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Supplementary table 1:

Changes to load under the bottleneck and growth models

Effectively Weak
Strong

neutral closer to neutral closer to strong

B
ot

tl
en

ec
k

S
em

i-
d

om
in

an
t

fixed increase increase increase —

segregating decrease decrease increase unchanged

total unchanged increase increase unchanged

R
ec

es
si

ve fixed increase increase increase —

segregating decrease decrease increase transient increase

total unchanged increase increase transient increase

G
ro

w
th

S
em

i-
d

om
in

an
t

fixed decrease decrease —

segregating increase increase unchanged

total unchanged unchanged unchanged

R
ec

es
si

ve fixed decrease decrease —

segregating increase increase transient decrease

total unchanged unchanged transient decrease

Supplementary Table 1: Changes to load under the bottleneck and growth models.

The effects on fixed, segregating and total load are depicted by selection regime. The

symbol — denotes the cases in which there is no contribution to load both before

and after the change in population size.
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Supplementary table 2:

Estimated mean frequencies in AAs and EAs at different classes of sites

Method Chr. Category # SNVs AAMean AASE EAMean EASE t-score

Non-coding Aut — 300209 0.034 0.00026 0.034 0.00028 0.44

Non-coding X — 8355 0.030 0.0015 0.028 0.0016 1.1

Synonymous Aut — 220391 0.033 0.00030 0.033 0.00032 0.87

Synonymous X — 7001 0.028 0.0016 0.029 0.0018 -0.10

Non-synonymous Aut — 351265 0.014 0.00015 0.014 0.00016 0.40

Non-synonymous X — 10293 0.012 0.00086 0.012 0.00095 0.076

PolyPhen2 Aut D 121280 0.0078 0.00011 0.0076 0.00012 1.2

PolyPhen2 Aut P 65400 0.012 0.00018 0.012 0.00020 0.52

PolyPhen2 Aut B 132047 0.019 0.00024 0.019 0.00026 0.55

PolyPhen2 X D 3205 0.0072 0.00065 0.0079 0.00078 -0.99

PolyPhen2 X P 1957 0.013 0.0012 0.012 0.0012 0.98

PolyPhen2 X B 3948 0.014 0.0011 0.014 0.0012 0.044

Sift Aut D 145986 0.0095 0.00012 0.0093 0.00013 1.6

Sift Aut T 180091 0.018 0.00021 0.018 0.00022 -0.13

Sift X D 4251 0.0099 0.00076 0.0096 0.00082 0.34

Sift X T 5517 0.017 0.0013 0.017 0.0015 -0.29

LRT Aut D 146701 0.0060 8.5e-05 0.0060 9.5e-05 -0.11

LRT Aut N 160179 0.020 0.00024 0.020 0.00026 0.20

LRT Aut U 13845 0.0066 0.00036 0.006 0.00039 2.6

LRT X D 3270 0.0038 0.00037 0.0034 0.00034 0.93

LRT X N 4548 0.017 0.0014 0.017 0.0016 -0.37

LRT X U 886 0.0052 0.0013 0.0046 0.0015 0.40

MutationTaster Aut D 155138 0.0022 2.9e-05 0.0017 3.0e-05 18

MutationTaster Aut A 5089 0.00089 9.5e-05 0.00056 4.8e-05 4.3

MutationTaster Aut N 161169 0.0062 6.8e-05 0.0047 6.7e-05 21

MutationTaster Aut P 9040 0.36 0.0047 0.39 0.0051 -6.5

MutationTaster X D 3860 0.021 0.0021 0.023 0.0023 -1.2

MutationTaster X A 76 0.0010 0.00058 0.00039 0.00017 1.5

MutationTaster X N 5566 0.0030 0.00026 0.0013 0.00022 7.0

MutationTaster X P 131 0.16 0.028 0.16 0.029 0.28
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Supplementary Table 2: Comparison of mean frequencies in AAs and EAs at different

classes of sites, classified according to whether the sites are on the autosomes or X,

and using a variety of different functional classifications (after application of our

bias-correction method). For this table, the data were subsampled down to 3852

chromosomes for AAs and EAs each, to enable X vs autosome comparisons. Note

that the mean frequencies in each row are not significantly different (|t− score| < 2,

with the sole exception of the functional classifications from MutationTaster (which

are highly significant). The unusual results for MutationTaster likely arise because

MutationTaster uses previously estimated population frequencies in its classification,

thus introducing further biases for population genetic analysis that are not properly

addressed by correction method.
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Supplementary table 3:

Estimated mean frequencies with and without bias correction

Method Chr. Category
Without bias correction With bias correction

AAMean AASE EAMean EASE AAMean AASE EAMean EASE

Non-synonymous Aut — 0.014 0.00015 0.014 0.000162 0.014 0.00015 0.014 0.00016

PolyPhen2 Aut D 0.0038 9.3E-05 0.0033 1.0E-04 0.0078 0.00011 0.0076 0.00012

PolyPhen2 Aut P 0.0060 0.00017 0.0053 0.00019 0.012 0.00018 0.012 0.00020

PolyPhen2 Aut B 0.026 0.00035 0.026 0.00037 0.019 0.00024 0.019 0.00026

Sift Aut D 0.0061 0.00013 0.0055 0.00014 0.0095 0.00012 0.0093 0.00013

Sift Aut T 0.020 0.00026 0.021 0.00028 0.018 0.00021 0.018 0.00022

LRT Aut D 0.0028 6.4E-05 0.0025 7.4E-05 0.0060 8.5e-05 0.0060 9.5e-05

LRT Aut N 0.023 0.00029 0.023 0.00031 0.020 0.00024 0.020 0.00026

LRT Aut U 0.0081 0.00048 0.0071 5.0E-04 0.0066 0.00036 0.006 0.00039

MutationTaster Aut D 0.0017 4.3E-05 0.0011 4.3E-05 0.0022 2.9e-05 0.0017 3.0e-05

MutationTaster Aut A 0.0013 0.00034 0.00099 0.00032 0.00089 9.5e-05 0.00056 4.8e-05

MutationTaster Aut N 0.013 0.00024 0.012 0.00025 0.0062 6.8e-05 0.0047 6.7e-05

MutationTaster Aut P 0.26 0.0027 0.30 0.0032 0.36 0.0047 0.39 0.0051

Supplementary Table 3: Comparison of estimated mean frequencies in samples of

3852 chromosomes, with and without bias correction of the functional annotations.

Recall that we observed that all four functional prediction methods typically have

low probabilities of assigned ‘damaging’ status to SNVs where the genome reference

carries the derived allele. Notice that prior to applying the bias correction (using all

SNVs), AAs tend to have higher allele frequencies at putatively damaging sites, as

reported by Tennessen et al. This is likely because most of the reference genome is

of non-African origin. After applying our bias correction, we observe that AAs and

EAs have essentially identical allele frequencies in all functional categories (except

for MutationTaster, likely for reasons discussed above).
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Supplementary table 4:

Estimated mean frequencies using different methods for classifying sites

Category AAMean AASE EAMean EASE T-Stat

Uncorrected (biased) PolyPhen Scores

Prob. Damaging 0.00277 6.79e-05 0.00239 7.31e-05 5.4

Poss. Damaging 0.00452 0.00013 0.00401 0.00014 3.84

Benign 0.0208 0.000278 0.0212 0.000297 -1.34

Bias-corrected PolyPhen Scores

Prob. Damaging 0.00593 8.11e-05 0.00582 8.76e-05 1.23

Poss. Damaging 0.00955 0.00014 0.00948 0.000151 0.488

Benign 0.0154 0.000186 0.0153 2e-04 0.527

Human-independent PolyPhen Scores

3<PSIC 0.0056 0.0002 0.0054 0.0003 0.45

1.5<PSIC<3 0.011 0.0002 0.011 0.0002 -0.06

PSIC<1.5 0.019 0.0003 0.019 0.0003 -0.07

Supplementary Table 4: Comparison of estimated mean frequencies at autosomal

nonsynonymous sites in the Fu et al data, using the full autosomal samples. The top

block of data use the uncorrected (biased) PolyPhen scores, and suggest significant

differences between populations. The middle block of data applies our bias correc-

tion, and shows no significant differences between populations. The bottom block of

data uses an unpublished version of the PolyPhen “PSIC” scores that are calculated

independent of the human reference sequence, and hence are unbiased (kindly pro-

vided by the Shamil Sunyaev lab). These too show no significant difference between

populations. Note that DAFs differ between the second two blocks of data due to

arbitrary choices in score cutoffs.
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Supplementary table 5:

Summary of 1000 Genomes analysis

Category YRIMean YRISE CEUMean CEUSE P-value

Individual-Level Counts

Synonymous 18,141 119 17,992 122 N.S.

Nonsynonymous 9903 104 9825 80 N.S.

Prob. Damaging 2153 31 2111 26 N.S.

Poss. Damaging 1851 27 1836 24 N.S.

Benign 5899 67 5878 55 N.S.

Supplementary Table 5: Summary of 1000 Genomes Analysis. This table shows the

mean numbers of derived alleles per individual in the YRI and CEU populations.

