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The genomes of individuals with severe, undiagnosed developmental disorders are enriched in damaging de novo 
mutations (DNMs) in developmentally important genes. Here we have sequenced the exomes of 4,293 families containing 
individuals with developmental disorders, and meta-analysed these data with data from another 3,287 individuals with 
similar disorders. We show that the most important factors influencing the diagnostic yield of DNMs are the sex of 
the affected individual, the relatedness of their parents, whether close relatives are affected and the parental ages. We 
identified 94 genes enriched in damaging DNMs, including 14 that previously lacked compelling evidence of involvement 
in developmental disorders. We have also characterized the phenotypic diversity among these disorders. We estimate that 
42% of our cohort carry pathogenic DNMs in coding sequences; approximately half of these DNMs disrupt gene function 
and the remainder result in altered protein function. We estimate that developmental disorders caused by DNMs have 
an average prevalence of 1 in 213 to 1 in 448 births, depending on parental age. Given current global demographics, this 
equates to almost 400,000 children born per year.

Approximately 2–5% of children are born with major congenital mal-
formations and/or manifest severe neurodevelopmental disorders 
during childhood1,2. Although diverse factors, including gestational 
infection and maternal alcohol consumption, can cause such devel-
opmental disorders (DDs), damaging genetic variation in develop-
mentally important genes makes a major contribution. Several recent 
studies have identified a substantial causal role for DNMs that are not 
present in either parent3–16. Despite the identification of many DDs 
caused by DNMs, it is generally accepted that many more disorders 
have not yet been discovered15, and the overall contribution of DNMs 
to DDs is not known. Moreover, some pathogenic DNMs completely 
ablate the encoded protein, whereas others instead alter the function 
of the encoded protein17; the relative contributions of these two mech-
anistic classes are also not known.

We recruited 4,293 individuals to the Deciphering Developmental 
Disorders (DDD) study15 via the genetics services of the UK National 
Health Service and the Republic of Ireland. Each of these individuals 
was referred with a severe undiagnosed DD and most were the only 
affected family member. Most individuals (81%) had been screened for 
large pathogenic deletions and duplications. We systematically phe-
notyped these individuals and sequenced the exomes of the affected 
individuals and their parents. Growth measurements, family history 
and developmental milestones were recorded, and detailed clinical 
phenotypes were captured using Human Phenotype Ontology (HPO) 
terms. Analyses of 1,133 of these individuals have been described previ-
ously15,18. We generated a high-sensitivity set of 8,361 candidate DNMs 
in the coding or splicing sequence (mean =  1.95 DNMs per proband), 
while removing systematic erroneous calls (Supplementary Table 1). 
This rate of candidate DNMs per proband is higher than those found 
in other studies3–15, because we wanted to maintain high sensitivity and 
we could address the lower specificity through subsequent validation. 
We found that 1,624 genes contained two or more DNMs in unrelated 
individuals.

Twenty-three per cent of individuals had protein-truncating or 
missense DNMs that were probably pathogenic within the clini-
cally curated set of genes robustly associated with dominant DDs18. 
We investigated factors associated with whether an individual had 

a probably pathogenic DNM in these curated genes (Fig. 1a, b and 
Extended Data Table 1). Males had a lower chance of carrying a prob-
ably pathogenic DNM (P =  1.6 ×  10−4; odds ratio (OR) =  0.75; 95% 
confidence interval (CI) =  0.65–0.87), as has also been observed for 
autism19. We also observed that a greater extent of speech delay was 
correlated with an increased likelihood of having a pathogenic DNM 
(P =  0.00115), but no other indicators of severity relative to the rest 
of the cohort showed significant correlations. Individuals with other 
affected family members were less likely to have pathogenic DNMs 
(affected siblings: P =  7.3 ×  10−18, affected parents: P =  5.7 ×  10−9), as 
were individuals who were from self-declared consanguineous unions 
(P =  8.0 ×  10−11). Furthermore, the total genomic extent of autozygo-
sity (owing to parental relatedness) was negatively correlated with the 
likelihood of having a pathogenic DNM (P =  1.7 ×  10−7). For every 
log10 increase in autozygous length, the probability of having a path-
ogenic DNM dropped by 7.5%, probably owing to increasing burden 
of recessive causation (Fig. 1c). Nonetheless, 6% of individuals with 
autozygosity equivalent to a first cousin union or closer had a plausibly 
pathogenic DNM, underscoring the importance of considering de novo 
causation in all families.

Paternal age has been shown to be the primary factor influencing 
the number of DNMs in a child20,21, and is therefore expected to be a 
risk factor for pathogenic DNMs. Paternal age was only weakly asso-
ciated with the probability of having a pathogenic DNM (P =  0.016). 
However, focusing on the minority of DNMs that were truncating and 
missense variants in known DD-associated genes limits our power 
to detect such an effect. Analysis of all 8,409 high-confidence exonic 
and intronic autosomal DNMs confirmed a strong effect of paternal 
age (P =  1.4 ×  10−10, 1.53 DNMs per year, 95% CI =  1.07–2.01), and a 
weaker, independent, effect of maternal age (P =  0.0019, 0.86 DNMs 
per year, 95% CI =  0.32–1.40; Fig. 1d, e), as has recently been described 
using whole-genome analyses22. These genome-wide estimates were 
based on exome-based estimates, with a paternal effect of 0.0306 DNMs 
per year and a maternal effect of 0.0172 DNMs per year.

