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the parasite regulates the host population to a stable equilibrium

value. The average parasite burden per host settles to

m=rila 7s)

(2) If Equation (6) is not satisfied, but

A-{(wtbt+a}>d (8)

the host population continues to grow exponentially, but at a

rate

p=r~[A—(a tb tajk/{k+ 1] (9)

This is less than the disease-free rate, r. In this case, the mean

parasite burden in the exponentially growing host population
settles to the value

mar~pif ag)

In either event, if the host population is initially below the

value

_ Higls +b +a)

A-(at+b+a) ay
vT

the parasite cammot become established (dP/dr<0). Hawever,
as long as equation (8) is satisfied, the host population will grow
exponentially (at the rate r} until this threshold value Ny is
exceeded, whereugion the infection will become established,
either regulating the host population or at least slowing its
growth rate. Furtherrmore, in view of the large values for the

reproductive output 4 of most helminth parasites, Ny will
typically be relatively small. This expectation of commonly
finding direct life cycle felminth infections persisting in low
density host populations is borne out by the evidence",

(3) Finally, if A is so small that equation (8)is notsatisfied, the
infection can never become established (A, is negative!).
The similarities between cases (1) and (2) here, and the results

displayed in Fig. 4 of Part I, are striking. In particular, for
measures of the prevalence of infection, notice the exact formal
equivalence between equation (15) of Part I and equation (7),
and between equation (17) of Part I and equation (10). A
dissimilarity is that whereas the ability of a microparasitic

 

Table 1 Expected ifespans of the host and parasitic stages involved in the hfe

cycle of Schistasoma mansoni and Ancyfostoma duodenale
 

Population Lifespan (ys)

S&. mansoni Man (primary host) 50.00

(refs 24, 29, 82} Adult parasite 5.00

infected snails (intermediate host} G10

Cercariae 6.003
Miracidia 0.0009

A. duodenale Man 50.0

(ref. 2) Adult parasite Lo
Free-living infective stage OL
 

infection to regulate its host population essentially depends on
its pathogenicity a exceeding the host population growth rate r
(weighted by rates of recovery, loss of immunity and so on: see
Table i of Part Ij, for a macroparasiteit is its net reproductive

ability, A-~(Gs +é+a), that plays a central role (A is the ‘birth
rate’, while uw, 5 and a are the natural parasite, natural host and
parasite-induced host death rates). The macroparasitic infection

can never persist if this effective net reproductive rate is not
positive (equation (8)}. The parasite will regulate the host
population, or merely slow its growth, depending on whether

this effective net reproductive rate A -(s +b+a) is, or is not,
greater than the host reproductive rate 7, weighted by a factor

(k + 1)/k to allow for the clumped distribution of parasites. Thus
equation (6) is for these directly transmitted macroparasites the

analogue of the microparasite equation (13) in Part I.

Indirect life cycles constitute another qualitatively diferent kind

of complication, arising when the hfe cycle of the parasite
involves one or more intermediate hosts. This happens for both
microparasites (or example, the arthropod-borne viruses or

arboviruses such as yellow fever or Rocky Mountain spotted
fever; the protozoan malaria species) and macroparasites (for
example, schistosomes, the filarial worms causing onchacer-

ciasis, and other roundworms and flatworms that involve
dipteran, molluscan and other intermediate hosts}. Malaria and
schistosomiasis in human populations are the two parasites

whose transmission cycles have been most fully studied and each
enjoys its own independent and growing literature, both
empirical and theoretical (see Table 2). Their basic dynamical
character is, however, in many respects commonto all parasites

with indirect hife cycles.
If we adopt the approach of equations (8}-(10) and Fig. 3

discussed in pari {, narnely dividing the host population into
susceptible, infected and immune categories, we will in the

simplest case have a system of six differential equations: three
for the primary host (alternatively referred to as the definitive
host, or final host) classes A, Y, Z, three for the intermediate
host populations X’, Y’, 2’. All existing models, however,
assume the total populations of both primary host (N =X + Y +