The functional categories (Probably/Possibly Damaging and Benign) were obtained

from PolyPhen, and adjusted using our bias correction method. SEs obtained by

bootstrapping across SNVs. We also obtained identical conclusions (i.e., no difference

between populations) when the analysis was done in terms of DAFs, and also when

we used the human-independent PolyPhen (PSIC) scores.
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Supplementary figure 1:

Demographic scenarios
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Supplementary Fig. 1: The three demographic models that we consider. A) The

Out-of-Africa model estimated by Tennessen et al. [2]. C) Exponential growth.B)

A population bottleneck. All population sizes are given as number of diploid indi-

viduals. In some cases, in order to study the equilibration process, we extend the

growth scenario to include a priod with a constant population size after growth and

the bottleneck model to include a longer period with a reduced population size.
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Supplementary figure 2:

Changes in load shortly after a bottleneck
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Supplementary Fig. 2: The changes in load shortly after a bottleneck. The figure

shows (A) the expected change in fixed load due to mutations that segregated before

the bottleneck and (B) the expected change in segregating load due to the bottleneck

as a function of the selection coefficient. Shown are segregating, fixed and total load

from new and all mutations as a function of time since the population size decrease.

The semi-dominant (C and E) and recessive cases (D and F) are shown with a

selection coefficient in the weak selection regime closer to neutral (s = 0.0003) and

closer to strong (s = 0.001).
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Supplementary figure 3:

Predicted mean derived frequencies as a function of selection coefficient
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Supplementary Fig. 3: Mean derived frequencies predicted as a function of selection

coefficient, for the AA and EA demographies. Notice that in (A) we predict that

for semi-dominant sites AAs and EAs should have essentially identical mean derived

frequencies for all levels of selection. In (B) we predict a small increase in mean

frequencies for AAs at recessive sites with moderate-strong selection. (C) provides

X vs autosome comparisons under the recessive model; note that recessive alleles on

the X experience selection as dominant alleles in males.
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Supplementary figure 4:

Reference bias in PolyPhen 2

Supplementary Fig. 4: Illustration of the reference bias present in PolyPhen 2 [22].

The other functional prediction methods that we considered have a similar bias.

The x-axis shows the mean population frequency of nonsynonymous SNVs in the

Fu et al data (the left-most bins cover very narrow intervals of frequencies since

most of the data are present in these bins). The y-axis plots the fraction of SNVs

in each bin that are classified into each of the three PolyPhen categories: Benign,

Possibly damaging, Probably Damaging; and shown separately according to whether

the genome reference sequence carries the ancestral or the derived allele. Notice that

when the reference carries the ancestral allele, an SNV is classified as Damaging

with a probability that ranges from nearly 40% at low frequencies to ≈20% at high

frequencies (solid red line). In contrast, for SNVs where the reference carries the

derived allele, the fraction of Damaging alleles is near 0% at all frequencies (dotted

red line).
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Supplementary figure 5:

Contribution of different allele frequencies to variance in disease risk
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Older growthSupplementary Fig. 5: The proportional contribution of different allele frequencies to

variance in disease risk, under the Tennessen et al. model for Africans and Europeans.

Shaded regions correspond to a logarithmic scale on the x-axis, which is included to

show the (minor) effects of recent growth.
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Supplementary figure 6:

Comparison of theoretical and simulated frequency spectra
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Supplementary Fig. 6: Comparison of theoretical and simulated frequency spectra

for a constant population size in the (A) semi-dominant and (B) recessive models.

Shown are the results based on the diffusion approximation (solid) and on simulations

(dashed) for several selection coefficients. The population size was taken as N =

14, 474 and the mutation rate as u = 2.36 ·10−8 per generation per site. The number

of runs for each set of parameters was 106.
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Supplementary figure 7:

Comparison of estimated and simulated frequency spectra
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Supplementary Fig. 7: Comparison of the minor allele frequency spectrum in data

from Fu et. al. and in simulations based on the Tennessen et al. model. The spectra

are for a sample size of 3852 chromosomes in AA and EA populations, for both the

data and simulations.
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Supplementary figure 8:

Sensitivity to mutation rate
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Supplementary Fig. 8: Sensitivity of (A) the frequency spectrum and (B) the num-

ber of segregating and fixed sites to the mutation rate. The results are shown for

simulations of the African population but are qualitatively similar for the European

population.
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Supplementary figure 9:

Load in a population of constant size
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Supplementary Fig. 9: Load as a function of selection coefficient in a population of

constant size. Results are shown for the semi-dominant (blue) and recessive models

(red), where the diffusion approximation is shown as a solid line and simulation

results as circles. The population size is N = 14, 474.
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Supplementary figure 10:

Changes to load under the bottleneck and growth models
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Supplementary Fig. 10: The changes to the segregating, fixed and total load under

the bottleneck and growth models. Analogous graphs for the Tennessen et al. model

are presented in Figure 3 of the main text. Changes are measured by comparison to

a population in which the population size has remained constant at the size that it

was at the beginning of the demographic model. In the shaded areas, load is shown

on linear scale; otherwise it is shown on logarithmic scale.
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Supplementary figure 11:

Load in the effectively neutral regime
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Supplementary Fig. 11: Segregating and total load in the bottleneck and growth

models in the effectively neutral regime. The proportion of segregating sites, their

proportional contribution to load, and the proportional change in total load are

shown as a function of time (A) after the bottleneck and (B) since the onset of growth.

The selection coefficient is s = 10−7. In the semi-dominant case, the expected total

load is always s/2 regardless of changes in population size; in the recessive case,

changes to the proportion of segregating sites affect the total load, but this effect is

negligibly small.
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Supplementary figure 12:

Fixed sites in the weak selection regime
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Supplementary Fig. 12: Proportion of sites fixed for deleterious alleles in the weak

selection regime. In all graphs, the selection coefficient is s = 10−4. (A) The equi-

librium proportion as a function of the scaled selection coefficient (α = 2Ns), where

the population size was varied. (B) The proportion as a function of time after the

change in population size in the bottleneck model. (C) The proportion as a function

of time after the change in population size in the growth model.
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Supplementary figure 13:

Equilibrium properties of segregating sites
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Supplementary Fig. 13: Equilibrium properties of segregating sites as a function

of population size in constant population size models. In all graphs, s = 2 · 10−4.

(A) The average frequency of segregating deleterious alleles. (B) The proportion of

segregating sites. (C) Heterozygosity. (D) Segregating load.
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Supplementary figure 14:

Frequency spectrum of weakly deleterious sites with and without growth
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Supplementary Fig. 14: The frequency spectrum of weakly deleterious segregating

sites in models with and without growth. In the shaded areas, frequency is shown

on logarithmic scale; otherwise it is shown on linear scale.
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Supplementary figure 15:

Dependence of the load on the dominance coefficient at equilibrium
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Supplementary Fig. 15: The dependence of the load on the dominance coefficient at

equilibrium. The graphs were generated using the diffusion approximation for the

stationary distribution assuming that the deleterious allele frequency is small [3]. A)

Load as a function of the dominance coefficient h, with s = 0.01 and population

size N = 104, 105 and 106. B) Load as a function of the selection coefficient s, with

h = 0.01 and N = 106.
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Supplementary figure 16:

Equilibrium properties of segregating sites in the quasi-dominant case
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Supplementary Fig. 16: The equilibrium properties of segregating sites in the quasi-

dominant case. In all graphs, h = 0.5 and u = 10−8. A) Frequency of deleterious

alleles as a function of time in simulations with two population sizes, corresponding

to N = 104 and 2 · 104. In both cases, s = 0.01. B) The expected proportion of

segregating sites as a function of population size. C) The expected frequency of

deleterious alleles at segregating sites as a function of population size.
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Supplementary figure 17:

Properties of segregating sites as a function of time for the quasi-dominant

case
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Supplementary Fig. 17: The properties of segregating sites as a function of time for

the quasi-dominant case. In all graphs, h = 0.5. The proportion of segregating sites

after (A) the reduction in population size in the bottleneck model and (C) the onset

of growth. The expected frequency of deleterious alleles at segregating sites after (B)

the reduction in population size in the bottleneck model and (D) after the onset of

growth. The shaded region is the period of growth in the Tennessen model.
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Supplementary figure 18:

Properties of segregating sites at equilibrium in the recessive case
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Supplementary Fig. 18: The properties of segregating sites at equilibrium in the

recessive case, as a function of population size. The selection coefficient is s = 0.01.

(A) The proportion of segregating sites.(B) The sojourn time of deleterious alleles

for different population sizes. The threshold frequency of 1√
2Ns

for each population

size is marked by an arrow with the corresponding color. (C) The average frequency

of deleterious alleles.
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Supplementary figure 19:

Load as a function of time in the recessive case
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Supplementary Fig. 19: Load as a function of time in the recessive case. The selection

coefficient is s = 0.01. A) The load and proportion of segregating sites as a function

of time after the reduction in population size. B) The contribution to load of old and

new mutations as a function of frequency, at the time of peak load (500 generations

after the reduction in population size, indicated by a blue arrow in A). C) Same as

B but for the time since the Out-of-Africa bottleneck, i.e., 50Kya (indicated by a

green arrow in A). D) The load and proportion of segregating sites as a function of

time after the onset of growth. E) The allele frequency distribution of old and new

mutations at the end of the growth period (200 generations after onset, indicated by

an arrow in D). F) The contribution to load of old and new mutations as a function

of frequency at the end of the growth period.
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Supplementary figure 20:

Changes in load under the three demographic models with different dom-

inance coefficients
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Supplementary Fig. 20: Continued on the next page.
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Supplementary Fig. 20: Changes in load under the three demographic models with

different dominance coefficients. h = 0 and 1/2 correspond to the results in Supple-

mentary Figure 10 and are provided for comparison.
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1 Model and simulations

Our basic model considers selection at a single site. We use the standard bi-allelic

diploid model with (in this order) two-way mutation, viability selection, drift and,

in some cases, migration [1]. Specifically, we assume there are two alleles at a site:

normal (N ) and deleterious (D). An N allele mutates to the D allele with probability

u per gamete, per generation and the reverse mutation occurs with probability v.