We identified genes that were significantly enriched for dam-
aging DNMs by comparing the observed gene-wise DNM count 
to the expected count under a null-mutation model23, as described 
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previously15. We combined this analysis with 4,224 published DNMs in 
3,287 affected individuals from thirteen exome- or genome-sequencing 
studies3–14 (Supplementary Table 2) that exhibited a similar excess of 
DNMs as our curated set of DD-associated genes (Extended Data Fig. 1).  
We found 93 genes with genome-wide significance (P <  5 ×  10−7; 
Fig. 2), 80 of which had previous evidence of an association with 
DDs (Supplementary Table 3). We have developed visual summaries 
of the phenotypes associated with each gene to facilitate clinical use. 
In addition, we created anonymised, average face images from indi-
viduals with DNMs in genome-wide significant genes (Fig. 2) from 
ordinary (2D) clinical photos using previously validated software24. 
These images highlight facial dysmorphologies specific to certain 
genes. After careful review by two experienced clinical geneticists, 
average face images for twelve genes were determined to be truly 
anonymised and of sufficient quality. To assess any increase in power 
to detect novel DD-associated genes, we excluded individuals with 
probably pathogenic variants in known DD-associated genes15, leav-
ing 3,158 probands from our cohort, along with 2,955 probands from 
the meta-analysis studies. In this subset, fourteen genes for which no 
statistically compelling previous evidence for DD causation was avail-
able achieved genome-wide significance: CDK13, CHD4, CNOT3, 
CSNK2A1, GNAI1, KCNQ3, MSL3, PPM1D, PUF60, QRICH1, SET, 
KMT5B (also known as SUV420H1), TCF20 and ZBTB18 (P <  5 ×  10−7; 
Table 1 and Extended Data Fig. 4). The clinical features associated with 
these newly confirmed disorders are summarized in Extended Data 
Figs 2, 3 and Supplementary Information. QRICH1 did not achieve 
genome-wide significance without excluding individuals with probably 
pathogenic variants in DD-associated genes. In addition to discovering 
novel DD-associated genes, we identified several new disorders linked 
to known DD-associated genes, but with different modes of inheritance 
or molecular mechanisms. We found that USP9X and ZC4H2 had a 
genome-wide significant excess of DNMs in female probands, indicat-
ing these genes have X-linked dominant modes of inheritance in addi-
tion to a previously reported X-linked recessive mode of inheritance in 

males25,26. In addition, we found that truncating mutations in SMC1A 
were strongly associated with a novel seizure disorder (P =  6.5 ×  10−19), 
whereas in-frame and/or missense mutations in SMC1A with dominant 
negative effects27 are a known cause of Cornelia de Lange Syndrome. 
Individuals with truncating mutations in SMC1A lacked the character-
istic facial dysmorphology of Cornelia de Lange Syndrome.

We then explored two approaches for integrating phenotypic data 
into disease gene association: statistical assessment of HPO-term 
similarity between individuals sharing candidate DNMs in the same 
gene (as previously described28) and phenotypic stratification based 
on specific clinical characteristics. Combining genetic evidence and 
HPO-term similarity increased the significance of some known 
DD-associated genes. However, significance decreased for a larger 
number of genes that caused severe DDs, but that are associated with 
non-discriminative HPO terms (Extended Data Fig. 5a). Although we 
did not incorporate categorical phenotypic similarity into the gene- 
discovery analyses described above, the systematic acquisition of phe-
notypic data from affected individuals within the DDD cohort enabled 
aggregate representations to be created for each gene that achieved 
genome-wide significance. We present these in the form of icon-based 
summaries of growth and developmental milestones (PhenIcons), 
heatmaps of the recurrently coded HPO terms and, where photos 
for at least ten children with mutations in the same gene were avail-
able, an anonymised average facial representation (Supplementary 
Information).

Twenty per cent of individuals had HPO terms that indicated  
seizures and/or epilepsy. We compared analysis within this pheno-
typically stratified group with gene-wise analyses of the entire cohort, 
to see whether it increased power to detect known seizure-associated 
genes (Extended Data Fig. 5b). Fifteen seizure-associated genes had 
genome-wide significance (P <  5 ×  10−7) in both the seizure-only and 
the entire-cohort analyses. Nine seizure-associated genes had genome-
wide significance (P <  5 ×  10−7) in the entire cohort but not in the  
seizure subset. Of the 285 individuals with truncating or missense 
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Figure 1 | Association of phenotypes with the presence of DNMs that 
are probably pathogenic. a, Odds ratios for binary phenotypes. Positive 
odds ratios are associated with increased risk of pathogenic DNMs 
when the phenotype is present. P values are given (Fisher’s exact test). 
b, β  coefficients from logistic regression of quantitative phenotypes 
versus presence of a pathogenic DNM. All phenotypes aside from length 
of autozygous regions were corrected for gender as a covariate. The 
developmental milestones (age to achieve first words, walk independently, 
sit independently and social smile) were log scaled before regression. The 
growth parameters (height, birthweight and occipitofrontal circumference 

(OFC)) were evaluated as absolute distance from the median. c, The 
relationship between length of autozygous regions and chance of having a 
pathogenic DNM. The regression line and 95% CI are plotted as the dark 
grey line and grey shading, respectively. The autozygosity lengths expected 
under different degrees of consanguineous unions are shown as vertical 
dashed lines. n, number of individuals in each autozygosity group. Blue 
dots and blue lines, mean ±  95% CI. d, Relationship between age of fathers 
at child birth and the number of high confidence DNMs. Error bars,  
95% CI. e, Relationship between age of mothers at child birth and number 
of high confidence DNMs. Error bars, 95% CI.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



0 0  M O N T H  2 0 1 7  |  V O L  0 0 0  |  N A T U R E  |  3

ARTICLE RESEARCH

DNMs in known seizure-associated genes, 56% of individuals had 
no coded terms related to seizures and/or epilepsy. These findings 
suggest that the power of increased sample size far outweighs specific  
phenotypic expressivity owing to the shared genetic aetiology between 
individuals with and without epilepsy in our cohort. Despite this, 
nearly three times as many individuals with seizures had a DNM in 
a seizure-associated gene compared to individuals without seizures 
(Extended Data Fig. 5c). With matched sample sizes, more genes 
exceeded genome-wide significance in seizure samples than in unstrat-
ified samples (Extended Data Fig. 5d). This highlights the cost–benefit 
effect of recruiting a phenotypically more homogenous cohort.

