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Abstract

Statistical methodology has played a key role in scientific animal
breeding. Approximately one hundred years of statistical develop-
ments in animal breeding are reviewed. Some of the scientific founda-
tions of the field are discussed, and many milestones are examined
from historical and critical perspectives. The review concludes with
a discussion of some future challenges and opportunities arising from
the massive amount of data generated by livestock, plant, and human
genome projects.
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INTRODUCTION

Statistical methodology has played an important role in transforming animal breeding from an art
into a science, and many scholars have contributed to the history of this process. Most animal
breeding problems have a quantitative dimension, but not all are inferential, so when or where
statistics enters into the picture is sometimes difficult to decide. For example, mate allocation is
a decision problem (i.e., no inference) that can be solved deterministically with linear pro-
gramming (1, 2). Likewise, organizing gene expression data into biologically meaningful subsets is
a pattern recognition exercise that can be carried out by ignoring statistics via clustering (3).
However, prediction of future phenotypes, clearly a statistical problem, can be carried out from
noninferential perspectives (4, 5). Most animal breeders are concerned with predicting breeding
value and do this by using theory developed by Henderson (6–11) with a clearly inferential
objective.

Statistical methods have been an important feature of theWorld Congress onGenetics Applied
to Livestock Production, the first of which was held inMadrid (1974) and the tenth of which was
held in Vancouver in August 2014. Also, statistics has had a visible place in the International
Conference on Quantitative Genetics, which was held first in Ames, Iowa (1976), and most re-
cently held in Edinburgh (2012) and will take place next in Madison, Wisconsin (2016). Many
innovative statistical ideas can be found in the corresponding proceedings. Reviews of statistical
methods in animal breeding can be found, for example, in References 12–14 and in Hill (15), the
latter in a broader context. Further, many statistical approaches grew out of collective efforts and
informal scientific exchangesmade in animal breedingworkshops and scientificmeetings (e.g., the
American Dairy Science Association), regional projects, and even in coffee or beer breaks.
Examples of hot spots of free scientific give and take of ideas are the (defunct) US Department of
Agriculture (USDA) NCR21 regional project in quantitative genetics, the Edinburgh and Cornell
coffee breaks, the Iowa State QTL Lounge, and the Wisconsin breakfast.

Our aim here is to review the history of the process indicated above, often critically, by offering
an account ofwhatwe perceive aremilestones, as it is impossible to discuss every contribution.We
shall not attempt to provide a chronology of institutional developments connected with animal
breeding. It is assumed that readers have been exposed to basic ideas of quantitative genetics, and
recent discussions of fundamental principles and outcomes are available in References 16 and 17.
The organization of the paper is as follows: First, some of the scientific foundations of the field are
presented from a historical perspective. Subsequently, the stage is developed further through an
overview of several animal breeding problems treated statistically. The review continues with
a description of milestones followed by sections on best linear unbiased prediction, estimation of
genetic parameters, Bayesian ideas as applied to the field, nonlinear models and longitudinal data,
statistical treatments of selection bias, and genomic selection. A concluding section suggests some
future challenges.

FOUNDATIONS

Application of statistical ideas to animal breeding and genetics traces back to theVictorian times of
Galton (1822–1911) and Pearson (1857–1936), both ofwhomworked beforeMendel’s lawswere
rediscovered. Galton (18) found out that, on average, descendants from tall parents were smaller
than their parents, whereas progeny from shorter parents were taller. This “regression to the
mean” is intimately related to the concepts of heritability and expected response to selection. The
difference in trait average between extreme groups of parents is akin to the selection differential;
the difference between the corresponding progeny groupmeans is equivalent to selection response.

20 Gianola � Rosa

A
nn

u.
 R

ev
. A

ni
m

. B
io

sc
i. 

20
15

.3
:1

9-
56

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

W
as

hi
ng

to
n 

on
 1

1/
25

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



The statistical regression of offspring on parent is the well-known heritability parameter (19), and
the ratio between observed response and effective selection differential is realized heritability,
a term coined by Falconer (1913–2004). Statistical problems in connection with inferring realized
heritability are discussed inReferences 20 and 21.Galton’swork provided amajor impetus for the
use of linear models, which are still employed in the twenty-first century. Galton’s data suggested
that the regression line was linear, but a reanalysis using nonparametric methods (22) found that
the father-daughter, father-son, mother-daughter, and mother-son regressions exhibit a bend at
approximately 67–68 inches of height. This bend suggests a hidden structure and illustrates
how a statistical genetic model can provide a good description of a pattern and produce useful
quantities, such as heritability, without necessarily explaining phenomena. Pearson (23, 24) wrote
extensive papers on the evolution of traits and derived formulae, whichHenderson (10) eventually
used in an influential paper on estimation and prediction biases resulting from selection. Pearson’s
formula on how selection modifies a variance-covariance structure was crucial for Henderson’s
development and retrieves, as a special case, the standard expression for computing reduction in
variance, given certain selection intensity under normality assumptions (25–27). The effect of some
sort of stylized selection on genetic variance, termed the Bulmer effect, has been used in many
studies. However, the simplest version of Pearson’s formula is only an approximation, as it
requires that all candidates for selection be independent and identically distributed. In animal
breeding, candidates are related (thus, not independent) and have an unequal amount of in-
formation; for example, a progeny-tested bull may possess thousands of progeny with records,
whereas a young siremaynot. The stylized formula gives some roughbasis for comparing idealized
selection schemes.

After the particulate basis of genetics was established, one issue was how to reconcile con-
tinuously varying traits with Mendelian inheritance. Toyama Kametaro (1867–1918) found the
first case of Mendelian inheritance in animals while studying the silkworm (28), and Yule (1871–
1951) (29) reconciled Mendelism with continuous variation, although Pearson did not accept his
work. Two monumental contributors to the foundations of modern quantitative genetics (with
a major influence in animal breeding) were Fisher and Wright, in a series of papers. In an ex-
traordinarily difficult paper, Fisher (30) introduced the most widely used model of quantitative
genetics (the infinitesimal model) together with an analysis of variance for decomposing genetic
variability into pieces. Wright (31), using path analysis and correlation, derived the inbreeding
coefficient (F) and, in a series of papers (such as Reference 32), derived properties of Mendelian
populations, including the astonishing equilibrium distribution of allelic frequencies in a finite
population under randommating andmutation.Wright presented the resultwithout derivation by
invoking the Fokker-Planck equation from diffusion in physics, also known as the Kolmogorov
forward equation in stochastic processes (33). Arriving at the equilibrium distribution requires
many pages of algebra.

Fisher’s infinitesimal model has been central in animal breeding. In a caricature of this model,
suppose there areK loci at play, such that, at locus k (k¼ 1, 2, . . . , K), adding anA allele adds the
fixed (i.e., not random) quantity ak to the genotypic value u (the additive value) of an individual,
which can then be written as u ¼ W1a1 þW1a2 þ . . .þWKaK. Here, W is a random indicator
variable taking the value 0, 1, or 2, depending on whether the individual is aa, Aa, or AA at the
appropriate locus; if the population is in Hardy-Weinberg (HW) equilibrium, these genotypes
appear with probabilities ð1� pkÞ2, 2ð1� pkÞpk, and p2k, respectively, where pk is the probability
of randomly drawing an A allele at locus k. The marginal distribution of u depends on the joint
probability distribution of the genotypes at theK loci. Because u is a linear combination of random
variables, if theW’s are mutually independent (linkage equilibrium among genotypes), then as K
increases the distribution of u converges to a Gaussian one, but linkage disequilibrium (LD) slows
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down the rate of convergence. For u to have a finite mean and variance, the individual loci effects
and frequencies must become infinitesimally small as K→1. At the limit, one ends up with
the distribution u∼Nðm,s2

uÞ, where the mean m is typically set to 0 and s2
u is the additive ge-

netic variance (often called polygenic). Henderson introduced the cow model in the 1960s
(L.R. Schaeffer, personal communication), which then became known as the animal model (34).
The specificationwas a vectorial extension of Fisher’smodel: The additive effect u became a vector
of breeding valuesu, and the additive genetic variances2

u was replaced byAs2
u, whereA is amatrix

of additive relationships if there is no inbreeding (there are technicalities here) among individuals.
TheAmatrix conveys kinship relationships: An entry of this matrix is twice the probability that an
allele at a random locus is identical by descent in a pair of individuals. Such work was built on
foundational notions of gametic similarity due to Sewall Wright, using correlation, and Malécot
(35), who employed probability instead.

Another idea fromFisher (30, 36) impacting the notion of breeding value was the average effect
of a gene substitution at a locus. This idea was taught in animal breeding courses by Lush andwas
later assisted by an outstanding text by Falconer (37). Assuming that all K loci above are in HW
equilibrium, introducing a dominance effect dk, and letting 1� pk ¼ qk, the mean value of u is

EðuÞ ¼ PK
k¼1

�
akðpk � qkÞ þ 2dkpkqk

�
. The average effect of a gene substitution at locus k is ak ¼

ak þ dkðqk � pkÞ. The breeding value at that locus is 2qkak, ðqk � pkÞak and�2pkak for AA, Aa,
and aa genotypes, respectively, and the breeding value of u for an individual with a certain ge-
notypic configuration is obtained by summing over loci. Breeding values are both frequency and
dominance deviation dependent, and the expressions rely on theHWassumption. Under idealized
assumptions, only additive effects are transmitted; therefore, ak is of great interest in breeding, so u
is more narrowly defined as the sum of the ak over loci. Thus, u became a random variable in-
volving additive effects only (the infinitesimal breeding value), and, prior to the advent of
genomics, it was the focal point in inference because genes and allelic effects could not be observed.

Until recently, quantitative genetics as applied to animal breeding was essentially a gene-less
science. This explains the enormous influence of statistical procedures and, in particular, of
Henderson’s methods, where the sole genetic input was the matrix A, defined earlier. In spite of
genomics, little is known about individual genes affecting complex traits because the search for
quantitative trait loci (QTL) using markers has not returned dividends consistent with the
enormous resources invested in the quest; Reference 17 discusses this issue.

OVERVIEW OF SOME ANIMAL BREEDING PROBLEMS

Genetic selection, a crucial tool of animal breeding, aims to maximize the rate of increase (with
respect to time) of some aggregate merit function, e.g., profit, reflecting the combined economic
value of traits for which improvement is sought. Traits potentially related to environmental im-
pact, such asmethane production or use of energy resources, are increasingly considered as part of
this function. Merit can be linear or nonlinear on the unobserved genetic values for the target
traits. These traits are called complex because their inheritance remains unresolved, and it is ac-
cepted that environmental influences are large and possibly interact with genetic factors. When-
ever there is a genetic basis underlying the components of the merit function, i.e., if there is genetic
variability among individuals, it may be possible to produce genetic improvement from selection,
but this depends on the kind and amount of variance available. Typically, animals deemed to bear
the highest additive merit are kept as parents, and those with the lowest merit are culled, although
selection can also aim at some intermediate optimum.
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In the absence of detailed genetic knowledge, abstraction is required to glean geneticmerit from
observed data, and quantitative genetics theory provides some of the basis. This theory, albeit
useful, is mechanistically simplistic in light of emerging knowledge on metabolic pathways, gene
networks, and genome organization. Statistical methods put the theory into action, and compli-
catedmultivariate analysis is often required, as genetic or environmental associations among traits
must be accounted for so that manifold effects of selection can be assessed reasonably. Ronald
Fisher’s (1890–1972) fundamental theorem of natural selection and a secondary theorem by Alan
Robertson (1920–1989) motivated by animal breeding problems state that the rate of progress
under selection is proportional to additive genetic variance and covariance, respectively; Crow&
Kimura (33) and Edwards (38) give readable accounts. These two metrics are statistical, and
models used to estimate such parameters are based largely on the assumption of additive in-
heritance. If there is nonadditive genetic variability, much of the theory is based on unrealistic
assumptions to accommodate complex interactions about unknowngenes. The pervasive presence
of LD in livestock, owing to small population size and selection, makes it difficult to partition
genetic variance (39). If a network of genes is in LD, inferring howmuch a specific gene contributes
to variance is messy. Variability comes either through direct paths or indirectly through corre-
lations stemming from LD (40). Sewall Wright (1889–1988), one of the founders of the theory of
population genetics, introduced path analysis to separate direct from indirect effects, but this
requires knowledge of LD relationships among causal genes.