Unless noted otherwise, we assume that mutation is symmetric, i.e., u = v. The

absolute fitnesses of the three genotypes NN, ND and DD are 1, 1 − hs and 1 − s,
respectively, where s > 0 and h ≥ 0. We focus on semi-dominant (h = 1

2
) and

fully recessive (h = 0) selection because these two cases exhibit the full range of

qualitative behaviors (with selection acting primarily on heterozygotes in one and

only on homozygotes in the other), but we also consider the robustness of our findings

to other dominance coefficients (section 2.4). Allele frequencies in the next generation

follow from Wright-Fisher sampling with these viabilities, sometimes with migration,

and the population size and migration rates vary according to the demographic

scenario considered.

For each demographic scenario, we ran simulations of a single site for the semi-

dominant and recessive cases and varied the selection coefficient such that selection

ranges from effectively neutral to strong. For a given set of parameters, the number

of runs was determined by requiring a sampling error of less than 2% in estimates

of the main summaries (e.g., the mean deleterious allele frequency and squared fre-

quency). Error bars denoting estimates of one standard deviation around the mean

are provided in all the graphs based on simulations, unless they are too small to be

visible. Each run begins with one of the two alleles fixed, where the proportion of

runs that start with each allele is given by the expectation at equilibrium. A burn-in

period of ≥ 10N generations with constant population size N follows in order to

ensure an equilibrium distribution of segregating sites. The initial state is defined as

ancestral and the other state as derived; the derived and deleterious allele frequen-
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cies are recorded at the end of the simulation. The code is written in C++ and is

available upon request.

Demographic scenarios. We consider three demographic scenarios. The most

detailed is the Out-of-Africa demographic model for African-Americans (AA) and

European-Americans (EA) estimated by Tennessen et al. [2] (Supplementary Figure

1A). The model includes the Out-of-Africa split of European ancestors, changes in

population size before and after the split (specifically a severe bottleneck in Euro-

peans following the split and recent rapid growth in both Europeans and Africans)

and migration between the populations after the split (see Supplementary Figure 1A

for details). Finally, the model includes recent admixture between the populations,

which we include in our simulations only when we compare our results to data from

AAs.

While the Tennessen et al. model was parameterized in a diffusion framework, i.e., in

continuous time, Wright-Fisher simulations require discrete numbers of generations

and individuals. We therefore divide the times by 25 years per generation (the

generation time that Tennessen et al. assume) and round the number of individuals

associated with any of the parameters (e.g., growth) to the nearest integer. We

implement migration by sampling alleles from the local population with probability

1−m and from the other population with probability m each generation.

We also study two simpler demographic scenarios. To understand the effects of

recent explosive growth of human populations, we use a simple model of exponential

growth with parameters matching those of the African population in the Tennessen

et al. model (see Supplementary Figure 1B for details). For the purpose of analysis,

this scenario is sometimes extended by adding a period with constant population

size after growth ends. Similarly, to investigate the effects of the bottleneck in

Europeans at the Out-of-Africa split, we consider a simple model of a bottleneck

with parameters matching those of the European bottleneck in the Tennessen et al.

model (see Supplementary Figure 1C for details). Here, we sometimes extend the
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period after the reduction in population size to study longer-term equilibration to

reduced population sizes.

Validating the simulation. We used two approaches to check the validity of the

simulations. For a constant population size, we compared the frequency spectra from

simulations with those expected under the diffusion approximation (cf. [3]) for the

neutral case as well as for several semi-dominant and recessive selection coefficients

(Supplementary Figure 6). We note that obtaining similar frequency spectra implies

that simpler summaries, such as the number of segregating sites under neutrality or

the average deleterious allele frequency at mutation-selection balance, will also be

similar.

For the more elaborate Out-of-Africa demographic model, we compared the minor

allele frequency spectrum from neutral simulations with the spectrum observed at

non-coding sites in Fu et al. [4] We cosider non-coding sites for this purpose as

these are assumed to be under the least selection (Supplementary Figure 7). In

their Supplementary Figure 2A, Tennessen et al. find a close agreement between

the observed spectra and a diffusion approximation under their demographic model.

We find close agreement of our neutral simulations to data from both AAs and EAs

and the slight differences that we do find are similar to those in their Supplementary

Figure 2A [2].

Sensitivity to mutation rate. Unless noted otherwise, we follow Tennessen et

al. [2] in using a mutation rate of u = 2.36 · 10−8 per bp per generation. Given that

recent estimates suggest a lower mutation rate (e.g. Kong et al. [5], Sun et al. [6]),

we examine here the sensitivity of our simulation results to this assumption. We find

the derived allele frequency spectrum to be extremely robust, remaining essentially

unchanged when we double or halve the mutation rate (Supplementary Figure 8A).

As expected, the number of segregating sites and the number of sites fixed for the

derived allele increase (linearly) with the mutation rate (Supplementary Figure 8B).

The increase in the number of sites fixed for the derived allele follows from the in-
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creased rate of fixation in the burn in period (akin to fixations that occur between the

ancestor of humans and chimpanzees and the Out-of-Africa split). Thus, assuming

a different mutation rate will affect some of our quantitative results. Notably, if the

mutation rate in humans is indeed lower than the one we use, as recent estimates sug-

gest, the proportion of segregating sites would be lower, resulting in an even smaller

effect of recent demographic history on load than our analysis suggests (see section

2). Our qualitative finding of a negligible effect on load is unchanged. Moreover, our

results concerning the effects of recent demography on genetic architecture derive

from the frequency spectrum and therefore are unaffected.

2 The effects of demography on load

We assume that fitness is multiplicative across sites and that selected sites are at

Linkage Equilibrium (LE). The absolute fitness of individual i can then be written

as

Wi =
M∏
j=1

wi,j,

where the product is taken over the M sites contributing to fitness and wi,j is the

contribution of site j, which depends on the genotype of the individual and on the

selection and dominance coefficients at that site. Given LE, the contributions of sites

to the expected fitness in the population are independent and therefore

E(Wi) =
M∏
j=1

E(wi,j) ≈ exp(−
M∑
j=1

(2hjsjpjqj + sjq
2
j )),

where pj and qj are the frequencies of the normal and deleterious alleles at site j.

We note that the approximation applies for strong selection because the frequency qj

is small, as well as for weak selection because then the selection coefficient is small.

Finally, taking an expectation over evolutionary realizations (which is equivalent to

an expectation over many sites with the same parameters in a single realization)
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yields

E(W ) ≈ exp(−
M∑
j=1

(2hjsjE(pjqj) + sjE(q2j ))). (1)

The latter expression relates the population dynamics at a site with the overall

reduction in fitness.

Genetic load is defined as the relative reduction in average fitness caused by delete-

rious alleles, calculated as

L =
Wmax − W̄
Wmax

,

where Wmax is the fitness of an individual without deleterious alleles and W̄ is the

average fitness [1]. Denoting the terms associated with a single site in Equation 1

by

l(h, s) ≡ 2hsE(pq) + sE(q2) = s(2hE(q) + (1− 2h)E(q2)), (2)

the fitness function can be rewritten as

E(W ) ≈ exp(−
M∑
j=1

l(hj, sj)).

This form emphasizes that the reduction in fitness caused by a single site generally

depends on the first two moments of the deleterious allele frequency. Specifically, in

the semi-dominant model, it depends only on the first moment

l(
1

2
, s) = sE(q),

and in the recessive model it depends only on the second

l(0, s) = sE(q2).

Moreover, this form shows that l(h, s) provides a natural additive measure for the

expected reduction in fitness caused by a site.

Throughout the manuscript we therefore use l(h, s) as our measure for the contribu-

tion of a site to load. For a model with a single site, it coincides with the definition
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of load, as E(L) = l(h, s). For more than one site,

E(L) ≈ 1− exp(−
M∑
j=1

l(hj, sj)).

Given that in our model, the load from all sites is a simple function of the sum of

l(h, s) across sites, for brevity, we refer to l(h, s) as load.

With a constant population size, the load exhibits three standard dynamic regimes

depending on the scaled selection coefficient (Supplementary Figure 9): (i) An effec-

tively neutral regime, in which α = 2Ns � 1 and the effects of selection are neg-

ligible compared to drift; (ii) a weak selection (or nearly neutral) regime, in which

α = 2Ns ≈ 1 and the effects of selection and drift are comparable; (iii) a strong

selection regime, in which α = 2Ns� 1 and selection dominates over drift.

In what follows our analysis is divided according to these three regimes. When the

population size changes, the boundaries between regimes are affected. Moreover,

the rate at which the equilibrium for a new population size is attained depends

on the summary of the data considered. We consider summaries for segregating

sites, e.g., the proportion of segregating sites and the allele frequency at these sites,

and summaries for fixed sites, e.g., the proportion of sites fixed for the deleterious

allele (which we call fixed state). Specifically, we are interested in the effects of

demography on the contribution of segregating and fixed sites to load, which we

refer to as fixed and segregating load, and in their sum, which we refer to as total

load. We consider the behavior of these statistics for the two simple demographic

models, which together allow us to understand all qualitative behaviors exhibited

under the more detailed Tennessen et al. model (10). For these demographic models,

we primarily consider two modes of inheritance (semi-dominant and recessive).

