
Articles
https://doi.org/10.1038/s41564-018-0337-x

1Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium. 2VIB Center for 
Microbiology, Leuven, Belgium. 3Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. 
4Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium. 5Department of Neurosciences, 
Psychiatry Research Group University of Leuven, Leuven, Belgium. 6K. G. Jebsen Coeliac Disease Research Centre, Department of Immunology, University 
of Oslo, Oslo, Norway. 7University Psychiatric Center KU Leuven, KU Leuven-University of Leuven, Leuven, Belgium. 8Laboratory for Brain-Gut Axis Studies, 
Translational Research Center for Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, KU Leuven-University of Leuven, Leuven, 
Belgium. 9These authors contributed equally: Sara Vieira-Silva, Jeroen Raes. *e-mail: jeroen.raes@kuleuven.be

Neural, endocrine and immune communication lines tightly 
link the human gut microbiota with the host central nervous 
system. Communication along these lines has been suggested 

to be bidirectional, with the gut microbiota playing an active role 
in processes linked to brain development and physiology, psychol-
ogy and behaviour1. This role would not be limited to modulation 
of host neural, hormonal and immune responses2, but also encom-
passes regulation of intestinal epithelium and blood–brain barrier 
permeability3 and both production and degradation of neuroactive 
compounds4. Mediators of microbiota–gut–brain communication 
affected by microbial metabolism include short-chain fatty acids 
(for example, butyrate), neurotransmitters (for example, serotonin 
and γ -aminobutyric acid (GABA)), hormones (for example, corti-
sol) and immune system modulators (for example, quinolinic acid).

Advances in sequencing technology enabled the exploration 
of the role of the gut microbiota in a broad range of neurological 
and psychiatric disorders and diseases including larger-scale analy-
sis of self-reported conditions5 or clinical studies of depression6–9, 
Alzheimer’s disease10 and Parkinson’s disease11. While such pioneer-
ing studies generated the first candidate pathology-associated taxa, 
they were generally underpowered or did not take into account the 
confounding effects of microbiome covariates12. Complementary 
to disease association studies, rodent models have been used to 
explore a potential causative role of the microbiota in behavioural 

alterations. Unfortunately, translation of model-based preclinical 
findings to the complex human phenotype has been shown to be 
far from straightforward13. With only a limited number of excep-
tions8,14, sequencing-based analyses of microbiota alterations in 
neurological pathologies have focused on taxonomic composition. 
Functional interpretation of metagenomes in a microbiota–gut–
brain context remains challenging and is hampered by the lack of 
a dedicated reference database of gut microbial neuroactive meta-
bolic potential.

In this study, we first assess gut microbiota compositional 
covariation with quality of life (QoL) indicators and general prac-
titioner-reported depression in the Belgian Flemish Gut Flora 
Project (FGFP) population cohort (n =  1,054)15. We validate results 
both in the Dutch LifeLines DEEP (LLD) cohort with associated 
QoL and self-reported depression metadata (n =  1,063)16,17 and in 
previously published case–control studies on depression6–9. To 
facilitate the functional analyses of the gut microbiota neuroac-
tive metabolic potential, we develop a module-based analytical 
framework enabling targeted profiling of the microbial pathways 
involved in neuro-microbiome mediator metabolism. Through 
reference genome mining, we catalogue the neuroactive potential 
of gut isolates. Finally, application of these gut–brain modules in 
a shotgun-sequenced subset of the FGFP (n =  150) and validation 
in the LLD metagenomes data set (n =  1,063), and among a patient 
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group suffering from treatment-resistant major depressive disorder 
(TR-MDD; n =  7), allows us to link microbiota neuroactive capacity 
with QoL and depression.

Results and discussion
QoL in a Flemish population cohort. QoL was assessed in the 
FGFP (n =  1,054)15 using the RAND-36 health-related quality of life 
survey18 (Supplementary Table 1), currently the most widely used 
QoL questionnaire19. It covers eight health concepts (four mental 
followed by four physical scores): role limitations caused by emo-
tional health problems; social functioning; emotional well-being; 
vitality; physical functioning; role limitations caused by physical 
health; body pain; and general health perception. Each score ranges 
from 0 to 100, with higher scores defining more favourable health 
states. From these, two additional summary scores are derived:20 a 
mental and a physical component summary. The FGFP RAND score 
distributions fell within population norms (Supplementary Table 2). 
Individuals with general practitioner-reported diagnosis of depres-
sion (n =  121, 11.5%) displayed lower RAND scores than others, 
regardless of antidepressant treatment (ntreated =  52; Wilcoxon rank-
sum test, false discovery rate (FDR) <  0.1; Supplementary Fig. 1;  
Supplementary Table 3).

QoL covariation with microbiota composition replicates across 
independent cohorts. We first explored gut microbiota covaria-
tion with QoL in the context of previously identified microbiome 
covariates, including age, sex, body mass index (BMI), stool con-
sistency (Bristol stool scale (BSS)—a proxy for transit time21) and 
gastrointestinal diseases (inflammatory bowel disease (IBD), gas-
trointestinal cancer)15,16. A confounder analysis revealed multiple 
associations between established microbiome covariates and QoL, 
with most RAND scores being significantly lower in women and 
participants reporting gastrointestinal disease (Wilcoxon rank-
sum test, FDR <  0.1; Supplementary Table 4). While age and BMI 
were found to be negatively associated with physical health scores, 
they correlated positively with several RAND indicators for mental 
health (Spearman’s correlation, FDR <  0.1; Supplementary Table 4).