Input information available for assessing the genetic basis of traits and for inferring genetic
merit of animals has consisted of on-the-farm records of performance and genealogical data, now
supplemented with a massive number of molecular markers known as SNPs (single-nucleotide
polymorphisms). These genetic markers are used as a shotgun aimed at picking up associations
between genomic regions andphenotype and forwhat is called genomic selection (41). The records
of performance may be growth rate and feed intake in meat animals; fleece weight and quality in
sheep and goats; milk yield, composition, reproductive performance, and survival in dairy ani-
mals; and egg production or litter size in polytocous species, such as chickens or pigs. Records on
reproductive events or diseases, e.g., mastitis in dairy cattle, are more difficult to obtain, and often
proxy variables are used, for instance, somatic cell counts (SCC) in cows’milk and number of ticks
in the skin of cattle under tropical or subtropical conditions. Other traits, e.g., survival or length of
productive life in dairy cows, are plagued by statistical censoring: Sometimes all is known is that an
animal is alive at time t, but nothing is known beyond t. Also, many traits are recorded as counts
(litter size) or categorical assignments (e.g., calving difficulty or stages of some disease). Thus,
statistical modeling often requires going beyond assuming a Gaussian distribution, although the
latter often provides a reasonable and useful approximation. Even if a trait is continuous,
specifications other than the Gaussian, such as the double exponential or t-distribution, may
confer robustness to an analysis.

Contrary to simple Mendelian traits, the genes affecting a complex trait are possibly many, as
statedearlier.Lush (1896–1982), arguably the father of scientific animal breeding, often expressed
the view (19, 42) that possibly all genes affect all such traits. In spite of spectacular advances in
genomics, we still do not know the number of genes, the form of gene action, and the allelic
frequencies and effects onmost complex traits. The statistical approaches used in animal breeding
lump the entire impact of the genome on a phenotype into something called genotypic value. The
phenotype is represented using some mathematical model with one of its parts being the additive
genetic value, termed breeding value. However, the genetic value or any of the model components
are not observable and must be inferred from data on individuals with records or from data on
relatives. The inference process most often (but not always) uses a linear model because this
is analytically tractable; less taxing to compute than a nonlinear one; and can produce useful,
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easy-to-interpret results. Possessing records on relatives is crucial in some cases; for example, a valuable
beef bull cannot be destroyed for the purpose of obtaining carcass information, so data from
genetically related steers are used.Given the abundance of genome-basedmarkers, it is tempting to
conjecture that relatives might not be needed, as it would seem sufficient that individuals be
molecularly similar without possessing explicit genetic relatedness. Unfortunately, genomic
similarity at markers does not translate well into genetic similarity at causal variants unless
markers are in strong LD with QTL. The latter is another abstraction used to denote a genomic
region that does some statistically significant thing to the phenotype. Marker-assisted inference in
animal breeding probably has its origins in a paper by Neiman-Sorensen & Robertson (43), who
intended to relate variants at blood groups to production in cattle.

Although many traits seem to have a polygenic mode of inheritance, standard genome-wide
association methods based on regression of phenotypes on a single marker (GWAS) often fail
to pick up many statistically significant variants, and the latter explain a tiny fraction of trait
variability (44). Failure of rejecting the null hypothesis in aGWAS is often construed as evidence in
support of a polygenic model, but this is insufficient from a causal perspective.

Animal breeding data sets can be very large (e.g., millions of lactation records in dairy cattle),
multivariate (several traits must be modeled simultaneously), seemingly Gaussian in some
instances (e.g., logarithm of concentration of somatic cells inmilk, an indication of udder disease),
or nonnormal in others (such as with discrete traits). Data structure can be cross-sectional or
longitudinal (for example, growth curves in broilers) and extremely unbalanced, often exhibiting
a pattern of nonrandom missingness. For instance, not all first-lactation cows produce a second
lactation, owing to sequential selection for higher production, reproductive failure, or disease.
Some sires are usedmore intensively than others, because of perceived differences in genetic value,
so there is genetic selection as a consequence of variation in contribution to offspring born. Be-
cause of this, observed data are seldom a random sample, which thus introduces biases. Another
issue creating havoc in genetic evaluation is undeclared preferential treatment of progeny of
valuable sires; this produces statistical confounding: The effect of true genetic merit cannot be
disentangled from that of the environment. In these respects, there is similarity with problems
encounteredwith observational data in humanmedicine. Unfortunately, randomized experiments
are seldom feasiblewith humans, and the suitable extent of replication required in animal breeding
experiments is often impossible to attain even with laboratory animals. Our opinion, contrary to
that of many contributors to the book edited by Robertson (45) or of Hill (15), is that selection or
crossbreeding experiments have done little to advance biological understanding beyondwhat was
knownprior to the experiment. AsHill (15, p. 8) stated,“Therewas no real upset to themodels and
arguments of Wright and Lush, or indeed of Fisher.”However, numerous experiments served in
many cases to produce genetically distinct lines (e.g., in terms of mean body weight or backfat
thickness in pigs) used for detailed biological analysis and for inspiring important theoretical
work. Examples of the latter are the probability of fixation of a favorable allele in connection to
selection limits (46, 47), or connections between genetic drift, variability of selection response, and
genetic relatedness (20, 48, 49).Manyof these theoretical ideas have been reenergized owing to the
advent of genomic markers because genotypes (although not necessarily the relevant ones) can
now be identified.

At least two types of statistical problems are encountered in the process of learning genetic values.
First is assessing whether traits have a genetic basis, known as estimation of genetic parameters.
Second is developing reasonably accurate methods for inferring merit or genetic evaluation,
a termcoinedbyCharlesHenderson (1911–1989). A third type of problem, not dealt with here, is
that of deciding what to do with animals that have the best evaluations; examples are inbreeding
avoidance schemes, mate allocation, and exploitation of heterosis if there is nonadditive genetic
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variation. Important contributors to the latter problems were Gordon Dickerson (1912–2000),
who worked on uses of crossbreeding, and Ralph Comstock (1912–1999), who introduced
a selection scheme based on crossbred progeny known as reciprocal recurrent selection (50). Also,
considerable work on beef cattle breed use and crossbreeding, including estimation of heterosis and
breed maternal effects, was carried out by many scientists working at Clay Center, a USDA ex-
periment station in Nebraska; Dickerson’s influence here was marked. This experimental work did
not lead tomethodological breakthroughs or informmuchabout thenatureof inbreedingdepression
orheterosis, phenomenaalreadyknownbymaizebreeders.However, itwasuseful for characterizing
breeds quantitatively under controlled conditions.

Additional difficulties are posed by sex-limited traits, such as milk production in females and
scrotal circumference in bulls, believed to have a positive genetic correlation with fertility in cows.
In dairy cattle, it is relevant to infer genetic merit of males accurately, because of the impact these
have on gain from selective improvement. Cows are evaluated as well, but at lower levels of
precision than sires. As a result of refinements in artificial insemination techniques and of wide-
spread availability of frozen semen and embryos, some dairy bulls can produce thousands of
daughters in several countries, creating an opportunity for international sire evaluation via genetic
connectedness, albeit at the expense of complicated statistical modeling and implementation (51).
International dairy sire evaluation has been carried out in Sweden by a multicountry organization
(Interbull) since the early 1990s, and openmeetings of this organization have fostered advances in
methods for genetic evaluation, especially ingenious computing procedures for big data.

Arguably, most methodological developments in animal breeding have been inspired by post
hoc analyses of data, and Henderson, working at Cornell, was a giant here. This approach is
patent in today’s era of genomics, where data mining (viewed as a fishing expedition) often
supersedes the standard protocol of hypothesis formulation, statistical power calculations given
some experimental design, and then analysis. Henderson (personal communication) seldom took
statistical significance too seriously, either because conceptual repeated sampling of the same
animal breeding scheme (needed to calibrate long-run frequencies) is hard to envisage or because
obtaining standard errors in a realistic model with unknown variance components cannot be done
without recourse to approximations. The emergence of massive amounts of data as a result of
genome projects catalyzed the development of a new field: bioinformatics. Here, data-mining
algorithms interrogate and analyze large, complex data sets often generated outside of statistically
specified protocols. Most of the ideas emerged from computer science, but statisticians com-
plemented their perspective by creating an interphase field called statistical learning (52–54), in
which a probabilistic framework enters into the picture, thus helping to assess uncertainty.
Hypotheses are formulated after the data have been observed, an anathema in classical statistical
thinking. Perhaps the training of animal breeders will place more focus on bioinformatics and
artificial intelligence in the future, a direction that few groups in animal breeding have taken. In
short, a vast suite of statistical difficulties is encountered in animal breeding data, and analytical
paradigms have evolved vastly in the past hundred years. Foundational ideas leading to statistical
genetic models are discussed in the following section.

MILESTONES

Use of Mathematical Models

Use of mathematical models in animal breeding traces back to Lush, who was influenced by
Wright and perhaps to a lesser extent by Fisher. Lush’s (55, 56) use of path diagrams based on
correlations concealed an underlying linear model, as path analysis is a regression model with
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standardized coefficients. Oscar Kempthorne (1919–2000), a British statistician who worked at
Iowa State University, expressed this view often (e.g., Reference 57). It took a few years after
Henderson’s (6) thesis before associating an analysis to a model became routine, even though
assumptions were not always stated precisely. Ideas from Eisenhart (58), such as themixedmodel,
were incorporated in Henderson’s (7) paper on (co)variance components, where he presented
estimators for purely random and for mixed effects models.

Models in animal breeding typically include a mathematical function relating observations to
fixed location (defining the mean of a distribution) parameters and random effects, such as u,
under the assumptions of the infinitesimal model or additional genetic components, e.g., dom-
inance and genetic interactions (epistasis). Additional factors declared random may be herds
(flocks), permanent environmental effects in repeated measures applications, and environmental
effects common to littermates. Random effects contribute to correlations between phenotypes
(owing to genetic and environmental similarity) or between longitudinal records of performance.
The distributions of random effects are indexed by genetic and environmental dispersion
parameters, e.g., components of variance and covariance; the latter appear in multivariate models
or when a multivariate structure is embedded into a model for a single response variate, as with
genetic maternal effects. This setting led to the development of many procedures for estimating
variance and covariance components (7, 59–61). The fixed effects represent unknown constants
that take the same value in every hypothetical repetition of an experiment; declaring an effect to be
random implies that it is drawn from a statistical distribution, so realized values change over
repetition, such as in a coin-flipping experiment. However, the breeding value of a sire is a fixed
entity, as explained earlier, but a sample of distinct alleles from this sire is drawn every time
a gamete is formed (unless the sire is completely inbred), resulting in genetically different progenies.
There are some reasons for a random effect treatment of sires: It makes breeding value estimable
when it may not be so under the fixed effect assumption (11, 62), it produces more stable estimates
in themean squared error sense, it tempers overfitting in prediction of future records, and it allows
probabilistic statements about breeding values even for individuals without records. In today’s era
of genomicmarkers, treating the latter effects as random is amust because the number of quantities
to be inferred (pmarker effects) vastly exceeds sample size (n). This is not distinct from the situation
that arose with the animal model, where the number of breeding values also exceeded sample size.
Nevertheless, there are delicate inferential problems when n< p that animal breeders often ignore
in a somewhat naïve quest to unravel genetic architecture via statistical modeling (5). A con-
tradiction is that the basic model of quantitative genetics assumes random genotypes and fixed
substitution effects, but whole-genome prediction models use realized genotypes (thus fixed) and
randommarker effects. This contradictionmust be kept inmind for properly interpreting concepts
such as genomic heritability and genomic correlations between traits (63).

