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The evidence that most adult-onset common diseases have a polygenic genetic architecture fully
consistent with robust biological systems supported by multiple back-up mechanisms is now
overwhelming. In this context, we consider the recent ‘‘omnigenic’’ or ‘‘core genes’’ model. A key
assumption of the model is that there is a relatively small number of core genes relevant to any
disease. While intuitively appealing, this model may underestimate the biological complexity of
common disease, and therefore, the goal to discover core genes should not guide experimental
design. We consider other implications of polygenicity, concluding that a focus on patient stratifi-
cation is needed to achieve the goals of precision medicine.
The Omnigenic Core versus Peripheral Gene Model
In a recent scholarly Perspective, Boyle et al. (2017b) under-

took a series of elegant analyses of genome-wide association

study (GWAS) summary statistics matched with genomic

annotations. They hypothesize that GWAS results are ‘‘hinting

at important new principles of biological organization, and

how genetic perturbations percolate through cellular sys-

tems’’ (Boyle et al., 2017a). They introduce the term ‘‘omni-

genic,’’ (omni = ‘‘all’’) in acknowledgment of the very large

number of genetic loci contributing to disease risk, which ‘‘is

largely driven by genes with no direct relevance to disease

and is propagated through regulatory networks to a much

smaller number of core genes with direct effects.’’ A key

feature of the omnigenic model is the classification of genes

as ‘‘peripheral’’ (which are generally regulatory in cellular net-

works and contribute to risk for many diseases and therefore

to pleiotropy) or ‘‘core’’ (which are more disease specific with

biologically interpretable roles). A defining feature of the omni-

genic hypothesis is that only a modest number of genes or

pathways have specific roles in the etiology of a specific dis-

ease, and these core genes, if mutated or deleted, have the

strongest functional effects, since natural selection keeps

risk alleles at these key genes at a low frequency in the pop-

ulation. The authors conclude by asking if the concept of core

genes (and therefore, by implication, the assumption that only

a few genes play key roles in a complex disease) is a useful

one. Here, we explore this question and draw different conclu-

sions for future experimental strategies based on our view-

point on how to best propel genetic discoveries into outcomes

for patients.
What’s New in the Omnigenic Core versus Peripheral
Gene Model?
Reconciliation of polygenic disease architecture with the epide-

miological observation that disease is uncommon in the popula-

tion is inherently consistent with robustness in biological

systems (Masel and Siegal, 2009). The broad interpretation of

the results of the last decade of genetic studies by Boyle et al.

about the likely role of regulatory mechanisms in common dis-

ease is one with which most scholars in the field would concur

(Cox, 2017; Franke, 2017). Fundamentals of the omnigenic

model resemble those underpinning prior thinking, such as the

cis-regulatory hypothesis (Stern and Orgogozo, 2008), discus-

sions of pleiotropy based on results from the earliest days of

GWASs (Sivakumaran et al., 2011), network medicine conceptu-

alisations (Barabási et al., 2011; Civelek and Lusis, 2014), or the

core gene regulatory networks hypothesis (Chakravarti and

Turner, 2016). The key point of distinction of the omnigenic

hypothesis is the emphasis on the importance of core genes,

with the assumption that types of genes detected in rare variant

studies—which can detect highly deleterious variants with large

effect sizes—play more direct roles in complex disease than do

genes identified from GWASs based on common variants. Thus,

a consequence of the model is to focus experimental designs on

discovery of rare variants. While intuitively appealing, this

conclusion implies a simpler gene-disease biology than we

have empirical evidence for. For example, one conclusion from

sequencing genomes from healthy individuals was the high level

of redundancy/robustness in the human genome, since most

apparently normal humans have �100 loss-of-function muta-

tions (MacArthur et al., 2012). An alternative view is to fully
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embrace the concept of multiple biological back-up systems

that are implied by polygenicity. From a genetic architecture

perspective, the core/peripheral properties align closely with

those of older conceptualizations considering the relative impor-

tance of rare/common variants (Pritchard, 2001; Pritchard and

Cox, 2002), implying that the omnigenic model is partly a refram-

ing of older ideas while trying to accommodate the empirical

evidence that confirms polygenicity and a role of risk variants

from across the allelic spectrum. Thus, a closer look at the defi-

nition of the core gene is warranted.