Next, we set off to determine the proportion of inter-individual 
variation in overall microbiota composition that can be explained 
by QoL (distance-based redundancy analysis (dbRDA), genus-level 
Aitchison distance). All RAND scores explained moderate but sig-
nificant proportions of the FGFP microbiota compositional varia-
tion (dbRDA, adjusted R2 range =  0.08–0.35%, FDR <  0.1; Fig. 1a  
and Supplementary Table 5). A multivariate approach showed 
that although RAND scores had partially overlapping explana-
tory power, three RAND scores (body pain, physical functioning 
and general health perception) provided additional contributions 
to inter-individual microbiota variation beyond anthropometrics 
and gastrointestinal covariates (stepwise dbRDA, total R2 =  2.8%; 
Fig. 1b and Supplementary Table 5). Besides being linked to 
community-wide variation, QoL indicators were also associ-
ated with the relative abundances of specific taxa. Fitting gener-
alized linear models (GLMs) between RAND scores and single 
taxa, while partialling out anthropometric and bowel covariate 
contributions, we found ten genus abundances significantly cor-
related with QoL (GLM, FDR <  0.1; Fig. 1c and Supplementary  
Table 6). Among those, the positive associations between several 
QoL scores and Faecalibacterium and Coprococcus and the negative 
association between physical functioning and Flavonifractor were 
validated in the LLD cohort (n =  1,063; GLMs, P <  0.05; Fig. 1c  
and Supplementary Table 6). Faecalibacterium and Coprococcus 
produce butyrate22, a short-chain fatty acid that strengthens the 
epithelial defence barrier and reduces intestinal inflammation23, 
and both have been reported to be depleted in IBD24 and depres-
sion7,8. In the LLD data set, their relative abundances effectively 
correlated with stool butyrate concentrations (n =  1,063; ρ =  0.33, 

FDR =  4.83 ×  10−27 and ρ =  0.13, FDR =  2.64 ×  10−5, respectively; 
faecal metabolites were not quantified in the FGFP cohort). By 
contrast, Flavonifractor was reported to be increased in major 
depression disorder patients7. Here we associate the relative abun-
dances of microbial genera with QoL scores. In a pilot study in 
a closed experimental setting, Li et al.25 linked mood scores over 
time to taxon abundances in three individuals. While not the same, 
mood states have been correlated with mental QoL26. However, 
the health-associated Faecalibacterium negatively correlated with 
mood scores contrarily to the positive association to mental QoL 
detected here. Still, their reported Parabacteroides association 
matched our positive association to emotional role (Fig. 1c and 
Supplementary Table 6).

Coprococcus and Dialister are consistently depleted in depression 
across cohorts. Depression is the most prevalent mental disorder 
in industrialized societies:27 estimates of prevalence of depressive 
disorders in Belgium range from 5 to 15%28. Accordingly, general 
practitioner-reported depression was the most prevalent psychiatric 
disorder in the FGFP cohort (11.5%) explaining 0.13% of micro-
biota compositional variation. Similarly, antidepressant use was a 
significant covariate individually (adjusted R2 =  0.08%), but did not 
contribute beyond diagnosis; it was therefore not selected by the 
optimal multivariate dbRDA model (Fig. 1b and Supplementary  
Table 5). We identified four taxa significantly depleted in participants 
with depression/undergoing antidepressant treatment (Fig. 1c).  
However, we found antidepressant use to be an important con-
founder of these specific genus-level findings; only Coprococcus and 
Dialister remained significant after partialling out effects of antide-
pressant use (Fig. 1c and Supplementary Table 7). Both associations 
were validated in the LLD validation data set (self-reported history 
of depression, P <  0.05; Supplementary Table 7), also after decon-
founding for antidepressant medication. Differential effects on the 
gut microbiota have been reported as associated to the mechanisms 
of action of specific classes of antidepressants29,30; however, our 
cross-sectional data sets are insufficiently powered to investigate 
these observations in more detail. Interestingly, Coprococcus and 
Dialister both featured among the seven genera positively associ-
ated with QoL scores.

Antidepressant medication is an important source of inter-study 
variation. Four recent clinical studies examined the gut microbiota 
composition in individuals with MDD (n =  34–58) and matched 
controls (n =  18–63)6–9. Although all studies reported depression-
associated alterations in the relative composition of the microbiota, 
results are conflicting, potentially reflecting insufficient power due to 
low sample size and/or inadequate/incomplete confounder analysis. 
For instance, regarding the potential association between depres-
sion and microbiota diversity, Jiang et al.7 reported a positive correla-
tion and Kelly et al.9 the opposite, while both Naseribafrouei et al.6  
and Zheng et al.8 did not observe any significant association—the 
latter in agreement with our results. Out of the studies’ collective 
catalogue of 36 reported genus-depression associations, only 7 
could be replicated in the FGFP data set when partialling out the 
covariate effects (Supplementary Table 8). Featuring among repli-
cated depression-associated taxa was Lactobacillus, previously sug-
gested to be implicated in gut–brain communication8 and to have 
positive effects on stress and cognition in animal models, although 
not translating well to humans13. In agreement with Zheng et al.8, 
we observed increased Lactobacillus relative abundances in par-
ticipants with depression. However, this association was no longer 
significant when controlling for antidepressant treatment, confirm-
ing that medication is a substantial confounder in association stud-
ies15,31. Dialister and Coprococcus, the two genera we identified to 
covary both with RAND scores and (treatment-free) depression 
status (Fig. 1c) were also observed to do so in at least one of the 
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replicated reports6–9. Hence, these taxa can be regarded as poten-
tial leads for psychobiotics32—live organisms that, when ingested in 
adequate amounts, confer health benefits in patients suffering from 
psychiatric illness—and main targets for follow-up research.