To simplify our theoretical analysis, we make several reasonable assumptions about

the parameters of the model. For brevity, we focus on the case with symmetric

mutation (u = v) and, because we are considering human populations, we assume

that the population mutation rate per site is small, i.e., that β = 2Nu� 1. We also
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assume that the selection coefficient is small, i.e., s� 1. A summary of our analyses

are presented in Supplementary Figure 10 and Table 1. A detailed description of the

behavior in each regime follows.

2.1 The effectively neutral regime

When selection is negligible compared to drift, the behavior of deleterious alleles is

well approximated by that of neutral alleles. As the properties of neutral alleles (e.g.,

the proportion of segregating sites and frequency spectrum) in models with constant

and varying population sizes have been studied exhaustively (e.g., [9, 10, 11]), here

we focus only on the implications concerning load.

First, we consider how load depends on the selection coefficient at equilibrium for

a constant population size. If deleterious alleles behave like neutral ones, the first

two moments of the deleterious allele frequency distribution do not depend on the

selection coefficient and therefore the load is proportional to the selection coefficient

(see Eq. 2). This explains the linear relationship between selection coefficient and

load shown in Supplementary Figure 9.

At equilibrium, load depends negligibly on the population size. Using the diffusion

approximation for the stationary deleterious allele frequency distribution [3], the

expansion of the load to first order in α and β yields

l(h, s) =
s

2
(1− 1

2
α− 2(1− 2h)β).

Thus, as long as β � 1 and α� 1, the load is well approximated by s/2 regardless

of the population size and dominance coefficient (hence the similarity in load for

the semi-dominant and recessive cases in Supplementary Figure 9). Intuitively, this

follows from the fact that the great majority of sites are fixed, and because selection

is negligible, half of them are fixed for the deleterious allele ( u
u+v

for asymmetric

mutation).
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The same reasoning implies that changes in population size will have a negligible

effect on the total load in this regime (Supplementary Figure 11). While changes in

population size affect the proportion of segregating sites and thus their contribution

to load, so long as the population mutation rate remains negligibly small (β � 1), the

segregating load will remain negligible compared to the fixed load. In the bottleneck

model, the proportion of segregating sites decreases to a new equilibrium after the

reduction in population size (Supplementary Figure 11A). This explains the decrease

in segregating load, which is balanced by an increase in fixed load (Supplementary

Figure 10). By the same token, in the growth model, the segregating load increases

but is balanced by a decrease in fixed load, resulting in a negligible change to the

total load (Supplementary Figure 10 and Supplementary Figure 11B). In this case,

however, segregating sites are still far from their new equilibrium at present (see the

next section).

2.2 The weak selection regime

In the weakly selected regime, selection and drift have comparable effects on the

dynamics of deleterious alleles. As a result, at equilibrium, even moderate differences

in population size can affect the balance between selection and drift. Changes in

population size also shift the balance, and are followed by transient changes at fixed

and segregating sites until a new equilibrium is attained. To understand these effects,

we consider the behavior at equilibrium and the rate at which it is approached. For

this purpose, it is helpful to use the low mutation rate (LMR) approximation in

which mutant alleles at a segregating site have a single origin; in other words, we

ignore mutations that arise during the sojourn of a mutant allele from the time it

arises on a background fixed for the other allele to the time it reaches fixation or loss

in the population.

The effect of population size on the proportion of sites fixed for the normal

and deleterious alleles. At equilibrium, the rate at which deleterious alleles arise
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and fix is equal to the rate at which normal alleles arise and fix. This balance can

be written as

2Nupπ(−2Ns, h,
1

2N
) = 2Nvqπ(2Ns, 1− h, 1

2N
),

where π denotes the fixation probability, which depends on the scaled selection and

dominance coefficients and on the initial frequency [12] (because s � 1, we ignore

second order terms in s). For s� 1 and any dominance coefficient, this yields

q

p
=
u

v

π(−2Ns, h, 1
2N

)

π(2Ns, 1− h, 1
2N

)
≈ u

v
e−2Ns.

Namely, at equilibrium, the proportion of fixed deleterious sites declines exponen-

tially with the scaled selection coefficient α = 2Ns (Supplementary Figure 12A).

Thus, for a given selection coefficient s, the population size has a dramatic effect

on the proportion of sites fixed for the deleterious allele, declining from the neutral,

mutation-driven, proportions for s� 1
2N

to approximately 0 for s� 1
2N

.

Importantly, however, when the population size changes, the new equilibrium pro-

portion may be attained very slowly. The fractions, p(t) and q(t), of sites fixed for

the normal and deleterious alleles t generations after a change in population size

(assuming p(t) + q(t) = 1) are well approximated by the model

d

dt

(
p

q

)
=

(
−2Nauπ(−2Nas, h,

1
2Na

) 2Navπ(2Nas, 1− h, 1
2Na

)

2Nauπ(−2Nas, h,
1

2Na
) −2Navπ(2Nas, 1− h, 1

2Na
)

)(
p

q

)
,

where Na is the population size after the change, and fixation times (on the order

of 4Na generations) are neglected. An additional contribution from sites that were

segregating before the change is considered below. In this approximation, the change

in the fraction of sites fixed for the deleterious alleles is

q(t) = qeqa

(
1− e−

t
τ

)
+ qeqb e

− t
τ ,

where qeqb and qeqa are the equilibrium fractions corresponding to the population sizes

before and after the change, and

τ =

[
2Na

(
uπ(−2Nas, h,

1

2Na

) + vπ(2Nas, 1− h,
1

2Na

)

)]−1
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is the timescale of the exponential approach to the new equilibrium. For the semi-

dominant case and s� 1, this time scale is well approximated by

τ ≈
[
u

α

eα − 1
+ v

α

1− e−α

]−1
,

demonstrating that it is mutation-limited. This is also true for other dominance

coefficients. In other words, following an instantaneous change in population size,

the proportion of sites fixed for the deleterious allele will change extremely slowly, at

a rate that is inversely proportional to the mutation rate (Supplementary Figure 12B

and C).

Because the equilibrium is reached slowly, recent demographic changes in humans

should have had little effect on the proportion of sites fixed for the deleterious alleles

and hence on the fixed load. The bottleneck at the Out-of-Africa split is estimated to

have reduced the population size from ∼ 14, 000 to 1, 800 approximately 2000 gener-

ations ago [2]. Once a new equilibrium is reached, there will be a substantial increase

in the proportion of fixed deleterious alleles; for example, for a semi-dominant dele-

terious allele with selection coefficient of s = 10−4, it would increase it from 0.05

to 0.4. Yet the change over 2000 generations is minimal, increasing this proportion

only by 3 · 10−5. The estimated 200 generations since the onset of rapid growth in

humans is similarly much too short a time period for any measurable effect on the

fixed load (which in this case would decrease over large time periods).

The effects of population size on segregating sites. First we consider how

the equilibrium properties of segregating sites depend on population size in models

with constant population size (Supplementary Figure 13). The deleterious allele

frequency at segregating sites decreases with increasing population size, because the

efficacy of selection is greater in larger populations (Supplementary Figure 13A).

In turn, the proportion of segregating sites increases with population size due to

the (linear) increase in the number of mutations that enter the population every

generation (Supplementary Figure 13B). This is true not only for the population as

a whole but also for subsamples from it of any size (Supplementary Figure 13C).
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Finally, the deleterious allele frequency and proportion of segregating sites decrease

with increasing dominance coefficient, as stronger selection in heterozygotes results

in stronger selection on deleterious mutations (regardless of their frequency) and thus

in a shorter sojourn through the population. Thus, in larger populations or if the

dominance coefficient is greater, we expect a greater proportion of segregating sites

with deleterious alleles at lower frequency.

The total load decreases monotonically when the population size increases (as can be

shown using the stationary distribution based on the diffusion approximation [3], for

example). This is not true of the segregating load, because the increase in the mu-

tational input can have a greater effect than the increase in the efficacy of selection

(Supplementary Figure 13D). Indeed, for selection coefficients closer to neutrality,

the increase in mutational input (and the proportion of segregating sites) dominates,

causing the segregating load to increase with population size (akin to the behav-

ior in the effectively neutral regime). In contrast, for selection coefficients closer

to the strong selection regime, the increase in the efficacy of selection dominates,

leading to a reduction in segregating load (akin to the stronger selection regime; see

section 2.3).

Next we consider the effects of a change in population size. We begin by noting that,

for a given population size, the expected sojourn time of deleterious and beneficial

mutations that reach fixation is shorter than that for a neutral mutation and is

thus on the order of 4N generations or less [3]. This implies that on the order of

4Na generations after a change in population size, most of the old mutations (i.e.,

those that segregated before the population size changed) have been absorbed (either

due to loss or fixation), and replenished by new mutations (that arose and spread

through the population at its new size). When this turnover process is complete,

new segregating sites approach their equilibrium proportions (given a background of

fixed sites).