Evidence to Support the Key Assumption of a
Core Gene?
Mendelian disease clearly fulfills the core gene definition, as dis-

ease only occurs in the context of a given mutation. Huntington’s

disease, for example, only presents in those with an expanded

trinucleotide repeat in the gene HTT. Yet important advances

for identification of potential therapeutic targets have been

made through GWASs of age of onset (GeM-HD, 2015) and

rate of disease progression (HensmanMoss et al., 2017). Hence,

a definition of Mendelian diseasemight be one in which the com-

plex compensatory network response mechanisms to the

presence of a mutation in a core gene have failed. For common

disease, the core gene hypothesis acknowledges that a single

core gene is not causal for disease but makes the strong

assumption that there is a small number of genes that can be

identified against a background of contributions from peripheral

genes that have non-disease-specific roles in modulating

disease risk. We first assume that the goal to detect core genes

for common disease is valid and examine the overlap in genes

detected through GWASs and other studies. Next, we question

if the definition of core genes is useful when studying GWAS

results alone. Third, we consider whether association effect

size is the key driver of determining biological relevance in com-

plex disease. These are key questions that impact on priorities

for experimental design.

First, the classical polygenic model incorporates contributions

from both common and rare variants to disease risk, with many

more rare variants than common (Crow and Kimura, 1970; Reich

and Lander, 2001). While the vast majority of rare variants have

small effect sizes, under a selection model, some rare variants

may have larger effect than variants that are more common in

the population (Hansen et al., 2006). Disease-risk genes are

expected to harbor both common and rare risk variants, and

empirical data for height (Kemper et al., 2012; Marouli et al.,

2017), type 2 diabetes (Fuchsberger et al., 2016), inflammatory

bowel disease (IBD) (Luo et al., 2017), and high-density lipopro-

tein (HDL) cholesterol (Rosenson et al., 2018) show common-

variant associations variants in genes responsible for related

monogenic disorders.

So, if we assume that the concept of core genes is useful and

that identification of these genes will further our understanding of

the underlying biology, the question is then of the best experi-

mental design to identify such genes. Boyle et al. advocate

whole-exome sequencing (WES) studies for identification of

such genes, but they make no mention of the required sample

sizes. WES de novo mutation studies of epilepsies, develop-

mental delay, and congenital heart disease have shown that hun-
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dreds of genes may each be a core gene for different children

presenting with severe childhood syndromes, and mutations in

the same core gene are associated with extensive phenotypic

heterogeneity (Jin et al., 2017; Short et al., 2018; Thomas and

Berkovic, 2014). But for common disorders, the largest WES

studies conducted to date have not been sufficiently powered

to detect the effect sizes that exist in nature. For example, in

schizophrenia (4,877 cases), WES did not detect any individual

gene with excess rare variants compared to controls (Genovese

et al., 2016). For IBD, WES (4,280 cases) identified a single rare

variant (in a previously known locus) and an excess of very rare,

damaging missense variants in known Crohn’s disease risk

genes (including those identified through GWAS) (Luo et al.,

2017). For type 2 diabetes, the conclusion from analysis of

WES (7,380 cases) was ‘‘large-scale sequencing does not sup-

port the idea that lower-frequency coding variants have a major

role in predisposition’’ (Fuchsberger et al., 2016). A plausible

interpretation of these results is that when rare large-effect vari-

ants occur, the resulting clinical phenotypes differ importantly

from the common-variant-associated trait due to, for example,

lethality, broader somatic impact, greater severity, or earlier

onset. This conclusion is consistent with a key finding from ge-

netic studies in psychiatric disorders that report an enrichment

of common variants in genes associated with intellectual

disability, developmental delay, and epilepsy (Gandal et al.,

2016; Sullivan et al., 2012).

Therefore, the rare monogenic disorders help identify core

genes (Antonarakis and Beckmann, 2006), but for common dis-

ease, larger samples than studied to date are needed to identify

rare variants of the effect size that exist in nature and survive

natural selection (Kiezun et al., 2012). Large GWAS samples

imputed to the ever-increasing sequenced referenced samples

mean that disease-risk rare variants can be identified by this

paradigm. For example, a GWAS meta-analysis (74,124 type 2

diabetes cases) identified 24 imputed genome-wide significant

SNPs with minor allele frequency of less than 0.05% (Mahajan

et al., 2018), which point to both known and novel genes. While

most of their 243 genome-wide significant association signals

mapped to regulatory regions, 18 genes were highlighted as

human-validated therapeutic targets (Mahajan et al., 2018).

