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Genetic analyses of diverse populations improves 
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Genome-wide association studies (GWAS) have laid the foundation 
for investigations into the biology of complex traits, drug 
development and clinical guidelines. However, the majority of 
discovery efforts are based on data from populations of European 
ancestry1–3. In light of the differential genetic architecture that is 
known to exist between populations, bias in representation can 
exacerbate existing disease and healthcare disparities. Critical 
variants may be missed if they have a low frequency or are 
completely absent in European populations, especially as the field 
shifts its attention towards rare variants, which are more likely to be 
population-specific4–10. Additionally, effect sizes and their derived 
risk prediction scores derived in one population may not accurately 
extrapolate to other populations11,12. Here we demonstrate the value 
of diverse, multi-ethnic participants in large-scale genomic studies. 
The Population Architecture using Genomics and Epidemiology 
(PAGE) study conducted a GWAS of 26 clinical and behavioural 
phenotypes in 49,839 non-European individuals. Using strategies 
tailored for analysis of multi-ethnic and admixed populations, 
we describe a framework for analysing diverse populations, 
identify 27 novel loci and 38 secondary signals at known loci, as 
well as replicate 1,444 GWAS catalogue associations across these 
traits. Our data show evidence of effect-size heterogeneity across 
ancestries for published GWAS associations, substantial benefits 
for fine-mapping using diverse cohorts and insights into clinical 

implications. In the United States—where minority populations 
have a disproportionately higher burden of chronic conditions13—
the lack of representation of diverse populations in genetic research 
will result in inequitable access to precision medicine for those with 
the highest burden of disease. We strongly advocate for continued, 
large genome-wide efforts in diverse populations to maximize 
genetic discovery and reduce health disparities.

The PAGE study was developed by the National Human Genome 
Research Institute and the National Institute on Minority Health 
and Health Disparities to conduct genetic epidemiological research 
in ancestrally diverse populations within the United States. The 
study is drawn from three existing major population-based cohorts 
(Hispanic Community Health Study/Study of Latinos (HCHS/SOL), 
Women’s Health Initiative (WHI) and Multiethnic Cohort (MEC)) 
and the Icahn School of Medicine at Mount Sinai BioMe biobank 
in New York City (BioMe). Genotyped individuals self-identified as 
Hispanic/Latino (n = 22,216), African American (n = 17,299), Asian 
(n = 4,680), Native Hawaiian (n = 3,940), Native American (n = 652) 
or Other (n = 1,052) (Supplementary Table 1 and Supplementary 
Information 1). These 49,839 individuals were genotyped on the 
Multi-Ethnic Genotyping Array (MEGA), which we developed to 
equitably capture global genetic variation14 (Supplementary Fig. 1 and 
Supplementary Information 3). Given that PAGE participants reside 
on a continuum of genetic ancestry, rather than discrete population 
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groups15 (Fig. 1a and Supplementary Fig. 2), a joint analysis was  
optimally powered and the most parsimonious way to allow for  
heterogeneous variance across populations16. We then performed 
genome-wide association analyses on 26 traits harmonized across 
the four studies, adjusted for the top 10 principal components (PCs), 
indicators for study and self-identified race/ethnicity, as well as trait- 
specific covariates. We used extensions of previously developed analyt-
ical tools (SUGEN and GENESIS), which explicitly model population 
structure, relatedness between individuals and population-specific 
genetic heterogeneity16–20. For comparison against standard multi- 
ethnic approaches and to assess heterogeneity by ancestry, we also 
conducted analyses stratified by self-identified race/ethnicity and 

combined these analyses in a meta-analysis (Supplementary Table 3). 
We demonstrate that the joint analysis increased power for discovery 
compared to the meta-analysis approach, but that it did not increase the 
incidence of type-1 error (Supplementary Information 5; the pipeline 
for the analysis of diverse populations in genomic research is outlined 
in the Methods).

Given that genetic architecture and/or causal variants may differ 
between populations, we hypothesized that the examination of under-
represented populations would reveal novel ancestry-specific associa-
tions. Using minor allele frequency (MAF)-specific P-value thresholds21 
(P < 5 × 10−8 for MAF > 5%; P < 3 × 10−9 for MAF < 5%), we identified  
16 novel genome-wide significant trait–variant associations and  

0

0.25

0.50

0.75

1.00

0 0.25 0.50 0.75 1.00

a bAfrican American

Hispanic/Latino

AsianNative HawaiianNative American

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X

Category

Known

Replicated

Secondary

Novel

BMI
Height

WHR
WHR (female)

WHR (male)
Diastolic blood pressure
Systolic blood pressure

Hypertension
PR interval

QRS interval
QT interval

Fasting glucose
Fasting insulin

HbA1c
Type 2 diabetes

C-reactive protein
MCHC

Platelet count
White blood cell count

Chronic kidney disease
End-stage renal disease

eGFR
Cigarettes per day

Coffee consumption
HDL
LDL

Triglycerides
Total cholesterol

Chromosome

0

0.25

0.50

0.75

1.00

0 0.25 0.50 0.75 1.00

P
C

2

PC1

0

0.25

0.50

0.75

1.00

0 0.25 0.50 0.75 1.00

0

0.25

0.50

0.75

1.00

0 0.25 0.50 0.75 1.000 0.25 0.50 0.75 1.00

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0 0.25 0.50 0.75 1.00

Fig. 1 | Inclusion of multi-ethnic samples enables discovery and 
replication in GWAS. a, The population substructure present in the  
multi-ethnic sample of PAGE (n = 49,839) revealed complex patterns 
preventing meaningful stratification. Here we show that PC1 and PC2 
show major patterns of variation, stratified by self-identified race/ethnicity. 
Individuals denoted by orange self-identified as ‘Other’. b, There are 8,979 
previously reported trait–variant pairs, of which 1,444 replicated at a  

by-trait Bonferroni-adjusted significance level for P values estimated from 
a Wald test in SUGEN. In addition, we found 27 novel trait–variant pairs 
and 38 secondary signal pairs that remained after adjusting for known 
variants. BMI, body-mass index; eGFR, estimated glomerular filtration 
rate; HbA1c, glycated haemoglobin; HDL, high-density lipoprotein; 
LDL, low-density lipoprotein; MCHC, mean corpuscular haemoglobin 
concentration; WHR, waist-to-hip ratio.
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Fig. 2 | Weaker effect sizes of previously published trait–variant 
associations in non-European populations exacerbates disparity in 
PVE. a, Standardized effect sizes for the two largest self-reported subsets 
of the PAGE population show markedly weaker effect sizes in African 
Americans (z′PAGE = 0.54 × z′prior (yellow); z′ is the z-score from the trait–
variant association standardized by the sample size in PAGE or the ‘prior’ 
publication from the NHGRI-EBI GWAS Catalog) than in Hispanic/
Latino participants (z′PAGE = 0.86 × z′prior; red) compared to originally 
reported effect sizes from the NHGRI-EBI GWAS Catalog. Grey shading 
indicates the 95% confidence interval around the slope estimate. b, After 

identifying the SNP with the smallest P value in each locus, the PVE of 
height was calculated using the estimated effect size from this set of tag 
SNPs (left, GIANT-only GWAS; middle, UKB50k+GIANT meta-analysis; 
right, PAGE + GIANT meta-analysis). PVE was estimated independently 
in the UKB50k (White British) and PAGE (multi-ethnic) samples. The gap 
in PVE with previously reported loci from GIANT (8.14%) is exacerbated 
with the inclusion of 50,000 more individuals of European descent, to 
11.19%. However, it narrows markedly with the inclusion of 50,000 multi-
ethnic samples, to 3.91%.
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11 low-frequency loci with suggestive associations (P < 5 × 10−8; 
Fig. 1b, Extended Data Table 1, Supplementary Tables 2, 3 and 
Supplementary Information 8). In regions that have been previously 
identified in the NHGRI-EBI GWAS Catalog22, we identified 32 signif-
icant trait–variant associations after conditioning on all trait-specific 
known variants in an ‘adjusted’ model, as well as 6 suggestive associ-
ations that had a low frequency or were rare variants (Pcond between 
3 × 10−9 and 5 × 10−8), further enriching our understanding of the 
genetic architecture of traits (Supplementary Table 3).