2) and the intermediate host (A= X'+ Y'+2") are constant,
unaffected by the dynamics of the disease. This reduces the

system to four equations. If, furthermore, immunity is either
ignored or handled by specific assumptions about ‘superin-
fection’, the Z and Z’ classes are effectively removedto give two
coupled differential equations for the number of primary hosts
Y, and of intermediate vectors Y’, that are infected. This, in
essence, is the source of the classic Ross-Macdonald’”’* malaria
equations, the Nasell-~Hirsch’® schistosomiasis model, and the
Dietz*° arbovirus equations.
These equations have been subjected to various kinds of more

refined treatment, including age structure?’*, immunity and
‘superinfection’ '7?'?-*° and the use of several immunological
categories of hosts”* (intermediate between Fig. 3 of Part I and
Fig. 1 of Part 12). However, essentially all the existing work on
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indirectly transmitted parasites retains the assumption that the
populations of host and intermediate vector are constant, mot

dynamically involved with the infection. Analysis of such models
reveals threshold relations'’?°*}7""* between N and WN’,
analogous to but more complicated than the A, of the direct life
cycle models. If A’ and N”’ He below the threshold combination,

the disease cannot be maintained.
For many human, and other animal, infections by parasites

with indirect life cycles, what is needed is a theory in which the
populations of primary and intermediate hosts are affected, and
possibly even determined, by the presence of the infection.
While it may often be reasonable to treat a human primary host

population as roughly constant, we believe that cases where
intermediate host populations are anaffected by the prevalence
levels of the infection will be the exception rather than the

rule’. There is no formal problem in extending our dynamic
models of either the ‘microparasite’ kind of equations (8)-dQ),

(Part Ij or the ‘macroparasite’ kind of equations (1)~(3) (Part
If}, to encompass the added complication of one or more

intermediate vector populations. Space forbids a full exposition
of the emergent properties, but the main trends are indicated in

the following section.

Time scales and transmission terms

A full modelfor an indirectly transmitted parasite might include
not only dynamical descriptions of the prevalence of infection in

primary and intermediate host populations, but also additional
differential equations (analogous to equation (G)} for the free-

living transmission stages that carry the parasite from primary to
intermediate host, and back again. For example, for schis-

tosomiasis we could add a differential equation describing the
miracidial stage (man to snail), and another for the cercarial

stage (snail io man), to the usual equationsfor infection levels in

the human and snail populations’. The reason this is not
commonly done can be seen from Table 1, the dynamics of the
free-living stages takes place on a time scale so much shorter

than the other time scales in the systern that miracidial and

cercarial populations can be assumed to have the equilibrium
values appropriate to the prevailing conditions among human
and snail populations. In just this way, we collapsed the three-
equation system (1)~(3} to the two equations (4), (5).

This technique of using biological insights about the time
scales of various infection processes can be used to make further

rough but useful approximations. For example, the time scales
for processes (such as mortality rates) within the intermediate

host population are typically significantly shorter than those in

the primary host. Again, Table 1 testifies to this. Accordingly,
we can assume that the numbers of susceptible, infected and

immune intermediate hosts are adjusted to have the equilibrium
values (AX/dr = 0, and so on) appropriate to the current levels

457

of infection in the primary hosts. In this way, parasitic infections

with indirect life cycles can be approximately brought to a form
similar to that of equations (8)-(10) in Part I for direct life

cycles’.
As a concrete example, consider a grossly oversimplified

model for malaria, in which ‘superinfection’???***, and
mosquito latency” (and immunity’), are ignored. Assume
also the total mosquito population is constant;WW! = X'+ Y'=

constant. The populations of infected humans Y, and mosquitos
Y’, then obey

dV/dt=B YX —b+ateayy ad

d¥/di=BYIN'- Y9-W'+alee¥’ (13)

2)

Here 8, 4, a and v (plain for humans, primed for mosquites)
have their previous meanings; conventionally, most infected

humans are assumed to recover (p » a, 6), and most infected
mosquitos to die at a rate largely unaffected by the infection