Depression and lower QoL are associated with the Bacteroides 
enterotype 2 in the FGFP cohort. Next, we assessed enterotype dis-
tribution (identified using Dirichlet multinomial mixtures (DMMs)33; 
Supplementary Fig. 2; details in Methods) in relation to QoL scores 
and diagnosis of depression in the FGFP data set. All ten QoL scores 
were distributed unevenly across enterotypes (Kruskal–Wallis test, 
FDR <  0.1; Supplementary Table 9 and Fig. 2a), all reflecting lower 
QoL in the recently described, potentially dysbiotic Bacteroides 
enterotype 234 compared to Prevotella, Bacteroides enterotype 1 and 
Ruminococcaceae (post hoc Dunn’s test, FDR <  0.1; Supplementary 
Table 9). Bacteroides enterotype 2, shown to harbour reduced micro-
bial load, has increased prevalence among patients with Crohn’s 
disease34. In the FGFP data set, enterotype distribution varied with 
depression status (χ2 test, P =  7.87 ×  10−4; Fig. 2b), where depres-
sion diagnosis corresponded to higher prevalence of Bacteroides 
enterotype 2 samples (26 versus 13%; pairwise χ2 tests, FDR <  0.1; 
Supplementary Table 9). To our knowledge, this is the first descrip-
tion of an association between an enterotype and mental health sta-
tus, and while the lack of statistically significant DMM enterotype 

clustering in the LLD data set impeded replicating the results in this 
cohort, our results align with the previously reported assumption of 
the potentially dysbiotic nature of Bacteroides enterotype 234.

Gut–brain modules characterize the neuroactive potential of 
gut microbiota. To study the gut microbiota–brain interaction 
beyond taxonomic associations, we developed a module-based 
analytical framework enabling targeted profiling and interpretation 
of metagenomic data in the context of microbiota–gut–brain com-
munication. This framework describes the microbial pathways that 
metabolize molecules that have the potential to interact with the 
human nervous system (neuroactive compounds). From literature 
review, we curated and annotated 56 gut–brain modules (GBMs), 
each corresponding to a single neuroactive compound production 
or degradation process (details in Methods; Supplementary Table 
10 and Supplementary Data 1). To validate the framework, we 
assessed GBM detection in the genomes of microorganisms isolated 
from the human gastrointestinal tract included in the Integrated 
Microbial Genomes35 (IMG) database (n =  532). GBM detection 
captured the majority of taxa experimentally shown to produce or 
degrade corresponding neuroactive compounds (median detection 
sensitivity =  70%; Supplementary Table 11) and identified addi-
tional genera (median =  7) encoding thus far experimentally unas-
sessed neuroactive metabolism.
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Fig. 1 | Ecosystem-wide and specific effects of QoL variables on microbiome variation. a, Combined explanatory power of FGFP covariates pooled 
in predefined categories on microbiome community variation (stepwise dbRDA on Aitchison distance; n =  1,054). Anthropometrics: age, sex, BMI; 
gastrointestinal parameters: BSS and gastrointestinal disease; depression: diagnosis of depression and use of antidepressants. b, Cumulative effect sizes 
of FGFP covariates on microbiome community variation (left bars; stepwise dbRDA on Aitchison distance; grey, variables not entering the dbRDA model; 
n =  1,054) compared to individual effect sizes assuming covariate independence (right bars). c, Associations between QoL scores or depression and 
bacterial genera after partialling out the effect of the main microbiota covariates (anthropometric and gastrointestinal parameters; GLMs, FDR <  0.1) in 
the FGFP cohort (n =  1,054). Validation of QoL associations in the LLD data set (n =  1,063; tick marks indicate successful validation) and validation of 
depression associations in the non-medicated subset of FGFP patients (depressed non-medicated) and in published case–control depression studies6–9 
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The analysis of GBM prevalence in IMG genomes of human gut 
isolates allowed us to construct the first catalogue of gut microbiota 
neuroactive potential (Supplementary Table 12). While 4 GBMs (for 
example, synthesis of the anti-inflammatory and analgesic com-
pound S-adenosylmethionine, or degradation of the neurotoxin 
quinolinic acid) were essentially ubiquitous (present in >  90% of gut 
microbial genomes), 14 were only rarely observed (prevalence <  5% 
of the genomes; including dopamine, acetylcholine, kynurenine, 
histamine, and serotonin II synthesis; Fig. 3a). A subset of the GBMs 
(n =  39) were non-randomly distributed across the microbial phy-
logenetic tree (phylogenetic inertia, Pagel’s lambda (λ), FDR <  0.1; 
Supplementary Table 13). Of these, 34 were associated to specific 
bacterial phyla (Fisher’s test, FDR <  0.1; Supplementary Fig. 3), the 
strongest association being histamine synthesis to Fusobacterium 
(Fisher’s R2 =  0.72, FDR =  1.85 ×  10−22). Indeed, although not 
described in the literature, 3 out of the 18 Fusobacterium genomes 
analysed carried the potential to synthesize histamine. Only 30 out 
of 532 gut-associated IMG reference genomes encoded more than 
one rare GBM. Among the neuroactive specialists, (opportunistic) 
pathogens such as Pseudomonas aeruginosa and Yersinia entero-
colitica, which are known to respond to gut neurotransmitters36  
(Fig. 3a), are featured.

In humans, the neurotransmitter serotonin is found in the high-
est concentrations in the gastrointestinal tract, where it is involved 
in the regulation of gastrointestinal secretion, motility and pain 
perception37. Gut microorganisms both modulate host serotonin 
biosynthesis38 and produce serotonin2. The latter biosynthetic path-
ways are not yet fully elucidated, but two metabolic routes have 
been proposed39: decarboxylation of tryptophan to tryptamine fol-
lowed by hydroxylation (plant-like pathway); and hydroxylation 
to 5-hydroxytryptophan and then decarboxylation (animal-like 
pathway). While the plant-like GBM (serotonin synthesis II) was 
characterized as rare, the animal-like GBM (serotonin synthesis I) 
was present in almost 20% of IMG gut-associated genomes (Fig. 3a). 
Serotonin synthesis has been experimentally observed in strains 
belonging to ten different gut-associated genera (Supplementary 
Table 11), only half of which were validated by GBM-based genome 
analysis, due to limited representative genomes. Additional gen-
era, such as Akkermansia, Alistipes and Roseburia were identified  

as potential serotonin producers using the animal-like GBM 
(Supplementary Table 12).