To tease apart the influence of specific ancestral components on the 
27 novel and 38 secondary loci, we calculated the correlation between 
the risk allele genotype and each of the first 10 PCs (Extended Data 
Fig. 2). These correlations reveal a population structure that underlies 
many of our identified trait–variant associations, in which there are 
population differences in the frequencies of risk alleles. Notably, a novel 
single-nucleotide polymorphism (SNP) (rs182996728) was identified 
to be associated with the number of cigarettes smoked per day among 
smokers (P = 3.1 × 10−8) as well as with PC4, which represents the 
gradient of Native Hawaiian/Pacific Islander ancestry. Although the 
risk variant is absent or rare in most populations, it was found at a fre-
quency of 17.2% in Native Hawaiian participants, in whom the signal 
was the strongest (Pstratified = 2.28 × 10−6). Our findings show that 
some trait-associated variants exhibit differential frequencies across 
populations, further illustrating a need for the inclusion of diverse 
groups.

In addition to identifying novel and secondary trait–variant asso-
ciations, we also replicate a portion of the published GWAS literature 
(which is predominantly based on populations of European ancestry; 
Extended Data Fig. 1) for our 26 phenotypes from the GWAS Catalog22. 
Of 8,979 known variant–trait combinations, 1,444 replicated at the 
P < 0.05 significance threshold, after Bonferroni correction by trait. Of 
those meeting the genome-wide significance threshold (P < 5 × 10−8), 

we replicate 574 variant–trait associations in 261 distinct regions, 
of which 132 had significant evidence of effect heterogeneity by 
genetic ancestry (SNP × PC, P < 8.71 × 10−5), which is likely to be a  
conservative estimate given the limitations of statistical power. We fur-
ther tested for effect heterogeneity by genetic ancestry by comparing 
the standardized effect sizes of PAGE analyses (joint and stratified) to 
available effect sizes from the GWAS Catalog. We observed effect sizes 
of the PAGE joint analyses to be significantly weaker than previous 
reports with a slope of 0.77 (95% confidence interval = 0.75–0.81). 
When stratified by self-identified race/ethnicity, the effect sizes for the 
Hispanic/Latino population remained significantly attenuated com-
pared to the previously reported effect sizes (β = 0.86; 95% confidence 
interval = 0.83–0.90; Fig. 2a). Effect sizes for the African American 
population were even further diminished at nearly half the strength 
(β = 0.54; 95% confidence interval = 0.50–0.58; Fig. 2a). This is sug-
gestive of truly differential effect sizes between ancestries at previously 
reported variants, rather than these effect sizes being upwardly biased 
in general (that is, exhibiting ‘winner’s curse’), which should affect all 
groups equally.

To quantify the added value of including multi-ethnic populations 
in GWAS, we used published data from GIANT (a study of more than 
250,000 individuals of European descent for anthropometric traits23,24), 
for a meta-analysis with either PAGE (around 50,000 multi-ethnic indi-
viduals) or 50,000 randomly sampled White British participants from 
the UK Biobank (UKB50k). Stratified GWAS of height in PAGE and 
UKB50k were each combined in separate meta-analyses with GIANT 
using a fixed-effect model. When comparing these meta-analyses to the 
original GIANT analysis; both meta-analyses resulted in novel findings 
(PAGE + GIANT, 82 loci; UKB50k + GIANT, 107 loci; Extended Data 
Table 2). Although the number of novel loci is indicative of new insights 
into trait biology, understanding the proportion of phenotypic variance 
explained (PVE) by each locus has potentially important consequences 
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Fig. 3 | Fine-mapping with multi-ethnic PAGE versus homogeneous 
UK Biobank samples for height. a, Comparison of 95% credible sets for 
height, comparing GIANT alone (n = 253,288) to UKB50k + GIANT 
(n = 303,288; paired-sample t-test P = 0.37) and PAGE + GIANT 
(n = 303,069; paired-sample t-test P = 0.01). Box plots show the median 
as the line in the notch, with the top and bottom of the box indicating 
the interquartile range. Whiskers extend to either the minimum value or 
1.5× the interquartile range. Notches indicate the 95% confidence interval 
of the medians. b, Top posterior probability from each 95% credible 

set for height, comparing GIANT (n = 253,288) to UKB50k + GIANT 
(n = 303,288) and PAGE + GIANT (n = 303,069). c, Example of results 
for a height locus from GWAS (rs11880992) in UKB50k + GIANT 
(n = 303,288) and PAGE + GIANT (n = 303,069), with linkage 
disequilibrium from weighted matrix from meta-analysis. d, Posterior 
probabilities for this signal with credible set in indicated by the diamond 
shapes. e, Linkage disequilibrium (r2) for the original 95% credible set 
from GIANT results stratified by populations. The index association SNP 
(rs11880992) with the highest posterior probability is denoted in bold.

N A t U r e | www.nature.com/nature



LetterreSeArCH

for personalized medicine25. The original loci that were identified by 
GIANT had more than twice the PVE using UKB50k summary statis-
tics (15.4%) compared to multi-ethnic PAGE (7.2%; Fig. 2b). With the 
additional novel variants that were identified in UKB50k + GIANT, this 
gap between the PVE is exacerbated (UKB50k, 19.2%; PAGE, 8.3%), 
whereas the addition of variants identified in PAGE + GIANT dimin-
ished the gap in PVE (UKB50k, 16.1%; PAGE, 12.0%). Similar trends 
were also observed with analyses of body-mass index (Supplementary 
Fig. 14). These results suggest that, although an increased sample 
size within a homogenous population will identify more variants and 
explain a larger proportion of the variance within that same population, 
it will also further exacerbate existing disparities in genetic knowledge 
for non-European populations.