In the bottleneck model, the reduction in the efficacy of selection causes an increase
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in total load, where the behavior of the components of load can be understood as

follows (Supplementary Figure 2). Focusing first on the contribution of old mutations

to the fixed load: When old mutations are absorbed, the reduction in the efficacy

of selection leads more deleterious alleles to fix than would have had the population

size remained constant (at the larger size), eventually resulting in an increase in fixed

load. The increase can be approximated by

∆(s, h, u,Nb, Na) =

∫ 1

0

(π(−2Nas, h, x)− π(−2Nbs, h, x)) f(x;h, 2Nbs, 2Nbu)dx,

where f(x;h, 2Nbs, 2Nbu) is the stationary distribution before the change in popula-

tion size [3]. The increase is maximized for selection coefficients at which the change

in population size leads selection to transit from strong to weak, and is negligible

outside this range (Supplementary Figure 2A; explaining why it is more pronounced

in Supplementary Figure 2C and D than in E and F, correspondingly). The increase

in deleterious fixations and load is then followed by a long-term, slower increase in

the fixed load due to new mutations (Supplementary Figure 2C-F). In the parameter

regime where the fixation of old mutations makes a substantial contribution to load,

there is also a transient increase in segregating load before the mutations fix (in

Supplementary Figure 2C for example). These effects are more pronounced in the

recessive case, because of the greater frequency and proportion of segregating sites.

Now focusing on the segregating load (Supplementary Figure 2B): when segregating

sites attain equilibrium, the reduction in population size causes a decrease in segre-

gating load for lower selection coefficients (Supplementary Figure 2C and D) and an

increase for higher selection coefficients (Supplementary Figure 2E and F). Thus, for

higher selection coefficients in the weak selection range, both old and new mutations

contribute to the transient increase in segregating load observed in Supplementary

Figure 10. For the lower selection coefficients in this range, the segregating load de-

creases both in the short and long term but the fixation of old mutations still results

in an overall increase to the total load (Supplementary Figure 10). Importantly,

however, on the timescale estimated for the bottleneck at the Out-of-Africa split
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(vertical line in Supplementary Figure 2), these effects amount to a tiny increase in

total load (Supplementary Figure 10).

What about in the case of growth? Human population growth is thought to have

started a couple hundred of generations ago, ending with an effective population size

in the hundreds of thousands and starting from a size that was thirty-fold smaller [2].

Given the estimated growth parameters, there was insufficient time for the deleterious

alleles that segregated before the onset of growth to change their frequencies substan-

tially. Indeed even with the increase in the efficacy of selection as the population size

increases, in this regime, selection is too weak to have caused a substantial change

in allele frequency over hundreds of generations (although it could have caused the

absorption of very rare or very high frequency alleles). After growth, the resulting

frequency spectrum of deleterious alleles thus reflects a superposition of the spec-

trum of segregating sites before growth and of the spectrum at the large number of

sites in which mutations were introduced after the onset of growth (Supplementary

Figure 14). The many new mutations remain at low frequencies. Because of an

increase in the proportion of segregating sites, the segregating load increases at the

expense of fixed load, but with negligible effects on the total load, given both the

low frequency of new mutations as well as the opposing contributions of normal and

deleterious mutations (Supplementary Figure 10).

2.3 The strong selection regime

In this regime, purifying selection is sufficiently strong to prevent deleterious alleles

from reaching high frequencies, let alone fixation. It follows that there is only seg-

regating load. If we assume that the deleterious allele frequency is small and that

the dominance coefficient is sufficiently large, then the load is well approximated

by

l(h, s) ≈ 2hsE(q).
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Stated another way, when selection against heterozygotes is sufficiently strong, then

deleterious homozygotes would be too rare to affect load. Under these assump-

tions, the diffusion approximation at equilibrium with a constant population size [3]

yields

E(q) ≈ u

hs
,

implying that the load is well approximated by

l(h, s) ≈ 2u.

We refer to the cases where these conditions are met as quasi-dominant.

In the recessive case, the load depends on the second moment of deleterious allele

frequency. Assuming once again that the deleterious allele frequency is small, the dif-

fusion approximation at equilibrium with a constant population size [3] yields

E(q2) ≈ u

s
,

implying that the load is well approximated by

l(0, s) ≈ u.

The expressions for load in both cases are identical to the classic ones for mutation-

selection balance, which are derived assuming an infinite population size [12]. They

imply that at equilibrium, the load depends neither on the selection coefficient (ex-

plaining the plateaus in Supplementary Figure 9) nor on the population size.

When the dominance coefficient is sufficiently small, however, the load does depend

on population size (Supplementary Figure 15). This will be the case when selection

against heterozygotes is weak, i.e. when 2Nhs� 1 does not hold, as then both mo-

ments of deleterious allele frequency make comparable contributions to load. Holding

the selection coefficient and population size constant, in this range of dominance co-

efficients, the load varies continuously with h between u and 2u (Supplementary
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Figure 15A). In turn, holding h � 1 and N � 1 constant, increasing s also leads

the load to vary from u to 2u (Supplementary Figure 15B).

Next, we consider the effect of changes in population size, for the quasi-dominant and

then the recessive case. We show that in the quasi-dominant case, the load remains

constant and is well approximated by the classic derivations for mutation-selection

balance. In the recessive case, the load exhibits transient changes before it returns

to its equilibrium level.

The quasi-dominant case

In the quasi-dominant case, we can assume deleterious alleles are sufficiently rare

that selection against deleterious homozygotes can be ignored and selection has neg-

ligible effects on average fitness. Under these conditions, we can approximate the

trajectory of a deleterious allele using a branching process (cf. [13]), in which the

number of copies that a given deleterious allele gives rise to in the next generation

follows a distribution that is independent on the frequency of deleterious alleles in

the population.

Consider a single deleterious allele that was introduced by mutation at time t = 0 and

denote by Z(t) the number of deleterious alleles that it gives rise to at generation t.

The number of mutant alleles in the next generation can then be expressed as

Z(t+ 1) =

Z(t)∑
i=1

Xi(t),

where Xi(t) denotes the number of offspring of the ith allele at time t and i =

1, . . . , Z(t). We denote the expected number of offspring of a single allele by λ, i.e.,

E(Xi(t)) = λ; if we ignore mutations back to the beneficial allele then λ = 1 − hs
and if we include them then λ = 1− hs− v. The expected number of alleles in the

next generation is then

E(Z(t+ 1)) = E(

Z(t)∑
i=1

Xi(t)) =
∞∑
j=1

Pr(Z(t) = j)jE(Xi(t)) = E(Z(t))λ, (3)
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or

E(Z(t)) = λτ . (4)

Now consider the expected number of deleterious alleles at mutation-selection bal-

ance. For this purpose, we measure time backwards from the present. We denote by

Yτ (τ) the number of mutations introduced τ generations ago and by Yτ (t) the num-

ber of alleles that they give rise to at time t. The number of deleterious alleles at the

present can then be expressed as the sum of contributions from all the mutations in

the past, i.e.
∑∞

τ=1 Yτ (0), where, from Equation 4,

E(Yτ (0)) = Yτ (τ)λτ .

In turn, the expected number of new mutations in a given generation is well approx-

imated by

E(Yτ (τ)) = 2Nu.

It follows that the expected deleterious allele frequency is

E(q) =
1

2N
E(

∞∑
τ=1

Yτ (0)) =
1

2N

∞∑
τ=1

E(Yτ (τ))λτ =
u

hs
,

and thus the expected contribution to load is 2u - well-known results for mutation-

selection balance.

Next, we consider a changing population size. We denote by N(t) the population

size t generations in the past and by a(t) = N(t−1)
N(t)

the proportional change in one

generation. Now the expected number of new mutations introduced at a given time

is proportional to the population size

E(Yτ (τ)) = 2N(τ)u,

but the fraction of new mutations in the population remains constant (u). Simi-

larly, the expected number of alleles in the next generation is affected by changes in

population size

E(Yτ (t− 1)) = λa(t)E(Yτ (t)),
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but their fraction is not, because their increase in number is precisely offset by the

increase in population size

E(
Yτ (t− 1)

2N(t− 1)
) = λa(t)

N(t)

N(t− 1)
E(

Yτ (t)

2N(t)
) = λE(

Yτ (t)

2N(t)
).

It follows that the proportional contribution of alleles to the present is the same as

that in a constant population size:

E(
Yτ (0)

2N(0)
) = uλτ ,

leaving the deleterious allele frequency and the load at the present unchanged (at u
hs

and 2u). In other words, the expected frequency of deleterious alleles and therefore

the load follow the same deterministic dynamic as they do in a population of constant

size, because when the population size changes, the increase (decrease) in the copy

number is precisely offset by the increase (decrease) in population size.

We note that incorporating reverse mutation and migration will not change this

conclusion. Reverse mutation would reduce λ, while introducing migration would

be similar to both decreasing λ (due to migration of deleterious alleles out of the

population) and increasing the mutational input (due to migration of deleterious

mutations into the population).

Our results clarify how the expected deleterious allele frequency and proportion of

segregating sites at equilibrium depend on population size. When the population

mutation rate is sufficiently low, a site switches intermittently between having no

deleterious alleles and having a single mutation (by origin) in the population (Sup-

plementary Figure 16A). Under these conditions, in a larger population size, the

mutational input is larger and thus the proportion of time that a site is segregat-

ing increases (Supplementary Figure 16B). Because the trajectory of a mutation in

terms of numbers of copies does not depend on the population size, the frequency

of the mutation is proportional to 1/N , so the expected frequency of deleterious

alleles at segregating sites scales with 1/N (Supplementary Figure 16C). In turn,
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when the population mutation rate is sufficiently high, deleterious alleles are almost

always present and often have several mutational origins. Under these conditions,

the proportion of segregating sites approaches 1 (Supplementary Figure 16B). Given

that the expected frequency at segregating sites is x = q
S2N

, it follows that the allele

frequency asymptotes to q = u
hs

(Supplementary Figure 16C). In turn, the variance

in allele frequency decreases with population size and asymptotes to 0 in the infinite

population size limit.