Comparison of GBM prevalence in IMG genomes of gut-
associated (n =  532) versus free-living (n =  1,501; classification 
as in IMG version 4.0, see Methods) taxa35 allowed us to identify 
traits potentially involved in intestinal host–microbe interaction. 
Thirteen GBMs were significantly more prevalent in the genomes 
of gut-associated microorganisms (χ2 test, FDR <  0.1); 25 were over-
represented in microorganisms annotated as free-living (Fig. 3b 
and Supplementary Table 13). Among the top five most strongly 
host-associated GBMs, two were ubiquitously encoded by colon 
bacteria (> 80%; acetate and glutamate synthesis I). By contrast, two 
were detected in less than a third of genomes of gut-associated spe-
cies (tryptophan degradation and GABA synthesis III), while still 
displaying a wide phylogenetic range (Fig. 3c). Interestingly, all 
three currently characterized GABA synthesis pathways were sig-
nificantly more prevalent in gut microorganisms. GABA is known 
to be produced in large amounts by intestinal bacteria40, playing 
a role in intracellular pH homeostasis and energy generation41. 
Phylogenetically most widespread was the decarboxylation of glu-
tamate to GABA, which is part of the GABA shunt pathway, notably 
implicated in bacterial survival in the extreme acidity of the stom-
ach42. GABA-binding proteins, suggested to play a role in bacterial 
and inter-domain communication41, are also widespread in gut-
associated bacteria.

As gene mobility is an important driver of microbe–microbe 
and host–microbe interactions, with mobile elements like plasmids 
transferring functions promoting cooperation and/or virulence43, 
we assessed GBM presence in IMG plasmid sequences35. GBMs 
were only exceptionally detected (8 GBMs, Supplementary Table 14, 
2 of which are part of the 13 associated with the human gut environ-
ment). For the majority (62.5%), not even a single pathway step was 
encoded on the 1,150 plasmids tested, possibly reflecting the dif-
ficulty of horizontal transfer of complex traits involved in gut–brain 
communication.

Associations of microbiota neuroactive potential with QoL and 
depression. To determine whether neuroactive compound metabo-
lism is associated with QoL and depression, we applied the GBM 
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framework to 150 FGFP shotgun metagenomes, including 80 
patients diagnosed as depressed (n =  40 taking antidepressants) and 
70 healthy controls. Groups were balanced based on age, sex, BMI 
and BSS (Wilcoxon rank-sum test for numerical variables and χ2 
test for binary variables, P >  0.05). While exploratory associations 
with QoL were assessed on the whole GBM framework (n =  56), a 

more targeted analysis was performed on the subset of GBMs cover-
ing metabolites associated with depression in the existing literature 
(n =  24; Supplementary Table 10). QoL and depression-associated 
GBMs were subsequently validated in the LLD metagenomic data 
set (n =  1,063)16. Depression-related GBMs were additionally 
validated in an independent set of individuals with a diagnosis of 
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Fig. 3 | GbM distribution in microbial genomes. a, Left panel: GBM detection frequency in human gut-associated microbial genomes (n =  532). Rare 
(present in < 5% of genomes) and ubiquitous GBMs (present in > 90% genomes) are highlighted, while others are in grey. Right panel: microbial strains 
encoding two or more rare GBMs. Full GBM and strain names can be found in Supplementary Tables 10 and 12, respectively. The numbers in parentheses 
correspond to the number of strains encoding the same GBMs (*, genome unclassified at the species level). Ach, acetylcholine; deg, degradation; GHB,  
γ -hydroxybutyric acid; Glu, glutamate; Isoval, isovaleric acid; KYN, kynurenine; NO, nitric oxide; PUFAs; polyunsaturated fatty acids; QUIN, quinolinic acid; 
SAM, s-adenosyl methionine; synt, synthesis; Trp, tryptophan; Vit K, vitamin K. b, GBM distribution in gut-associated species (n =  532) versus in free-living 
species (n =  1,501). GBMs possibly involved in host-microbiota interactions (FDR <  0.1 in χ2 test) are coloured (larger dots: top 5 GBMs most significantly 
associated with a human gut-associated habitat), while others are in grey. c, Phylogenetic distribution of host-associated GBMs in gut reference genomes 
(16S rRNA gene phylogenetic tree). Only GBMs with an effect size >  0.1 and present in <  90% of genomes are shown (n =  10). F, Fusobacteria;  
S, Synergistetes; V/L, Verrucomicrobia/Lentisphaerae; E, Euryarchaeota; T, Tenericutes. The concentric circles have the order and colour of the legend.
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TR-MDD (n =  7) balanced by age, sex and BSS to the FGFP healthy 
subset (n =  70); QoL information was not recorded in the TR-MDD 
data set.