The power of association studies is dependent on the variance

explained by a locus; thus, for a disease that affects 1% of the

population, we have the same power to detect a risk locus of

50% frequency and odds ratio of 1.1 as we do for a risk locus

of 0.1% frequency and odds ratio of 2.9. Thus, sample size—

not genotyping technology—is the limiting factor in associated/

causal variant discovery.

Second, in proposing the omnigenic core genes model, four

examples where GWAS results have helped identify important

core genes and highlight specific molecular processes (role of

autophagy in Crohn’s disease, role of adipocyte thermogenesis,

central nervous system genes in obesity, and role of C4A on

synaptic pruning in development that contributes to risk of

schizophrenia) were reported (Boyle et al., 2017b). The fact

that these examples have led to better understanding of under-

lying biology does not preclude similar future understanding for

other genes identified through common variants, since we

remain ignorant of the full complexity of the biology in which



most genes function. Thus, more genes of key biological rele-

vance have likely been identified from GWASs; it is just that we

are not yet able to annotate them as such (Cox, 2017).

Third, Boyle et al. conclude that the GWAS enrichment signal

in relevant genes (based on current knowledge) is surprisingly

weak. These observations are not necessarily contradictory

and are indeed expected. Current annotation of gene function

is very imperfect, and reports of novel and surprising functions

of genes are common. As a specific example, typical annota-

tions of synaptic genes have little resemblance to what is known

in synaptic biology (Lips et al., 2012). Weak effect size is not un-

expected if the effect size of a SNP on disease is via regulation of

the expression level of a gene. If the GWAS SNP is an eQTL (i.e.,

its alleles correlate with levels of gene expression, with a stron-

ger eQTL effect than SNP-disease association effect), then

even if these eQTLs are tissue specific, it does not follow that

all will have tissue-specific effects on gene expression large

enough to generate detectable differences in mean expression

level between tissues (Qi et al., 2018). Moreover, it is well recog-

nized that association effect size is not well correlated with

clinical relevance, as many FDA-approved medications have

drug targets linked to common risk variants identified in GWASs

(Faraone, 2017; Gandal et al., 2016; Nelson et al., 2015). In other

words, while the effect size for a SNP associated with disease

risk is small, pharmacological intervention targeted at the asso-

ciated gene or gene product can be effective for those with and

without specific risk variants, because the biological pathway

targeted is relevant to their disease etiology.

To summarize this section, the broader literature suggests that

once identified, risk genes likely harbor both rare and common

variants, and rare variants of very large effect are inconsistent

with most diagnoses of common diseases, since when such var-

iants are consistent with life, they attract more severe and/or

early-onset diagnoses. Given the effect sizes now expected for

rare variants associated with common disease, sample size is

the primary limiting factor in their detection. Importantly, effect

size has little association with biological or clinical relevance.

Taken together, in the context of common disease, a primary

focus on the types of genes detected in rare-variant studies

seems misplaced.

A More Complete Picture of Polygenicity
Although some in the human genetics community have been

surprised by the empirical evidence for polygenicity of complex

disease (Boyle et al., 2017b), for many researchers, this was

expected and had been long hypothesized (Gottesman and

Shields, 1967; Penrose, 1953), using models in which liability

to complex disease has the properties of a quantitative trait.

For example, genetic architecture modeling that aimed to

match simulated data to early GWAS results included genetic

architectures in which all independent genetic sites harbored

risk loci (International Schizophrenia Consortium et al., 2009).

Such polygenic disease hypotheses were firmly grounded in

the knowledge gained from artificial selection studies set up

to confirm quantitative genetic theory, many derived prior to

the discovery of DNA (Dunnington et al., 2013; Hill, 2010).

