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Abstract
Genome-wide association studies (GWASs) have allowed researchers to identify thou-

sands of single nucleotide polymorphisms (SNPs) and other variants associated with

particular complex traits. Previous studies have reported differences in the strength

and even the direction of GWAS signals across different populations. These differ-

ences could be due to a combination of (1) lack of power, (2) allele frequency differ-

ences, (3) linkage disequilibrium (LD) differences, and (4) true differences in causal

variant effect sizes.

To determine whether properties (1)–(3) on their own might be sufficient to explain

the patterns previously noted in strong GWAS signals, we simulated case–control data

of European, Asian and African ancestry, applying realistic allele frequencies and LD

from 1000 Genomes data but enforcing equal causal effect sizes across populations.

Much of the observed differences in strong GWAS signals could indeed be accounted

for by allele frequency and LD differences, enhanced by the Euro-centric SNP bias

and lower SNP coverage found in older GWAS panels. While we cannot rule out a role

for true transethnic effect size differences, our results suggest that strong causal effects

may be largely shared among human populations, motivating the use of transethnic

data for fine-mapping.
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1 INTRODUCTION

In the past decade, through collaborative efforts and with the

aid of genome-wide association studies (GWASs), the genetic

basis of common complex traits has been greatly clarified (for

examples, see Berndt et al., 2013; Lee et al., 2017; Morris

et al., 2012; Nikpay et al., 2015; Scott et al., 2012; Timo-

feeva et al., 2012). Most GWASs have involved individuals of

European origin [96% of all subjects according to one review

(Bustamante, Burchard, & De la Vega, 2011)], but this pic-

ture is changing with increasing efforts to conduct GWASs in

Asia (especially China) and Africa. Such studies are impor-

tant because they allow us to redress the Euro-centric bias in

GWASs and to assess whether signals found in European pop-

ulations are replicable in other human populations. Transeth-

nic replicability of GWAS signals would imply a common

etiology of complex diseases, and this would have important

clinical implications (Marigorta & Navarro, 2013; Visscher,

Brown, McCarthy, & Yang, 2012). The portability of GWAS

results would also allow for “transethnic fine-mapping” to

help in the post-GWAS localization of the causal locus, by

taking advantage of between-population differences in link-

age disequilibrium (LD) (Rosenberg et al., 2010; Li & Keat-

ing, 2014). Conversely, a lack of transethnic replicability, if

shown to be linked to true differences in causal risk allele

effect sizes, would have implications for the use of genetics

in complex disease medicine, both in terms of the portabil-

ity of polygenic prediction algorithms among populations and

in terms of the biological interpretation of GWAS signals, as

some degree of population-specific genetic disease etiology

would be implied.

A number of studies have compared genetic association

signals across different continental populations. These have

found some examples where the observed genetic effects show
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consistency across ancestral groups, either in terms of effect

direction or in the magnitude of the effect (Kantor et al., 2013;

Marigorta & Navarro, 2013; Morris et al., 2016; N'Diaye

et al., 2011; Tan et al., 2010; DIAbetes Genetics Replication

And Meta-analysis (DIAGRAM) Consortium et al., 2014),

and other examples where GWAS-derived signals point to a

pattern of population-specific risk effects (Wojczynski et al.,

2013; Xue et al., 2013), or to a different magnitude in the

association signal across populations (Thomas et al., 2012;

Waters et al., 2010). More recently, Brown et al. (2016) used

an infinitesimal model (which assumes all SNPs contribute

to some extent to heritability) to compare transethnic GWAS

datasets and presented good evidence for true differences in

effect sizes between populations. From a detailed analysis of

an eQTL dataset, the authors also suggested that true transeth-

nic differences may be larger for weak genetic effects, and

smaller for strong genetic effects. It is, therefore, of interest

to establish to what extent signals at the top end of the effect

size distribution (i.e., traditional GWAS hits) are affected by

transethnic differences, and this is the question addressed in

this study.

In a previous study focusing on GWAS hits, Ntzani et al.