Most often, model functional forms have been linear. Actually, after Henderson (10), the
following specification (more or less) became a sort of panacea, irrespective of trait and species:
fixed contemporary groups, fixed genetic groups, and random additive effects, plus a residual.
Reasons for this straight-line view are that the basic quantitative genetic model is linear on effects
of unknown loci, that a linear model is analytically and computationally tractable, and that an
additive model leads to an algebra producing a sparse inverse of theAmatrix (64). The additional
assumption of normality yields closed-form likelihood functions, facilitating variance component
inference (59, 65). With some exceptions, proper modeling yielded to the need of computing
a massive number of linear equations for breeding value assessment, and the more equations, the
better. Feldman&Lewontin (66) stated that a linearmodel for genetic data should not be taken as
more than a local approximation, a view strongly rebutted by Kempthorne (67). Although
convenient, linearity is not always a sensible specification, for example, in analysis of growth and
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lactation curves (68), an area with heavy transit in animal breeding. However, nonlinear tra-
jectories can be reproduced using linear splines or reproducing kernels (69), albeit at the expense of
dispensing with beautiful theories on lactation and growth (70). Feldman & Lewontin (66) offer
a reminder that a statistical genetic model and state of nature are often distinct entities.

Assumptions on the form of the joint distribution of the observations and of the random effects
can affect an analysis crucially. The most widely used assumption in animal breeding model
construction has been normality. This is so because of the view that there are a large number of
genes acting additively with infinitesimally small substitution effects. However, this model can be
refuted: With an infinite number of loci and alleles, the probability of finding a significant effect
should be 0. Marker-assisted selection (MAS) (71, 72), introducing the QTL abstraction into
animal breeding, provides a refutation. Subsequent molecular information, however, has in-
dicated that the assumption of many genes acting together on quantitative traits is not un-
reasonable, at least in many instances. For example, using genetic markers, Zhang et al. (73)
reportedQTL affecting fat percentage inmilk in chromosomes 2, 6, 14, 26, and 28, and there have
been similar reports inmany species. TheQTL industry has been productive: A release (datedApril
23, 2014) of theAnimalQTLdb (http://www.animalgenome.org/cgi-bin/QTLdb/index) reported
the following numbers of curated QTL: 10,497 (pigs), 9,180 (cattle), 4,282 (chicken), and 798
(sheep), with 0 QTL in the horse because no papers have been published on equines. Some
statisticalmodels formarker-assisted genetic evaluation require knowledge of recombination rates
between the unobservedQTLand themarkers (74, 75). It is unclearwhat theseQTLare (a genomic
region?), and it may be useful to adapt Koch’s postulates before graduating a QTL: (a) The bad
variant of aQTLmust be found in abundance in cases (diseased or extreme phenotypes) but not in
controls. (b) TheQTLmust bemolecularly identified in cases and cloned. (c) The bad alleles should
cause disease when introgressed into controls. (d) The bad alleles should be recloned from such
controls and verified to be identical to those identified in a. These standards, developed in the
nineteenth century, have not been applied, save for exceptional cases (76). It is not always clear
when and how a putative QTL becomes a legitimate QTL, so caution should be exercised when
used in models for genetic evaluation. Juxtaposing QTLmaps to massive scans of sequences from
analysis of selective sweeps may help in this process (77). That so many QTL affecting so many
traits have been found in somany species suggests that Fisher got it approximately right.However,
Fisher never recommended that one should jump from univariate to multivariate normality (as in
a multiple-trait analysis) automatically, unless some conditions are met. At any rate, most esti-
mates of genetic correlation have been obtained frommultivariate analysis of traits with obviously
distinct marginal distributions (e.g., calving ease scores and gestation length). Perhaps this vio-
lation of theory is ofminor importance if the objective ismerely descriptive (e.g., if x increases, then
y decreases) or predictive, but it is not the best possible use of statistical science.

Epistasis

Theory makes reference to two types of nonadditive (i.e., statistical interaction between allelic
effects) gene action: dominance and epistasis. Dominance, an interaction between alleles at the
same locus, has been discussed mainly in the context of hybridization schemes; Gowen (78) gave
a review of the state of the art by the middle of the twentieth century. In this book, Comstock and
Robinson presented the North Carolina designs I, II, and III for estimating average dominance of
genes, but not much useful theory was developed thereafter. The book also contains a chapter of
historical value byHenderson because it seems to be the first published account of hismixedmodel
equations (in scalar form); Rohan Fernando made the discovery when he was a student at the
University of Illinois, and even Henderson was surprised. Practical exploitation of dominance is
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mainly amating scheme issue. Further,when dominance effects are treated as random, it is difficult
to obtain precise estimates of the corresponding variance within a population because the data
must contain relatives receiving alleles from two lines of descent, such as full-sibs or double first
cousins. The dominance variance can be estimated using a dominance relationship matrix con-
structed (in the absence of inbreeding) from entries of A. Construction is complicated under
inbreeding, as shown by Smith & Mäki-Tanila (79). Animal breeders have often attempted to
account for heterosis or inbreeding depression by using an additive model, resulting in a con-
tradiction. Models for breed crosses typically have been of fixed effects. Recently, Sun et al. (80)
revisitedmate allocation using SNPmarkers andalso estimated dominance genomic variance, as in
Reference 81. How this marked dominance variance relates to genetic variance must be clarified,
because markers are not QTL.

Much has been written about epistasis, and discussions have often been on the semantic side
(82). Fisher (30, p. 408), in a discussion of two-locus epistasis, wrote:

Such dual epistacy, as we may term it, is the only kind of which we shall treat. More complex

connections could doubtless exist, but the number of unknowns introduced by dual epistacy alone,

four, is more than can be determined by existing data. In addition it is very improbable that any

statistical effect, of a nature other than that which we are considering, is actually produced bymore

complex connections.

An intuitive motivation of epistasis assuming no dominance, HW, and linkage equilibrium is
obtained by posing a linear regressionmodel of the phenotype (y) on the number of alleles at each
of two loci Eðy jX1,X2Þ ¼ b0 þ b1X1 þ b2X2 þ b12X1X2, where X1 and X2 denote the number
of copies of the A allele in a given locus, and E(.j.) is a conditional expectation. If the regression
coefficientb12 is null, one has an additivemodel (no epistasis). The impact of an allelic substitution

at locus 1 corresponds to
∂Eðy jX1,X2Þ

∂X1
¼ b1 þ b12X2, indicating that it depends on the number

of copies at locus 2, i.e., epistasis. The trait mean, over the entire population, is
�
EðyjX1,X2Þ

� ¼
b0 þ 2p1b1 þ 2p2b2 þ 4p1p2b12, so

∂EðyÞ
∂p1

¼ 2
�
b1 þ 2p2b12

�
. Similar to breeding value, epistasis

is also frequency dependent. In agreement with Hill et al. (83), the preceding illustrates that when
an allele is rare, the change inmean value frommodification of frequencies is largely dominated by
the additive term, unless b12 is huge. Actually, most of the genetic variance is often additive, even
when epistasis is involved in the biology of the trait. However, the latter must be the case because
complex traits are outcomes of concertedmetabolic reactionswhose enzymes are coded by distinct
genes, andMichaelis-Menten kinetics dictates nonlinearities between substrate concentration and
reaction rates, thus affecting gene product output in some nonlinear manner. Recent evidence of
abundant epistasis for quantitative traits is given by References 84 and 85, using genomic data.
Also, it does not seem to be true that higher-order epistasis is always negligible. For example,
Taylor & Ehrenreich (86) reported interaction among a five-gene system in yeast. However, the
results of Hill et al. (83) indicate that considerable epistasis translates into little epistatic variance.
A corollary might be that, if epistasis is important biologically but does not translate into much
more than additive variance, a plateau is placed on the limits of variance components as detectors
of genetic architecture. Such an analysis would denywhat it is and explainwhat it is not. Lush (19)
provided comfort to breeders by stating that selection for epistatic effects is like building a sandpile
on the seashore: The waves (e.g., recombination) eventually flatten the pile. Animal breeders have
been able to make progress by concentrating on breeding value and ignoring epistasis altogether.
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Although Fisher (30) mentioned epistasis, it was not until Cockerham (87) and Kempthorne
(88) that the variance from such interactions was partitioned into what are called epistatic
components. Cockerhamemployed orthogonal polynomials, andKempthorne used probability of
identity by descent, as developed by Malécot (35). Their assumptions included a large panmictic
population and absence of linkage. The epistatic variance then breaks into several orthogonal
components, depending on the number of loci involved in the expression of the trait. For example,
with two loci, the epistatic variance is the sum of additive 3 additive, additive 3 dominance,
dominance3 additive, and dominance3 dominance. Henderson (89, 90) used this result to infer
dominance and epistatic genetic effects, as well as to predict total genetic value via BLUP, a topic
discussed later.

Models for Other Genetic Effects

In the 1960s, therewasmuch interest inmaternal genetic effects in several livestock species, such as
beef cattle, swine, and even chickens, withmany papers published thereafter. The basic idea is that
even though a maternal influence is environmental with respect to the progeny possessing the
record of performance, differences among damsmay be partly genetic.Willham (91) and Falconer
(92) presented two important models. Willham’s (91) specification embeds a multivariate within
a univariate structure. This result is obtained by positing a direct genetic effect on the phenotype
that is peculiar to the offspring and amaternal genetic effect that, although specific to the dam, acts
as an environmental factor. If direct andmaternal genetic effects are correlated, the genetic variance
includes a covariance between direct and maternal genetic effects, thus the multivariate structure.
Many beef cattle genetic evaluation schemes use variants of Willham’s. In Falconer (92), the
phenotypeof thedamentersas a covariate in themodel for theoffspring record,whichallows linking
of the phenotype of the offspring, e.g., to the dam’s and grand-dam’s phenotypes. Koerkhuis&
Thompson (93) suggested an integrated model. Van Vleck (94) wrote a readable account of
modelswithmaternal and grand-maternal effects and used the term embedded characterswhen
referring to these or similar sources of variation. Reference 95 provides a useful review.

Skjervold& Fimland (96) presented a model similar to that of Willham in which the objective
was to take into account the effect of the fetus that a female carries on her milk production,
a phenomenon reported in dairy cattle. Van Vleck (97) adapted Willham’s model such that the
phenotypic variance included an additive direct genetic variance, an additive variance for fetal
effects, and a covariance between additive direct and fetal effects.Models have been also proposed
for cytoplasmic effects (males do not transmit mitochondrial genes to their offspring) (for relevant
literature, see 94, 98, 99).More recently,Muir (100) and Bijma et al. (101) addressed the problem
of group selection and introduced a model discussed in detail by Bijma (102) in whose paper, for
a group of size n, the phenotype of an individual is affected by its genetic value and by effects from
the n� 1 comembers of the group, called associative effects. This literature also employs the terms
social and interaction effects (in lieu of associative), but this ismisleading: There is no interaction in
the model. The problem has garnered interest from animal welfare perspectives, but a more
realistic representation of competition or interaction among genotypes is needed. Wright’s (103)
work on reciprocal effects may serve as an inspiration, and there is econometric literature onwhat
was the subject of aNobel Prize in Economics (104), addressingmutual effects using the concept of
simultaneity between variables.

A problem of great interest in the 1980s was that of heterogeneous variances across environ-
ments. Hill (105), for example, found that if environmental variance is heterogeneous over herds,
say, and genetic evaluation assumes homoscedasticity, then an excess of individuals is selected
from the most variable environments. This launched much research into models for accommodating
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heterogeneous dispersion, but the interest faded away, although the problem persists and may be
important in genomic selection as well (most models assume homogeneous residual variance).

Epigenetics has received little attention in statistical animal breeding, and its relevance in
livestock isdocumented inReference106. Epigenetics refers to genetically transmissible changes in
gene expression that are not due to DNA structure, such as differential methylation of cytosine.
One of the best-known epigenetic mechanisms is genomic imprinting: If a gene is imprinted in the
female or male germ line (owing to differential methylation), the embryo carries a single effective
copy of the gene. It is still unknown what percentage of the variance of complex traits is
associatedwith imprinting (possibly owing to a dearth of data), but early evidence suggests that
it is perhaps not much. Neugebauer et al. (107) developed a pedigree-based model with pa-
ternally and maternally imprinted additive effects, allowing for their covariance, and analyzed
data for 10 traits on more than 65,000 German Simmental bulls. They found that, at most,
imprinting explained 25% of the additive variance, assuming their model does what it intends
to do. How knowledge of imprinting will improve prediction of phenotypes or breeding values
remains to be seen.