The large number of genes with genome-wide significance identi-
fied in the analyses above allows us to compare empirically different 
experimental strategies for novel gene discovery in a genetically het-
erogeneous cohort. We compared the power of exome and genome 
sequencing to detect genes with genome-wide significance, assuming 
that budget and not samples are limiting, under different scenarios of 
cost ratios and sensitivity ratios (Extended Data Fig. 6a). At current  
cost ratios (exome analysis costs 30–40% of genome analysis) and with 
a plausible sensitivity differential (genome analysis detects 5% more 
exonic variants than exome analysis29), exome sequencing detects more 
than twice as many genome-wide significant genes. These empirical 
estimates were consistent with power simulations for identifying dom-
inant loss-of-function genes (Extended Data Fig. 6b). In summary, 
although genome sequencing provides the greatest sensitivity to detect 
pathogenic variation in a single individual (or outside of the coding 
region), exome sequencing is more powerful for novel gene discovery 
for disease (and, analogously, probably currently delivers a lower cost 
per diagnosis).

Our previous simulations suggested that analysis of a cohort 
of 4,293 DDD families should be able to detect approximately 
half of all haploinsufficient DD-associated genes at genome-wide  
significance15. Empirically, we have identified 47% (50 out of 107) of 
haploinsufficient genes that have been previously robustly associated 

with neurodevelopmental disorders18. We hypothesized that genetic 
testing before recruitment into our study may have depleted the cohort 
of the most clinically recognizable disorders. Indeed, we observed that 
the genes associated with the most clinically recognizable disorders 
were associated with a significant, threefold lower enrichment of 
truncating DNMs than other DD-associated genes (P =  8.9 ×  10−20; 
approximately 40-fold enrichment for the most clinically recogniz-
able disorders compared to around 120-fold enrichment for cryptic  
disorders; Fig. 3a). Removing these most recognizable disorders 
from the analysis, we identified 55% (42 out of 76) of the remaining 
haploinsufficient DD-associated genes. The known DD-associated 
haploinsufficient genes that did not reach genome-wide significance 
were clearly enriched in those with lower mutability, which we would 
expect to lower the power to detect for these analyses. We identified 
DD-associated genes (for example, NRXN2) with high mutability, low 
clinical recognizability and yet no signal of enrichment for DNMs in 
our cohort, as assessed by Δ AIC (the difference between the Akaike’s 
Information Criterion of model 1 and model 2) (Extended Data Fig. 7  
and Supplementary Table 4). The current analyses call into ques-
tion whether these genes really are associated with haploinsufficient  
neurodevelopmental disorders and highlight the potential for 
well-powered, gene-discovery analyses to refute previous credence 
in disease gene associations or previous inferences of an underlying  
haploinsufficient mechanism.

We estimated the prevalence of pathogenic missense and truncating 
DNMs within our cohort by increasing the stringency of called DNMs 
until the observed synonymous DNMs equated that expected under 
the null-mutation model (Extended Data Fig. 8a), and then quantifying  
the excess of observed missense and truncating DNMs across all genes 
(Fig. 3b). We observed an excess of 576 truncating and 1,220 missense 
mutations, suggesting that 41.8% (1,796 out of 4,293) of the cohort have 
a pathogenic DNM. This estimate of the number of excess missense 
and truncating DNMs in our cohort is robust to varying the strin-
gency of DNM calling (Extended Data Fig. 8b). The vast majority of 
synonymous DNMs are probably benign, as shown by the uniform 
distribution (Fig. 3d) among genes, irrespective of their tolerance for 
truncating variation in the general population (as quantified by the 
‘probability of being loss-of-function intolerant’ (PLI) metric30). By 
contrast, missense and truncating DNMs are significantly enriched 
in genes with the highest probabilities of being intolerant to truncat-
ing variation (missense, P =  1.1 ×  10−47; truncating, P =  3.3 ×  10−85;  
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Figure 2 | Genes exceeding genome-wide significance. Manhattan plot of 
combined P values across all tested genes. The red dashed line indicates the 
threshold for genome-wide significance (P <  7 ×  10−7). Genes exceeding 
this threshold have labelled HGNC symbols. De-identified realistic average 
(‘composite’) faces were generated using previously validated software24 
from clinical photos of individuals with DNMs in the same gene, and are 
shown here for the six most significantly associated genes. Confirmation 
of de-identification was performed by careful review by two experienced 
clinical geneticists. Each face was generated from clinical photos of more 
than ten children.

Table 1 | Genes achieving genome-wide significant statistical 
evidence without previous compelling evidence for association  
with DDs

Gene Missense PTV P value Test Clustering

CDK13 10 1 3.2 ×  10−19 DDD Yes

GNAI1 7 (1) 1 2.1 ×  10−13 DDD No

CSNK2A1 7 0 1.4 ×  10−12 DDD Yes

PPM1D 0 5 (1) 6.3 ×  10−12 Meta No

CNOT3 5 2 (1) 5.2 ×  10−11 DDD Yes

MSL3 0 4 2.2 ×  10−10 DDD No

KCNQ3 4 (3) 0 3.4 ×  10−10 Meta Yes

ZBTB18 1 (1) 4 1.4 ×  10−9 DDD No

PUF60 4 (1) 3 2.6 ×  10−9 DDD No

TCF20 1 5 2.7 ×  10−9 DDD No

KMT5B 0 (2) 2 (3) 2.9 ×  10−9 Meta No

CHD4 8 (1) 1 7.6 ×  10−9 DDD No

SET 0 3 1.2 ×  10−7 DDD No

QRICH1 0 3 (1) 3.6 ×  10−7 Meta No

The numbers of unrelated individuals with independent DNMs are given for protein-truncating 
variants (PTV) and missense variants. Counts of individuals in other cohorts are given in brackets 
if present. The P value reported is the minimum P value from the testing of the DDD dataset or the 
meta-analysis dataset. The subset providing the P value is also listed. Mutations are considered 
clustered if the P value from proximity clustering of DNMs is less than 0.01.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Fig. 3d). The PLI-based distributions were similar to distributions that 
used functional constraint31 (Extended Data Fig. 9). Only 51% (923 out 
of 1,796) of these excess missense and truncating DNMs are located in 
DD-associated dominant genes, with the remainder probably affecting 
genes not yet associated with DDs. A much higher proportion of the 
excess truncating DNMs (71%) than missense DNMs (42%) affected 
known DD-associated genes. This suggests that whereas most haplo-
insufficient DD-associated genes have already been identified, many 
DD-associated genes characterized by pathogenic missense DNMs 
remain to be discovered.