(2012) used the catalog of published GWASs previously

maintained by the National Human Genome Research Insti-

tute (NHGRI), and currently maintained by the European

Bioinformatics Institute (EBI) (Welter et al., 2014), to char-

acterize the frequency and magnitude of between-population

differences seen in replication studies of GWAS signals (effect

sizes from replication studies were used to minimize the

“Winner's Curse” bias in discovery GWAS signals). A total

of 97 associations were evaluated in both European and Asian

populations, 24 in both European and African populations,

and 13 in all three groups. They found widespread differ-

ences in the frequency of risk alleles between Europeans,

Asians, and Africans, with absolute differences >10% in 75%

to 89% of the three pairwise comparisons, and they also found

differences in reported risk allele effect sizes. Indeed, point

estimates of effect size were opposite in direction in 18%,

21%, and 38% in the European–Asian, European–African, and

Asian–African comparisons, respectively.

The transethnic differences in genetic risk effects cata-

logued by Ntzani et al. could be due to one or a combination

of the following explanations:

(1) Between-population genetic architectures (for both risk

allele frequency and effect size) are the same, but dif-

ferences in power (say due to low sample sizes) prevent

detection in other populations;

(2) The genetic effect size architectures are the same, but dif-

ferences in risk allele frequency prevent detection in other

populations (in extremis, the risk allele frequency could

even be zero in a given population);

(3) The genetic effect size architectures are the same, but dif-

ferences in LD patterns prevent detection in other pop-

ulations (in cases where the “lead” or most significantly

associated SNP is not the truly causal SNP); and

(4) The genetic effect size architectures are different—in

other words, the causal SNP has a different true genetic

effect size in different populations.

Note that this categorization requires one to distinguish

effect size differences from allele frequency differences, and

this requires one to define a frequency-independent measure

of effect size. Here, we use genotypic relative risk as our mea-

sure of frequency-independent effect size, and we will restrict

our simulations to diseases of low prevalence (1% in all sim-

ulations) in order to take advantage of the approximate equiv-

alence between relative risk and odds ratios in this scenario.

Biologically, the most interesting explanation is point

(4) above, as this implies there are truly different genetic

risk architectures among populations. However, the relative

importance of points (1)–(3) is also of interest and, in par-

ticular, point (3) is the basis for transethnic fine-mapping.

It is typically not possible to distinguish between the four

possible explanations based on real replications of GWASs

[as in the study by Ntzani et al. (2012)]. Therefore, in the

present work, we employed simulations to assess the rela-

tive importance of the four explanations listed above for gen-

erating transethnic differences in GWAS signals. We gener-

ated simulated genomic data in case–control samples of Euro-

pean, Asian, and sub-Saharan African origin. Random loci

(SNPs) in the genome were selected to be “truly causal,” and

we applied equal disease-risk model parameters across the

three population groups. Logistic regression analyses and sta-

tistical comparisons across the different continental popula-

tions were then performed to evaluate the level of consistency

across groups, potential differences in allele frequency, and

consequently the degree to which points (1)–(3) above, in the

absence of point (4), could explain observed transethnic dif-

ferences in GWAS signals.

2 MATERIALS AND METHODS

To mimic a replication study following a GWAS [and thus

mimic the effect sizes examined by Ntzani et al. (2012)],

phased haplotypes from the 1000 Genomes Phase 1 dataset

(1000 Genomes Project Consortium et al., 2012) were used as

input to simulate case–control genotype data. Utah residents

(from the Centre d'Etude du Polymorphisme Humain (CEPH)

collection) with Northern and Western European ancestry

(“CEU”, n = 85), Finns from Finland (“FIN”, n = 93), British

samples from England and Scotland (“GBR”, n = 89), Iberi-

ans from Spain (“IBS”, n = 14), and Tuscans from Italy

(“TSI”, n = 98) were used as input to simulate European
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samples (“EUR”, n = 379). Han Chinese from Beijing, China

(“CHB”, n = 97); Han Chinese South (“CHS”, n = 100); and

Japanese from Tokyo, Japan (“JPT”, n = 89) were used to

simulate Asian samples (“ASN”, n = 286). Finally, Yorubans

from Ibadan, Nigeria (“YRI”, n = 88) were used to simulate

West African samples (only one population, YRI, was used

for an African grouping, in recognition of the high degree of

genetic heterogeneity among different African samples, mak-

ing a pan-African “AFR” grouping of little relevance in sim-

ulating a typical GWAS). Simulated datasets were generated

from SNPs with a global minor allele frequency (MAF) > 1%

(as calculated using all samples in the 1000 Genomes Phase 1

dataset). VCFtools (Danecek et al., 2011) and Beagle (Brown-

ing & Browning, 2007) software were used to extract and

transform 1000 Genomes phased data into a format suitable

for GWAsimulator.