BEST LINEAR UNBIASED PREDICTION (BLUP)

Overview

“Prediction” or “estimation” of breeding values is very important in livestock improvement. This
wording created confusion in the field as, statistically, it is nonsense to estimate a randomquantity,
in our case u, the infinitesimal additive effect. Prediction conveys a futuristic connotation, but in
animal breeding one is often interested in ranking candidates (e.g., bulls) that already exist, to-
getherwith some thatmay not exist yet, such as the future outcome of amating between bull A and
cow B. Lush (55), using path coefficients, gave formulae for assessing the genetic merit of dairy
sires, assuming that means and genetic and environmental components of variance were known.
He found that some regression to the mean, i.e., shrinkage, was needed. Robertson (108) showed
that Lush’s statistic was a weighted average between population information and data, antici-
pating a Bayesian interpretation. Briefly, let s be the transmitting ability (half of the breeding value,
TA) of a sire, and suppose that the distribution of TA in a certain population is s∼Nðm, vsÞ, where
the quantities in parentheses are the mean and variance of a normal distribution. Assume further
that the model for a record measured in the progeny is y ¼ mþ sþ e, where m is the known
populationmean and e is a residual, supposed to have a normal distribution independent of that of
the TA, and with mean 0 and variance ve. If this sire has n progeny with average production
(deviated frommÞ y� m, theweighted average of this deviation and ofm produces as estimated TA

ŝ ¼
�
1
qs

þ n
qe

��1� 1
qs

mþ n
qe

ðy� mÞ
�
¼ mþ nðnþ aÞ�1ðy� m�mÞ. Here, the ratio a ¼ 4� h2

h2
,

where h2 is heritability in the narrow sense; the 4 arises because the intrasire correlation between
records is one-quarter of heritability. The preceding equation is the mean of the conditional

distribution of the TA of the sire, given the progeny records, and b ¼ n
�
nþ ve

vS

	�1

is a re-

gression coefficient (not in the least-squares sense) bounded between 0 and 1. The value b takes
depends on the amount of information on the sire (n) and a measure of uncertainty is

vcond ¼
�
1
vS

þ n
ve

��1

¼ ve

�
nþ ve

vS

��1

; this is equal to Varðs� ŝÞ, which Henderson (9) termed

prediction error variance. The expression also yields the variance of the conditional distribution

30 Gianola � Rosa

A
nn

u.
 R

ev
. A

ni
m

. B
io

sc
i. 

20
15

.3
:1

9-
56

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

W
as

hi
ng

to
n 

on
 1

1/
25

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



mentioned above. Dempfle (109) andGianola& Fernando (110) later showed that ŝ and vcond are
the mean and variance, respectively, of the posterior distribution (Bayesian) of the TA of the sire,
assuming known variances and normality. Bayesian methods were anathema in animal breeding
until the 1990s because such ideas were not taught in biological statistics courses, mainly owing to
the influence of Fisher and notably Kempthorne, who viewed these methods adversely. Blasco
(111) includes a history of some of the issues from an animal breeding perspective, and Grosu &
Schaeffer (112) describe the historical progression of simpler (but obsolete) methods, such as
daughter-dam comparisons, contemporary comparisons, and cumulative differences.

The preceding provides a canonical example of a general theory of prediction developed by
Henderson(8, 9, 11), although it ismainly suitable for linearmodels.Henderson (9) introduced the
best predictor (BP), the best linear predictor (BLP), and the best linear unbiased predictor (BLUP).
BP is the function of the data (linear or not) that minimizes mean squared error of prediction; the
answer is the conditional expectation function. Calculation of BP requires knowledge of all
parameters of the joint distribution of phenotypes and genetic values. BP was shown (26, 113) to
provide an optimum ranking rule: If a set of rout ofn individuals is rankedwith BP, themean value
of the unobservable quantity one seeks to improve by selection is maximized. A simple example of
BP is ŝ above, but the procedure also applies to prediction of vectors of genetic values, given vectors
of observed phenotypes. In BLP, the search for bestness is restricted to linear predictors, and the
same answers can be obtained simply by assumingmultivariate normality. A special case of BLP is
the selection index of Smith (114) and Hazel (115) in plant and animal breeding. Suppose one
wishes to predict the linear aggregate genetic value Mu, where u∼ ðm,GÞ is a vector of additive
genetic values for one ormore traits in a set of animals (or plants) andM is amatrix of appropriate
order containing economicweights reflecting profit per unit of genetic input; ðm,GÞ represents the
mean vector and covariance matrix of the distribution of u. The information comes from
phenotypes distributed as y∼ ðm,VÞ. The result is BLPðMuÞ ¼ MBLPðuÞ, with BLPðuÞ ¼
mþ Covðu, y0ÞV�1ðy� mÞ. Setting B ¼ Covðu, y0)V�1 produces the Smith-Hazel equation
VB ¼ Covðu, y0), developed by Smith (114) for the special case in which all individuals are ge-
netically unrelated and each is measured for p traits; Hazel (115) used path coefficients instead.
Henderson termed their setting equal information case. The classical selection index is a special
case of BLP, and further, the economic weightsM intervene in the calculation only afterBLPðuÞ is
calculated. This is a linear invariance property (also holding for BLUP), and its first reported
application was to select lambs by using data from Wisconsin farms (116). This was a recording
program organized byA.B. Chapman (1908–2004), whowas one of the first two students of Lush
and who was markedly influenced by Sewall Wright. At any rate, BP requires knowledge of V , of
Covðu, y0Þ, of m (usually set to 0), and of the mean value of y.

A crucial breakthrough was the development of BLUP. Henderson assumed that the variance
covariance structureof thepredictands (u) and of the phenotypes was known, but thatEðyÞ ¼ Xb,
the mean vector of phenotypes, was a linear combination of some unknown fixed vector b and of
a known incidence matrix X . BLUP makes a search for the linear predictor with a minimum
variance of prediction error in the class of linear unbiased predictors, in the sense that the expected
value of the predictor is equal to the expected value of u, typically a random vector of breeding
values. The general linear model results from linking breeding values and phenotypes via
y ¼ Xbþ Zuþ e, where X and Z are known incidence matrices, u∼ ðm, GÞ and e∼ ð0, RÞ are
uncorrelated random vectors, andG andR are variance-covariancematrices that are a function of
(known) dispersion parameters. The vector u can also include herd effects and nonadditive genetic
effects, permanent environmental deviations common to all records of the same animal, and the
incidence matrices allow for any type of covariates, such as the time variable in longitudinal
models. The setting holds for any linear model, univariate or multivariate, cross-sectional or
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longitudinal.Under thismodel, the variance-covariancematrix of the phenotypes isV ¼ ZGZ0 þ R,
and BLUPðuÞ ¼ mþGZ0V�1ðy� Xb̂Þ, where b̂ is the generalized least-squares estimator of the
fixed vector. Here, m is assumed known, but it can be given some linear structure (as in genetic
group models) and included in the model as an unknown. Note that if Z is an identity matrix and
m ¼ 0, BLUPðuÞ ¼ Hðy� Xb̂Þ, where H ¼ GV�1 is a sort of heritability matrix. This is the
celebrated animal (additive) model, and genetically, it is a vectorial representation of Fisher’s
infinitesimalmodel that provides for some optimal estimation, in some sense, of fixed and random
effects.

The Mixed Model Equations

In a fortuitous mistake, Henderson discovered the celebrated mixed model equations that can
often be used to advantage for computing BLUP; an account is in Reference 9. Briefly, by using
normality assumptions, the joint distribution that underlies the standard mixed effects model is
that of u and y, given that the dispersion matrices G and R are known. If the joint density is
maximized simultaneously with respect to the fixed and random effects, one obtains the linear
system of equations: "

X0R�1X X0R�1Z
Z0R�1X Z0R�1Z1G�1

#"
b
_

u_

#
¼

"
X0R�1y
Z0R�1y

#
,

where the b-solution and u-solution were later shown to be the maximum likelihood (ML) es-
timator of b (under normality) and the BLUP of u, respectively. The latter is also an estimator of
the BP (under normality) with the fixed vector replaced by a ML estimate, given the variance
components. The mixed model equations are particularly advantageous when n is large, so brute
force inversion of V is not feasible, or when the inverse of G is easy to obtain, as the number of
u-effects can exceed n, the sample size. Henderson et al. (117)mistakenly thought that a likelihood
function was being maximized, so these solutions were termed ML estimators of b and of u. The
latter vector cannot be estimated, as it is random, and its number of levels can exceed sample size,
so the likelihood function is underidentified. Today, it is known that the objective function
maximized byHenderson is a joint posterior density, in a certain Bayesian setting, or a penalized or
extended likelihood.Henderson (personal communication) presented his derivation at a statistical
meeting in North Carolina in the early 1960s. One of the attendants, the famous statistician
C.R. Rao, pointed out that the objective function was not likelihood, and Kempthorne was
bothered by the shrinkage feature of BLUP, which induced estimation bias in identified models.
However, another participant, Irwin Bross (1921–2004), observed that it was a legitimate
Bayesian procedure. Henderson commented, “I almost fell from the podium” (C.R. Henderson,
personal communication).

Henderson’s theory, and especially BLUP, represented the first time that a comprehensive
prediction paradigm appeared in animal breeding. Prior to BLUP, dairy sire evaluation was based
on the herd-mate method, regressed least-squares, and contemporary comparisons, or variants
thereof (112), with data corrected via least-squares and with the resulting deviations regressed
through selection index theory. These methods were advocated byWalter Harvey, a biometrician
with the USDA, and by Alan Robertson. Harvey wrote a least-squares program (118) that was
used extensively in animal breeding; subsequently, a mixed-model package (119) called LSML76
included a BLUP option, incorrectly called maximum likelihood.

Animal breeders often misinterpret the unbiasedness property of BLUP. This method is un-
biased under conceptual repeated sampling over the distribution ½y, u jb, G� but not over
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½y j u,b, G� (5). The latter is the distribution that practitioners have in mind, that is, one where u is
a vector of realized breeding values. BLUP gives biased predictions of specific breeding values,
although the bias can vanish, e.g., in sire models, by letting the number of progeny per sire go to
infinity. This can be seen in Robertson’s weighted average: As n goes to infinity, the regression
coefficient goes to 1, and at the limit, one retrieves the true transmitting ability of the sire. This
asymptotic property is hard to justify when the number of breeding values to be inferred exceeds
sample size or when some individuals do not even possess a record of performance.

Solving the Mixed Model Equations

An obvious difficulty, at least in animal breeding, was that of invertingG in the MME (unless this
matrix had an exploitable pattern, such as block-diagonality) when the order of uwas huge, as in
routine genetic evaluation of dairy cows in the United States. For example, if u is a vector of
additive effects in amultiple-trait model, thenG ¼ G0 ÄA, where Ä is the Kronecker product,G0

has order equal to the number of traits (a dozen, say), and the matrix of additive genetic rela-
tionships among animals is very large. Here, GL1 ¼ G�1

0 ÄAL1. In a remarkable breakthrough,
Henderson (64) discovered thatA�1 could be written directly from a list of parents of the animals.
This enabled use of all available relationships in genetic evaluation, which led to more precise
inferences about genetic values and to the possibility of correcting some biases owing to selection
or to ignoring relationships in variance component analyses. The mixed model equations for
calculating best linear unbiased estimator and BLUP have been employed worldwide for genetic
evaluation of livestock mainly because much work has been done in the area of computing
algorithms. The order of the linear system can be huge, especially for multivariate models, so
iterative methods needed to be developed. This dimensionality issue also occurs when a random
additive genetic effect is fitted for each animal with a record of production and when animals
without records are included, to account properly for genetic covariances between relatives.
Early implementations of iterative methods were made at Cornell University using the
Northeastern Sire Comparison Method (9). This was essentially a cluster model in which di-
agonal terms dominated the off-diagonals in the mixed model equations, so the Gauss-Seidel
algorithm had guaranteed convergence. Later, more suitable methods were proposed, such as
iteration on data (120, 121).