(6'»> a’, v’). The assumption that mosquito processes happen on
a relatively fast time scale enables Y’ in equation (12) to be
determined by setting dY‘/dr = 0 in equation (13), leading to

dV/dt= VBRNAb+a’te +BY)—-(+atv)}]
(14)

This is exactly of the form for a directly transmitted infection
{equation 9 of Part I), except that the simple transmission

coefficient 8 has been replaced by the more complicated factor
BEN/(b'+a'+o'+6Y). Similarly, the Nasell-Hirsch two
eguation model’? for prevalence of schistosomiasis among
humans and snails can be collapsed te Macdonald’s’””* single
equation for prevalence in the human population.

Conversely, for humans the total population is often growing
on a time scale that is long compared to the relevant time scales
of even persistent infections. This is why the total population can
be treated as a constant in most epidemiological models. The
approximation, whereby the dynamics of the prevalence (Y/N)

and of the total population (NV) are decoupled, can often be
useful in discussing the transmission cycle of the infection, even

though the long-term growth or regulation of the host popu-
lation is affected by the presence of the infection.

Table 2 uses these ideas to attempt to give a schematic account
of the relations among some of the many models, of differing

degrees of complexity, that are to be found in the IMerature.

Saturation of transmission terms. The transmission terms
obtained in equation (14) by ‘collapsing out’? the mosquito

dynamics of equation (13), and in equation (5) by collapsing
equation (3) for the free-living infective stages of the parasite,

manifest a feature that is commion to all such approximate
representations of complex transmission processes**1471?,
Essentially, the simple term GXY for direct transmission

 

fable 2 Schematic representation of relationships between various kinds of models for parasitic infections, based on relative time scales of population processes
 

In considering the dynamics of infection, only one
species is involved (for example, the host species).

kin considering the dynamicsof infections, two or more

apecies are involved (e.g., primary and inter-
mediate host, or host and parasite population).

Host population(s} constant

Direct Hie cycles Classical epidemiological models

(refs 21, 56, 65, 67, 83-84, 87). Models for the

dynamics of a parasite population within a host popu-
lation of fixed size (refs 5, 88, &9).

Indirect life cycles. Models for schistosomiasis (refs 28,

34, 90) and for malaria (refs 17, 18, 21), considering

only the dynamics within the human host.

Poiveet life cycles. Models similar to the classical epide-

miological equations, but inchiding the dynamics of

free-living infective stages (ref, 35).

Indirect fife cyeles. Models for schistosomiasis (refs 19,

34, 92}, malaria Gefs 17, 21, 93) and arbovirus

infections (ref. 20) in which both human hosts and
intermediate vectors are considered. Models of

schistosomiasis where humans, snails, miracidiae and

cercariae are all considered (ref. 30).

Host population(s} a dynamic variable

Direct fife cycles. Models similar to those for classical

epidemiology, but with total host population a

dynamic variable, determined by birth and death

processes (refs 35, ¢1 and this review).

Direct and indirect life cycles. Dynamics of models in

the compartment below but with all populations but

the primaryhost ‘collapsed out’ (this review}.

Direct fe cycles. Models similar to classical epidemi-
ology, but with host population and free living

infective stages both included 4s dynamic variables
(ref. 35). Models for dynamicscf host parasite systems

(refs 3, 4, 7, 8, 14, 35}, sometimes with dynamic

aspects of free-living infective stages also included

ivefs 3, 4).

indirect Hie cycles, Any of the models in the compart-

ment to the left, but with the total host populations

treated as dynamic variables (this review).
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between susceptible and infected people or BNw for direct
transmission between hosts and free-living infective stages are

replaced by expressions of the general form AXY/(1+ rY) or

ANP/(1 +N), respectively. In the limit when, for example, » ¥
is small, the expression has the familiar form, proportional to X
and Y. But it can be that »Y becomes significant compared to
unity, whereupon the transmission term saturates to a value

(4X/v) proportional only to X. Such saturation effects can be
important in diminishing the ability of the parasite to regulate its
host population’4,
Ecology of the transmission precess. Further complications can
arise from the ecological nature of the individual links in the
transmission process.