After a change in population size, a new equilibrium is attained much more rapidly

in the strong selection regime because of the rapid turnover of deleterious alleles (see

Supplementary Figure 17). However, load is unaffected.

Thinking in terms of the branching process helps us to evaluate previous conjec-

tures about the possible effects of human growth on deleterious alleles. For example,

Keinan and Clark [15] suggest that “Some degree of genetic risk for complex disease

may be due to this recent rapid expansion of rare variants in the human population”.

It is indeed the case that the expected copy number of deleterious alleles should be

greater under exponential growth; specifically, for a population growing at a geomet-

ric rate γ per generation, the copy number will change at a geometric rate of λ + γ

per generation, which will result in an increase if λ + γ > 1. Moreover, population

growth increases the sojourn time of a deleterious mutation and, when λ + γ > 1,

there is a finite probability it would never go extinct [16]. Importantly, however, the

expected frequency of quasi-dominant deleterious alleles remains constant, so human

population growth has no effect on load.

The recessive case

In this case, the load at equilibrium is again insensitive to population size, but

the underlying reasons are quite different than in the quasi-dominant case. In the

recessive model, a deleterious allele behaves neutrally while at low frequencies. As

a result, its sojourn time (i.e., the expected time that it spends at frequency x) is

well approximated by that of a neutral allele (Supplementary Figure 18B). When
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the frequency x reaches 2Nsx2 ≈ 1, selection on homozygotes for the deleterious

alleles kicks in, and the allele should spend little time above this frequency. In the

low mutation rate (LMR) approximation, we can therefore approximate the sojourn

time of a recessive deleterious allele as

τ(x) ≈


2(2N−1)

1−x if 0 ≤ x ≤ 1
2N

2
x

if 1
2N
≤ x < 1√

2Ns

0 if 1√
2Ns
≤ x < 1

,

where the expressions for x < 1/
√

2Ns are the sojourn times (in generations) for

a neutral allele (Fig 18B). In this approximation, the expected contribution of a

deleterious mutation to load is then

s

∫ 1

0

x2τ(x)dx ≈ s

∫ 1√
2Ns

0

x2
2

x
dx =

1

2N
,

and, given that the expected input of new mutations per generation is 2Nu, the

overall expected load is

l(0, s) ≈ 2Nu
1

2N
= u.

In other words, (in the low mutation limit) for a given population size N , a re-

cessive allele behaves neutrally up to a frequency of N−
1
2 , resulting in an expected

contribution to load that is proportional to N−1. In turn, the mutational input is

proportional to N , so they exactly offset.

This back of the envelope approximation also provides an intuitive explanation for the

way in which the properties of segregating sites at equilibrium depend on population

size (Fig 18). First, we consider the proportion of segregating sites (Fig 18A). When

the population size is sufficiently small for the LMR approximation to apply, the

proportion of segregating sites can be approximated by the ratio of the sojourn

time of a single mutant through the population to the time between appearances of

mutations, namely:

S2N ≈
∫ 1

0
τ(x)dx

1
2Nu

≈ 2Nu(ln(2N/s) + 2).
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In a larger population size and hence with a larger mutational input, mutations of

different origin will overlap, resulting in a slower increase in the proportion of seg-

regating sites with population size. When the mutational input becomes sufficiently

large, this proportion asymptotes to 1. Next, we consider the frequency of deleteri-

ous alleles. In the LMR approximation, the frequency spectrum of segregating sites

can be approximated using the neutral sojourn times up to the threshold frequency
1√
2Ns

(Fig 18B), yielding an average frequency of E(x) ≈
2√
2Ns

2+ln 2N
s

. As the population

size increases, such that mutations of different origins overlap, the decrease in aver-

age frequency becomes slower and asymptotes to E(x) = E(q) =
√
u/s (Fig 18C).

Lastly, the turnover time of segregating sites for a given population size N is on the

order of 2
√

2N
s

. As it was for other regimes, this is the time scale for the process of

equilibration following a change in population size.

We now consider the implications for the bottleneck and growth models. In the

bottleneck model, after the reduction in population size, there is an increase in load

followed by a decrease back to the equilibrium level (Supplementary Figure 19A). The

transient increase in load (blue arrow in Supplementary Figure 19A) is dominated

by the contribution of mutations that segregated before the decrease in population

size. The proportion of sites that segregated before was greater and their frequencies

lower than after the population size reduction, and while these segregating mutations

are gradually absorbed, some of them will drift to higher frequencies, generating a

transient surge in load (Supplementary Figure 19B). In turn, the newly introduced

mutations have yet to reach equilibrium frequencies and, given that the contribu-

tion of the lower frequencies to load is much smaller, they contribute negligibly. In

the Tennessen et al. model, the time that elapsed since the bottleneck is longer

and the segregating sites are therefore closer to the new equilibrium (green arrow in

Supplementary Figure 19A). Correspondingly, the relative contribution of new muta-

tions is greater and their frequency distribution is closer to equilibrium with the new

population size, and yet some contribution from the older mutations remains (Sup-

plementary Figure 19C). These considerations also explain why load exceeds above
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equilibrium levels in the strong selection regime in Supplementary Figure 10.

In the growth scenario, we see the opposite transient effect: the load is reduced before

recovering to its equilibrium level (Supplementary Figure 19D). After the growth

period, the number of segregating sites is greatly increased, but the new mutations

have had little time to drift to higher frequency. As a result, new mutations segregate

at very low frequencies and contribute negligibly to load (Supplementary Figure 19E

and F). In turn, mutations that segregated before growth have decreased in frequency

due to the increased efficacy of purifying selection, and so their contribution to load

declines substantially (Supplementary Figure 19E and F). The result is a transient

reduction in load (seen in Supplementary Figure 10 as well as in Supplementary

Figure 19D).

2.4 Models with dominance coefficients other than 0 and 1
2

Here we provide summaries of simulations with dominance coefficients other than 0

and 1/2 to illustrate that the same qualitative behaviors are observed. As shown in

Supplementary Figure 20, all of the observed qualitative behaviors are included in

our previous analysis and summarized in Table 1, with one possible exception.

The exception is in the bottleneck model in cases with dominance coefficients h >

1/2, where the total load is reduced for lower selection coefficients in the weak se-

lection regime. The reason for this reduction in load is analogous to that for the

increase in load that we saw in the recessive case in the same selection regime. For

dominance coefficients greater than half, the extinction of low frequency deleterious

alleles that segregated before the reduction in population size decreases load more

than the fixation of high frequency deleterious alleles increases it. The opposite is

true for dominance coefficients smaller than half.
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3 Data analysis and interpretation

We used data from Fu et al. (2012) [4] and from the 1000 Genomes Project [8].

Allele frequency estimates from Fu et al. are available from the NHLBI GO Exome

Variant Server (http://evs.gs.washington.edu/EVS/). These provide estimates of

the derived allele frequencies at exonic SNVs in European- and African-Americans

(EA and AA). Variants with allele frequencies 0 or 1 in both EA and AAs were

excluded.

The haploid sample sizes in Fu et al were EA Autosomal: 8596, EA X: 6717, AA

Autosomal: 4434, AA X: 3852. Our primary analysis in the main paper (reported

in Figure 3) uses the full sample sizes with the autosomal data. For the purpose of

Table 2 we wished to compare means on the X and autosomes. Since mean allele

frequencies of segregating sites are affected by total sample size, we implemented

the following subsampling strategy to facilitate direct comparisons between X and

autosomes. First, we converted the reported allele frequencies for each site back into

allele counts (i.e., multiplying each reported frequency by the relevant haploid sam-

ple size). Next, we randomly subsampled the autosomal EA and AA variants and

the X chromosome EA variant allele frequencies down to a sample size of 3852 chro-

mosomes each, in order to match the haploid sample size for the African-American X

chromosome. Subsampling was done without replacement, using the hypergeometric

sampling function in R. After sub-sampling, variants whose allele frequencies were

both either 0 or 1 were once again dropped. Two-sided t-tests were used to test for

allele frequency differences between groups.

1000 Genomes Project vcf files (Phase 1 Version 3) were downloaded from the offi-

cial 1000 Genomes public server (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/).

YRI and CEU individuals with (at least) exome sequencing coverage were extracted

from the original .vcf files (88 YRI individuals and 81 CEU individuals). 7 YRI in-

dividuals, chosen at random, were removed to match sample sizes between YRI and

CEU. Variants that were fixed for either allele in both populations were removed.
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Any variant that was not an SNV or did not contain ancestral allele information was

also dropped.

A natural measure for comparing the difference in load between two populations is to

count the mean number of derived alleles per individual at SNVs segregating within

the joint sample. Note that it is essential in these calculations to define SNVs using

the joint sample, otherwise sites that are fixed for the derived allele in Population A

but not in Population B would lead to the erroneous conclusion that there are more

derived alleles in B than in A.