BLUP was adopted earlier in Europe than in the United States for genetic evaluation of dairy
animals. The delay was mainly because the USDA used a method called the modified contem-
porary comparison, which, although less theoretically appealing than BLUP, could be computed
in a feasible manner. In 1988–1989, George Wiggans, a dairy cattle breeder with the Animal
Improvement Program (USDA) in Washington, took a sabbatical at the University of Illinois,
which had become aNational Center for Supercomputing, and joined forces with IgnacyMisztal.
These two scientists were the main forces driving use of the animal model in the United States.
Othermajor contributors to computing strategies have beenKarinMeyer, Steve Smith, Bruce Tier,
Hans Graser, and Arthur Gilmour (Australia); Brian Kennedy (1943–1994) and Larry Schaeffer
(Canada); Just Jensen and Per Madsen (Denmark); Esa Mäntysaari, Martin Lidauer, and Ismo
Strandén (Finland); Vincent Ducrocq and Andres Legarra (France); Eildert Groeneveld (Germany);
Robin Thompson (United Kingdom); Ignacio Aguilar (Uruguay); and Dick Quaas, Paul Van
Raden, Curt VanTassel, DaleVanVleck, andKeith Boldman (United States), amongmany others.
Curiously, the mixed model equations appeared in the statistical theory literature late and
sparingly (65, 122–124). This is surprising because these equations can be used to advantage in
computing algorithms for variance component estimation in generalized mixed effects linear
models (125–127).
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ESTIMATION OF GENETIC PARAMETERS

Important formulae in animal breeding, such as expected direct and correlated response to se-
lection, depend on knowledge of genetic and environmental variance and covariance components,
which translate into heritability and genetic correlations. The same holds for prediction of
breeding value, as BLUP assumes that genetic parameters are known without error. Many
methods for estimating such parameters have been developed over the past six decades, but only
a few have stood the test of time because of lack of either generality or statistically optimal
properties.Methods based on least-squares regression à la Galton or product-moment correlation
between different types of relatives are now viewed as archaic. Hofer (128) reviewed procedures
that had been applied in animal breeding close to the end of the twentieth century.

Today, most animal breeding data come from field records as opposed to randomized studies.
In animal breeding, data sets are large, unstructured, and unbalanced and contain errors and
sources of bias, such as unrecorded preferential treatment. Data are eventually processed at re-
gional or national centers,where pedigree repositories and nowmassiveDNAmarker information
are stored. Statistical methodology was needed to contemplate this messiness, and one aimwas to
separate signal (genetic value) fromnoise (everything else), whichwas complicated by the presence
of a large number of nuisance parameters, such as contemporary groups (e.g., herd-year-season
classes). The simpler analysis of variance type methods used by Lush, Hazel, and other pioneers
lacked generality. Henderson (7), in a classical paper on variance and covariance component
estimation, described three methods for unbalanced data: One was for purely random effects
models, and two were for mixed effects models. The most general, Method 3, computes a series
(often not unique) of least-squares-based quadratics on the data and equates these to their expected
values under the model. If the specification holds, the approach produces unbiased estimators;
however, not much is known about their statistical properties, e.g., sampling distribution, making
it difficult to construct confidence intervals. Unfortunately, these procedures can produce negative
estimates of heritability and, if extended to amultiple-trait setting, estimates of covariancematrices
with negative eigenvalues. Estimates outside of the parameter space are ridiculous, whether or not
a procedure is unbiased. Method 3 was implemented in software that was used amply in animal
breeding (118, 119). Searle, aNewZealand statistician (1928–2013) working at Cornell, clarified
Henderson’smethods and presented these inmatrix form (61, 129). Routine use ofmatrix algebra
in animal breeding started in the 1970s; as Henderson (9, p. 10) predicted, “Much of the pre-
sentation that follows is in matrix notation, and for this I offer no apology as this has rapidly
become an essential tool of any serious student of animal breeding.” This statement was viewed
with skepticism by some, but today it is unusual to see a paper in animal breeding that does not use
matrix algebra.

Another epoch in genetic parameter estimation started when Rao (60) and LaMotte (130)
introduced minimum norm quadratic unbiased estimation and its minimum variance version
(under normality), respectively. By using (a lot of) matrix algebra, muchworkwas done at Cornell
to express these estimators as solutions to the mixed model equations, because the inverse of the
phenotypic covariance matrix was needed in the original representations. Knowledge of the true
parameters is needed for these methods to be optimal, in a sort of self-defeating exercise with
a happy ending if the procedures are iterated. Although they are more advanced than Method 3,
negative values of variance components or embarrassing estimates of covariance matrices could
still be obtained with these procedures. Then ML assuming normality, where these problems do
not occur, became a focal point. ML dates back to Fisher (131), who introduced likelihood as
a rational measure of belief in lieu of probability; the latter was a dangerous concept if cast in
a Bayesian fashion (111). Papers byHartley&Rao (59) andHarville (65) were an overture toML
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estimation of variance components. Subsequently, many algorithms for ML estimation were
derived by using the mixed model equations (11, 65, 132), including the celebrated EM algorithm
(133). It is unclear whether the move toward likelihood-based methods in animal breeding was
a consequence of the availability of something new that could be computed with the mixed model
equations (used iteratively, as ML estimators cannot be written explicitly for most models) or
because of the appeal of the large sample properties of the method. Getting estimates inside of the
parameter space was important conceptually, as researchers were interpreting negative estimates
of heritability as evidence supporting the hypothesis that there was no recoverable genetic var-
iability. This is wrong, as one can simulate datawith non-null genetic variance and obtain negative
estimates, simply because unbiasedness is a weak and perhaps overrated property. Henderson
often spoke with reservation about contrived standard errors, such as those presented in Harvey’s
packages, and notwithout reason, as the formulae used seldom applied to amixedmodel.ML also
offered a solution because model-specific asymptotic confidence intervals can be obtained as a by-
product.

Although biased, the most appealing property of the ML estimator is its consistency: It con-
verges to the true value when information content is infinite, assuming the model holds plus some
extra conditions. However, the well-known downward bias of theML likelihood estimator of the
residual variance in a regression model disturbed some researchers and led to widespread interest
in a method called residual or restricted maximum likelihood, or REML for short. The basic ideas
date to the early1950s, butPatterson&Thompson (122) gave amore general description, suitable
for a mixed effects model. REML was an advanced attempt at accounting for loss of degrees of
freedom incurred in estimating fixed effects, whichwould reduce bias of the estimates; i.e., a search
for lack of bias seemed to be the driver. Patterson&Thompson (122) noted that a modification of
the likelihood led to estimating equations thatwere similar to those inANOVA, at least in balanced
layouts. The logic was not entirely Cartesian: Bias removal always occurs at the expense of re-
ducing precision of estimates. A well-known phenomenon in statistics is the bias-variance trade-
off: Bias reduces variance and oftenmean squared error of estimation.Meyer&Kirkpatrick (134)
recognized this in an animal breeding paper employing penalized ML (REML). The penalty
intends to reducemean squared error, but in practice one seldomknowswhat the optimumpenalty
is for a given data set.

It was hard to choose between REML andML because the twomethods have exactly the same
asymptotic properties. Harville (135) later made a more compelling case for REML, showing it
was themode of a (Bayesian) posterior distribution of the variance parameters after integrating the
fixed effects (over an improper, uniform prior) out of the joint posterior distribution, this being
proportional to the likelihood function. In hierarchical or variance component models, both ML
andREMLare biased, so it would have been unfair to focus the discussion on bias only. In general,
whatever favors REML in this sensemay be compensated by a loss of precision of the estimator. Its
Bayesian interpretation, indicating how uncertainty about fixed effects (acting as nuisance
parameters) is accounted for via integration, is compelling (to some) and clearer than many
convoluted arguments based on likelihood profiling advanced later. REML gradually became
established as a method of choice for estimating genetic parameters, with multiple-trait gen-
eralizations coming shortly thereafter. Robin Thompson, a British statistician with an interest in
animal breeding, was a major player in the process and contributed much to REML software
development. In short, after Henderson’s BLUP, the advent ofML and REMLwas the next major
breakthrough in animal breeding statistical methodology. There was also an impact on statistical
training because animal breeders realized that understanding of joint and marginal distributions
was needed to comprehend a likelihood function. Well-trained animal breeders now take at least
two semesters of graduate-level mathematical statistics.
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An important question that remained to be answered in the post-REML world was what
method of estimation of genetic parameterswas best when the end pointwas prediction. Amethod
that is good for estimating variance components (parameters are never observable, so one is at the
mercy of theoretical arguments) may not be so for predicting observables, e.g., progeny averages
or phenotypes. In this latter case, predictive quality can be calibrated via a suitably designed cross-
validation, such as the one currently employed in genomic selection. Because cross-validation
came into the picture later, the arguments remained theoretical. For example, Gianola et al.
(110, 136) employed Bayesian ideas to answer this question and argued that REML provided
a sensible approximation to the question. In the late 1990s, the state of the art in animal breeding
data analysiswas theREMLþBLUP tandem.REMLhad a likelihood justification,whereas BLUP
had a frequentist one. The question of whether this recombinant produced the best predictive per-
formance remained open. The answer seemed to be negative, as illustrated at least by Harville &
Carriquiry (137).

BAYESIAN IDEAS IN ANIMAL BREEDING

Frequentist and likelihood-based approaches dominated statistical views in animal breeding
during most of the twentieth century, as the teaching of statistics was focused on such methods.
Bayesian ideas reentered into statistics with force by the middle of the century because statistical
scientists such as Savage (1917–1971), Lindley (1923–2013), and Box (1919–2013) began to
question foundations of the field. The work of James & Stein (138) provided impetus: These
authors showed that theML estimator of a vector with at least two parameters in an orthonormal
linearmodel was always inferior (mean squared error sense) to an estimator that shrunk estimates,
later shown to have a Bayesian interpretation. However, this work was too stylized to capture
attention from animal breeders, as the area had become dominated by a pensée unique represented
by BLUP and REML. Nevertheless, Lindley & Smith (139) provided a link between Henderson’s
mixedmodels and hierarchical Bayesian approaches, and Box&Tiao (140) gave technical details
useful for putting Bayesianism into practice.

The Bayesianmethod assigns a prior distribution to all unknowns, including themodel, the link
function in generalized linear models, and the covariance matrices. The prior is combined with
data to obtain a revised state of knowledge conveyed by a posterior, typically multidimensional
distribution. Marginal and predictive distributions and counterparts of the classical hypothesis
tests are based on posterior probabilities. Estimation, forecasting, and model assessment are all
based on a single formula, and results are always conveyed in terms of probability, facilitating
interpretation. Multidimensional integration is needed to obtain exact results, which constrained
use of fully Bayesian methods until sampling algorithms came into the picture and samples could
be obtained without knowledge of the posterior distributions. The contentious point is that prior
distributions are elicited arbitrarily, especially in problems with many parameters. The flexibility,
elegance, and power of the Bayesian construct has its Achilles’ heel at the prior, and it suffices to
examine literature on genomic selection to see how a battery of models can be produced via choice
of more or less arbitrary priors and hyper-priors (coming out of the blue) constructed from
somewhat naïve expectations about genetic architecture (5).

Interest in a Bayesian approach to animal breeding perhaps started as a consequence of
a seminar given at Cornell by the statistician Daniel Solomon on how the selection index could be
viewed as a Bayesian procedure. Henderson (personal communication) stated that this pre-
sentation spurred Rönningen (141) to investigate connections between BLUP and Bayesian ideas.
Dempfle (109) pursued the issue further, showing that BLUP was a matrix-weighted average
between the least-squares estimator and the mean vector of a prior distribution, representing

36 Gianola � Rosa

A
nn

u.
 R

ev
. A

ni
m

. B
io

sc
i. 