Simulations were performed via the GWAsimulator soft-

ware version 2.1 (Li & Li, 2008). This program implements

a moving-window algorithm to simulate case–control geno-

type data based on a set of phased input data. It works out-

wards from the nominated disease locus to generate the case

and control datasets, with patterns of LD similar to the input

data. A window size of 5 was used for our simulations, mean-

ing that a haplotype of 4 SNPs was used to propose the allele

of the next adjacent SNP.

To mimic a Euro-centric bias in the GWAS study form-

ing the basis for this simulated replication study, a “true”

causal disease locus was selected at random for each simu-

lation run from the set of all autosomal SNPs in the 1000

Genomes Project Phase 1 dataset with a MAF > 5% specif-

ically in the EUR grouping. The Genotypic Relative Risk

(GRR) for this locus was set at 1.3, with a multiplicative

effect, setting the alternative (nonreference) allele as the risk

allele. This value was chosen to be close to the mean reported

GRR of the European case–control replication studies exam-

ined by Ntzani et al. (2012) (their Supplementary Table 3,

mean GRR = 1.28). Genomic regions of 500 kb were sim-

ulated, 250 kb upstream and downstream of the randomly

selected disease locus. For each simulation run, 2,000 cases

and 2,000 controls were created with a disease prevalence of

1%. Logistic regression analyses were performed on the simu-

lated data from the three continental groups (EUR, ASN, and

YRI), using Plink software version 1.07 (Purcell et al., 2007).

Following Ntzani et al. (2012), the following metrics were

used to assess apparent transethnic differences in our simu-

lated replications of GWAS signals among the three popula-

tions. Firstly, the Z-score, described previously by Ioannidis,

Ntzani, Trikalinos, and Contopoulos-Ioannidis (2001) and by

Cappelleri et al. (1996), measures the difference in estimated

log-odds-ratios between the two populations divided by the

estimated standard error of the difference. A “Z-score” flag

was set “on” (value = 1) if the Z-score was nominally signif-

icant at the 5% level (abs(Z) > 1.96), and set “off” otherwise

(value = 0). Secondly, an “opposite direction” flag was set

“on” (value = 1) if the odds ratios deviated from 1 in different

directions (value = 0 otherwise). Finally, a “twofold differ-

ence in same direction” flag was set “on” (value = 1) if the

odds ratios were in the same direction but differed by more

than twofold between the two populations (measured by their

relative distance from one, after orienting both to be greater

than one).

We assessed transethnic GWAS signal differences under

the following “target SNP” scenarios:

(1) Causal SNP scenario: the causal disease SNP is assumed

to be known, and so is assessed directly (mimicking

replication studies following a highly powered European

GWAS);

(2) Lead SNP scenario: The causal disease SNP is assumed

not known, but the genotypes of all common SNPs are

assumed known (mimicking a high-density genotyping

panel, along with accurate imputation). The European

lead SNP (with the lowest P-value in EUR) is assessed

as the target SNP (mimicking a situation where the Euro-

pean GWAS was performed first and the European repli-

cation study contributed to identification of the lead

SNP, perhaps through combined meta-analysis and fine-

mapping);

(3) Lead SNP in OmniExpress array scenario: Imputation is

not performed (mimicking an earlier GWAS study, or a

study for which imputation is deemed unreliable). The

European lead SNP is defined based on SNPs present on a

representative medium-coverage GWAS panel (here, the

Illumina Human OmniExpress Bead Chip array), and this

SNP is taken forwards for assessment as the target SNP.

3 RESULTS

A total of 1,000 simulation runs, generating case–control

genotype data in populations of European, Asian, and sub-

Saharan African origin, were performed in this study. Logis-

tic associations and transethnic replications of GWAS signal

comparisons were carried out on eligible simulated datasets

as described below.