The meta-analysis results can also be used to fine-map associa-
tions at known loci, which is an important step in the identification 
of functional polymorphisms that underlie a statistically significant 
association. Comparing the 95% credible sets for 390 associated var-
iants reported by GIANT for height, we observed that the addition of 
PAGE to GIANT significantly shrunk the credible sets from an aver-
age of 11.94 SNPs in GIANT to 9.68 in the meta-analysis (P = 0.01), 
whereas no significant differences were observed with the addition 
of UKB50k to GIANT (P = 0.37; Fig. 3a). Additionally, the posterior 
probabilities of the top-ranked SNP within these credible sets was  
significantly higher in the PAGE + GIANT meta-analysis compared to 
the GIANT analysis alone (P = 1.9 × 10−6) and the UKB50k + GIANT 
analysis (P = 3.2 × 10−3; Fig. 3b). The addition of the UKB50k data 
to the GIANT results did not significantly improve the top posterior 
probability (P = 0.09). Here we highlight as an example the previously 
identified intronic variant rs11880992, which is found in DOT1L 
(PGIANT = 7 × 10−28)24 (Fig. 3c, d). The 95% credible set was nar-
rowed down from four to a single SNP with the addition of the PAGE 
data, owing to low linkage disequilibrium between these SNPs in the 
African American and Hispanic/Latino populations (Fig. 3e). Although 
trends were consistent, none of these analyses yielded significant results 
for body-mass index (P > 0.05), which is probably due to the smaller 
number of regions that were analysed (n = 91; Supplementary Fig. 15).

Finally, we examined the worldwide distribution of several medically 
actionable variants that were designed on MEGA26 (Supplementary 
Information 11). One such variant was identified through an asso-
ciation between a missense variant in HBB (rs334) and HbA1c levels 
(Pcond = 6.87 × 10−31; n = 11,178), with the majority of the signal 
originating from the Hispanic/Latino population (P = 7.65 × 10−27; 
n = 10,408; MAF = 0.01). Although this association has recently 
been reported in African Americans27 (PAGE African Americans, 
P = 5.62 × 10−4; n = 559; MAF = 0.06), this is the first time—to our 
knowledge—that the association with HbA1c levels has been reported 
in Hispanic/Latinos. The gene HBB encodes the adult haemoglobin β 
chain and is known for its role in sickle-cell anaemia. Genetic variants 
of haemoglobin are known to affect the performance of some HbA1c 
assays28–30, potentially leading medical professionals to incorrectly 
believe that a patient has achieved glucose control, increasing the risk 
of complications caused by type 2 diabetes. This result illustrates how 
ancestry-specific findings may be transferable to other groups that 
share components of genetic ancestry—in this case, the African ances-
try present in both African Americans and some Hispanic/Latinos. 
The PAGE study can therefore aid in expanding the reach of precision 
medicine to encompass individuals of diverse ancestry, particularly 
when combined with other studies31,32.

As large-scale biobanking, precision medicine and direct-to- 
consumer genetic testing become more common, it is critical that the 
genetics community takes a forward-thinking approach towards the 
opportunities presented by including diverse populations. Here we 
focused on quantifying the scientific value of including diverse popu-
lations in the discovery and replication phases of GWAS. As we move 
towards incorporating GWAS-based risk models in clinical care33, 
our study as well as other recent studies34 demonstrate that we risk 
exacerbating health disparities unless diverse, multi-ethnic studies 

are included. In the United States, the All of Us Research Program 
embraces the reality that the success of precision medicine requires pre-
cision genomics, and therefore emphasizes the recruitment and active 
participation of underrepresented populations35. It is in the best interest 
of our research community to follow suit and take steps to become 
more inclusive. As world populations become increasingly complex36,37, 
geneticists and clinicians will be required to evaluate genetic predictors 
of complex traits in ever more diverse populations. Current genomic 
databases are under representative of populations with the greatest 
health burden and possibility of meaningful benefit. This realization, 
combined with the increased availability of resources for studying 
diverse populations, means that researchers and funders can no longer 
afford to ignore non-European populations. The PAGE study provides 
valuable resources in the design of MEGA and through the sharing of 
population-specific allele frequencies and analysis approaches, which 
will provide the motivation to make research in diverse populations 
a priority in the field of genetics.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-019-1310-4.

Received: 30 June 2017; Accepted: 15 May 2019;  
Published online xx xx xxxx.

 1. Need, A. C. & Goldstein, D. B. Next generation disparities in human genomics: 
concerns and remedies. Trends Genet. 25, 489–494 (2009).

 2. Bustamante, C. D., Burchard, E. G. & De La Vega, F. M. Genomics for the world. 
Nature 475, 163–165 (2011).

 3. Popejoy, A. B. & Fullerton, S. M. Genomics is failing on diversity. Nature 538, 
161–164 (2016).

 4. Gravel, S. et al. Demographic history and rare allele sharing among human 
populations. Proc. Natl Acad. Sci. USA 108, 11983–11988 (2011).

 5. The SIGMA Type 2 Diabetes Consortium. Association of a low-frequency variant 
in HNF1A with type 2 diabetes in a Latino population. J. Am. Med. Assoc. 311, 
2305–2314 (2014).

 6. Gudmundsson, J. et al. A study based on whole-genome sequencing yields a 
rare variant at 8q24 associated with prostate cancer. Nat. Genet. 44, 
1326–1329 (2012).

 7. Moltke, I. et al. A common Greenlandic TBC1D4 variant confers muscle insulin 
resistance and type 2 diabetes. Nature 512, 190–193 (2014).

 8. Kenny, E. E. et al. Melanesian blond hair is caused by an amino acid change in 
TYRP1. Science 336, 554 (2012).

 9. Manning, A. et al. A low-frequency inactivating AKT2 variant enriched in the 
Finnish population is associated with fasting insulin levels and type 2 diabetes 
risk. Diabetes 66, 2019–2032 (2017).

 10. Han, Y. et al. Prostate cancer susceptibility in men of African ancestry at 8q24.  
J. Natl Cancer Inst. 108, djv431 (2016).

 11. Carlson, C. S. et al. Generalization and dilution of association results from 
European GWAS in populations of non-European ancestry: the PAGE study. 
PLoS Biol. 11, e1001661 (2013).

 12. Martin, A. R. et al. Human demographic history impacts genetic risk prediction 
across diverse populations. Am. J. Hum. Genet. 100, 635–649 (2017).

 13. Liao, Y. et al. Surveillance of health status in minority communities — racial and 
ethnic approaches to community health across the U.S. (REACH U.S.) risk factor 
survey, United States, 2009. MMWR Surveill. Summ. 60, 1–44 (2011).

 14. Wojcik, G. L. et al. Imputation-aware tag SNP selection to improve power for 
large-scale, multi-ethnic association studies. G3 (Bethesda) 8, 3255–3267 
(2018).

 15. Rosenberg, N. A. et al. Clines, clusters, and the effect of study design on the 
inference of human population structure. PLoS Genet. 1, e70 (2005).

 16. Conomos, M. P. et al. Genetic diversity and association studies in US Hispanic/
Latino populations: applications in the Hispanic community health study/study 
of Latinos. Am. J. Hum. Genet. 98, 165–184 (2016).

 17. Conomos, M. P., Miller, M. B. & Thornton, T. A. Robust inference of population 
structure for ancestry prediction and correction of stratification in the presence 
of relatedness. Genet. Epidemiol. 39, 276–293 (2015).

 18. Conomos, M. P., Reiner, A. P., Weir, B. S. & Thornton, T. A. Model-free estimation 
of recent genetic relatedness. Am. J. Hum. Genet. 98, 127–148 (2016).

 19. Lin, D.-Y. et al. Genetic association analysis under complex survey sampling: the 
Hispanic Community Health Study/Study of Latinos. Am. J. Hum. Genet. 95, 
675–688 (2014).