20
15

.3
:1

9-
56

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

W
as

hi
ng

to
n 

on
 1

1/
25

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



knowledge about the distribution of genetic effects in a population, along the lines of Robertson
(108). Later, Gianola & Fernando (110) suggested the Bayesian approach as a general inferential
method for solving many animal breeding problems, linear or nonlinear, even when there was
uncertainty about genetic parameters.

Early applications in animal breeding used Gaussian approximations to joint or partially
marginalized posteriors, because of technical difficulties in carrying out the needed integrations.
With the advent of Markov chain Monte Carlo (MCMC) sampling methods, the power and
flexibility of the Bayesian approach could be exploited in full. The most popular MCMCmethod
has been the Gibbs sampler, although it can be used only under certain conditions (142). Gibbs
samplingwasused first in quantitative genetics byGuo&Thompson (143) and thenbyWang et al.
(144) in animal breeding.Many papers usingMCMChave been published thereafter, especially in
genomic selection, a topic discussed later. Use of Bayesian measures for assessing genetic trends in
designed experiments was a useful development (145, 146). Trend assessment is difficult in animal
breeding, and the likelihood-frequentist tandemapproach gives only an approximate answer, even
under normality assumptions. Results depend critically on input genetic parameters, as Thompson
(147) demonstrated. Further, it is not trivial to obtain standard errors of the estimated trend
because selection alters the distribution of phenotypes and genetic values. The Bayesian method
estimates posterior distributions of measures of genetic change, given conditions that permit
ignoring selection. Sorensen et al. (148) proposed a method for monitoring the evolution of
additive genetic variance in the course of selection. Bayesianmethods have been used subsequently
in many areas of genetics, such as gene mapping, QTL detection, population differentiation,
phylogeny analysis, sequence alignment, and genomic selection in animal and plant breeding.
Animal breeders were pioneers, but the road was not free of stones.

NONLINEAR MODELS, SURVIVAL ANALYSIS, AND LONGITUDINAL DATA

Principles of mixed linear model methodology were established gradually, but a linear model,
albeit useful, is not always a sensible statistical specification, especially for traits that are truncated
or subject to censoring. Examples are discrete variables (all or none), commonly used to score
fertility and disease traits, and productive life span or survival time. Hence, challenges remained,
and these were tackled by building upon the foundations set by the mixed model methodology. In
the 1980s and 1990s, animal breeders became more aware of statistical research literature, and
better training in mathematical statistics enabled them to go beyond least-squares and BLUP. The
next challenge was coping with nonlinearity.

Categorical and Counted Response Variables

Close to the end of the twentieth century, animal breeders were using linear models for discrete
variables, even if this produced concern among statisticians and some geneticists. In fact, these
models are still in use today.Wright (149, 150) had already developed the idea of a latent scale on
which allelic substitutions take place and introduced the probit, an inverse probability trans-
formation for dichotomous data, and the threshold model for ordered categorical responses, such
as the number of digits in crosses of guinea pigs. Dempster&Lerner (151) had shown that a linear
model analysis of 0–1 data was plagued by problems, such as frequency-dependent estimates,
leading to incorrect interpretation of genetic parameters. Falconer (152) developed a simple and
elegant method for inferring heritability on such a latent scale. Thompson (153, p. 350) stated, “I
have some unease at using linearmodels for these dichotomous traits” and suggested an intuitively
appealing approach tomixedmodel prediction with binary data, but without formal justification.
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AlthoughML estimation for parameter estimation already had been embedded in the framework
of generalized linear models (154), it was not clear how mixed linear models could be paralleled
when encountering 0–1 or categorically scored variables.

In the 1980s, three papers presented a solution for the threshold model but without offering
a theoretically clean way of estimating genetic parameters concomitantly, as in a BLUP-REML
analysis. Harville & Mee (125) and Gianola & Foulley (155) addressed inferences about fixed
and random effects in mixed models for binary and ordered categorical responses. The two
methods give the same answer when predicting breeding values and estimating fixed effects and
yield BLUP when the data are Gaussian, rather than discrete. Their technique was similar to that
used by Henderson et al. (117) in a derivation of BLUP, although cast in a Bayesian or semi-
Bayesian framework. For ordered categorical data, itwas assumed that therewas a latentGaussian
variate called liability that followed a mixed effects linear model. If liability falls between two
consecutive thresholds, this is equivalent to an observation in the corresponding category of
response. Gilmour et al. (126) proposed a different method for binomial data based on ideas from
generalized linear models. Here, fixed effects were estimated after genetic effects were integrated
out, but assuming a known genetic variance in the liability scale; the genetic variance and genetic
effects were inferred by using an analogy with the mixed linear model. This method also yields
BLUPwhen themodel is linear and the variance components are knownand requires iterationwith
a reweighted set of MME, as the estimating equations are not explicit. Procedures (125, 126)
produceREMLwhen the data areGaussian. Sorensen et al. (156) provided amore general solution
in a Bayesian treatment of ordered polychotomies based on Gibbs sampling.Many countries now
use the threshold model for routine genetic evaluation, following this foundational research plus
considerable software development. Misztal et al. (157) reported one of the early programs
available.

Extensions were for models with Gaussian and categorical responses (158), for multivariate
binary responses (159), and for models where a categorical response variable (e.g., survival)
depended on a count (e.g., litter size) having a Poisson distribution (160). Tempelman&Gianola
(161, 162) presented a nonlinear mixed model implementation for count data that made use of
Laplacian integration to approximate the marginal posterior distribution of the genetic variance.
Historically, the preceding work indicated that animal breeding had transcended the stricture of
linearity imposed by BLUP, although a linear approach is often satisfactory enough for ranking
candidates for selection.

Survival Analysis

Survival analysis has obvious importance in the medical sciences but did not receive much at-
tention in animal breeding until the 1980s,when focus begun to be placed on functional traits.One
such trait is the length of productive life span of an animal (163, 164). Famula (165) presented an
exponential survival model with covariates, and the next step was to adapt proportional hazard
models employed in biostatistics and engineering to the needs of quantitative genetics. The hazard
function is the probability of instantaneous death at time t, given that the individual has survived to
time t, and the key here is modeling hazard in a way that allows for correlations between relatives.
A common feature of life-span data is the presence of censored observations, and this creates
difficulties. For example, itmay be known that a certain cowwas present in a herd at some time but
that she was sold to another herd thereafter for production purposes, without information about
the date of termination of her career. It would be incorrect to use the date of sale as termination
time. Another difficulty is that animals encounter different culling risks at various stages of their
career, so time-changing covariates are needed. Empirical Bayes approaches were used in this
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context for inferring breeding values (164), but fully Bayesian analyses are now available (166),
although they are computationally more taxing. A contentious area has been that of defining
heritability in a survival model. Contrary to the threshold model, in which there is an explicit
Gaussian scale on which the mixed effects model holds, the survival model requires a logarithmic
scale. Genetic parameters can be derived for such scale, but it is not obvious how these translate
into heritability of survival time. However, the concept of heritability, holding for a linear scale
where a linear decomposition of variance is available, is not always necessary. If significance tests
suggest the existence of additive variability, it is to be expected that selection could modify the
population (Fisher’s fundamental theorem), irrespective of whether heritability is low or high. The
difficulty is developing a selection criterion with reasonable accuracy and precision, but the
survival models do provide the counterpart of BLUP. One widely used software program for this
purpose has been the Survival Kit (167), which has been updated since its inception.

Linear and Nonlinear Models for Longitudinal Data

Treatment of repeated measurements has always been of interest in animal breeding, and interest
on repeatability (the correlation between successive records of an animal) dates back to the 1940s
and 1950s (168). However, repeatability does not adequately address the situation in which
successive records follow a time series with some trajectory, as in a lactation or growth curve (68,
169). As a consequence of more intensive recording systems (for instance, it is now possible to
monitor instantaneous milk flow in dairy cattle), there was a need for more refined statistical
methods for longitudinal mixed effects models. Linear (in the parameters, but not necessarily in
time) randomregressionmodels and similar approaches began to be developed in animal breeding,
and a large body of literature on analysis of test-day yields in dairy cattle emerged. Similar
applications have been made in meat-producing species. Main instigators were papers by
Schaeffer & Dekkers (170) and Kirkpatrick & Lofsvold (171), the latter of which was more
mathematically sophisticated but shared a similar spirit.

Briefly, this type of treatment of longitudinal data is as follows. In a randomly drawn sample,
each individual ismeasured longitudinally. For example,male and females from several breeds are
weighed at several phases of their development, from near birth to the adult stage. An objective
may be to study growth patterns in each of the breeds, while taking into account interindividual
variability. Typically, the number of measurements per individual varies, leading to longitudinal
unbalancedness. A hierarchical or multistage model assigns a series of nested functional specifi-
cations, together with distributional assumptions. At the first stage of the model, a mathematical
function (linear or nonlinear) describes the expected trajectory of individuals, and a residual
having some distribution reflects departure of the observations from such a trajectory. At the
second stage, a submodel describes interindividual variation of parameters of the first-stage
specification. A second-stage residual reflects the inability of the submodel to explain com-
pletely the variation of the parameters. Additional stages can be imposed in a Bayesian context to
describe uncertainty about all parameters. A curve is obtained for each combination of fixed
effects of interest and for each individual, and the random treatment of coefficients generates
a covariance function driven entirely by time. Time-dependent heritability and genetic corre-
lations can be obtained. However, these have doubtful biological meaning because genetic
variation and covariation pertain to the regression parameters, and it is at that level that gene
substitutions are postulated to take place. In this type of model, gene effects remain the same
over time, and the resulting correlograms and heritability-grams are driven solely by modifi-
cation of the time variable. Often, the random regression models produce strange results at the
end of the time domain.
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Meyer (172) described a REML implementation of covariance functions, but only for models
that are linear on parameters. Bayesian analyses and somework on semiparametricmethods using
splines were also done, and many papers were published. Much research was done on random
regression models with hundreds of variations of the theme, each offering little additional ad-
vantage. Curiously, as it happened during the progression of BLUP, little or no use was made of
cross-validation. Researchers continued believing that bigger was better, with a main objective
being making massive computations feasible. Many countries eventually adopted the test-day
model (jargon for a linear longitudinalmixedmodelwith randomcoefficients) for dairy cattle, save
for the United States owing to constraints posed by a patent held by Cornell.

Use of Robust Distributions

There has been work in fitting thick-tailed instead of normal distributions (173–177) by using
pedigreed or genomic data. These researchers addressed how univariate and multitrait mixed
effects linear models could be extended to accommodate t-distributions, to attain a more robust
analysis in the sense of reducing influences from outlying data. Using Bayesian measures for
strength of evidence, these studies found that thick-tailed residual distributions produced more
plausible models than when normality was assumed. Gaussian assumptions might be dangerous
for entire probabilistic inference, as opposed to just seeking a point prediction of breeding value.
For example, calculating the probability of correctly ordering breeding values that are neither
independent nor identically distributed, given some data, is an old problem of interest in animal
breeding (9). Reber et al. (178) applied this idea to sire rankings, though they employed Gaussian
assumptions and Bayesian MCMC. A thick-tailed distribution may deliver a ranking of breeding
values (e.g., based on the posterior mean) similar to BLUP but with different probabilities that
a particular animal will truly be best, given the ranking of the posterior means.

Mixture Models

Application of finite mixture models to genetics dates back to Pearson (23). These models can
uncover heterogeneity owing to hidden structure created by, for instance, unknown loci with
major effects. Often, this heterogeneity can be resolved by fitting a mixture, producing, as a by-
product, conditional probabilities that a datum is drawn from one of the several putative, but
unknown, genotypes. Concealed heterogeneity produces curious phenomena: The offspring-
parent regression depends on the mixing proportions, and the genetic correlation between
amixture trait and aGaussian character is a function of themixing proportions and of the ratio of
genetic variances between mixture components (179). Ignoring the heterogeneity can produce
misleading interpretations and unrealistic expectations about response to selection when applied
to a heterogeneous trait. Hidden population structure must be accounted for when using whole-
genome prediction, and this is a typical mixture model problem.