For our analysis, we found that it is convenient to work with the mean derived

allele frequency within each functional class. This quantity allows us to compare

frequencies directly between classes, and is also conveniently computed from the Fu

et al frequency data. These two measures (mean derived frequency and number of

derived alleles per individual) are proportional to one another and hence must yield

identical conclusions about the relative load in different populations (for a given

functional class: DAF multiplied by twice the number of SNVs yields the number

of derived alleles per individual, assuming that missing data have been filled in

appropriately). Notice also that we are dealing with mean numbers of alleles, and

so these measures are unaffected by deviations from HWE or LE which affect the

variance in numbers of derived alleles per individual but not the means.

Of course the number of derived alleles is not equivalent to the number of deleterious

alleles, as some variants may be neutral; additionally for weakly selected sites there

is a small probability at each site that the ancestral allele is deleterious. Nonetheless,

the load is expected to be monotonically increasing with the number of derived alleles.

As shown in Supplementary Figure 3, we predict that at semidominant sites there

should be essentially no difference in mean derived frequency between AAs and EAs,

regardless of selection coefficient. At recessive sites we would expect a small increase

in mean frequency in AAs at moderately and strongly selected sites. The fact that we

do not observe any significant difference in allele frequencies at “probably damaging”
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sites argues that the majority of these sites are at least partially dominant.

Mean derived allele frequencies were calculated for both populations at autosomal

noncoding, synonymous, and nonsynonymous sites, as well as autosomal nonsynony-

mous variants belonging to the different functional categories. Standard errors for

each category were estimated using the standard deviation in DAF across sites, di-

vided by the square root of the number of sites in that category. For individual-level

analyses, we computed the SD in mean number of variants per individual by boot-

strapping across sites. The bootstrap analysis accounts for the evolutionary sampling

variance in allele frequencies.

The ANNOVAR suite of scripts [21] was used to obtain functional predictions for

each SNP from each of four prediction methods: PolyPhen2 [22], SIFT [23], LRT

[25] and MutationTaster [24]. Default program settings were used in each case. The

functional designations for each program are as follows: PolyPhen2: D (Probably

Damaging), P (Possibly Damaging), B (Benign). SIFT: D (Damaging), T (Tolerant),

LRT: D (Deleterious), N (Neutral) and U (Unknown). MutationTaster: A (Disease

Causing Automatic), D (Disease Causing), P (Polymorphism Automatic) and N

(Polymorphism). Coding versus non-coding and synonymous versus non-synonymous

designations were also determined using ANNOVAR. (Note that we also tested the

SeattleSeq annotations, and found that the overall numbers were similar (though

not identical) to those obtained from ANNOVAR; as with ANNOVAR we found no

evidence for a difference in DAF between populations.)

We observed that a strong reference bias exists at sites for which the genome reference

sequence carries the derived reference allele. This bias has also been observed by

David Reich and Shamil Sunyaev (personal communication). All four functional

prediction programs designate a very high proportion of these sites as being likely

nonfunctional or benign, even when the reference allele is rare in the population

overall. When we condition on the overall population frequency at these sites, we

find that a given site is much more likely to be classified as a probably damaging

54

Nature Genetics: doi:10.1038/ng.2896



site if the reference genome carries the ancestral allele than if it carries the derived

allele (Supplementary Figure 4).

To deal with this bias, we treated the functional designations at sites where the

reference allele is derived as unreliable. As an alternative, we binned all SNVs into a

series of allele frequency bins (i.e., the bins shown in Supplementary Figure 4). We

assumed that when we condition on the population allele frequency in a very large

sample (i.e., the Fu et al sample) that the identity of the genome reference allele

carries essentially no further information about the likely functional properties of a

variant. Thus, within a bin, the fraction of derived-reference SNVs that fall into each

functional category can be predicted from the fraction of ancestral-reference SNVs

in that functional category. Thus for example, if 20% of the ancestral-reference

SNVs in a given bin have functional category X, then we assume that each of the

derived-reference SNVs in that bin has a 20% probability of also being in functional

category X. The mean frequency of all SNVs in category X is estimated by summing

across all ancestral-reference SNVs in category X plus a sum of contributions from

all derived-reference SNVs, weighted by the estimated probabilities that each is in

X. As shown in Table 3, the bias correction makes a substantial difference to the

data analysis. Prior to applying the bias correction, the mean frequency in AAs is

substantially higher than in EAs (presumably because more than half of the reference

genome sequence is of non-African origin (Supplement of [14], p145)), but the bias

correction makes the two frequencies virtually identical as predicted for models with

dominance.

We also provide supplementary results in which we made use of a new unpublished

version of PolyPhen’s PSIC scores that are calculated in a human-independent (i.e.,

unbiased) manner. (Thanks to Ivan Adzhubey and Shamil Sunyaev for access to

these.) These produce results that are very similar to those from our bias-corrected

version, in the sense of showing no difference between populations.
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4 The effects of demography on the genetic architecture of

disease risk

A great deal of interest focuses on understanding how recent demographic history

has affected the genetic architecture of disease and specifically whether the recent

explosive growth has increased the contribution of rare variants to disease risk [17,

15, 18, 2]. Here, we use the theory that we developed to elucidate some of these

effects. Note that while in what follows we refer to disease risk, it also applies to any

other quantitative trait.

4.1 A model relating allele frequencies to disease susceptibility

We first consider the relationship between selection on individual loci and disease

risk. The few models for this relationship differ sharply in their assumptions. At

one extreme, Pritchard [19] assumed that variants that increase disease susceptibil-

ity tend to be deleterious, but that otherwise there is no relationship between the

strength of selection acting on these loci and the extent to which they increase disease

susceptibility. In turn, Eyre-Walker [20] assumed a correlation between the strength

of selection at a locus and its contribution to disease susceptibility. All else being

equal, a stronger relationship between the disease risk and fitness implies that the

variants that contribute more to disease risk are under stronger selection and, as a

result, tend to be younger and rarer. It also follows that their frequency distribution

would be more susceptible to the effects of recent demographic events. Here we con-

sider models for the two extremes: one in which the effect sizes are independent on

the selection coefficients and the other where the effect sizes are proportional to the

selection coefficients.

To model how genetic variation relates to disease risk, we consider the L loci that

contribute to disease risk and denote the genotype of individual i at these loci by Gi =

(gi,1, . . . , gi,L). We assume that each of the loci is bi-allelic, with a normal (N) and
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susceptible (S) alleles, and therefore denote the genotype at locus j (j = 1, . . . , L)

as gi,j = NN , NS, or SS. We then assume that the probability of developing the

disease (ignoring life-history details) takes the form

P (G) = F (
L∑
j=1

αj(gj)),

where F is a monotonically increasing function with continuous derivatives that takes

values between 0 and 1 and that

αj(g) =


0 if g = NN

hjaj if g = NS

aj if g = SS

,

where hj and aj denote the dominance coefficient and effect size of the contribution

to susceptibility at locus j. Finally, we assume that the effect of each locus is small,

such that we can approximate the variance in susceptibility by the first term in a

Taylor expansion, i.e.,

V (P (G)) ≈ [F ′(
L∑
j=1

E(αj(gj)))]
2

L∑
j=1

V (αj(gj)), (5)

where the variances are taken over the population and

V (α(g);x, a, h) = a2x(1− x)
[
(2h− 1)2x2 + (1− 4h2)x+ 2h2

]
,

where x is the S-allele frequency.

Our model in which the effect sizes are independent on the selection coefficients (and

similarly for dominance coefficients) follows directly. For simplicity we assume that

the effect sizes and dominant coefficients are constant, as assuming a distribution

yields similar results for all the quantities that we consider below. The variance in

disease susceptibility then follows from Eq. 5, where the aj’s and hj’s are constant

across loci and the distribution of allele frequencies (the x’s) is deterimined by the

(independent) selection and dominance coefficients (for fitness) at these loci.
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Next, we consider the model in which the disease itself is the agent of selection. In

other words that the fitness cost results entirely from the probability of developing the

disease. Denoting the fitness of affected individuals by Wa and of unaffected by Wu,

the relationship between fitness, W , and the probability of developing the disease

then takes the form

W = PWa + (1− P )Wu.

In turn, in our model, the relationship between genotype and fitness is

W (Gi) =
L∏
j=1

wi,j ≈ exp

(
−

L∑
j=1

αj(gi,j)

)
,

where

αj(g) =


0 if g = NN

hjsj if g = ND

sj if g = DD

,

and we assume that sj � 1 and therefore use an exponential approximation. Equat-

ing our two expressions for fitness leads to the following model for the relationship

between disease risk and genotype

P (G) =
Wu −W (G)

Wu −Wa

=
Wu

Wu −Wa

− 1

Wu −Wa

exp

(
−

L∑
j=1

αj(gj)

)
.

It follows that under this model, the dominance coefficient and effect size for the

contribution to disease risk equal those for fitness (justifying our use of the same

notation for the αs in both).

We now return to the contribution of individual loci to disease risk under this model.

Assuming that each locus has a small contribution, i.e., that αj(g) � 1 (which

follows from sj � 1) for j = 1, . . . , L, we can approximate the variance in disease

risk by

V (P ) ≈ exp(−2
L∑
j=1

E(αj(gj)))
L∑
j=1

V (αj(gj)). (6)
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In other words, the contribution of an individual locus to variation in disease risk is

proportional to the variance in fitness at that locus. Here, we consider semi-dominant

and recessive loci for which the variances are

V (x; s,
1

2
) =

1

2
s2x(1− x) (7)

and

V (x; s, 0) = s2x2(1− x2), (8)

correspondingly.