 20. Lin, D. Y. & Zeng, D. On the relative efficiency of using summary statistics versus 
individual-level data in meta-analysis. Biometrika 97, 321–332 (2010).

 21. Fadista, J., Manning, A. K., Florez, J. C. & Groop, L. The (in)famous GWAS P-value 
threshold revisited and updated for low-frequency variants. Eur. J. Hum. Genet. 
24, 1202–1205 (2016).

 22. MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome-wide 
association studies (GWAS Catalog). Nucleic Acids Res. 45, D896–D901 (2017).

N A t U r e | www.nature.com/nature

https://doi.org/10.1038/s41586-019-1310-4


Letter reSeArCH

 23. Locke, A. E. et al. Genetic studies of body mass index yield new insights for 
obesity biology. Nature 518, 197–206 (2015).

 24. Wood, A. R. et al. Defining the role of common variation in the genomic and 
biological architecture of adult human height. Nat. Genet. 46, 1173–1186 
(2014).

 25. Shim, H. et al. A multivariate genome-wide association analysis of 10 LDL 
subfractions, and their response to statin treatment, in 1868 Caucasians.  
PLoS ONE 10, e0120758 (2015).

 26. Bien, S. A. et al. Strategies for enriching variant coverage in candidate disease 
loci on a multiethnic genotyping array. PLoS ONE 11, e0167758 (2016).

 27. Lacy, M. E. et al. Association of sickle cell trait with hemoglobin A1c in African 
americans. J. Am. Med. Assoc. 317, 507–515 (2017).

 28. Lin, C.-N. et al. Effects of hemoglobin C, D, E, and S traits on measurements of 
HbA1c by six methods. Clin. Chim. Acta 413, 819–821 (2012).

 29. Mongia, S. K. et al. Effects of hemoglobin C and S traits on the results of 14 
commercial glycated hemoglobin assays. Am. J. Clin. Pathol. 130, 136–140 
(2008).

 30. Roberts, W. L. et al. Effects of hemoglobin C and S traits on glycohemoglobin 
measurements by eleven methods. Clin. Chem. 51, 776–778 (2005).

 31. Henn, B. M. et al. Hunter-gatherer genomic diversity suggests a southern 
African origin for modern humans. Proc. Natl Acad. Sci. USA 108, 5154–5162 
(2011).

 32. Baker, J. L., Shriner, D., Bentley, A. R. & Rotimi, C. N. Pharmacogenomic 
implications of the evolutionary history of infectious diseases in Africa. 
Pharmacogenomics J. 17, 112–120 (2017).

 33. Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify 
individuals with risk equivalent to monogenic mutations. Nat. Genet. 50, 
1219–1224 (2018).

 34. Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide 
association study of educational attainment in 1.1 million individuals.  
Nat. Genet. 50, 1112–1121 (2018).

 35. Collins, F. S. & Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 
372, 793–795 (2015).

 36. Colby, S. L. & Ortman, J. M. Projections of the Size and Composition of the U.S. 
Population: 2014 to 2060 (United States Census Bureau, 2015).

 37. United Nations Population Fund. State of World Population 2016. http://www.
unfpa.org/swop (2016).

Acknowledgements The Population Architecture Using Genomics and 
Epidemiology (PAGE) program is funded by the National Human Genome 
Research Institute (NHGRI) with co-funding from the National Institute on 
Minority Health and Health Disparities (NIMHD). The contents of this paper are 
solely the responsibility of the authors and do not necessarily represent the 
official views of the National Institutes of Health (NIH). The PAGE consortium 
thanks the staff and participants of all PAGE studies for their contributions. 
We thank R. Williams and M. Ginoza for providing assistance with program 
coordination. The complete list of PAGE members can be found at http://
www.pagestudy.org. Assistance with data management, data integration, data 
dissemination, genotype imputation, ancestry deconvolution, population 
genetics, analysis pipelines and general study coordination was provided by 
the PAGE Coordinating Center (NIH U01HG007419). Genotyping services 
were provided by the Center for Inherited Disease Research (CIDR). The CIDR 
is fully funded through a federal contract from the NIH to The Johns Hopkins 
University, contract number HHSN268201200008I. Genotype data quality 
control and quality assurance services were provided by the Genetic Analysis 
Center in the Biostatistics Department of the University of Washington, through 
support provided by the CIDR contract. The data and materials included 
in this report result from collaboration between the following studies and 
organizations: BioMe Biobank, HCHS/SOL, MEC, PAGE Global Reference Panel 
and WHI. Their funding is listed below and additional acknowledgements can 
be found in Supplementary Information 12. The BioMe Biobank received 
funding for the PAGE IPM BioMe Biobank study through the National Human 
Genome Research Institute (NIH U01HG007417). Primary funding support to 
K.E.N., M.G., R.T., H.M.H., C.L.A., C.J.H., A.E.J., B.M.L., M.A.R., K.L.Y., E.B., L.F., M.F., 
G.H., D.L., C.L.W. and S.Y. (as part of HCHS/SOL) is provided by U01HG007416. 
Additional support was provided via R01DK101855 and 15GRNT25880008. 
The HCHS/SOL study was carried out as a collaborative study supported 
by contracts from the National Heart, Lung and Blood Institute (NHLBI) 
to the University of North Carolina (N01-HC65233), University of Miami 

(N01-HC65234), Albert Einstein College of Medicine (N01-HC65235), 
Northwestern University (N01-HC65236) and San Diego State University 
(N01-HC65237). The Multiethnic Cohort study (MEC) characterization of 
epidemiological architecture is funded through the NHGRI PAGE program 
(NIH U01 HG007397). The MEC study is funded through the National Cancer 
Institute U01 CA164973. The Stanford Global Reference Panel was created 
by Stanford-contributed samples and comprises multiple datasets from 
multiple researchers across the world designed to provide a resource for any 
researchers interested in diverse population data on the Multi-Ethnic Global 
Array (MEGA), funded by the NHGRI PAGE program (NIH U01HG007419). 
The authors thank the researchers and research participants who made 
this dataset available to the community. Funding support for the ‘Exonic 
variants and their relation to complex traits in minorities of the WHI’ study is 
provided through the NHGRI PAGE program (NIH U01HG007376). The WHI 
program is funded by the NHLBI, NIH, US Department of Health and Human 
Services through contracts HHSN268201100046C, HHSN268201100001C, 
HHSN268201100002C, HHSN268201100003C, HHSN268201100004C 
and HHSN271201100004C. K.K.N. was supported by the Cancer Prevention 
Training Grant in Nutrition, Exercise and Genetics R25CA094880 from the 
National Cancer Institute. C.R.G. was supported by NHGRI training grant T32 
HG000044. H.M.H. was supported by NHLBI training grant T32 HL007055. 
A.E.J. was supported by NIH 5K99HL130580-02 and NIH L60 MD008384-
02. K.L.Y. supported by NCATS KL2TR001109. J.M.K. was supported by 
KL2TR000421. R.W.W. was supported by NIH 5T32HD049311-07. D.-Y.L. was 
supported by R01CA082659, R01GM047845 and P01CA142538. L.F.-R. was 
supported by NICHD training grant T32 HD007168 and P2C HD050924. T.A.T. 
was supported by P01GM099568.

Reviewer information Nature thanks André G. Uitterlinden and the other 
anonymous reviewer(s) for their contribution to the peer review of this work.