Understanding the mechanism of action of a monogenic disorder 
is an important prerequisite for designing therapeutic strategies32. 
We tried to estimate the relative proportion of altered-function and 
loss-of-function mechanisms among the excess DNMs in our cohort, 
by assuming that the vast majority of truncating mutations oper-
ate by a loss-of-function mechanism and by using two independent 
approaches to estimate the relative contribution of the two mechanisms 
among the excess missense DNMs (see Methods). First, we used the 
observed ratio of truncating and missense DNMs within haploinsuf-
ficient DD-associated genes to estimate the proportion of the excess 
missense DNMs that probably act by loss of function (Fig. 3c). This 
approach estimated that 59% (95% CI =  55–64%) of the excess mis-
sense and truncating DNMs operate by loss of function, and 41% by 
altered function. Second, we took advantage of the different population 
genetic characteristics of known altered-function and loss-of-function 
DD-associated genes. Specifically, we observed that these two classes 
of DD-associated genes are differentially depleted of truncating  
variation in individuals without overt DDs (PLI metric30). We modelled 
the observed PLI distribution of excess missense DNMs as a mixture of 

the PLI distributions of known altered-function and loss-of-function  
DD-associated genes (Fig. 3e, f ), and estimated that 63% (95% 
CI =  50-76%) of excess missense DNMs probably act by altered-function  
mechanisms. Incorporating the truncating DNMs that cause a loss-
of-function mechanism, this approach estimated that 57% (95% 
CI =  48-66%) of excess missense and truncating DNMs operate by 
loss of function and 43% by altered function.

We estimated the birth prevalence of monoallelic DDs by using 
the germline-mutation model to calculate the expected cumulative 
germline-mutation rate of truncating DNMs in haploinsufficient 
DD-associated genes and scaling this upwards on the basis of the 
composition of excess DNMs in the DDD cohort described above  
(see Methods), correcting for disorders that were under represented in 
our cohort as a result of previous genetic testing (for example, clinically 
recognizable disorders and large pathogenic copy-number variations 
identified by previous chromosomal microarray analysis). This gives 
a mean prevalence estimate of 0.34% (95% CI =  0.31-0.37), or 1 in 
295 births. By factoring in the paternal and maternal age effects on the 
mutation rate (Fig. 1), we modelled age-specific estimates of birth prev-
alence (Fig. 4) that range from 1 in 448 (both mother and father aged 20)  
to 1 in 213 (both mother and father aged 45). Assuming a yearly global 
birth rate of 18.6 live births per 1,000 individuals, and a mean age when 
giving birth of 26.6 years, nearly 400,000 of the 140 million annual 
births will have a DD caused by a DNM.

In summary, we have shown that DNMs account for approximately 
half of the genetic architecture of severe DDs, and are split roughly 
equally between loss of function and altered function. Whereas most 
haploinsufficient DD-associated genes have already been identified, 
many activating and dominant-negative DD-associated genes have not 
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yet been described. This probably results from these disorders being 
individually rarer, being caused by a relatively small number of mis-
sense mutations within each gene. It would be valuable to estimate the 
penetrance of DNMs in the genes we identified as exceeding genome-
wide significance, but we cannot formally assess penetrance with our 
data. Future evaluations could integrate depletion of damaging varia-
tion in large healthy populations with patterns of segregation in affected 
families. Discovery of the remaining dominant DDs requires larger 
studies and novel, more powerful, analytical strategies for disease-gene 
association that leverage gene-specific patterns of population variation, 
specifically the observed depletion of damaging variation. The integra-
tion of accurate and complete, quantitative and categorical phenotypic 
data into the analysis will improve the power to identify ultrarare DDs 
with distinctive clinical presentations. We have estimated the mean 
birth prevalence of dominant monogenic DDs to be around 1 in 295, 
which is greater than the combined impact of trisomies 13, 18 and 
21 (ref. 33) and highlights the cumulative population morbidity and 
mortality imposed by these individually rare disorders.

Note added in proof, other recently published studies have also iden-
tified DD-associations for several genes described here, namely CDK13 
(ref. 34), CHD4 (ref. 34), CSNK2A1 (ref. 35), MSL3 (ref. 36), PPM1D 
(ref. 37), TCF20 (ref. 37) and ZBTB18 (ref. 38).

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
Data reporting. No statistical methods were used to predetermine sample size. 
The experiments were not randomized and the investigators were not blinded to 
allocation during experiments and outcome assessment.
Family recruitment. At 24 clinical genetics centres within the United Kingdom 
National Health Service and the Republic of Ireland, 4,293 patients with severe, 
undiagnosed DDs and their parents (4,125 families) were recruited and system-
atically phenotyped. The study has UK Research Ethics Committee approval  
(10/H0305/83, granted by the Cambridge South Research Ethics Committee and 
GEN/284/12, granted by the Republic of Ireland Research Ethics Committee). 
Families gave informed consent for participation.