For infections that are coramunicateddirectly, the assumption
that the net rate is proportional to the number of susceptibles
and to the number of infectives is clearly reasonable for many
diseases, and strikingly successful in explaining the mouse pox
and mouse pasteurellosis data’. But for sexually transmitted
diseases, for examipte, this is only plausible in a population that is
astonishingly promiscuous and sexually active. In a society

whose members typically have only a small number, 9, of sexual
partners (independentof the absolute population size), the rate
at which an infected person propagates the infection is propor-
tional not to the total number of susceptibles, but to x times the

probability that a given person is a susceptible; thatis, XY isto
be replaced”! by 8nXY/N. Under these very simple assump-
tions, the condition for maintenance of such diseases is By >

{(b+a+v), independent of the population size. In reality, a
more careful treatment of the distribution of degrees of sexual
activity within the population is needed*’, but the fact remains
that infections of this sort are relatively casy to maintain in low

density populations.
More broadly, biological insights into the relative time scales

associated with the various phases of indirect life cycles enable
us to discuss the prevalance of infection in the primary host
population by retaining equations (8) and (10) for X and Z, in
Part I of this article, but replacing equation (9) with the more
general expression

d¥/dt= Vin-—(a+b+p)] (15)

The transmission term is here denoted by A (Ross’ ‘happen-

ings’), and the threshold condition for the disease to increase
upon introduction at low levels is clearly that A> (a+h+v) in

the limit Y0. Por the simple circumstances of the indirect life
cycle that led to equation (14) above, this requirement comes
down to the threshold criterion???"

fa +h tolal+b+ vw

Bp"

Note that a large population N’ of intermediate vectors can
enable the disease to persist, even when the primary host

population Nis small.
However, for malaria and many other infections borne by

biting arthropods, the intermediate vector tends to make a fixed
number of bites per week, independent of the number of
primary hosts available to feed on. Thus the transmission rate
from infected arthropods to people (and from infected people
back ic susceptible arthropods) is proportional to the biting rate
w times the probability that a given human is susceptible (or
infected), and not simply proportional to the number of suscep-

tible (or infected) people. That is, in equations (12) and (13), 6
and @’ are to be replaced by a/N. The threshold condition (16)is

accordingly modified to'7'*°°

NNT > 6}

Niarb+ha’tet0)— : 7)
N wa? (7)

Note that latency effects have been neglected here, although
they can be important in infections with indirect life cycles, and

they certainly modify threshold conditions significantly for
malaria’ and schistosomiasis”’. Infections with intermediate
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vectors of this character are relatively easy to maintain at low

population densities of the primary host, provided only that the
ratio of intermediate to primary hosts is sufficiently high.
Indeed, equation (17) suggests the infection is actually easier to

maintain at low host population levels; the mosquito or other
intermediate host population NV’is, however, typically depen-
dent on the primary host for blood meals or the like, so that
things are not as simple as they might seem. (A more general

discussion, from which the threshold relations (16) and (17)
emerge as limiting cases, has been given by Dietz").
Yet another form of complication enters with parasites that

have sexual stages, yet can have low densities, in a host. Schis-
tosomiasis is one such example*’*'°??*4_ At high levels of
prevalence of the infection in the human population, people
tend to have worm burdens such that most adult female schis-
tosomes are mated, and the circumstances leading to equation
(16) are well approximated. But at low levels of prevalence, it

can be that the average female is not mated, which tends to
require that the transmission link from snail to man be counted
twice in considering the overall cycle, thus giving complicated
threshold conditions (very roughly of the form N[N’P>

constant?”*4),
Finally, note that (apart from the laboratory experiments on

mice’) in all our models the host populationeither is regulated to

some stable value by the disease, or else it grows exponentially.
In practice, other constraints, set by resources, predators or the