Author contributions L.A.H., S.B., C.A.H., C.K., L.L.M., R.J.F.L., T.C.M., K.E.N., U.P., 
E.E.K. and C.S.C. provided overall project supervision and management. G.L.W., 
J.H., C.R.G., N.Z., S.B., J.M.K., E.P.S., K.V., G.M.B., R.W.W., C. Schurmann, A.S., 
A.M.-E., C.A.W., E.P.B., S.C.-Q., V.A.-A., S.A.B., M.H.P., M.F., C.D.B., L.C.P., J.R., K.D., 
M.P.C., X.S., C.A.L., C.C.L., R.D., G.N., E.B., S.C.N., C.K., U.P., E.E.K. and C.S.C. carried 
out genotyping experiments and quality control. M.G., K.K.N., J.H., H.M.H., Y.M.P., 
A.E.J., C.J.H., C.L.W., C.L.A., K.L.Y., M.A.R., N.Z., S.B., J.M.K., I.C., V.W.S., G.M.B., C. 
Schurmann, A.V., M.H.P., G.H., L.F.-R., M.F., A.P.R., L.R.W., R.D.J., S.Y., U.L., Y.H., 
Y. Lu, S.-S.L.P., C.C., R.D., G.N., E.B., S.B., C.K., L.L.M., U.P. and E.E.K. carried out 
phenotype-harmonization studies. G.L.W., M.G., K.K.N., R.T., J.H., C.R.G., H.M.H., 
Y.M.P., A.E.J., B.M.L., C.J.H., C.L.W., C.L.A., K.L.Y., M.A.R., S.B., J.M.K., I.C., V.W.S., 
E.P.S., G.M.B., M.V., R.D.J., S.Y., U.L., Y.H., S.A.B., C. Sabatti, L.M.H., P.J.N., S.C.,  
Y. Lu, D.-Y.L., T.A.T., J.L.A., D.O.S., Y. Li, S.-S.L.P., C.K., U.P., E.E.K. and C.S.C. carried 
out association analyses. G.L.W., M.G., K.K.N., R.T., J.H., C.R.G., H.M.H., Y.M.P., 
A.E.J., B.M.L., C.J.H., C.L.W., C.L.A., K.L.Y., M.A.R., J.M.K., I.C., V.W.S., E.P.S., R.W.W., 
A.V., Y.H., S.A.B., P.J.N., S.C., L.M.H., D.-Y.L., G.H., A.P.R., T.A.T., D.O.S., L.A.H., R.D., 
G.N., E.A.S., S.B., C.A.H., C.K., L.L.M., R.J.F.L., T.C.M., K.E.N., U.P., E.E.K. and C.S.C. 
prepared the manuscript.

Competing interests C.D.B. is a member of the scientific advisory boards for 
Liberty Biosecurity, Personalis, 23andMe Roots into the Future, Ancestry.com, 
IdentifyGenomics and Etalon, and is a founder of CDB Consulting. C.R.G. and 
B.M.H. own stock in 23andMe. E.E.K. and C.R.G. are members of the scientific 
advisory board for Encompass Bioscience. E.E.K. consults for Illumina.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41586-
019-1310-4.
Supplementary information is available for this paper at https://doi.org/ 
10.1038/s41586-019-1310-4.
Reprints and permissions information is available at http://www.nature.com/
reprints.
Correspondence and requests for materials should be addressed to E.E.K. and 
C.S.C.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019

N A t U r e | www.nature.com/nature

http://www.unfpa.org/swop
http://www.unfpa.org/swop
http://www.pagestudy.org
http://www.pagestudy.org
https://doi.org/10.1038/s41586-019-1310-4
https://doi.org/10.1038/s41586-019-1310-4
https://doi.org/10.1038/s41586-019-1310-4
https://doi.org/10.1038/s41586-019-1310-4
http://www.nature.com/reprints
http://www.nature.com/reprints


LetterreSeArCH

MEthodS
Studies. The PAGE study includes eligible participants with a minority ancestry 
from four studies. Written informed consent was obtained for all participants in 
this study at the relevant recruitment sites. The WHI is a long-term, prospective, 
multi-centre cohort study investigating the health of post-menopausal women 
in the United States that recruited women from 1993 to 1998 at 40 centres across 
the United States. WHI participants reporting European descent were excluded 
from this analysis. The HCHS/SOL is a multi-centre study including participants 
of Hispanic/Latino descent with the goal of determining the role of acculturation  
in the prevalence and development of diseases relevant to Hispanic/Latino health. 
Starting in 2006, household sampling was used to recruit self-identified Hispanic/
Latinos from four sites in San Diego, Chicago, the Bronx and Miami. All SOL 
Hispanic/Latinos were eligible for this study. The MEC is a population-based  
prospective cohort study recruiting men and women from Hawaii and California, 
beginning in 1993, and examines lifestyle risk factors and genetic susceptibility 
to cancer. Only the African American, Japanese American and Native Hawaiian  
participants of MEC were included in this study. The BioMe BioBank is managed  
by the Charles Bronfman Institute for Personalized Medicine at Mount Sinai 
Medical Center. Recruitment began in 2007 and continues at 30 clinical care sites 
throughout New York City. BioMe participants were African American (25%), 
Hispanic/Latino, primarily of Caribbean origin (36%), Caucasian (30%) and Others 
who did not identify with any of the available options (9%). Biobank participants 
who self-identified as Caucasian were excluded from this analysis. The Global 
Reference Panel (GRP) was created from Stanford-contributed samples to serve as 
a population reference dataset for global populations. GRP individuals do not have 
phenotype data and were only used to aid in the evaluation of genetic ancestry in 
the PAGE samples. Study protocols were approved for all studies by the appropriate 
boards at their respective institutions: Fred Hutchinson Cancer Research Center 
Institutional Review Board (WHI), University of North Carolina Office of Human 
Research Ethics/IRB (OHRE/IRB; HCHS/SOL), University of Southern California 
IRB (MEC), University of Hawaii IRB (MEC), Icahn School of Medicine at Mount 
Sinai IRB (BioMe) and the Stanford University IRB (GRP). Additional information 
about each participating study can be found in the Supplementary Information.
Phenotypes. The 26 phenotypes included in this study were previously harmo-
nized across the PAGE studies and white blood cell count, C-reactive protein, 
mean corpuscular haemoglobin concentration, platelet count, high-density lipo-
protein, low-density lipoprotein, total cholesterol, triglycerides, glycated haemo-
globin (HbA1c), fasting insulin, fasting glucose, type 2 diabetes, cigarettes per 
day, coffee consumption, QT interval, QRS interval, PR interval, systolic blood 
pressure, diastolic blood pressure, hypertension, body mass index (BMI), waist-to-
hip ratio (WHR), height, chronic kidney disease (CKD), end-stage renal disease, 
and estimated glomerular filtration rate assessed using the CKD-Epidemiology 
Collaboration (CKD-Epi) equation. Single-variant association testing was com-
pleted for all phenotypes using phenotype-specific models, adjusting by indicators  
for study, self-identified race/ethnicity as a proxy for cultural background,  
phenotype-specific standard covariates and the first 10 PCs. Additional information  
about phenotype-specific cleaning, exclusion criteria and the model covariates are 
included in the Supplementary Information.
Genotyping. A total of 53,338 PAGE and GRP samples were genotyped on the 
MEGA array at the CIDR, of which 52,878 samples successfully passed the quality 
control process of the CIDR. Genotyping data that passed initial quality control at 
CIDR were released to the quality assurance and quality control analysis team at 
the University of Washington Genetic Analysis Center, after which the data were 
further cleaned according to previously described methods38 and genotypes for 
51,520 subjects were returned. A total of 1,705,969 SNPs were genotyped on the 
MEGA. Quality control of genotyped variants was completed by filtering through 
various criteria, including the exclusion of (1) CIDR technical filters; (2) variants 
with missing call rate ≥ 2%; (3) variants with more than 6 discordant calls in 
988 study duplicates; (4) variants with more than 1 Mendelian error in 282 trios 
and 1,439 duos; (5) variants with a Hardy–Weinberg P < 1 × 10−4; (6) SNPs with 
sex difference in allele frequency ≥ 0.2 for autosomes or XY; (7) SNPs with sex dif-
ference in heterozygosity > 0.3 for autosomes or XY; and (8) positional duplicates. 
Sites were further restricted to chromosomes 1–22, X or XY, and only variants with 
available strand information were included. After SNP quality control, a total of 
1,402,653 MEGA variants remained for further analyses (for further details see 
Supplementary Information 3).
Imputation. To increase coverage, and thus improve power for fine-mapping loci, 
all PAGE individuals who were successfully genotyped on MEGA were subse-
quently imputed into the 1000 Genomes phase 3 data release39. Imputation was 
conducted at the University of Washington Genetic Analysis Center. Genotype 
data that passed the above quality control filters were phased with SHAPEIT240 
and imputed into 1000 Genomes phase 3 reference data using IMPUTE version 
2.3.241. Segments of the genome that are known to contain gross chromosomal 
anomalies were filtered out of the final files of the genotype probabilities. Imputed 