Clinical data (growth measurements, family history, developmental mile-
stones, and so on) were collected using a standard restricted-term questionnaire 
within DECIPHER39, and detailed developmental phenotypes for the individuals 
were entered using HPO terms40. Saliva samples for the whole family and blood- 
extracted DNA samples for the probands were collected, processed and quality 
controlled as previously described15.
Exome sequencing. Genomic DNA (approximately 1 μ g) was fragmented to an 
average size of 150 base pairs (bp) and a DNA library was created using estab-
lished Illumina paired-end protocols. Adaptor-ligated libraries were amplified and 
indexed using polymerase chain reaction (PCR). A portion of each library was 
used to create an equimolar pool comprising eight indexed libraries. Each pool 
was hybridized to SureSelect RNA baits (Agilent Human All-Exon V3 Plus with 
custom ELID C0338371 and Agilent Human All-Exon V5 Plus with custom ELID 
C0338371) and sequence targets were captured and amplified in accordance with 
the manufacturer’s recommendations. Enriched libraries were analysed by 75-base 
paired-end sequencing (Illumina HiSeq) following the manufacturer’s instructions.
Alignment and calling single-nucleotide variants, insertions and deletions. 
Mapping of short-read sequences for each sequencing lanelet was carried out using 
the Burrows-Wheeler aligner (BWA; version 0.59)41 backtrack algorithm with the 
GRCh37 1000 Genomes Project phase 2 reference (also known as hs37d5). Sample-
level BAM improvement was carried out using the Genome Analysis Toolkit 
(GATK; version 3.1.1)42 and SAMtools (version 0.1.19)43. This consisted of a rea-
lignment of reads around known and discovered indels (insertions and deletions) 
followed by base quality score recalibration (BQSR), with both steps performed 
using GATK. Lastly, SAMtools calmd was applied and indexes were created.

Known indels for realignment were taken from the Mills Devine and 1000 
Genomes Project Gold set and the 1000 Genomes Project phase low-coverage 
set, both part of the GATK resource bundle (version 2.2). Known variants for 
BQSR were taken from dbSNP 137, also part of the GATK resource bundle. 
Finally, single-nucleotide variants (SNVs) and indels were called using the GATK 
HaplotypeCaller (version 3.2.2); this was run in multisample calling mode using 
the complete dataset. GATK Variant Quality Score Recalibration (VQSR) was then 
computed on the whole dataset and applied to the individual-sample variant calling 
format (VCF) files. DeNovoGear (version 0.54)44 was used to detect SNV, insertion 
and deletion DNMs from child and parental exome data (BAM files).
Variant annotation. Variants in the VCF were annotated with minor allele  
frequency (MAF) data from a variety of different sources. The MAF annotations 
used included data from four different populations of the 1000 Genomes Project45 
(American, Asian, African and European), the UK10K cohort, the NHLBI GO 
Exome Sequencing Project (ESP), the Non-Finnish European (NFE) subset of the 
Exome Aggregation Consortium (ExAC) and an internal allele frequency generated 
using unaffected parents from the cohort.

Variants in the VCF were annotated with Ensembl Variant Effect Predictor 
(VEP)46 based on Ensembl gene build 76. The transcript with the most severe 
consequence was selected and all associated VEP annotations were based on the 
predicted effect of the variant on that particular transcript; where multiple tran-
scripts shared the same most severe consequence, the canonical or longest was 
selected. We included an additional consequence for variants at the last base of 
an exon before an intron, where the final base is a guanine, since these variants 
appear to be as damaging as a splice-donor variant28. We categorized variants 
into three classes by VEP consequence: (1) protein-truncating variants (PTV): 
splice donor, splice acceptor, stop gained, frameshift, initiator codon and conserved 
exon terminus variant; (2) missense variants: missense, stop lost, inframe deletion, 
inframe insertion, coding sequence and protein altering variant; (3) silent variants: 
synonymous.
DNM filtering. We filtered candidate DNM calls to reduce the false-positive rate 
but to maximize sensitivity, on the basis of previous results from experimental 
validation by capillary sequencing of candidate DNMs15. Candidate DNMs were 
excluded if not called by GATK in the child, or called in either parent, or if they 
had a maximum MAF greater than 0.01. Candidate DNMs were excluded when 
the forward and reverse coverage differed between reference and alternative alleles, 

defined as P <  10−3 using a Fisher’s exact test of coverage from orientation by allele 
summed across the child and parents.

Candidate DNMs were also excluded if they met two of the three following three 
criteria: (1) an excess of parental alternative alleles within the cohort at the DNMs 
position, defined as P <  10−3 under a one-sided binomial test given an expected 
error rate of 0.002 and the cumulative parental depth; (2) an excess of alternative 
alleles within the cohort in DNMs in a gene, defined as P <  10−3 under a one-sided 
binomial test given an expected error rate of 0.002 and the cumulative depth; or  
(3) both parents had one or more reads supporting the alternative allele.

If, after filtering, more than one variant was observed in a given gene for a 
particular trio, only the variant with the highest predicted functional impact was 
kept (protein truncating >  missense >  silent).
DNM validation. For candidate DNMs of interest, primers were designed to 
amplify 150–250-bp products centred around the site of interest. Default primer3 
design settings were used with the following adjustments: GC clamp =  1, human 
mispriming library used. Site-specific primers were tailed with Illumina adaptor 
sequences. PCR products were generated with JumpStart AccuTaq LA DNA pol-
ymerase (Sigma Aldrich), using 40 ng genomic DNA as template. Amplicons were 
tagged with Illumina PCR primers along with unique barcodes enabling multiplex-
ing of 96 samples. Barcodes were incorporated using Kapa HiFi mastermix (Kapa 
Biosystems). Samples were pooled and sequenced down one lane of the Illumina 
MiSeq, using 250 bp paired-end reads. An in-house analysis pipeline extracted the 
read count per site and classified inheritance status per variant using a maximum 
likelihood approach (see Supplementary Note).
Individuals with likely pathogenic variants. We previously screened 1,133 indi-
viduals for variants that contribute to their disorder15,18. All candidate variants in 
the 1,133 individuals were reviewed by consultant clinical geneticists for relevance 
to the individuals’ phenotypes. Most diagnosable pathogenic variants occurred  
de novo in dominant genes, but a small proportion also occurred in recessive genes 
or under other inheritance modes. DNMs within dominant DD-associated genes 
were very probable to be classified as the pathogenic variant for the individuals’ 
disorder. Owing to the time required to review individuals and their candidate 
variants, we did not conduct a similar review in the remainder of the 4,293 indi-
viduals. Instead we defined probable pathogenic variants as candidate DNMs 
found in autosomal and X-linked dominant DD-associated genes, or candidate 
DNMs found in hemizygous DD-associated genes in males. 1,136 individuals in 
the 4,293 cohort had variants either previously classified as pathogenic15,18, or had 
a probably pathogenic DNM.
Gene-wise assessment of DNM significance. Gene-specific germline mutation 
rates for different functional classes were computed15,23 for the longest transcript in 
the union of transcripts overlapping the observed DNMs in that gene. We evaluated 
the gene-specific enrichment of PTV and missense DNMs by computing its statis-
tical significance under a null hypothesis of the expected number of DNMs given 
the gene-specific mutation rate and the number of considered chromosomes23.