like, will eventually limit population growth. Such biological
realities can be included in all our models, by introducing a
logistic constraint (at a ‘carrying capacity’ K} in the growth of
the disease-free population®’. The resulting situation, for both
direct and indirect parasite life cycles, is similar to that illus-

trated in Figs le, f and 25 in Part 1, with the host population

depressed belowits disease-free level K, provided the parasite-
induced host mortality a is not too large’, Too small an a leads
to relativelylittle depression of the host population; too large an

a renders the disease unable to persist, and the host population
remains at X ; maximum parasite-induced depression ofthe host
population is attained for intermediate levels of pathogen-

icity’**. This broad statement glosses over many intricacies
that can arise (R.MM. and R.M_.A., in preparation), particularly

with indirect fife cycles when the intermediate vector has a
constant biting rate (producing threshold conditions such as

eguation (17) in simpler models), but the gist is true.

Population parameters and evolutionary
trends

Any discussion of the relations among the population
parameters that characterize an infectious disease must ulti-
mately take account of the evolutionary pressures on both hosts

and parasites. Population dynamics is always confounded by
population genetics.

For example, even if we assume no genetic change in the
parasite, its action on the host will select for individuals with

reduced susceptibility to the disease. For this reason alone, the
pathogenicity of the parasite will tend to decrease through
evolutionary lime. Conspicuous examples are provided by the
presence of the sickling gene (and other blood-group

phenomena) in regions where malaria is endemic’’, and by the
history of myxomatosis in rabbit populations in Australia’. An

interesting theoretical discussion has been given by Gillespie’’,
Selective forces also act strongly on the parasites*°*'. As we

have seen, the persistence of a disease is facilitated by low
pathogenicity and by long duration of infection’, Countervailing
forces can, however, act to increase the virulence of an infectious

disease; increased pathogenicity may often be associated with
enhanced rates of production (within the host) of the parasite’s

transmission stages ****4,
The regulatory potential of an infectious disease will, there-

fore, typically change as lime goes by. A parasite may stably
regulate its host population during their early association, But,
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as sélective pressures reduce the average susceptibility of the
hosts, such regulatory effects will tend to wane. Eventually, the
host population may escape being controlled by the parasitic

infection.
Because the generation times of most hosts are several orders

of magnitude longer than those of their parasites, it is tempting
to conclude that selection acts more rapidly on the parasites.
However, the way parasitic infections act within host popa-
lations makes it likely that the parasites force the pace of host
evolution to keep in step with, or even ahead of, their own

evolution.
Among the recondite variety of strategies that parasites have

evolved for persistence and transmission, some general trends
can be discovered. For example, many parasitic species traverse
links in community food webs by virtue of predator-prey asso-

ciations between primary and intermediate hosts. Such asso-
cations, which include biting arthropods feeding on vertebrates,
have played an important part in the evolution of complex life

cycles. The high transmission efficiency & of these links suggest
the threshold host populations for maintenance of such parasites
will be low (see equations (16) and (17}). Consequently, we
expect indirect Hfe cycles to predominate among parasitic
infections of hosts that exist at low density.

In contrast, directly transmitted microparasites that require
high host densities in order to persist should be more commonly
associated with animals that exhibit herd or shoaling behaviour,
or breed in large colonies. Empirical evidence in support of
these ideas comes from the abundance of directly transmitted
viral and bacterial infections within modern human
societies’?*, large herds of ungulates®®, breeding colonies of sea
birds***’, and the social insects****. Those diseases with direct
life cycles that do persist within low density host populations
should possess distinctive characteristics, such as long-lived
infective stages***', failure to induce lasting immunity?°"*?, or
ability to persist within the host for very long times**.
Another trend to be noted is that highly pathogenic species

usnally exist, if at all, at low levels of prevalence (see equations
(15) and (17) in Part l and equations (7) and (10) in Part ID. An

example is the digenean parasite Haematolaechus colaradensis

whose primary host is frogs, but which has a transmission
pathway involving first snails, and then dragonflies, as inter-
mediate vectors on the way to the next frog. The prevalence
among frogs is high, 60-70%, and the parasite is long-lived and
has very low pathogenicity; in dragonflies the fluke induces
moderate mortality, and has 30-40%prevalence; while in snails
it is highly pathogenic but appears to have only about 5-10%

prevalence’, These broad patterns, which are often found in
helminths with life cycles involving two or three host species, are
summarized schematically in Table 3.