sites were excluded if the IMPUTE information score was less than 0.4. A total of 
39,723,562 imputed SNPs passed quality control measures (for further details see 
Supplementary Information 3).
Principal component analysis. The SNPRelate42 package in R was used for prin-
cipal components analysis (PCA) (see Supplementary Information for further 
details). The relevant PCs were selected using scatter plots. Scatter plots, with 
various PCs on the x and y axes, helped to assess the spread of genetic ancestry 
in the data for self-identified racial/ethnic clusters. A parallel coordinate plots for 
the first 10 PCs was generated, in which each PAGE individual is represented by 
a set of line segments connecting his or her PC values. The amount of variance 
explained diminished with each subsequent PC, and we estimated that the top 
10 PCs provided sufficient information to explain the majority of genetic variation 
in the PAGE study population.
Genome-wide association testing. All imputed autosomal variants with IMPUTE 
information score > 0.4 (M = 39,723,562) were eligible for association testing 
in phenotype-specific models. An effective sample size (Neff) was calculated for 
each SNP in a given phenotype-specific model, where Neff = 2 × MAF ×(1 − M
AF) × N × info where MAF is the minor allele frequency among the set of 
individuals included in a phenotype-specific model, N is the total sample size 
for a given phenotype and info is the IMPUTE information score of the SNP. 
Variants with Neff < 30 (continuous phenotypes) or Neff < 50 (binary phenotypes), 
were excluded from the final set of phenotype-specific results. The number of 
variants analysed per trait ranged from 21,894,105 to 34,656,550 for continuous 
phenotypes and 11,665,604 to 28,263,875 for binary phenotypes (Supplementary 
Table 1). Quantile–quantile plots and λGC (GC = genomic control) were used 
to assess genomic inflation in all phenotypes, for which λGC ranged from 0.98 
to 1.15. Single-variant association testing for each phenotype used an additive 
model that was adjusted by indicators for study, self-identified race/ethnicity,  
the first 10 PCs and phenotype-specific covariates. Additional information 
about the phenotype-specific model covariates and transformations are included 
in the Supplementary Information. Association testing was completed in both 
SUGEN and GENESIS programs.

The GENESIS17,18 program is a Bioconductor package made available in R that 
was developed for large-scale genetic analyses in samples with complex structure 
including relatedness, population structure and ancestry admixture. The current 
version of GENESIS implements both linear and logistic mixed model regression 
for genome-wide association testing. The software can accommodate continuous 
and binary phenotypes. The GENESIS package includes the program PC-Relate, 
which uses a PCA-based method to infer genetic relatedness in samples with 
unspecified and unknown population structure. By using individual-specific allele 
frequencies estimated from the sample with PC eigenvectors, it provides robust 
estimates of kinship coefficients and identity-by-descent sharing probabilities in 
samples with population structure, admixture and Hardy–Weinberg equilibrium 
departures. It does not require additional reference population panels or prior 
specification of the number of ancestral subpopulations.

The SUGEN program19 is a command-line software program developed for 
genetic association analysis under complex survey sampling and relatedness pat-
terns. It implements the generalized estimating equation method, which does not 
require modelling of the correlation structures of complex pedigrees. It adopts a 
modified version of the ‘sandwich’ variance estimator, which is accurate for low- 
frequency SNPs. Association testing in SUGEN requires the formation of ‘extended’ 
families by connecting the households who share first-degree relatives or either 
first- or second-degree relatives. Trait values are assumed to be correlated within 
families but independent between families. In our experience in analysing this 
dataset, it is sufficient to account for first-degree relatedness. The current version 
of SUGEN can accommodate continuous, binary and age-at-onset traits. A com-
parison of P values produced by SUGEN and GENESIS for all previously identified 
known loci are included in Supplementary Fig. 12 and Supplementary Table 4.
Conditional analyses. Phenotype-specific lists of previously identified loci were 
hand-curated for each phenotype and included SNPs indexed in the GWAS Catalog 
or identified through non-GWAS high-throughput methods (for example, metab-
ochip, exomechip or immunochip). The full lists of known loci for each phenotype 
are available in Supplementary Table 5. Conditional analyses were conducted for 
all phenotypes by conditioning on all previously identified loci on a given chro-
mosome. P values estimated in conditional analyses are denoted by ‘Pcond in the 
main text; the SUGEN conditional results for all novel and secondary findings are 
shown in Supplementary Table 3.
SNP × PC effect heterogeneity by genetic ancestry and self-identified race/
ethnicity. We used two approaches to assess effect heterogeneity within PAGE 
participants. First, we used interaction analyses with models that included vari-
ant by PC (SNP × PC) interaction terms for all 10 PCs. The fit of nested models 
was compared using the F-statistic, for which the associated interaction P value 
indicated whether the inclusion of the 10 SNP × PC interaction terms improved 
the model fit compared to a model that lacked the interaction terms. The overall 
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SNP × PC interaction P values evaluated whether the additional variance explained 
by variant × genetic ancestry interactions was statistically significant and repre-
sented effect modification driven by genetic ancestry. Interaction P values for all 
novel and secondary findings are included in Supplementary Table 3.