In the FGFP data set, we detected three GBMs covarying with 
various mental QoL scores (Spearman’s test on centred log-ratio-
transformed data, FDR <  0.1; Supplementary Table 15), namely 
synthesis of 3,4-dihydroxyphenylacetic acid (DOPAC; positive 
correlation), isovaleric acid synthesis potential II (via α -keto-acid 
decarboxylase pathway; positive correlation), and histamine syn-
thesis potential (negative correlation). However, only the associa-
tion between DOPAC synthesis—a metabolite of dopamine— and 
the RAND social functioning score was replicated in the LLD data 
set (GLM on centred log-ratio-transformed data, standardized β 
coefficient =  0.065, P =  4.25 ×  10−2; Supplementary Table 15 and 
Fig. 4a). While the first step for DOPAC synthesis from dopamine 
(Fig. 4b) is conversion to the endogenous neurotoxin 3,4-dihy-
droxyphenylacetaldehyde, DOPAC—the end product of the mod-
ule—has anti-proliferative activity on colon cancer cells44; reduced 
DOPAC levels in cerebrospinal fluid have been proposed as a bio-
marker for Parkinson’s disease45. In the FGFP data set, DOPAC 
synthesis potential was associated with enterotype distribution 
(Kruskal–Wallis test, χ2 =  21.72, FDR =  1.49 ×  10−4) being lower 
in the Bacteroides enterotypes 1 and 2, and Prevotella community 
types compared to Ruminococcaceae-enterotyped samples. Of note, 
the DOPAC synthesis potential was most strongly associated with 
the relative abundance of Coprococcus (Spearman’s test on centred 
log-ratio-transformed data, ρ =  0.29, FDR =  2.99 ×  10−4; associa-
tion validated in the LLD: ρ =  0.11, P =  5.45 ×  10−4). DOPAC syn-
thesis by Coprococcus has not been described previously and was 
not detected in our analyses of reference genomes; only the second 
step of the GBM, conversion of 3,4-dihydroxyphenylacetaldehyde 
to DOPAC, was encoded in the analysed genomes of Coprococcus 
comes and Coprococcus catus. However, we found the genus to be 
positively correlated with both mental and physical RAND scores. 
While covariation does not imply that Coprococcus strains can actu-
ally synthesize DOPAC, these results suggest that other mechanisms 
besides butyrate production could be responsible for the beneficial 
association of Coprococcus with QoL.

Two GBMs in the glutamate pathway, namely glutamate degra-
dation I (to crotonyl-coenzyme A and acetate) and GABA synthesis 
III (GABA shunt pathway), tended to be respectively depleted and 
increased in participants with depression (Wilcoxon rank-sum test 
on centred log-ratio-transformed data, r =  − 0.17, P =  3.33 ×  10−2 
and r =  0.17, P =  3.55 ×  10−2) in the FGFP data set. Although these 
associations were not significant after correction for multiple test-
ing, decreased glutamate degradation potential in participants with 
a diagnosis of depression was validated in the TR-MDD data set 
(r =  0.23, P =  3.98 ×  10−2; no GBM depression association was repli-
cated in the LDD self-reported depression data set; Supplementary 
Table 16). While statistically not significant, both observations are 
intriguing. Indeed, GABA is the main inhibitory neurotransmitter 
in the brain and alterations in GABA signalling have been linked to 
anxiety and depression, while in the periphery it acts as a visceral 
pain inhibitor46. Increased GABA levels in the blood of patients with 
MDD have been reported47, as well as a role of microbially produced 
GABA in gut–brain communication4. In turn, glutamate acts as an 
excitatory neurotransmitter in the brain, and comparatively higher 
levels have been reported in peripheral blood of participants with 
MDD48. Of note, both pathways were among the subset of host-asso-
ciated GBMs in our analysis in reference genomes. While follow-up 
case–control research (preferentially combined with metabolomic 
assessment of actual levels of neuroactive compounds) is needed to 
investigate whether microbial glutamate metabolism contributes to 
depression, our analyses give an idea of the sample sizes required 
to allow detecting differences in GBM proportional abundances 
between study groups. For example, to detect fluctuations in the glu-
tamate degradation I module (r =  − 0.17 and s.d. =  0.49, FDR <  0.1, 
with type II error rate β =  0.2), a minimal estimated sample size49 of 
n =  2 ×  262 would be needed. Although considerable, such numbers 
are not outside the feasibility range of clinical microbiome studies.

Conclusions
Analysis of a large faecal microbiome population study and vali-
dation of several public and newly sequenced data sets allowed us 
to establish significant covariation of gut microbiota composition 
with QoL indicators as well as depression status. Our approach does 
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not allow testing for causality nor directionality of microbiota–gut–
brain axis interactions; however, it provides a panel of stringent 
associations taking into account the compositionality of micro-
biome data and potential confounding effects of antidepressant 
medication. The contribution of QoL indicators and depression to 
overall microbiota community variation was in the range of (and 
added to) known major microbiome covariates. While Coprococcus 
and Dialister were both found to be positively associated with 
QoL and depleted in treatment-free depression, others, including 
Butyricicoccus, were found to be linked to antidepressant treatment. 
In terms of microbial community constellations, individuals clas-
sified in the previously reported low-microbial-density Bacteroides 
enterotype 2 displayed lower QoL and higher prevalence of depres-
sion. However, statistical support for enterotyping was not avail-
able in the LLD validation data set. By introducing a module-based 
analytical framework that facilitates microbiota–gut–brain focused 
analysis and interpretation of metagenomic data sets, we catalogued 
the neuroactive potential of colon isolates, identifying omnipres-
ent traits as well as pathways with limited distribution. We showed 
that several microbial pathways, including GABA and tryptophan 
metabolism, are enriched in human gut-associated microorgan-
isms, indicating a potential role in host–microbe symbiosis. In addi-
tion, three GBMs correlated with QoL, including synthesis of the 
dopamine metabolite DOPAC. The GBM framework presented is a 
valuable tool to study microbiota alterations, facilitating the transla-
tion and subsequent interpretation of shotgun metagenomic data in 
a gut–brain axis context.