ManyQTL detection procedures have been based on ideas frommixturemodels, and inference
about breeding values using finite mixture models may be warranted in some cases. For example,
mastitis is an inflammation of the mammary gland of cows associated with bacterial infection.
Recording of mastitis events is not routine in many nations, so SCC has been used as a proxy in
genetic evaluation of sires because an elevated SCC is often an indication of disease. SCC on
healthy and diseased animals displays different but overlapping distributions, which are hidden in
the absence of disease recording. Finite mixture models were applied in this context (180–183).
When dealingwith counts (e.g., the number of episodes of a disease), the number of observed zeros
is often larger than what would be expected under some distribution, such as a Poisson distribution.
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Zero-inflated Poisson mixture models can be useful, and Rodrigues-Motta et al. (184) imple-
mented a fully Bayesian zero-inflated Poisson analysis (via MCMC) for the number of mastitis
episodes in dairy cattle. Meuwissen et al. (41) also suggested mixture models for whole-genome
prediction.

Although finite mixtures can approximate any distribution (e.g., the most widely used method
of density estimation is based on mixing N Gaussian distributions, where N is sample size), ap-
plication is not without its pitfalls. Algorithms often do not converge unless all parameters are
identified in the likelihood, producing spurious results because of a phenomenon called label
switching, inwhich the algorithmdoes not recognize the label of the underlying true component of
the mixture. Celeux et al. (185) have warned about this problem, but their advice is often ignored.

Computing Software

Because of the sheer size of animal breeding data sets, much effort has been devoted to making
BLUP, REML, and Bayesian methods computationally feasible, even in multivariate models.
Examples of widely used packages for mixed effects linear models are available (186–191). Some
software for nonlinear models, survival analysis, and limited dependent variables is available, but
it is not general. One example is the already mentioned Survival Kit for survival models (167).
Mistzal and collaborators (http://nce.ads.uga.edu/wiki/doku.php) and Fernando & Garrick
(http://www.biomedcentral.com/content/supplementary/1471-2105-12-186-S1.PDF) developed
programs for large-scale computations using genomic data.Animal breeders are increasingly using
R, a free software environment for statistical computing and graphics (http://www.r-project.org).
For example, Bates & Vazquez’s package Pedigreemm (http://cran.r-project.org/web/packages/
pedigreemm/pedigreemm.pdf) uses R for mixed model analysis, and de los Campos and Perez’s
package BGLR (http://bglr.r-forge.r-project.org/BGLR-tutorial.pdf) uses it to implement geno-
mic BLUP and other Bayesian regression models discussed in the genomic selection section of
this paper.

BIASES FROM SELECTION PROCESSES

Animal breeding data seldom arise from a truly random mechanism. Except in designed experi-
ments, the history of the selection process is known incompletely, because field records are used
that contain missing data in some statistical sense, as also happens with retrospective data in
medical studies. The question of how selection and assortative mating affect estimation of genetic
parameters andprediction of breeding values is an important one.Here,Henderson et al. (10, 117)
and Curnow (192) made significant contributions.

Kempthorne& von Krosigk, in a section of Henderson et al. (117), and later in Curnow (192),
assumed normality and a certain formof sequential selection. They found that theML estimator of
a parameter had the same formwith andwithout selection, provided that all data used for selection
decisions had been used in the analysis. Im et al. (193) found this result to hold for any distribution
andmore general formsof selection. This does not imply that the asymptotic distributionof theML
estimator is unaffected by selection, as one would need to take expectations under the unknown
distribution of the observation’s given selection, rather than under random sampling. Hence,
selection is not completely ignorable if standard errors are sought.

In perhaps the most influential paper on this matter, Henderson (10) assumed known genetic
parameters and multivariate normality and derived BLUP of breeding value under a specific
selection model. He used a formula from Pearson (24) that forces incidence and kinship matrices
to remain constant in conceptual replication. This selection model was received uncritically by
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animal breeders, save byThompson (153).Hewas the first to point out that a crucialmatrix (called
LbyHenderson)must remain constant from repetition to repetition forHenderson’s result to hold.
This is unrealistic, as selection decisions (at least when generations overlap) are made between
and within generations, between and within years, and across and within families, leading to a
sampling scenario where L changes at random, a situation that is not well represented by
Henderson’smachinery. The 1975paper gave conditions for unbiasedness aswell as remedies that
have been largely followed by the animal breeding community. One of these, for example, states
that if selection is based on linear functions of the (unobservable) breeding values, some random
elements in the model (e.g., herds) must be treated as fixed to obtain unbiased predictors of
breeding values. However, if constructing the linear functions onwhich selection is based requires
knowledge of breeding values, there would be no point in predicting anything. This specific setting
does not describe any type of selection encountered in practice and led to the perhaps unfortunate
andwidespreadpractice of treating contemporary groups as fixed. This can be criticized for at least
two reasons. One is that a fixed treatment of contemporary groups burns away information,
because thousands of degrees of freedom are consumed in estimating levels with little information
each (e.g., a herd-year-season class in Finland, where herds are typically small), leading to un-
necessarily large variances of estimates. The second one follows from the James & Stein (138)
result: Treating a vectorwith a large number of effects as fixed leads to estimateswith unnecessarily
large mean squared error. Henderson (10) represents a courageous attempt at tackling unbiased
prediction of random effects under selection, but his approach has its shortcomings.

Im et al. (193) addressed the selection problem by using a likelihood-based framework, and
Gianola& Fernando (110) employed a Bayesian approach. It was shown that, if all data onwhich
selection is based are used for constructing a likelihood or a posterior distribution, selection can be
ignored for point inference (likelihood) and more generally for posterior inference (Bayesian). Im
et al. (193) used a vector r that contains indicator variables denotingwhether a record is present or
absent (owing to culling) and that could be included as part of the data if one had observed the
entire history of the selection process; however, r is seldom known. They showed that if (a) the
conditional distribution of r given the observed andmissing records does not depend on the latter,
and (b) the parameters of the distribution of r are separable (distinct) from those of the data
distribution, then selection can be ignored for likelihood inference. Sorensen et al. (148) adapted
this idea to the problem of inferring genetic variance in the course of selection (in the context of
a structured experiment) and presented a detailed proof for the Bayesian case. Altogether, these
results partially support the claim that a multiple-trait analysis palliates bias, because it often
conveys additional (to that from a univariate analysis) information on history of the selection
process.

Unfortunately, selection is not always ignorable. For example, a genome-based analysis of
carcass traits in a sample of beef cattle ignoring some preselection for growth rate would lead to
incorrect inference. In these instances, it is crucial to attempt tomodel themissing data or selection
process or, alternatively, usemore robustmethods of inference. Results would depend crucially on
the missing data process assumed, however.

THE ERA OF GENOMIC SELECTION

In stylized formulae for expected response to selection, the rate of genetic progress is directly
proportional to the square root of the additive genetic variance, precision, and intensity of se-
lection and inversely proportional to generation interval, and these factors are interdependent.
Early predictors of breeding value had been sought for years, and BLUPmakes use of all available
information on relatives, so it is possible to obtain a prediction of breeding value of animals
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irrespective of their age. The use of DNA MAS had also been of interest for some time, as stated
earlier. Blasco&Toro (17) gave an account of the progression (or lack thereof) ofMAS and of the
associated quest forQTL, an areawhere results have beenbelow expectation.During theMAS era,
some statistical methods were developed, such as scans for QTL detection (75, 194, 195), re-
gression on a limited number ofmarkers (196), and BLUP forMAS (74). One limitation, however,
was the lack of a sufficient number of markers spanning the entire genome. As a by-product of
projects attempting to sequence the genome of several species, a massive number of biallelic
markers emerged thereafter: the SNPs.

In a paper that revolutionized animal and plant breeding, Meuwissen et al. (41) proposed
a relatively simple idea: Given a battery of p SNP and a sample of n individuals genotyped for such
markers, fit amultiple linear regression on the number of copies of a reference allele at each of the p
loci. Because p>>n (this situation will become p>>>n when individual genome sequence data
become available, as p will increase and n will decrease, at least at the beginning), the marker
incidence matrix X, of order n3p, will have rank n, at most, leading to at least p� n regressions
that are not identified in the likelihood. The solutionwas to introduce restrictions on the size of the
coefficients or to use some random effects or Bayesian model, which produces shrinkage of
regressions. There is an issue here of how much effective learning from data takes place about
individual regression coefficients, but this is not important from a predictive perspective (5).
Meuwissen et al. (41) recognized that a BLUP procedure applied to marker effects provided an
answer to this type of problem and also suggested twomethods, later known as Bayes A and Bayes
B, following a Bayesian route via MCMC. Bayes A assigns a t prior distribution to the unknown
marker effects, and Bayes B postulates a mixture of a zero-state and a t-distribution as prior,
although the original formulation of Bayes B had a different spirit (197). By dividing the data into
training (model fitting) and testing (prediction) sets, one can obtain estimates of marker effects or
of genetic value in the training set to predict phenotypes in the testing set. To the extent that these
predictions could be obtained earlier in life, and perhaps with more accuracy and precision than
with pedigree-based BLUP, the rate of genetic progress attained could be accelerated (198).
Whether or notmore cost-effective genetic progress is attained varies with species (17), but animal
breeding industries embraced the concept with enthusiasm, and early results in dairy cattle
breeding have been encouraging (199, 200). However, beliefs that this sort of approach would be
a panacea for lowly heritable traits, where precision of selection is low, have not yet been cor-
roborated. Perhaps this was a naïve expectation: Low heritability implies a low signal/noise radio.
Ametaphormight be that even themost sophisticated computers cannot copewith aweak Internet
signal.

At the onset, it was expected that a battery of markers (now at 800,000 in the most advanced
livestock chips) would capture relevant LD relationships between alleles at markers and at the
elusive QTL. However, Habier et al. (201) found that the better predictive ability of genome-
enabled regressions was perhaps because markers provided a better representation of genetic
relatedness than a pedigree can. Observation of molecular similarity allowed for differentiation of
genetic relatedness in, say, a group of full-sibs. Using pedigree, all full-sibs have the same expected
relatedness, but the realized relatedness varies. This ledVanRaden (202) to suggest thatA in BLUP
could be replaced byG, a marker-based matrix, thus adding extra resolution to the machine. The
suggestion was influential, and BLUP evolved into genomic BLUP (G-BLUP), which rapidly
became a standard method for genetic evaluation of livestock using SNPs. There is an incorrect
perception that, given G, the matrix A is redundant. This does not seem to be so for at least two
reasons. First, pedigree and genomes can be viewed as different inputs into a predictive machine.
Second, G has A as expected value only if, for example, there is no selection or HW equilibrium
holds. It is unclear what the best possible manner of estimating molecular similarity via
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a relationshipmatrix is. A crucial point is that the genetic relatedness thatmatters is that inducedby
similarity at the level of the QTL, but markers are not QTL so there is a disconnectedness that
remains to be closed. Perhaps sequence information will help, but it will introduce additional
problems and challenges. It was also recognized (203) that G-BLUP and a BLUP on markers with
an assignment of a common variance to a normal distribution of random effects were equivalent.
Hence, and for the purpose of obtaining a prediction of the molecularly marked additive genetic
value of an animal, G-BLUP sufficed.