For comparison against more standard (stratified) analysis strategies, all 
analyses were also run stratified by self-identified race/ethnicity. A minor allele 
count of at least five was required for a stratified model to be run within an ethnic 
group. The stratified analyses were then meta-analysed using a fixed-effect model 
implemented in METAL43. I2 and χ2 heterogeneity P values were estimated for 
all meta-analysed results and represent effect size heterogeneity driven by self- 
identified race/ethnicity. The race/ethnicity-specific results, I2 and χ2 heterogeneity  
P values for all novel and secondary findings are included in Supplementary 
Table 3.
Standardized effect size analysis. The standardized effect size (z′) analysis for 
Fig. 2a was performed as follows. To avoid double-counting of SNPs/loci, we con-
strained analysis for each trait to (1) the single previous report that (2) did not 
combine genome-wide genotypes with focused platforms such as the metabochip,  
(3) reported the direction of effect with the allele in the GWAS Catalog and  
(3) included the maximum total number of individuals after applying criteria  
(1) and (2). (1) We selected a single manuscript, because many traits already have 
serial meta-analyses published, where earlier publications represent a subset of 
individuals reported in later publications, so reported effect sizes in the GWAS 
Catalog are not necessarily independent. (2) We excluded meta-analyses using 
mixtures of agnostic GWAS data (consistent map density across the genome) with 
focused platforms (for example, metabochip, oncochip or exomechip), because the 
actual sample size varies markedly across the genome, with overlapping agnostic/
focused regions having substantially greater numbers of individuals in the analysis. 
Most of these reports fail to specify the sample size on a per-SNP basis, making it 
impossible to confidently calculate z′. (3) Starting from the 22 quantitative traits, we 
found reference studies that explicitly reported the allele associated with direction 
of effect for 18. Furthermore, to be confident that the direction of effect was con-
sistent between PAGE and previous reports, we restricted analysis to asymmetric 
SNPs (A/C, A/G, C/T and G/T). These criteria yielded 589 previously reported 
genome-wide significant variants, distributed across the 18 traits (Supplementary 
Table 7). Only 110 of these variants were traditionally genome-wide significant 
(P < 5 × 10−8) and therefore overlap with the SNP × PC heterogeneity analysis. 
We compared the PAGE z′ (both pooled and stratified) to the GWAS Catalog z′ 
in a linear regression.
Assessing single-variant results. SUGEN association results were used for the 
identification of novel and secondary findings for all phenotypes. The variant with 
the smallest P value in a 1-Mb region was considered the ‘lead SNP’. A lead SNP 
was considered to be a novel locus if it met the following criteria: (1) the lead SNP 
was located greater than ±500 kb away from a previously known locus (per the 
phenotype-specific list of known loci); (2) had a SUGEN P <  5 × 10−8; (3) had a 
SUGEN conditional P < 5 × 10−8 after adjustment for all previously known loci 
on the same chromosome; and (4) had two or more neighbouring SNPs (within 
±500 kb) with a P < 1 × 10−5. A lead SNP was considered to be a secondary signal 
in a previously known loci if it met the following criteria: (1) the lead SNP was 
located within ±500 kb of a previously known loci; (2) had a SUGEN P < 5 × 10−8; 
and (3) had a SUGEN conditional P < 5 × 10−8 after adjustment for all previously 
known loci on the same chromosome. Full results for all novel and secondary 
findings are included in Supplementary Tables 2, 3.
Effect size heterogeneity in the GWAS Catalog. The full GWAS Catalog22 data-
base was downloaded on 31 December 2016. The data were filtered to identify 
results relevant to any of the 26 PAGE phenotypes, producing a subset of 8,979 
unique trait–SNP associations (3,322 unique variants) that were genome-wide 
significant (P < 5 × 10−8) in the GWAS Catalog. The PAGE results for each of the 
GWAS Catalog trait–SNP associations was examined to first identify the subset 
of pairs that replicated (P < 5 × 10−8) in PAGE unconditioned models. Pairs of 
replicated tag SNPs within 500,000 base pairs of each other were then merged into 
loci, to count ‘unique’ associated loci. Of the GWAS Catalog tag SNPs that were  
replicated in PAGE, SNPs that had a Bonferroni-corrected SNP × PC interaction  
heterogeneity P value (P < 8.71 × 10−5, 0.05/574) were considered to show  
evidence of significant effect size heterogeneity between ancestries. Effect heter-
ogeneity was also assessed using the multi-ethnic study population of PAGE by 
first identifying the lead SNP in each locus with the smallest P value in PAGE, 
totalling 333 SNPs (302 known loci from the GWAS Catalog, plus 31 novel loci 
discovered in the present analysis). Among the 333 lead SNPs, 24 (7.2%) had a 
significant Bonferroni-corrected SNP × PC interaction heterogeneity P value 
(P < 1.5 × 10−4, 0.05/333).
Meta-analysis and fine-mapping with GIANT and UKB50k. Meta-analysis. We 
meta-analysed results for BMI and height in our PAGE multiethnic sample (around 
50,000 individuals) with the published data from GIANT consortium23,24, which 
included approximately 250,000 individuals of European descent for each trait.  

We also conducted a meta-analysis with 50,000 randomly sampled ‘White British’ 
individuals from the UK Biobank (UKB50k) for comparison. GWAS for both 
PAGE and UKB50k were estimated with analogous models for BMI and height 
traits. Within PAGE and UKB50k, we used the inverse normally transformed 
residuals for each trait by sex and race/ethnicity, and adjusted for population sub-
structure, age, centre and racial/ethnic groups (if applicable). These methods were 
similar those used by GIANT, using inverse-normal-adjusted residuals for each 
trait outcome. We then separately meta-analysed results using a fixed-effects model 
for either PAGE or UKB50k combined with GIANT using the METAL software43. 
We retained only variants available across both the combined meta-analyses (for 
PAGE + GIANT or UKB50k + GIANT), which led to the inclusion of approx-
imately 2.5 million variants. Significance was defined as P < 5 × 10−8. Novelty 
of a locus was defined as ±500 kb from any known loci for the respective trait 
based on the previously published GIANT data23,24. We also required the at least 
two SNPs within a 1-Mb results had P < 1 × 10−5 to be retained as a significant 
known or novel locus.
Fine-mapping. We used FINEMAP44 for all fine-mapping analyses. For each previ-
ously reported locus for height24 and BMI23 in GIANT, a 1-Mb region was subset, 
using the summary statistics from GIANT, the PAGE + GIANT meta-analysis 
and the UKB50k + GIANT meta-analysis. The linkage disequilibrium for the 
fine-mapping analyses was calculated using each individual ancestry from the 
PAGE sample and using the 9,700 individuals of European descent from the ARIC 
study. For weighted linkage disequilibrium that included all ancestries, we weighted 
each ancestry in PAGE by the actual sample size and added in the ARIC sample 
but used the sample size from the GIANT consortium by trait. All analyses were 
run assuming one causal variant. The cumulative 95% credible set was calculated 
from the estimated posterior probabilities.
PVE analysis. Each PVE analysis considered a single combination of (1) trait, 
(2) the analysis from which P values were derived (GIANT, GIANT + PAGE or 
GIANT + UKB50k) and (3) the target population in which PVE was calculated 
(either PAGE or UKB50k). To avoid overweighting any single region owing to 
linkage disequilibrium between multiple associated SNPs, we first defined a 
‘locus’ as a contiguous series of genome-wide significant tag SNPs with genome-
wide significance, for which each tag SNP was less than 500 kb from the next. 
Then we selected the single SNP within each locus with the smallest P value in 
the given analysis (the best tag SNP) and calculated the PVE for that SNP in the 
target population. The meta-analysis was effectively limited to allele frequencies 
greater than 5%, so we used the standard P < 5 × 10−8 threshold for significance 
to define loci.