Cyclic patterns of disease prevalence
Annual or other cycles in the prevalence of infection are often
observed, and can arise in at least three distinct ways.

First, for many short-lived viral and bacterial infections in

human populations, there is a propensity for the steady, endemic
level of prevalence of infection to be attained by damped
oscillations. Particularly if this equilibrium prevalence is low,it
is possible for stochastic fluctuations in the number of people
infected at the minimum of the cycle to, in effect, keep the cycle

 

Table 3 Some population characteristics of diseases caused by indirectly trans-
mitted helminths
 

Expected life

Prevalence of span of hast

infection linversely related

Pathogenicity within hast to time scaled

Host of parasite population dynamics}

Final Low High Long

Second intermediate Medium Medium Medium

First intermediate High Low Short
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‘pumped’ and prevent it from damping to equilibrium. This

interplay between demographic stochasticity and an inherent

propensity to weakly damped oscillations is essentially the
mechanism proposed ia the classic work of Bartlett?*°°°? to
account for cyclic patterns in the prevalence of measles and
otherviral infections in large cities. Gurney and Nisbet™ have
proposed a similar mechanism as an explanation for predator~

prey cycles.
Second, time dependencein any of the population parameters

may, in principle, produce cyclic variations in infection. In
particular, seasonal variation im the transmission coefficient is
important in setting temporal patterns for many parasitic

infections, and may often be central for human viral
infections**°'*, The mechanisms underlying the seasonality in
the transmission rates are poorly understoad, but for human
viruses the main causes are probablyclimatic (emperature and

humidity) effects influencing survival and dispersal of trans-
mission stages, and seasonal changes in social behaviour®®®
{children returning to school after the long summer vacation}.
The seasonal cycles characteristic of the prevalence of measies,

chicken pox, poliomyelitis and mumips in large cities could arise

in this way7"**,
Annual periodicity in transmission rates can, moreover,

produce complicated nonseasonal cycles in the prevalence of
infection. Yorke and co-workers**"", and Dietz™, have
cogently argued that such a mechanism is responsible for the
regular biennial cycle, alternating between years of high and low
incidence, for measles in New York City between 1948 and

1964; in the same city, muraps and chicken pox showed clear

annual cycles. The explanation of Yorke ef al. is to the contrary
of the conventional explanation of these non-seasonal cycles in

terms of demographic stochasticity, as described above. Their
modelis essentially the set of deterministic equations (1)~(3) in
Part I, with an assumed constant number of new susceptibles
appearing each year, life-long immunity, and with the system

enriched by the inclusion of a brief incubation period during
which infected hosts are not infective. The basic feature is that

the transmission coefficient @(¢) varies seasonally with a 1 yr
period. Within a narrow window of parameter values, the
number of infected people can show biennial peaks (Fig. 2a)
similar io those for measles in New York City. This window
separates highly transmissable diseases which praduce an epi-

demic with eventual fade-out, from the diseases with low
transmission efficiency which give rise to endemic seasonal

patterns of infection (Fig. 25), as usually shown by mumps and

chicken pox.