We also assessed clustering of missense DNMs within genes15, as expected 
for DNMs causing activating or dominant-negative mechanisms. We did this by  
calculating simulated dispersions of the observed number of DNMs within the 
gene. The probability of simulating a DNM at a specific codon was weighted by 
the trinucleotide sequence context15,23. This allowed us to estimate the probability 
of the observed degree of clustering given the null model of random mutations.

Fisher’s method was used to combine the significance testing of missense +  PTV 
DNM enrichment and missense DNM clustering. We defined a gene as signifi-
cantly enriched for DNMs if the PTV-enrichment P value or the combined mis-
sense P value was less than 7 ×  10−7, which represents a Bonferroni corrected  
P value of 0.05 adjusted for 4 ×  18,500 tests (2 ×  consequence classes tested ×  protein  
coding genes).
Composite face generation. Families were given the option to have photographs 
of the affected individual(s) uploaded within DECIPHER39. Using images of  
individuals with DNMs in the same gene we generated de-identified realistic average  
faces (composite faces). Faces were detected using a discriminately trained, 
deformable-part-model detector47. The annotation algorithm identified a set of 
36 landmarks per detected face48 and was trained on a manually annotated dataset 
of 3,100 images24. The average face mesh was created by the Delaunay triangula-
tion of the average constellation of facial landmarks for all patients with a shared 
genetic disorder.

The averaging algorithm is sensitive to left–right facial asymmetries across multiple  
patients. For this purpose, we use a template constellation of landmarks based on 
the average constellations of 2,000 healthy individuals24. For each patient, we align 
the constellation of landmarks to the template with respect to the points along the 
middle of the face and compute the Euclidean distances between each landmark 
and its corresponding pair on the template. The faces are mirrored such that the 
half of the face with the greater difference is always on the same side.
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The dataset used for this work may contain multiple photos for one patient. 
To avoid biasing the average face mesh towards these individuals, we computed 
an average face for each patient and use these personal averages to compute the 
final average face. Finally, to avoid any image in the composite dominating owing 
to variance in illumination between images, we normalized the intensities of 
pixel values within the face to an average value across all faces in each average. 
The composite faces were assessed visually to confirm successful ablation of any 
individually identifiable features. Visual assessment of the composite photograph 
by two experienced clinical geneticists, alongside the individual patient photos, 
was performed for all 93 genome-wide significant DD-associated genes for which 
clinical photos were available for more than one patient, to remove potentially 
identifiable composite faces as well as quality control on the automated composite 
face generation process. Eighty-one composite faces were excluded leaving the 
twelve de-identified composite faces that are shown in Fig. 2 and Extended Data 
Fig. 3. Each of the twelve composite faces that passed de-identification and quality 
control was generated from photos of ten or more patients.
Assessing power of incorporating phenotypic information. We previously 
described a method to assess phenotypic similarity by HPO terms among groups 
of individuals sharing genetic defects in the same gene28. We examined whether 
incorporating this statistical test improved our ability to identify dominant genes 
at genome-wide significance. Per gene, we tested the phenotypic similarity of indi-
viduals with DNMs in the gene. We combined the phenotypic-similarity P value 
with the genotypic P value per gene (the minimum P value from the DDD-only and 
meta-analysis) using Fisher’s method. We examined the distribution of differences 
in P value between tests without the phenotypic-similarity P value and tests that 
incorporated the phenotypic-similarity P value.

Many individuals (854, 20%) of the DDD cohort experience seizures. We inves-
tigated whether testing within the subset of individuals with seizures improved our 
ability to find associations for seizure-specific genes. A list of 102 seizure-associated 
genes was curated from three sources: a gene panel for Ohtahara syndrome, a  
currently used clinical gene panel for epilepsy and a panel derived from 
DD-associated genes18. The P values from the seizure subset were compared to  
P values from the complete cohort.
Assessing power of exome versus genome sequencing. We compared the 
expected power of exome sequencing versus genome sequencing to identify disease  
genes. Within the DDD cohort, 55 dominant DD-associated genes achieve 
genome-wide significance when testing for enrichment of DNMs within genes. 
We did not incorporate missense DNM clustering owing to the large computational 
requirements for assessing clustering in many replicates.

We assumed a cost of USD$1,000 per individual for genome sequencing. We 
allowed the cost of exome sequencing to vary relative to genome sequencing, from 
10–100%. We calculated the number of trios that could be sequenced under these 
scenarios. Estimates of the improved power of genome sequencing to detect DNMs 
in the coding sequence are around 1.05-fold29 and we increased the number of trios 
by 1.0–1.2-fold to allow this.

We sampled as many individuals from our cohort as the number of trios 
and counted which of the 55 DD-associated genes still achieved genome-wide  
significance for DNM enrichment. We ran 1,000 simulations of each condition and 
obtained the mean number of genome-wide significant genes for each condition.
Associations with presence of probably pathogenic DNMs. We tested whether 
phenotypes were associated with the likelihood of having a probably pathogenic 
DNM. We analysed all collected phenotypes which could be coded in either a 
binary or quantitative format. Categorical phenotypes (for example, sex coded as 
male or female) were tested using a Fisher’s exact test whereas quantitative phe-
notypes (for example, duration of gestation coded in weeks) were tested using a 
logistic regression, using sex as a covariate.

We investigated whether having autozygous regions affected the likelihood of 
having a diagnostic DNM. Autozygous regions were determined from genotypes 
in every individual, to obtain the total length per individual. We fitted a logistic  
regression for the total length of autozygous regions to whether individuals had 
a probably pathogenic DNM. To illustrate the relationship between length of 
autozygosity and the occurrence of a probably pathogenic DNM, we grouped the 
individuals by length and plotted the proportion of individuals in each group with 
a DNM against the median length of the group.