PVE was calculated for a given SNP using a previously published equation25:
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Input for this equation requires only the estimated effect size β( ˆ) , the stand-
ard error of the estimate β. .(s e ( ˆ)), the allele frequency (p) and the number of 
samples (N). PVE was then summed across all of the best tag SNPs in a given 
analysis.
Population allele frequencies of HCP rs2395029[G]. These 99 labels were 
compiled from self-identified ancestry information from the PAGE sample man-
ifest, as well as self-reported country of origin from the Mount Sinai BioMe 
biobank. Per-population allele frequencies for rs2395029[G] were calculated 
in PLINK v.1.90 (http://www.cog-genomics.org/plink/1.9/)38 and results were 
visualized in R.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Data availability
Individual-level phenotype and genotype data are available through dbGaP (https://
www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000356). 
Allele frequency data will be available for all genotyped sites on dbSNP (https://
www.ncbi.nlm.nih.gov/projects/SNP/) and the University of Chicago Geography 
of Genetic Variants Browser (http://popgen.uchicago.edu/ggv/). Clinically relevant 
variant frequency data are available through ClinGen (https://curation.clinicalge-
nome.org/). Summary statistics for the genome-wide association study results are 
available through the NHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/
downloads/summary-statistics).
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Extended Data Fig. 1 | Number of unique participants in the GWAS 
Catalog from 2006 to 2017 (inclusive). We observed that—although 
the number of unique participants (in millions) in the GWAS Catalog 

has grown substantially over the past decade—the relative proportion of 
participants of non-European descent has remained constant, with the 
majority of progress within Asian populations.



LetterreSeArCH

Extended Data Fig. 2 | Correlation between SNP genotype and 
PC1–PC10. a, The correlation (r2) for novel and residual loci calculated 
by obtaining the individual level data for all PAGE participants and 
correlating the SNP genotype with each of the ten PCs. The correlation 
between each locus and each of the ten PCs was plotted on the y axis, novel 
loci are plotted in grey and residual loci are plotted in yellow. We observed 
an especially high correlation between a novel locus and PC4, which 
represents Native Hawaiian/Pacific Islander ancestry. b, The individual 

level data for all PAGE participants were obtained and plotted in a parallel 
coordinates plot, such that each PAGE individual is represented by a 
set of line segments connecting their eigenvalues. This allows us to see 
which race/ethnicity groups are differentiated at each PC. For example, 
we see predominantly green lines as outliers for PC4, which indicates that 
this vector represents a continuum of Native Hawaiian/Pacific Islander 
ancestry.
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Extended data table 1 | GWAS Catalog heterogeneity by trait, including number of novel and secondary findings

For more information, see Supplementary Table 6.
1Data only include studies indexed in the GWAS Catalog on 31 December 2016.
2Data are shown as cases/controls.
3Data include pooled and sex-stratified studies and/or results.
4P < 8.71 × 10−5 for genotype:PC interactions in PAGE, adjusting for multiple tests (0.05/574).
5P < 1.50 × 10−4 for genotype:PC interactions in PAGE, adjusting for multiple tests (0.05/333).
6Significant loci have P < 5 × 10−8 after conditioning on all known loci from the literature.
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Extended data table 2 | Results of the meta-analysis

1Meta-analysis with previously reported height data24.
2Meta-analysis with previously reported BMI data23.
3Known loci include only the 425 height loci and 74 BMI loci from GIANT.
4Novel loci were identified as P > 5 × 10−8 in the GIANT-only dataset and P > 5 × 10−8 in the specified analyses.
5Novel, shared loci were identified as P > 5 × 10−9 in both GIANT+PAGE and GIANT+UKB50k datasets.
6Novel, unshared loci were identified as P > 5 × 10−9 in either GIANT+PAGE or GIANT+UKB50k, but not in both datasets.
7A modest number of known loci were significant in the GIANT-only GWAS, but not in the meta-analyses. These known loci were still included in PVE calculations.
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Data collection No software was used for data collection.

Data analysis Software used for data analysis in this manuscript includes: Plink (v1.90), R, Illumina's GenomeStudio, SNPRelate, PC-Relate, METAL, 
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Data Availability: Individual-level phenotype and genotype data are available through dbGaP at 
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000356. Allele frequency data 
will be available for all genotyped sites on dbSNP (https://www.ncbi.nlm.nih.gov/projects/SNP/) and the 
University of Chicago Geography of Genetic Variants Browser (http://popgen.uchicago.edu/ggv/). Clinically 
 relevant variant frequency data is also available through ClinGen.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We conducted genome-wide association (GWAS) of 49,839 non-European individuals for 26 clinical and behavioral phenotypes. As far as we 
are aware, this is the largest study of multi-ethnic, non-European participants genotyped on a single array for GWAS. See Methods (Page 14) 
and Supplemental Information (Pages 2-3) for more information about the samples.  

Data exclusions Several rationale for data exclusions were deployed in this study. Participants were excluded from the analysis if they had missing or outlier 
phenotype values, confounding co-morbidities, medications, or otherwise non-standard measures of phenotype as described in the 
Supplementary Information.  Genotyped or imputed variants were excluded if they failed quality control or technical filters described in the 
Methods section. 

Replication Over 95% of the findings of this study reproduced known, published genotype-phenotype associations in the GWAS catalog. In addition, 5% 
variants in this study (26 loci) reach the threshold of statistical significance, indicating novel findings. However, in the absence of independent 
large-scale studies for those in the same populations, these could not be independently reproduced. 

Randomization Models for variant association testing for each phenotype included covariates for gender and study center, to adjust for population group 
including self-identified race/ethnicity and the first 10 principal components of genetic ancestry, and phenotype-specific covariates (including, 
age of diagnosis/trait measurement, medications, smoking, and co-morbidities).

Blinding All participating studies had population-base recruitment strategies, regardless of outcomes, therefore blinding was not necessary during data 
collection or analysis in this study. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study
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Clinical data

Methods
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Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics A total of 49,839 individuals of non-European ancestry were included in this study, comprising of 15,381 men and 34,458 
women. Genotyped  individuals  self-identified  as Hispanic/Latino  (N=22,216),  African  American  (N=17,299),  Asian  (N=4,680),  
Native  Hawaiian  (N=3,940),  112Native  American  (N=652),  or  Other  (N=1,052). Detailed population characteristics by study 
and phenotype harmonization information can be found in Supplemental Information Sections 1 and 2, as well as Supplementary 
Table 1. 

Recruitment All participating studies had population-based recruitment strategies, regardless of outcomes. Details can be found in 
Supplemental Materials (Section 1). 

Ethics oversight Study protocols were approved for all studies by the appropriate boards at their respective institutions: Fred Hutchinson Cancer 
Research Center Institutional Review Board (WHI), University of North Carolina Office of Human Research Ethics/IRB (OHRE/IRB; 
HCHS/SOL), University of Southern California IRB (MEC), University of Hawaii IRB (MEC), Icahn School of Medicine at Mount Sinai 
IRB (BioMe), and the Stanford University IRB (GRP). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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