4.2 Demographic effects on the variance

Supplementary Figure 5 depicts how different allele frequencies at semi-dominant

and recessive loci contribute to the variance in disease risk under the Tennessen et

al. [2] model (expanding on Figure 4 in the main text). Because we consider only

one selection coefficient at a time, the relationship between effect sizes and selection

coefficient has no effect here; however, we do assume that the dominance coefficient

for fitness and for disease risk are the same. The graphs can also be interpreted

as the proportional contribution of different allele frequencies to the variance in

fitness among individuals. To elucidate the effects of recent demographic events,

we also show results for the model with a constant population size (equivalent to

the one for the African population before the onset of growth) and for a population

that experienced the same instantaneous increase in population size as the ancestral

African population in the Tennessen et al. model but then remained constant (from

∼ 7, 000 to ∼ 14, 500 around 6, 000 generations ago, cf. Supplementary Figure 1A),

which we refer to as the older growth model.

Demographic effects in the semi-dominant case. First, we consider the ef-

fectively neutral regime (Supplementary Figure 5A). In the model with constant

population size, the proportional contribution is uniform across frequencies, as ex-

pected [3]. In the model of older growth, there is an increased contribution of low and
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high frequency alleles to the variance (as diversity patterns did not have sufficient

time to reach equilibrium yet). In the model for Africans, a similar pattern is ob-

served, with a tiny increase in the contribution from rare alleles due to recent growth

(amounting to 0.41% of variance in deleterious variants with frequency below 0.1%

and 0.4% in variants above 99.9%). In the model for Europeans, the increase due to

growth is also negligible (0.61% of variance in variants with frequency below 0.1%

and 0.6% in variants above 99.9%). However, the bottleneck leads to an increased

contribution of intermediate frequencies at the expense of moderately low and high

frequency alleles (since low and high frequency alleles are quickly lost or fixed after

the reduction in population size).

In the weak selection regime (Supplementary Figure 5B), selection leads to a shift

towards lower frequencies and thus to an increased contribution to variance of lower

frequency alleles. In turn, the effect of older growth is to increase the contribution

of high frequencies: the reason being that before the increase in population size,

a greater proportion of sites is fixed for the deleterious allele and at such sites,

normal mutations lead to high frequency deleterious alleles. The recent growth in the

model for Africans further causes a small increase in the contribution of rare alleles

(amounting to 1.4% of variance in variants with frequency below 0.1% and 0.07%

in variants above 99.9%). In the model for Europeans, this increase is also small

(1.9% of variance in variants with frequency below 0.1% and 0.1% in variants above

99.9%), but the bottleneck again has a substantial effect, increasing the contribution

of intermediate frequencies at the expense of lower and higher frequencies.

In the strong selection regime, because of the quick turnover of deleterious alleles, the

older increase in population size and the bottleneck in Europeans are too far in the

past to have had an effect on alleles that are currently segregating (Supplementary

Figure 5C). By the same token, in the Tennessen et al. model, alleles segregating

at present are young and therefore the recent growth resulted in a decrease in their

frequencies (cf. section 2.3), substantially increasing the contribution of rare alleles

to variance (with ∼ 70% of the variance contributed by alleles at frequency below
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0.1%).

Demographic effects in the recessive case. In this case, recent growth has little

effect in all selection regimes. The contribution of low frequency alleles to variance

is much smaller because their effect on load or disease risk is manifested only in

homozygotes (Supplementary Figure 5D-F). As a result, the increase in the number

of rare deleterious alleles caused by recent growth has a negligible effect on their

contribution to the variance in disease risk under both the model for Europeans and

Africans (amounting to ∼ 10−4% in the neutral regime, ∼ 5 · 10−4% in the weakly

selected and ∼ 0.01% in the strongly selected regime, in variants with frequency

below 0.1%). In turn, the increase in the number of high frequency alleles (due to

normal mutants on a deleterious background) has a higher impact but it is still quite

small (amounting to ∼ 1% in the neutral regime and ∼ 0.2% in the weakly selected

regime that are due to variants with frequency above 99.9%).

In the weak and strong selection regimes, there is a peak in the contribution to

variance at intermediate frequency (Supplementary Figure 5E and F). Moving from

low to intermediate frequencies, the contribution to the variance of a mutant allele

increases (see Equation 8). This increase is halted, however, because at higher fre-

quencies, selection on homozygotes for the deleterious allele kicks in, leading to few

alleles at high frequencies. (Specifically, for a constant population size and given a

low mutation rate, the frequency spectrum of deleterious alleles is well approximated

by C e−αx
2

x
, where C is a normalizing constant [3], and thus the contribution to vari-

ance can be approximated by De−αx
2
x(1− x)2, where D is a normalizing constant.)

In the model for Africans (and for older growth), this peak is at higher frequencies

in the weak selection regime (Supplementary Figure 5E), because the older increase

in population size led to relatively more high frequency alleles at present.

The bottleneck in the model for Europeans has a much more pronounced effect,

causing a shift toward intermediate allele frequencies and a corresponding shift in

the contribution to variance in all selection regimes (Supplementary Figure 5D-F). As
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opposed to the semi-dominant case, this is also true for the strong selection regime,

as recessive deleterious alleles can reach substantial allele frequencies.

Summary. Population growth increases the relative proportion of rare alleles and

could therefore be expected to increase their relative contribution to the variance in

disease risk. However, because rare alleles contribute less to the variance to begin

with, this effect may be relatively small. Assessing the effects of growth on the genetic

architecture of disease risk therefore requires quantification. Here, we have shown

that, at least based on current estimates of recent growth, the effects on the variance

in disease risk are expected to be negligible. The one exception is the case of strongly

selected quasi-dominant alleles, which are young and therefore whose frequencies do

reflect the recent population size expansion. Interestingly, in this case, while the

architecture of disease risk is substantially affected by growth, the expected load (or

disease prevalence) remains unchanged, i.e., the same load will be due to many more

deleterious alleles that segregate at lower frequencies than had the population not

grown.

In contrast to growth, the bottleneck in European populations should have increased

the proportion of intermediate frequency deleterious alleles at the expense of low and

high frequency ones (with the exception of strongly selected quasi-dominant alleles,

because they are so young). In other words, in these populations, there will be only

a small effect on load but a substantial effect on the architecture of disease, with

a greater proportion of the variance in disease risk due to intermediate frequency

alleles.

4.3 The contribution of rare alleles in a mixture model

In reality, we expect that the variants underlying a complex disease will have a

variety of selection coefficients and effect sizes rather than a single one. Under a

model with such a mixture, the expected contributions of different allele frequencies

to the variance in disease risk can be derived as follows. For simplicity, assume
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that mutations are semi-dominant (so the dominance coefficient is dropped from the

notation). At a site with selection coefficient s, the expected contribution to the

variance from deleterious alleles below frequency ω is

Vω(s) =
1

2
CE(a2|s)

∫ ω

0

f(x; s)x(1− x)dx, (9)

where E(a2|s) is the expectation of the effect size squared for sites with selection

coefficient s, f(x; s) is the probability of the deleterious allele being at frequency x

(here, we do not condition of the allele segregating) and the proportion coefficient C

is akin to the first term in Equation 5. The overall contribution to variance of a site

is V1(s) and the fraction of that contribution coming from variants below frequency

ω is Θω(s) ≡ Vω(s)
V1(s)

. When all sites are considered jointly, denoting the input of

mutations with selection coefficient s by µ(s), the expected proportion of variance

from deleterious alleles below frequency ω is then

Θω =

∫
s
µ(s)V1(s)Θω(s)ds∫
s
µ(s)V1(s)ds

. (10)

Examining the terms in Equation 10 suggests that the contribution of rare alleles

depends strongly on the relationship between effect sizes and selection coefficients.

Specifically, the proportional contribution of rare alleles Θ0.1%(s) becomes substan-

tial only for strong selection coefficients (Figure 4D in the main text), as shown in

section 4.2. The behavior of the overall contribution to variance V1(s), however, de-

pends on the relationship between effect sizes and selection coefficients. If we assume

that the effect sizes do not depend on the selection coefficients (or more precisely

that E(a2|s) is constant) then V1(s) from weakly selected sites is much greater than

from strongly selected sites (Figure 4E in the main text) and rare alleles will make

an important contribution only if a very large fraction of the mutational input is

at strongly selected sites. If we assume the other extreme in which the effect sizes

are proportional to the selection coefficient (or more precisely that E(a2|s) ∝ s2,

as in the model in section 4.1) then V1(s) strongly increases with the s (Figure 4E

in the main text) and rare alleles would make an important contribution unless the
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fraction of the mutational input at strongly selected sites is very small. In reality,

the outcome could be anywhere in between.

As an illustration, we consider a simple model in which we vary the correlation

between selection on variants and their effect on a trait. We assume that half of

the newly arising mutations have a weak selection coefficient sw = 0.0002 and half

have a strong selection coefficient of ss = 0.01. For strongly selected mutations, the

effect size on the trait, a, is chosen to be css with probability 1
2
(1 + p) and csw with

probability 1
2
(1− p), where c is a positive constant and 0 ≤ p ≤ 1; correspondingly,

for weakly selected mutations the effect size is chosen to be csw with probability
1
2
(1 + p) and css with probability 1

2
(1− p). In this model, the marginal distributions

of selection coefficients and effect sizes do not depend on p, while the correlation

between them is equal to p. To obtain Figure 4F in the main text we therefore vary

p between 0 and 1.
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