Methods
Cohorts. FGFP data set. Samples were selected from the FGFP15 data set 
(n =  1,054) after excluding individuals without general practitioner-reported 
depression but who were taking medication labelled as ‘antidepressant’ by the 
Anatomical Therapeutic Chemical (ATC) Classification System (ATC code 
N06A). Eighty patients with general practitioner-reported depression (n =  40 
undergoing antidepressant treatment) and 70 healthy controls (without a history of 
gastrointestinal disease or cancer) balanced on age, sex, BMI and BSS were selected 
for shotgun sequencing. QoL was assessed based on the RAND 36-Item Health 
Survey 1.018 (not included in the original Falony et al.15 publication). This survey 
consists of 36 items from which 10 scores are calculated. Scores range from 0 to 
100, with higher scores representing better health. Aggregated mental and physical 
scores were calculated as described by Ware et al.20, using the Dutch population 
norms50 (since no Belgian/Flemish norms are available). Current depression 
status was evaluated by each participant’s general practitioner, as well as IBD and 
(history of) gastrointestinal cancer, and antidepressant usage in the last six months. 
Commercial drug names were converted to ATC codes51 (N06AA: non-selective 
monoamine reuptake inhibitors; N06AB: selective serotonin reuptake inhibitors; 
N06AX: other antidepressants). Gastrointestinal transit time was assessed using the 
BSS of the analysed sample.

LLD validation data set. In the LLD data set, 1,063 samples16 were selected after 
excluding individuals lacking a self-reported history of depression but who were 
taking medication labelled as ‘antidepressant’ by the ATC Classification System 
(ATC code N06A). QoL was determined as in the FGFP data set, while a history 
of self-reported depression was assessed using the following question: ‘Could 
you indicate which of the following disorders you have or have had? Depression’. 
Although the LLD RAND survey was released in the cohort description17, no 
analysis in relation to microbiota composition had been performed. IBD and (a 
history of) gastrointestinal cancer and antidepressant use in the last three months 
were also self-reported. Commercial drug names were converted to ATC codes51. 
Gastrointestinal transit time was assessed using a seven-day average of the BSS.

TR-MDD validation data set. Seven samples from patients with TR-MDD, 
diagnosed by a psychiatrist according to the Diagnostic and Statistical Manual 
of Mental Disorders (DSM-IV), fourth edition, text revision52 diagnostic criteria 
for moderate-to-severe MDD, without mood-incongruent psychotic features 
(diagnosis code 296.32 or 296.33) or moderate-to-severe type II bipolar depression 
(diagnosis code 296.89) based on clinical assessment, and a Hamilton Rating 
Scale for Depression score of ≥ 17 were included. Patients were recruited by the 
KU Leuven University Psychiatric Centre and must have had an inadequate 
response to at least two antidepressant pharmacotherapies (including tricyclic 
antidepressants or combinations of selective serotonin reuptake inhibitors/
serotonin-norepinephrine reuptake inhibitors with low doses of antipsychotics). 
Gastrointestinal disease (IBD, irritable bowel syndrome, gastrointestinal cancer) 

was an exclusion criterion. Current and a history of antidepressant use was 
recorded by a psychiatrist. Gastrointestinal transit time was assessed with the BSS 
of the analysed sample. Participants were age-, sex- and BSS-balanced to the 70 
FGFP healthy controls selected for shotgun sequencing.

Determination of short-chain fatty acid levels. Butyrate levels in the LLD data set 
(n =  1,063) were determined by gas chromatography–mass spectrometry in the ‘Dr 
Stein & Colleagues’ medical laboratory (Maastricht, the Netherlands) as described 
in Mujagic et al.53.

Microbiome data sequencing and preprocessing. FGFP data set. To analyse 
microbiota taxonomic composition, faecal DNA extraction, library preparation 
and 16S ribosomal RNA (rRNA) gene sequencing of the FGFP dual-index data 
set was performed as described in Tito et al.54. 16S rRNA data preprocessing was 
performed using LotuS55 version 1.565, to demultiplex sequencing reads, and 
the DADA256 pipeline version 1.6.0; taxonomy assignment was carried out with 
the RDP classifier57 version 2.12, using the default parameters. To analyse the 
microbiota neuroactive potential, shotgun sequencing of the FGFP data set was 
performed using the Illumina HiSeq 2500 System (151 base pair paired-end reads; 
Novogene (HK) Company Limited) to obtain 5 Gb raw data/sample. Paired-
end reads were first quality trimmed with Trimmomatic58 version 0.32, using 
the ILLUMINACLIP:trimmomatic-0.32/adapters/NexteraPE-PE.fa:2:30:10:2, 
MAXINFO:40:0.70, HEADCROP:15 and MINLEN:40 options. The high-
quality reads were then decontaminated from PhiX and human sequences using 
DeconSeq59 version 0.4.3; broken pairs were fixed using a custom Biopython60 
script (available from https://github.com/raeslab/raeslab-utils/). The resulting 
paired-end and single-end reads were mapped on the integrated gene catalogue61 
using the Burrows–Wheeler Aligner62, and the mapping was summarized into 
functional profiles using featureCounts63 version 1.5.3, with the --minOverlap =  40 
–pO parameters.

LLD data set. To analyse the taxonomic composition of microbiota, faecal 
DNA extraction and library preparation, 16S rRNA gene sequencing and 16S 
data processing was performed as described in Zhernakova et al.16. To analyse 
the neuroactive potential of the microbiota, LLD16 shotgun metagenomes 
were processed using the workflow described for the FGFP data set, with the 
Trimmomatic MAXINFO parameters adjusted to MAXINFO:40:0.80.

TR-MDD data set. DNA extraction, library preparation and shotgun sequencing 
were performed following the protocols described for the FGFP data set.