Third, various kinds of nonlinearities in the transmission

terms may produce stable limit cycles, whose periods depend on
the population parameters and will rarely be seasonal. People

familiar with the ease whereby stable Iimit cycles arise in preda-

tor-prey models may be surprised to learn the structure of mast

host-parasite models is such that stable cycles do not easily
occur. However, they can be produced without excessive

contrivance. One simple example is to take the basic equations
(&)-(10) of part I, and introduce the possibility of saturation in
the transmission by replacing BXY by AXY/(Ho+ X). Such a
modification can arise naturally**, in the manner of the analo-
gous expression in equations (5) and (14),if the term is thought
of as deriving from the ‘collapsed’ dynamics of a free-living
infective stage. This system can nowexhibit stable limit cycles
for a specific range of parameter values (corresponding to A

neither too small nor too large). One such stable cycle is
illustrated in Fig. 2c. In general, however, little is yet agreed
about the kinds of biological processes that can penerate

nonseasonal patterns of disease prevalence,

Multiple stable states of disease prevalence
A growing number of empirical and theoretical studies suggest
that many natural assemblies of plants and animals can have a

multiplicity of alternative stable states*®, Once two or more
stable statesare possible, the actual state the svstem settles into

©          Nature Publishing Group1979



$68

6,000

¥,

3,800-

 

   
  

 

 

  
60

Time (arbitrary units) Transmission

Fig.Z a, Simulations of recurrent outbreaks of measles in New York

City, showing biennial peaks superimposed on an underlying seasonal

cycle Grom London and Yorke}, A, Sinvulations**®* of recurrent

outbreaks of mumps in New York City, with simple seasonal peaks,

annually. c, Simple limit cycle behaviour generated by the model

described in the text. d, The transmission threshold, alternative stable

states, and ‘breakpoint’ phenomenathat arise in simple models for the

transmission dynamics of schistosomiasis 9-19-2784; the features are
as discussed in the text. ¢, Transmission threshold and alternative

stable states arising in a mode} for directly transmitted helminth

mfections, where it is assumed that the pathogenicity of the disease is

related to the nutritional state of the host**. The graph shows the mean

equilibrium burden of parasites per host, m*, as a function of 2

parameter, T, representing transmission efficiency. The infection

cannot persist below a threshold value T,; between T, and T, thereisa

unique low level of disease endemicity; between T, and 73 two stable

levels of prevalence may occur, one high and the other low, separated

by a breakpoint (the dashed line}; above T; there is again a unique

equilibrium level, corresponding to high average parasite burdens per

host. The arrows indicate the stable state to which the system will sw

from a given initial value.

depends on the initial conditions. The system will tend to

recoverits original configuration if subject to small disturbance,
but sufficiently severe perturbations are liable to precipitate it

into an alternative state in a different region of the dynamical
landscape.

The nonlinearities in population models for parasitic
infections can generate such multiple states by three principal
mechanisms: worm pairing for sexual reproduction in the pri-

mary host; nonlinearities associated with the transmission from
primary to intermediate host, or vice versa (mosquitos biting
man for malaria, or predatory primaryhosts consuming infected

intermediate-host prey); parasite pathogenicity dependent on
the nutritional state of the host.
The first and most fully studied of these categories arises for

many helminth infections with indirect life cycles, such as
schistasomes‘°'°77-7">4. {+ serves to exemplify the phenormenon.
As portrayed in Fig. 2e, the equilibrium value of the mean
parasite burden per human host (sn) will be zero if the rate of
transmission (7) frora snail to man is below the threshold value
T,. Above this threshold, two alternative stable states occur, one
of endemic infection (m>G), the other of parasite absence

Om = 0). The basic reason is that at low levels of m the female
worms are unlikely to be mated, so that the disease cannot be

maintained, even though the transmission parameters are such

{. Anderson, R. M. & May. BR. M. Nature 288, 361-367 (1979).
2. Hoagland, K. E, & Schad, G. A. Exp. Parasit. 44, 36-49 (1978).