Bayes A andBofMeuwissen et al. (41) became the Adam and Eve of Bayesian genome-enabled
prediction, and a large number of Bayesian linear regression methods emerged thereafter.
Examples are the Bayesian Lasso (204), Bayes C (205), and Bayes R (206), in which R stands for
genomic regions, to name just a fewmembers of an extensive list nicknamed the Bayesian alphabet
(197). These methods were reviewed in Reference 207 and share the same regression model but
differ in the assumptions on the prior distribution ofmarker effects. The end result is that the latter
are shrunk with different degrees of severity. For instance, Bayes B and the Bayesian Lasso shrink
more than BLUP of marker effects. Most methods present trivial differences in terms of predictive
ability unless there is amajor gene segregating, inwhich case procedures basedonmixtures, suchas
Bayes B or perhaps Bayes R, may perform better (208). Other methods, as opposed to assigning
independent prior distribution to marker effects, have incorporated correlations between such
effects, presumably reflective of someLD structures having an impact on predictions (209–210). In
absence of major genes, most methods deliver more or less the same predictive capacity, as shown
vividly byWimmer et al. (211). Using simulation and plant data and a measure of estimation loss
function, these authors found that G-BLUP was quite robust, except when there were some
genomic regions with strong effects. Our opinion is that a QTL (in a loose sense) detected by using
statistical scans seldomgraduates into a causal region. Amore fruitful approach seems to be that of
candidate genes, i.e., a search guided by knowledge of molecular genetics and pathways, an
approach of great promise in oncogenomics, although not devoid of assumptions. Biochemical
considerations may be in error, but the same applies to any prior distribution. Conversely, given
knowledge of aQTL, a good statistical methodwill likely pick it up. The p>>n condition gives the
prior a strong impact on the posterior, and the data modifies the prior state of knowledge little.
This was shown theoretically by Gianola (5) and illustrated by Lehermeier at al. (212) with plant
data.

Another consequence of Meuwissen et al. (41) was introducing cross-validation as a routine
form of calibrating predictive performance. The belief that bigger was better (more traits and
parameters in a model) led animal breeders to think somewhat uncritically that this extra baggage
gives, necessarily, better predictions. However, it is well established in prediction that this may not
be so. A highly parameterized model, even when based on mechanistic considerations (far from
being the case for the multiple linear regression methods used by breeders) fitted to a sample of
a finite size may produce overfit, hampering predictive performance. Also, a cross-validation
distribution reflects all sources of uncertainty, such as errors of specification, errors in parameters,
structural differences between training and testing sets, and environmental variance fluctuations.
Hence, cross-validation confidence bands are typically much wider than differences in predictive
ability betweenmethods (213, 214).Many animal breeders do the cross-validation only once, but
this is equivalent to estimating a parameter without producing a standard error. Discussion on
differences between methods is often about noise, because cross-validation variability is much
larger than such differences.

Goddard (203) and Daetwyler et al. (215) developed formulae for assessing the precision of
genomic selection (the term accuracy is misleading) for a G-BLUP model. Here, an important
factor is the nominal size of the training set, although a large training sample of size Nmay span
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little genetic variation, so some genotype configurations may not be found in the testing set.
However, another set of sizeNwith larger genetic variability may perform better, so the degree of
molecular redundancy is an important factor.Goddard (203) attempted to account for this, but his
formulae require assumptions about effective population size, a parameter notoriously difficult to
estimate well.

A question of practical importance concerning genomic selection for additive effects remained
to be answered: Because only a few (and typically elite) animals are genotyped,what dowe dowith
information (pedigree or phenotypic) on nongenotyped individuals? An international group in-
cluding D. Johnson (New Zealand), A. Legarra (France), I. Aguilar (Uruguay), I. Misztal and
T. Tsuruta (United States), and others has proposed a solution, illustrating how animal breeding
research has become global. Themethod is known as single-step BLUP; a representative paper can
be found inReference216. The perhaps ominously named SS-BLUP has heuristic components, but
it represents a valuable attempt at integrating available genotypic, pedigree, and phenotypic
information and can be implemented nicely using available BLUP machinery.

The genome-enabled prediction models described above are, in some sense, a finite number of
loci counterparts of the infinitesimal specification in Reference 30 but do not accommodate
nonadditive genetic variance. Dekkers & Hospital (217) pointed out limitations of genome-wide
association studies based on additive assumptions, and some of their observations carry to
prediction as well. A challenge is that of positing a functional form relating phenotypes to SNP
genotypes (hundreds of thousands or millions of possible configurations) while allowing for
interaction. Explicit modeling of interactions produces a construct that requires intensive com-
puting (technological constraint) and has excessive complexity, as the n < p problem is exac-
erbated further and regression coefficients on epistatic effects turn out to be nearly zero, owing to
severe shrinkage. Gianola’s (5) warning concerning lack of identifiability applies even more
strongly here. However, the genome is more interactive than what standard quantitative genetic
analysis indicates, often ending up with the genetic variance being mostly additive (83). For
instance, References 84–86 give examples of extensive epistatic interactions. In theory, genetic
variance can be partitioned into orthogonal additive, dominance, additive3 additive, additive3
dominance, and dominance3 dominance components, only under highly idealized conditions, as
mentioned earlier. These include no linkage, butMAS is supposed to exploit LD, and even chance
creates disequilibrium. Hence, theory breaks down.

Evidence frommolecular biology on the importance of gene networks affecting pathways, plus
a lack of good theory, suggested that a nonparametric treatment of the data could be valuable, as
these methods are suitable for complex problems (54). Reproducing kernel Hilbert spaces re-
gression (RKHS) and neural networks (218–221) have been suggested as contenders to the
Bayesian alphabet that are capable of exploiting nonadditivity. RKHS uses notions of genetic
distance and of similarity between individuals and searches for a function with optimal predictive
ability in a rich space of unknown functions. Neural networks are based on their mathematical
property of being universal approximators of functions. Although there have been fairly extensive
comparisons among members of the Bayesian alphabet (e.g., Reference 212), similar studies
involving RKHS are lacking, especially with animals. González-Recio et al. (213, 222) found
a slightly better predictive ability of RKHS over parametric methods for early mortality and feed
efficiency in broilers, but differences were within the range of the noise stemming from the cross-
validation distribution. Heslot et al. (208) compared many prediction methods, including ridge-
regression BLUP, Bayes C-pi (another member of the alphabet that uses a mixture model with
unknown mixing probabilities as prior of marker effects), and RKHS (neural networks and
support vector machines were included as well), using 18 plant breeding data sets. On average,
most methods produced the same predictive correlations; however, by using figures in Reference
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208, if a scatter plot is made for the 18 pairs of predictive correlations, RKHS can be found to be
better than G-BLUP or Bayes C-pi in 16 comparisons. This form of analysis suggests that some
methods are consistently better for a specific prediction problem. In the absence of detailed
knowledge of the underlying basis of a trait, explanations of why a prediction machine is better
than other ones under a set of circumstances are largely based on conjectures.

Jarquín et al. (223) used a reaction norm model with a matrix of similarities among envi-
ronments entering into the covariance structure. This method was applied to 139 wheat lines
genotyped with 2,395 markers with 68 environmental conditions modeled. Genotype 3 envi-
ronment interaction was fitted by constructing a Hadamard product matrix, essentially a RKHS
representation. Predictive ability was much increased by accommodating the environmental and
interaction inputs. Taken collectively, the studies above suggest thatRKHSdelivers at least as good
a predictive performance as parametric methods, but neural networks can be very unstable, unless
implemented via MCMC (221, 224). Hill (15) criticized these methods because an estimate of
breeding value, which standard theory considers the focus of genetic improvement, is not pro-
duced. However, this is not so, as either a neural network or a RKHS can be configured such that
a predicted breeding value emerges. In fact, BLUP andG-BLUP are particular cases of RKHS, and
the latter can be tailored to capture breeding values per se, plus additional forms of genetic signal.
Ornella et al. (225) found that these methods can better classify superior individuals at tails of the
distribution. A study addressing the forward predictive abilities of varying methods is lacking. Is
a linear regression on additive codes of markers better than RKHS one, two, or three generations
ahead?

CONCLUSION

Our historical account indicates that animal breeders have taken up new statistical ideas rapidly
and have also contributed to the field of biological statistics, significantly so in the cases of BLUP,
REML, Bayesian methods, and whole-genome prediction. The main underlying theoretical
foundation in the field is quantitative genetics, which is primarily a descriptive and predictive
science, although perhaps not effective enough for discovery of genes, especially when compared
with the astonishing record of molecular genetics. However, the explosive availability of genomic
and postgenomic data has provided means and opportunities for refining and enhancing pre-
diction of complex traits, an exciting area per se, but not too amenable to reductionist reasoning or
experimentation. A tentative forecast of some future developments and issues is outlined below.

Soon, genome sequence information on individuals will be increasingly available (e.g., the
1,000 Bull Genomes Project), and the expectations are huge. Many authors argue that all causal
mutations will be present in the sequence, and that this advantage will be exploited fruitfully.
There are some caveats here. The first one is that such a view is based on a somewhat linearmap of
the genome, i.e., that a string of bases can produce an accurate genotype-phenotype mapping. The
second one is that more information is better; for instance, instead of 800,000 markers, there will
be 10 million. With respect to the first thought, the DNA-protein process is not linear because of,
e.g., protein folding and pervasive interaction and feedbacks inmetabolism and nonlinear enzyme
kinetics. DNA and methylation information may be crucial for breeding value assessment, but
appropriate environmental modeling (environmentomics) with supplementary omics-type in-
formation should also be considered for buildingmore effective predictionmachines. A study from
human genetics (226) has indicated that integrating mRNA and microRNA expression data
substantially increases predictive performance in the context of personalized medicine; this ap-
proach is a special case of RKHS. Concerning the second argument, one difficulty with an ex-
plosive increase in potential covariate number from sequence information is that the p/n ratio will
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increase markedly. For instance, if 1,000 bulls are sequenced, the p/n ratio will easily surpass
1,000–2,000. The implication is that all linear regression coefficients will become minute because
of strong regularization. One could still use the Bayesian alphabet (given a huge amount of
computing resources) for prediction, but inference about genomic regions must be done with
caution because priorswillmatter evenmore thanwith SNPdata. Perhaps a deluge of genomic and
postgenomic datawill further complicate separation of signal fromnoise because of the temptation
to overmodel. Anyhow, large p/n ratios confer a strong advantage to n 3 n methods such as
G-BLUP or RKHS.

It does not seem sensible to expect that all quantitative traits in animal breeding will be de-
scribed suitably by a linear model with Gaussian residuals. Given the continued growth in com-
puter power and algorithms, there is flexibility for fittingmore realistic error distributions, such as
a t-distribution. Analysis of cross-validation residuals is also an important diagnosis tool, and use
of bootstrapmethods (227) will enable us to obtain realistic measures of candidate-specific cross-
validation reliability. Animal breeders religiously use theory-derived measures of reliability that
convey information content in training data but without regard to how accurate a predictive
machine actually is. A very reliable predictor can have a bad cross-validation performance if it is
inaccurate with respect to realized target phenotypes in a testing set.

Animal breeders should also be cautious about making overly strong assumptions concerning
the dimension of a model. A multivariate analysis is not necessarily better unless some traits enter
as part of the prediction machines as valuable covariates, and not through correlations. Selection
and ascertainment bias should be an issue of concern in genome-enabled prediction, and sources of
bias will need to be assessed more carefully.

The advent of genomic data will also enable us to study relationships between genomic regions
using systems and causal perspectives, e.g., gene networks affecting pathways via graphical and
structural equation models (228–231). Systems analysis, however, is not new in animal breeding
(232), and it is not unfair to state that dividends from this approach have been scarce. The neo-
systems view exploits much more refined data, but understanding the dynamics of a system
requires knowledgeof rate coefficients. To estimate the latter, experiments of a reasonable scale are
needed, but these are virtually nonexistent with farm animals, and going from a yeast or a fly to
a cow is a huge extrapolation.

There have been many contributors of statistical methods to animal breeding during the past
century, so it has not been one of solitude. It would have been neither possible nor entertaining to
honor every contribution or to provide a comprehensive bibliography. Any narrative of history
dependson thenarrators’ experiences and perspectives, thus introducing unavoidable subjectivity.
We attempted to produce an involved narrative, offering opinions thatmay not be shared bymany
animal breeders, as well as introducing personal biases. An alternative recommended narrative,
focusing on genetics issues, is that of Hill (15). We plagiarize the last statement of his paper by
apologizing for factual errors, misrepresentations, and omissions, but opinions we can debate.
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