The effects of parental age on the number of DNMs were assessed using 8,409 
high confidence (posterior probability of DNM >  0.5) unphased coding and non-
coding DNMs in 4,293 individuals. A Poisson multiple regression was fit on the 
number of DNMs in each individual with both maternal and paternal age at child 
birth as covariates. The model was fit with the identity link and allowed for over-
dispersion. This model used exome-based DNMs, and the analysis was scaled 
to the whole genome by multiplying the coefficients by a factor of 50, based on 
approximately 2% of the genome being well covered by our data (exons +  introns).

Excess of DNMs by consequence. We identified the threshold for posterior prob-
ability of DNM for which the number of observed candidate synonymous DNMs 
was equal to the number of expected synonymous DNMs. Candidate DNMs 
with scores below this threshold were excluded. We also examined the probable  
sensitivity and specificity of this threshold based on validation results for DNMs 
of a previous publication15 in which comprehensive experimental validation was 
performed on 1,133 trios that comprise a subset of the families analysed here.

The numbers of expected DNMs per gene were calculated per consequence 
from expected mutation rates per gene and the 2,407 male and 1,886 females in 
the cohort. We calculated the excess of DNMs for missense and PTVs as the ratio 
of numbers of observed DNMs versus expected DNMs, as well as the difference 
of observed DNMs minus expected DNMs.
Ascertainment bias within dominant neurodevelopmental genes. We identified 
150 autosomal dominant haploinsufficient genes that affect neurodevelopment 
within our curated DD gene set. Genes affecting neurodevelopment were iden-
tified where the affected organs included the brain; or where HPO phenotypes 
linked to defects in the gene included either an abnormality of brain morphology 
(HP:0012443) or cognitive impairment (HP:0100543) term.

The 150 genes were classified for ease of clinical recognition of the syndrome 
from gene defects by two consultant clinical geneticists. Genes were rated from  
1 (least recognizable) to 5 (most recognizable). Categories 1 and 2 contained 5 and 
22 genes, respectively, and so were combined in later analyses. The remaining cate-
gories had more than 33 genes per category. The ratio of observed loss-of-function 
DNMs to expected loss-of-function DNMs was calculated for each recognizability 
category, along with 95% CIs from a Poisson distribution given observed counts.

We estimated the likelihood of obtaining the observed number of PTV DNMs 
under two models. Our first model assumed no haploinsufficiency, and mutation 
counts were expected to follow baseline mutation rates. Our second model assumed 
fully penetrant haploinsufficiency, and scaled the baseline PTV-mutation expecta-
tions by the observed PTV enrichment in our known haploinsufficient neurode-
velopmental genes, stratified by clinical recognizability into low (containing genes 
with our ‘low’, ‘mild’ and ‘moderate’ labels) and high categories. We calculated the  
likelihoods of both models per gene as the Poisson probability of obtaining  
the observed number of PTVs, given the expected mutation rates. We computed 
the Akaike’s Information Criterion for each model and ranked them by the differ-
ence between model 1 and model 2 (Δ AIC).
Proportion of DNMs with a loss-of-function mechanism. The observed excess 
of missense/inframe indel DNMs is composed of a mixture of DNMs with loss- 
of-function mechanisms and DNMs with altered-function mechanisms. We found 
that the excess of PTV DNMs within dominant haploinsufficient DD-associated 
genes had a greater skew towards genes with high intolerance for loss-of-function 
variants than the excess of missense DNMs in dominant non-haploinsufficient 
genes. We binned genes by the probability of being loss-of-function intolerant30 
constraint decile and calculated the observed excess of missense DNMs in each 
bin. We modelled this binned distribution as a two-component mixture with the 
components representing DNMs with a loss-of-function or altered-function mech-
anism. We identified the optimal mixing proportion for the loss-of-function and 
altered-function DNMs from the lowest goodness of fit (from a spline fitted to 
the sum-of-squares of the differences per decile) to missense/inframe indels in all 
genes across a range of mixtures.

The excess of DNMs with a loss-of-function mechanism was calculated as the 
excess of DNMs with a VEP loss-of-function consequence, plus the proportion of 
the excess of missense DNMs at the optimal mixing proportion.

We independently estimated the proportions for loss of function and altered 
function. We counted PTV and missense/inframe indel DNMs within domi-
nant haploinsufficient genes to estimate the proportion of excess DNMs with a  
loss-of-function mechanism, but which were classified as missense/inframe indel. 
We estimated the proportion of excess DNMs with a loss-of-function mechanism 
as the PTV excess plus the PTV excess multiplied by the proportion of loss of 
function classified as missense.
Prevalence of DDs from dominant DNMs. We estimated the birth prevalence 
of monoallelic DDs by using the germline-mutation model. We calculated the 
expected cumulative germline-mutation rate of truncating DNMs in 238 haploin-
sufficient DD-associated genes. We scaled this upwards based on the composition 
of excess DNMs in the DDD cohort using the ratio of excess DNMs (n =  1,816) to 
DNMs within dominant haploinsufficient DD-associated genes (n =  412). Around 
10% of DDs are caused by de novo copy-number variations49,50, which are underrep-
resented in our cohort as a result of previous genetic testing. If included, the excess 
DNM in our cohort would increase by 21%, therefore we scaled the prevalence  
estimate upwards by this factor.

Mothers aged 29.9 and fathers aged 29.5 have children with 77 DNMs per 
genome on average21. We calculated the mean number of DNMs expected under 
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different combinations of parental ages, given our estimates of the extra DNMs 
per year from older mothers and fathers. We scaled the prevalence to different 
combinations of parental ages using the ratio of expected mutations at a given age 
combination to the number expected at the mean cohort parental ages.