3. Anderson, R. M. & May, RM. # Anim. Evol. £7, 219-247 (1978),
4, May. R. M. and Anderson, R. M. J. Anirn, Ecol. #7, 249-267 (1978),

5. Anderson, R. M. in Ecological Stabilizy (eds Usher, M. B. & Williamson, M. H.) (Chapman
and Hall, London, 1974).

6, Fine, BEM. Ana. N.Y. Acad. Sci. 286, 173-294 975),
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as to permit its endemicityif introducedat high values of m. The
two stable states (valley bottoms in the dynamical landscape) are
separated by a ‘breakpoint’ (watershed), indicated by the dashed
line in Fig. 2¢; disturbances severe enough to transgress the
breakpoint will carry the system from one state to the other.
These threshold and breakpoint concepts are of obvious

importance to epiderniclogists concerned with disease
eradication7778
Of special importance are the effects that can arise from the

now widely recognised fact that the impact of an infection is
often related to the nutritional state of the hast®’""*, Broadly
speaking, malnourished hosts have lowered immunological
competence, and are less able to withstand the onslaught of
infection’”®”*. Theeffective pathogenicity of a parasite therefore
tends to increase as hast density rises to a level where competi-
tion for available food resources is severe’?**, Given certain
reasonable assumptions’ about the exact relation between
pathogenicity (a) and host density (NV), two stable states may
occur for a given set of rate parameters. The outcome of such a
model”, for a directly transmitted helminth infection, is shown
in Fig. 2d. Both states reflect stable endemic disease: one

equilibriumis characterized by high host density and low worm
burdens; the other by low host density (severely depressed by

the disease} and high average burdens of parasites. As for the
schistosome model of Fig. Ze, the two states are separated by a
breakpoint or unstable equilibrium.
The discontinuous switch from low to high levels of infection,

following a disturbance severe enough to crass the breakpoint,
will show up as an apparent ‘epidemic’ outbreak of disease,
typically producing many host deaths. Interestingly, many
documented accounts of disease outbreaks are for host popu-
lations at high densities, where stress induced by overcrowding
or malnutrition is present’'?*. It is very likely that such out-
breaks are to be explained®® by the alternative stable states
produced by close links between pathogenicity and nutrition or
stress, rather than by the commonly accepted hypothesis of

enhanced transmission with high density populations®’.
Parasitic infections with very complex life cycles may possess

more than two stable states, particularly if predator-prey links

are involved in the transmission from one host to the next, as is

the case for many helminth parasites. There is a desperate
paucity of data, from field or laboratory, bearing on these
general points.

Conclusion

This two-part article has blended some newtheoretical studies
and new analysis of existing laboratory data with a review and

synthesis of past and present models for the overall transmission
dynamics of parasitic infections. We have defined ‘parasite’

broadly to include viruses, bacteria and protozoans along with
the more conventional helminth and arthropod parasites, and
we have concentrated attention upon the circumstances under
which the infection may significantly alter the growthrate ofits
host population.
Some of the theoretical conclusions can be pleasingly suppor-

ted by hard data, while others remain more speculative. On the
whole, our main goal is ta help elevate the study of hosit—parasite
population dynamics to its proper place in ecological thinking:
parasites (broadly defined) are probably at least as important as
the more usnally-studied predators and insect parasitoids in
regulating natural populations.
We are grateful to many people, and particularly te Mary

Anderson, David Bradiey and James Yorke, for their help. This
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The radio source O95? + 561 has at leastfour components.

Two coincide with the optical QSOs, which is in

accordance with the hypothesis that the OSOsare images of

a single object due to a gravitational lens. There are details

ofspectra and structure which are more difficult to reconcile

with the hypothesis.

 

THE pair of OSOs 09574 561A, B have been shown to have
remarkably similar optical characteristics by Walsh, Carswell

9028-0836/79/320461—04$01.00

and Weymann’ and they suggest that the SOs may be two
images of the same object formed by a gravitational lens. The

detailed properties of the radio source are clearly of great
interest, and we present here a radio map and otherobservations

discussed in the context of a gravitational lens.

Observations
The total flux density of the radio source has been measured at
various frequencies summarised in Table 1. The data are consis-
tent with a flux density Soc yr °°°, The two observations at A6 cm
suggest the possibility of variability.
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