3.1 Eligible simulations and allele frequencies
The Euro-centric nature of our simulations ensured that the

causal SNP was polymorphic in Europeans (MAF > 1%), and

this further ensured that the target SNP (in scenarios where

the target SNP was not the causal SNP) was also polymorphic

in Europeans. In order to allow calculation of the transeth-

nic difference metrics devised by Ntzani et al. (2012), sim-

ulations containing monomorphic target SNPs in one of the

other populations (Asians or sub-Saharan Africans) were not
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T A B L E 1 Eligible simulations and mean target SNP allele frequencies

Eligible simulations/mean allele frequency (± standard deviation)
Target SNP scenario N EUR ASN AFR
Causal SNPs 850 0.35 ± 0.24 0.36 ± 0.28 0.35 ± 0.27

Lead SNPs 799 0.39 ± 0.23 0.40 ± 0.28 0.38 ± 0.28

Lead SNPs in OmniExpress array 777 0.39 ± 0.24 0.41 ± 0.28 0.38 ± 0.27

considered eligible and were discarded. We note that simu-

lations where the causal SNP was monomorphic in Asians

or sub-Saharan Africans were permitted, provided the target

SNP was polymorphic. The number of eligible simulations

varied from 777 to 850 according to the target SNP scenario

considered. The allele frequencies of the simulated causal

SNP across the eligible simulations showed a similar average

frequency in the three populations groups (Table 1). Logis-

tic association results and allele frequencies are included in

Supplementary Tables 1–3.

3.2 Transethnic differences in GWAS signals
Table 2 summarizes the rate at which notable transethnic dif-

ferences were generated in our simulation study, compared to

the rates seen in the study by Ntzani et al. (2012). The “Z-

score” and “opposite direction” rates are expressed as a per-

centage of all non-null comparisons: the “twofold difference”

rates are expressed as a percentage of all same-direction com-

parisons.

There are some striking differences in the rate at which

between-population differences were generated in our simu-

lation study compared to those observed in the Ntzani et al.

(2012) study. The rates of notable differences detected in our

simulations are highly dependent on the scenario considered,

and thus each scenario needs to be considered separately.

The casual SNP scenario shows similar effects across all

ancestry pairs, and overall generates a low rate of between-

population differences. Indeed, the rate of Z-score hits is con-

sistent with that expected under the null (5%), suggesting that

between-population allele frequency differences at the true

causal SNP itself are insufficient on their own to generate

unusual between-population differences in estimated effect

sizes.

The lead SNP scenario results in a noticeable increase in

the rate of between-population differences. We interpret this

increase to be the result of the Euro-centric SNP selection pro-

cess, coupled with between-population differences in LD pat-

terns between the causal SNP and the lead SNP. However, the

simulated rate of between-population differences is still con-

siderably lower than that observed in the Ntzani et al. (2012)

study, indicating that this scenario cannot on its own explain

the observed results.

The lead SNPs in OmniExpress array scenario generates a

further notable increase in the rate of between-population dif-

ferences. This is sufficient to explain, in principle, the rate of

observed EUR-ASN “Z-score” and “opposite direction” flags

seen in the Ntzani et al. (2012) study, and much but not all of

the EUR-YRI and ASN-YRI differences. However, some rates

observed in the Ntzani et al. study are too large to be explained

by any of our simulations.

4 DISCUSSION

The purpose of our study was to establish whether a simple

constant-effect-size model was sufficient to explain transeth-

nic differences in strong GWAS “hits,” as previously reported

by Ntzani et al. (2012). We found that such a model was

remarkably successful at explaining the majority of these

transethnic differences, once panel design and uncertainty

in causal SNP location are taken into account. If causal

SNPs are known (causal SNP scenario), no transethnic dif-

ferences are found in our simulations beyond those expected

by chance. However, once uncertainty in causal SNP location

is introduced (lead SNP scenario), this uncertainty is suffi-

cient to induce an appreciable increase in the rate of apparent

T A B L E 2 Percentage of simulations showing notable differences in effect size and/or direction of effect across populations and Ntzani et al.

results

EUR-ASN EUR-AFR ASN-AFR
Reference SNPs Z-scores Opp. Dir. 2-fold diff. Z-scores Opp. Dir. 2-fold diff. Z-scores Opp. Dir. 2-fold diff.
Causal SNPs 4.82 1.29 12.40 4.71 0.94 11.52 5.18 2.24 13.96