To estimate the annual number of live births with DDs caused by DNMs, we 
obtained country population sizes, birth rates, age at first birth51, and calculated 
global birth rate (18.58 live births per 1,000 individuals) and age at first birth  
(22.62 years), weighted by population size. We calculated the mean age when giving 
birth (26.57 years) given a total fertility rate of 2.45 children per mother52, and a 
mean interpregnancy interval of 29 months53. We calculated the number of live 
births given our estimate of DD prevalence caused by DNMs at this age (0.00288), 
the global population size (7.4 billion individuals) and the global birth rate.
Code availability. Source code for filtering candidate DNMs, testing DNM enrich-
ment, DNM clustering and phenotypic similarity can be found here: https://github.
com/jeremymcrae/denovoFilter, https://github.com/jeremymcrae/mupit, https://
github.com/jeremymcrae/denovonear and https://github.com/jeremymcrae/
hpo_similarity.
Data availability. Exome sequencing and phenotype data are accessible via 
the European Genome-phenome Archive (EGA) under accession number 
EGAS00001000775 (https://www.ebi.ac.uk/ega/studies/EGAS00001000775). 
Details of DD-associated genes are available at www.ebi.ac.uk/gene2phenotype. All 
other data are available from the corresponding author upon reasonable request.
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Extended Data Figure 1 | Proportion of individuals with a DNM that is 
probably pathogenic. Only individuals with protein-altering or protein-
truncating DNMs in dominant or X-linked dominant DD-associated 
genes, or males with DNMs in hemizygous DD-associated genes were 
included. The proportions given are for those individuals with any DNMs 
rather than the total number of individuals in each subset. Cohorts 
included in the DNM meta-analyses are shaded blue.
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Extended Data Figure 2 | Phenotypic summary of genes without 
previous compelling evidence. Phenotypes are grouped by type. The 
first group indicates numbers of individuals with DNMs per gene 
divided by sex (m, male; f, female), and by functional consequence (NSV, 
nonsynonymous variant; PTV, protein-truncating variant). The second 
group indicates mean values for growth parameters: birthweight (bw), 
height (ht), weight (wt) and occipitofrontal circumference (OFC). Values 

are given as standard deviations from the healthy population mean derived 
from ALSPAC (Avon longitudinal study of parents and children) data. 
The third group indicates the mean age for achieving developmental 
milestones: age of first social smile, age of first sitting unassisted, age 
of first walking unassisted and age of first speaking. Values are given in 
months. The final group summarizes HPO-coded phenotypes per gene, as 
number of HPO terms within different clinical categories.
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Extended Data Figure 3 | Phenotypic summary of individuals with 
DNMs in genes achieving genome-wide significance. Phenotypes 
are grouped by type. The first group indicates numbers of individuals 
with DNMs per gene divided by sex (m, male; f, female), and by 
functional consequence (NSV, nonsynonymous variant; PTV, protein-
truncating variant). The second group indicates mean values for growth 
parameters: birthweight (bw), height (ht), weight (wt) and occipitofrontal 

circumference (OFC). Values are given as standard deviations from the 
healthy population mean derived from ALSPAC data. The third group 
indicates the mean age for achieving developmental milestones: age of first 
social smile, age of first sitting unassisted, age of first walking unassisted 
and age of first speaking. Values are given in months. The final group 
summarizes HPO-coded phenotypes per gene, as number of HPO terms 
within different clinical categories.
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Extended Data Figure 5 | Effect of clustering by phenotype on the 
ability to identify genome-wide significant genes. a, Comparison of 
P values derived from genotypic information alone versus P values that 
incorporate genotypic information and phenotypic similarity.  
b, Comparison of P values from tests in the complete DDD cohort versus 
tests in the subset with seizures. Genes that were previously linked to 

seizures are shaded blue. c, Proportion of cohort with a DNM in a seizure-
associated gene, stratified by seizure-affected status. Error bars, 95% CI. 
d, Comparison of power to identify genome-wide significant genes in 
probands with seizures, versus the unstratified cohort, at matched sample 
sizes.
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Extended Data Figure 6 | Power of genome versus exome sequencing to 
discover dominant genes associated with DDs. a, The number of genes 
exceeding genome-wide significance was estimated at three different fixed 
budgets ($USD1, 2 or 3 million ) and a range of relative sensitivities for 
genomes versus exomes to detect DNMs. The number of genes identifiable 
by exome sequencing are shaded blue, whereas the number of genes 

identifiable by genome sequencing are shaded green. The regions where 
exome sequencing costs 30–40% of genome sequencing are shaded with 
a grey background, which corresponds to the price differential in 2016. 
b, Simulated estimates of power to detect loss-of-function genes in the 
genome at different cohort sizes, given fixed budgets.
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Extended Data Figure 7 | Gene-wise significance of 
neurodevelopmental genes versus the expected number of mutations 
per gene. Points are shaded by clinical recognizability classification (blue 
and brown points denote cryptic and distinctive disorders, respectively). 

Genes have been separated into two plots. Left, genes for cryptic disorders 
with low, mild or moderate clinical recognizability. Right, genes for 
distinctive disorders with high clinical recognizability.
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Extended Data Figure 8 | Stringency of DNM filtering. a, Sensitivity 
and specificity of DNM validations within sets filtered using varying 
thresholds of DNM quality (posterior probability of DNM). The analysed 
DNMs were restricted to sites identified within the earlier 1,133 trios15, 
where all candidate DNMs underwent validation experiments. The 

labelled value is the quality threshold at which the number of candidate 
synonymous DNMs equals the number of expected synonymous 
mutations under a null germline mutation rate. b, Excess of missense and 
loss-of-function DNMs at varying DNM quality thresholds. The DNM 
excess is adjusted for the sensitivity and specificity at each threshold.
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Extended Data Figure 9 | Enrichment of DNMs by consequence type, across functional constraint quantiles for residual variation intolerance 
scores. A comparison of enrichment for residual variation intolerance score (RVIS) values generated from ESP6500 data (ref. 31) versus ExAC data 
(obtained from http://genic-intolerance.org/) are provided.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Table 1 | Phenotypes tested for association with having a pathogenic DNM
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