Statistical analyses. All statistical analyses and graphical representations were 
performed in R64, using the packages vegan65, phyloseq66, CoDaSeq67, QuantPsyc68, 
DirichletMultinomial69, ggplot270, phytools71 and corrplot72. For the appropriate 
analysis of microbiota compositional data, abundance matrices were centred log-
ratio-transformed using the codaSeq.clr function in the CoDaSeq67 R package, 
using the minimum proportional abundance detected for each taxon for the 
imputation of zeros. Only samples with >  10,000 reads (n =  1,054) and genera with 
a relative abundance > 0.001 (n =  169) in the FGFP data set were included in the 
16S data analysis.

Microbiota community variation explained by metadata variables. The 
contribution of metadata variables to microbiota community variation was 
determined by dbRDA on genus-level Aitchison distance (Euclidian distance 
between samples after centred log-ratio transformation, as recommended 
for compositional data) with the capscale function in the vegan R package65. 
Correction for multiple testing (Benjamini–Hochberg procedure, FDR) was 
applied and significance was defined at FDR <  0.1.

The cumulative contribution of metadata variables was determined by forward 
model selection on dbRDA with the ordiR2step function in vegan, with variables 
that showed a significant contribution to microbiota community variation in the 
previous step. The RAND mental and physical component summary scores were 
not included due to high collinearity with other scores (Pearson’s |r| >  0.8).

Association of bacterial genera and GBM with metadata variables. Genera 
with a mean abundance > 0 (n =  59) and GBMs with mean abundance > − 4.5 
in centred log-ratio-transformed data (n =  36) were included in the analysis 
(threshold corresponding to GBM relative abundance > 0.0001% before centred 
log-ratio transformation). Taxa unclassified at the genus level were excluded. For 
a targeted analysis of GBM association with depression, the GBMs were filtered to 
the ones describing the metabolism of compounds involved in depression (n =  24; 
Supplementary Table 10).

In the general population data sets (FGFP and LLD 16S data sets and LLD 
shotgun data set), associations between taxa or GBM abundances and mental 
health variables after partialling out the effects of the main microbiota covariates 
were assessed by fitting GLMs on centred log-ratio-transformed data with the glm 
R function. RAND scores (Gaussian, link =  identity) and diagnosis of depression 
(binomial, link =  logit; logistic regression) were used as response variables, and 
microbiota covariates as explanatory variables. The significance of deconfounded 
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microbiota contribution to psychological variable prediction was assessed by 
performing log-likelihood (χ2) tests on nested GLMs, as follows:

[null model] glm0 =  RV ≈  age +  sex +  BMI +  BSS +  gastrointestinal disease
[alternative model] glm1 =  RV ≈  age +  sex +  BMI +  BSS +  gastrointestinal 

disease +  Gi

where RV is the response variable (either RAND scores or depression 
diagnosis) and Gi is the genera or GBM relative abundance matrix, with ‘i’ being the 
taxon or module index.

Standardized GLM regression coefficients were calculated using the lm.beta R 
function (QuantPsyc package68). The Benjamini–Hochberg procedure (FDR) was 
used to correct for multiple testing of taxon or GBM metadata associations, with 
significance defined as FDR <  0.1. Associations found in the FGFP discovery data 
set were considered validated in the other data sets when P <  0.05.

In the case–control data sets balanced by microbiota covariates (FGFP and 
TR-MDD shotgun data sets), associations between continuous and two-level 
categorical variables (for example, depression diagnosis versus genus relative 
abundance) were analysed with Wilcoxon rank-sum tests, while associations 
between continuous variables (for example, RAND scores versus genus relative 
abundance) with Spearman’s non-parametric correlation tests. The Benjamini–
Hochberg procedure (FDR) was used to correct for multiple testing of taxon or 
GBM metadata associations, with significance defined as FDR <  0.1. Associations 
found in the FGFP discovery data set were considered validated in the other data 
sets when P <  0.05.

Enterotyping. Enterotyping (or community typing) based on the DMM approach 
was performed in R using the DirichletMultinomial69 package as described by 
Holmes et al.33 on the FGFP genus-level abundance matrix (n =  1,054) rarefied to 
10,000 reads. The optimal number of Dirichlet components based on the Bayesian 
information criterion was four (Supplementary Fig. 2a; mean probability for 
community-type assignation =  0.98 and s.d. =  0.067). No statistical support for 
N >  2 DMM clusters was found in the LLD data set, thus enterotype-metadata 
associations could not be replicated in the Dutch data set. The four FGFP clusters 
were named Prevotella (19% of samples), Bacteroides 1 (36%), Bacteroides 2 (14%) 
and Ruminococcaceae (31%), as described by Vandeputte et al.34. The first has a 
high relative abundance of Prevotella and the fourth has the highest genus-level 
richness, while the two others are dominated by the Bacteroides genus. Bacteroides 
2 enterotyped samples had lower relative abundances of the genus Faecalibacterium 
compared to Bacteroides 1 (Supplementary Fig. 2b), in addition to harbouring a 
reduced microbial load34.

GBM assembly. A metabolic reconstruction framework specific for translating 
shotgun metagenomic data into microbial neuroactive metabolic potential was 
assembled based on extensive literature (>  300 peer-reviewed papers) and database 
(MetaCyc73) review. A set of 56 GBMs was assembled, each corresponding to a 
process of synthesis or degradation of a neuroactive compound by members of the 
gut microbiota. Module structure follows the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database syntax74 as previously constructed for the gut microbial 
metabolic food chain75. Overlap with modules currently included in the KEGG 
database (release 7 (1/16)) is documented in Supplementary Data 1. The set of 
manually curated GBMs focuses on prokaryotic reactions as described in literature 
reports (citations provided in Supplementary Data 1) on microbial neuroactive 
compound synthesis/degradation. Each GBM is delimited by its input and output 
compounds and encompasses all enzymes (orthologue groups) to perform the 
reaction steps of all alternate pathways. When different pathways for synthesis/
utilization of a certain compound exist in prokaryotes, different GBMs were 
assembled for each. For each enzyme, the most specific prokaryotic orthologous 
group containing all taxa that were experimentally proven to perform the function 
was selected, using the KEGG76, TIGRFAM77 and eggNOG version 3.078 orthology 
databases in order of preference. The module set facilitates specific analyses of 
gut microbiota variation in the context of its potential association with QoL and 
nervous system pathologies.