Lead SNPs 16.67 8.52 18.08 19.77 9.14 21.63 10.40 10.64 23.95

Lead SNPs in

OmniExpress

array

29.21 30.12 42.73 33.46 29.47 46.90 7.72 32.82 46.17

Ntzani results 21.65 17.53 38.75 41.67 20.83 57.89 23.08 38.46 50.00
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transethnic differences, even though there are no true effect

size differences in our simulations. When this uncertainty is

enhanced still further, by introducing older reduced-coverage

GWAS panels (lead SNPs in OmniExpress array scenario),

this further increases the rate of apparent transethnic differ-

ences, to a level where these effects on their own are enough

to explain much of the transethnic GWAS data reviewed by

Ntzani et al. (2012).

Some discrepancies remain unexplained, however, and

these were found across all three population comparisons and

using all three transethnic difference metrics. These point to

a need for more complex models to fully explain the data.

Our model was deliberately simplistic and was not intended

to reflect reality even if it had been found to be completely

sufficient. Rather, our intention was to determine the extent to

which more complex models are needed in order to explain

these data. Below, we consider some of the ways in which our

model could be extended.

First, our model assumed a fixed strong effect size at the

simulated causal locus (Genotypic Relative Risk of 1.3). This

is because we were interested in explaining the transethnic

patterns of early GWAS “hits” results from moderately sized

datasets, as collated by Ntzani et al. (2012). Our simulated

effect size was chosen to be close to the mean of the effect

sizes reported in replication studies for these hits [Supplemen-

tary Table 3 of Ntzani et al. (2012)]. An extension of our work

would be to consider a range of effect sizes consistent with

the samples sizes and reported replication effect sizes of these

earlier GWAS studies. We note that the “twofold difference”

measure is particularly sensitive to the value of the true causal

effect size.

Second, we could expand the remit of our study to consider

weaker effect sizes, for example by exploring transethnic pat-

terns not just of the strong GWAS “hits” reported by Ntzani

et al. (2012) but also the patterns found in complete GWAS

summary statistic datasets. We note that weak causal effects

may display more transethnic variability than strong ones, as

has been proposed by Brown et al. (2016) based on the prop-

erties of genome-wide eQTL summary statistic data.

Third, current Euro-centric GWAS arrays might create

bias in imputation quality between populations. These biases

might generate heterogeneity in association signals between

populations, especially when non-European populations are

considered. Our model could be extended to consider such

issues.

Fourth, we used metrics of between-population differences

in effect size, built on Genotypic Relative Risk, that were pre-

viously devised by Ntzani et al. (2012), but these are rela-

tively simple ad hoc pair-wise metrics, and other approaches

could be considered (e.g., heterogeneity among all three pop-

ulations could be assayed via Cochran's Q and I2 statistics).

We note that Genotypic Relative Risk is a widely used mea-

sure of genetic risk, but it depends on an implicit assumption

that effect size is independent of allele frequency and this may

not be true. One limitation of these metrics is that the variant

being tested must be polymorphic in the populations being

compared.

Finally, our model could be extended to explicitly model

transethnic differences in effect size. We note that gene–

environment interactions could provide one framework for

such differences (in other words, variable environmental fac-

tors among populations could induce variable effect sizes).

Another interesting avenue would be to explicitly model the

selection and evolution of causal alleles over time, in the con-

text of known demographic factors such as the ancestral nature

of the African population, and the Out-of-Africa bottlenecks

experienced by the European and East Asian populations.

Notwithstanding the simplicity of our model, our simula-

tions reveal the considerable effect that uncertainty in causal

SNP location and LD differences has on observed transeth-

nic signal differences, especially when older panels are used.

These effects are large enough to potentially explain, on their

own, much of the observed transethnic pattern of differences

in strong GWAS “hits.” We, therefore, make two predic-

tions based on our study. First, we predict that the observed

between-population differences in effect size will decrease as

bigger GWAS studies, with more dense panels and with better

imputation, are applied. Second, we predict that transethnic

mapping will prove to be a viable method for fine-mapping,

given that there is a case for strong causal effect sizes being

largely shared between populations, and given the consider-

able impact that between-population differences in LD have

on tag-SNP effect sizes.
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