GBMs were annotated for function, pathway, structure and potential to 
cross the intestinal epithelium and the blood–brain barrier (admetSAR79) 
(Supplementary Table 10). The complete description of the 56 GBMs, together 
with the database and literature references used to assemble each module, can 
be found in Supplementary Data 1 and http://raeslab.org/software/gbms.html; 
they are free to download and use as a resource for bioinformatic pipelines. The 
GBM framework will be regularly updated based on progress in the literature 
and databases.

GBM refinement. The phylogenetic distribution of each GBM in the IMG 
version 4.0 genomes isolated from the human gastrointestinal tract (n =  532)35 was 
compared with the corresponding list of microbial genera that were experimentally 
shown to perform the corresponding metabolic process. When necessary, the GBM 
was refined by fine-tuning the orthologous groups to maximize detection accuracy 
(Supplementary Table 11).

GBM detection. GBM abundances were derived from an orthologue abundance 
table using Omixer-RPM version 1.0 (https://github.com/raeslab/omixer-rpm) 

as described in Vieira-Silva et al.75. A web application is also available from 
GOmixer (http://www.raeslab.org/gomixer/). GBM coverage is calculated as the 
number of pathway steps for which at least one of the orthologous groups is found 
in a genome, divided by the total number of steps constituting the GBM. GBM 
presence in microbial genomes is defined with a detection threshold of at least 66% 
coverage, to provide tolerance to miss-annotations and missing data in incomplete 
(draft) genomes; a GBM is considered present in a genus of bacteria if it is found in 
at least one of the genomes of the genus.

Microbial genomes and plasmid sequences. Prokaryotic genomes isolated from 
the human gastrointestinal tract (n =  532, encompassing 260 species; IMG field: 
‘Body Site’ containing ‘Gastrointestinal tract’) and plasmid sequences (n =  1,150), 
were retrieved from IMG version 4.035. Genome taxonomic annotation was 
obtained from NCBI Taxonomy80 (https://www.ncbi.nlm.nih.gov/taxonomy). To 
compare GBM distribution in human gastrointestinal isolates versus free-living 
species (χ2 test), 1,501 genomes of free-living prokaryotic species (field: ‘Biotic 
Relationship’ containing ‘Free living’ AND ‘Body Site’ equal ‘− 1’ AND ‘Ecosystem’ 
does not equal ‘Host-associated’) were also retrieved from IMG version 4.0.

Phylogenetic tree and GBM phylogenetic inertia. 16S rRNA gene sequences were 
retrieved for a randomly selected member of each species in microbial reference 
genomes (n =  260) from the SILVA database81 (www.arb-silva.de; release 121); 
735 rRNA gene sequences with one representative per genus not represented in 
the reference genomes were added to increase taxon sampling and avoid long-
branch attraction artefacts. Sequence alignment, removal of poorly aligned regions 
and tree reconstruction were performed as described in Vieira-Silva et al.75. Tree 
graphical representation was done using GraPhlAn82. Phylogenetic inertia—the 
degree to which GBM presence in genomes is correlated to the phylogenetic tree 
topology of the reference genomes–was calculated with Pagel’s λ using the phytools 
R package.

Ethical compliance. All study procedures are compliant with all relevant ethical 
regulations. FGFP procedures were approved by the medical ethics committee 
of the University of Brussels–Brussels University Hospital (approval no. 
143201215505, 5 December 2012). A declaration concerning the FGFP privacy 
policy was submitted to the Belgian Commission for the Protection of Privacy. The 
LLD study was approved by the institutional review board of University Medical 
Center Groningen, reference no. M12. 113965. The TR-MDD study was approved 
by the KU Leuven Medical Ethics Committee (S59102; EudraCT no. 2016-001715-
21). Written informed consent was obtained from all participants.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability
A custom Biopython script to fix broken pairs in metagenomic sequences is 
publicly available at https://github.com/raeslab/raeslab-utils/. The code to compute 
GBM abundances from an ortholog abundance table is freely available at: https://
github.com/raeslab/omixer-rpm, and a web application is also available at http://
www.raeslab.org/gomixer/.

Data availability
FGFP 16S sequencing data and metadata on the microbiota covariates used in this 
study are available at the European Genome-phenome Archive (EGA, https://www.
ebi.ac.uk/ega/), accession no. EGAS00001003296. The LLD sequence data and 
age and sex information per sample are also available at the EGA with accession 
no. EGAS00001001704; the rest of the microbiota covariates can be requested 
from the Lifelines cohort study (https://lifelines.nl/lifelines-research/access-to-
lifelines) following the standard protocol for data access. FGFP and TR-MDD 
shotgun sequencing data and metadata are available at the EGA (accession no. 
EGAS00001003298).
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Population characteristics FGFP cohort: 576 female/478 male. Mean age: 50.9; BMI: 24.9; BSS: 4. 
LLD cohort: 616 female/447 male. Mean age: 57.9; BMI: 25.3; BSS: 3.8.

Recruitment Samples from the already published FGFP (PMID:27126039) and LLD (PMID:27126040) datasets were included in the analysis 
(N=1054 and N=1063 respectively). 
Participants in the newly collected TR-MDD dataset (N=7) were balanced on age, sex, and BSS to the FGFP healthy subset 
selected for shotgun sequencing (N=70), and to the FGFP-depression shotgun subset (N=80).
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