Response to artificial selection results can only be explained

by a massive number of combinations of DNA variants being
able to generate the same phenotype, which in turn reflects

the massive amount of variation hidden in the genome, such

that half the genetic variance in a population is available through

the segregation variance between children from any pair of par-

ents (Lynch and Walsh, 1998). With this in mind, a conclusion

from the omnigenic model, ‘‘that many of the more dramatic

phenotypic differences seen between species are also driven

by an accumulation of tiny effects and that larger-effect differ-

ences are likely to be exceptions to the rule’’ (Boyle et al.,

2017b), is consistent with quantitative-genetics thinking since

Darwin—that evolutionary adaptations are mostly from substi-

tutions of many gene variants of small effects (Denny et al.,

2010; Orr and Coyne, 1992). Much quantitative genetic theory

has used the infinitesimal model, which assumes that all genetic

loci influence a trait and is a useful approximation of polygenic

traits. From our point of view, the term omnigenic is describing

the same genetic architecture as the infinitesimal model. The

term polygenic covers any genetic architecture from few to all

contributing variants and thus captures many architectures

that exist both between and within disease classifications.

Therefore, we believe the introduction of the term omnigenic

over the existing terms of polygenic and infinitesimal is not a

useful addition to our vocabulary.

Other key properties of polygenicity are sometimes under-

recognized. These properties are emphasized here because

they contribute to our perspective for prioritisation of current

and future experimental strategies. While polygenicity de-

scribes the genetic architecture in a population, it also has

important implications for individuals. All humans carry many

risk alleles for all common diseases, and each individual

affected with disease likely carries a higher burden and unique

portfolio of risk variants (see Figure 1). Paradoxically, while the

description of a polygenic model at the population level is very

simply defined, it generates considerable genetic heterogeneity

between individuals, which in turn is consistent with character-

istics of common complex disease, such as heterogeneity in

clinical presentation and variation in response to treatments

(although other factors certainly may contribute to these obser-

vations).

Understanding the consequences of polygenicity for individ-

uals also links into an understanding of epistasis, the interacting

effects of risk loci. As discussed by others (Paixão and Barton,

2016; Phillips, 2008), expectations for the role of epistasis in

complex genetic disease are confusing and confused. Molecular

biology studies provide unequivocal evidence that gene-gene

interactions are common and impart a strong desire to undertake

studies to detect epistatic associations, yet quantitative genetic

theory suggests that contributions from non-additive effects to

phenotypic variation in the population and differences between

people are small (Hill et al., 2008; Mäki-Tanila and Hill, 2014;

Polderman et al., 2015; Zhu et al., 2015). These differing view-

points are accommodated under a polygenic genetic architec-

ture, as the only way to reconcile disease that impacts only a

small fraction of the population with a genetic architecture of

many risk loci is to have a highly non-linear relationship between

probability of disease and burden of risk alleles (Slatkin, 2008). In

quantitative genetics language, polygenic disease is non-addi-

tive on the disease scale. Under polygenicity, this means that
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Figure 1. Between Individual Genetic Heterogeneity under a Polygenic Model
We use a toy example to show how a polygenic genetic architecture generates considerable genetic heterogeneity between individuals. Each box represents the
genomic risk profile of an individual, assuming 100 independent risk loci contribute to disease (polygenic common diseases are underpinned by 10- to 1,000-fold
more loci). Each box is divided into 100 squares, each representing the genotype of a locus. The squares are colored white if the person carries two non-risk
alleles at a locus, blue if they carry one risk allele, and red if they carry two risk alleles. Each risk allele has frequency of 0.1 and contributes equal risk to disease.
Heritability for the disease is 0.5, and disease risk is 0.01. The total number of risk alleles in the risk profile is listed at the top of each box. An average person in the
population carries 20 risk alleles; thus, controls all carry risk alleles, but usually not as many as cases. Precision medicine may depend on matching genomic
profiles to drug treatments. If the first row represents 10% of variants in ‘‘core’’ genes, there is also considerable heterogeneity in risk profiles between people.
Heterogeneity increases with the number of risk loci contributing to disease. Varying risk allele frequencies and effect sizes have little impact on the message of
the visualization.
each individual with a disease carries a high burden of risk alleles

that together make a biological system that is vulnerable to

non-genetic risk factors and cumulatively result in disease. How-

ever, each individual carries a (near-)unique combination of the

many risk variants and environmental exposures. Since there is

no specific combination of risk alleles that cause this non-addi-

tive genetic variation, this sort of epistasis is removed by trans-

formation to liability or log (odds ratio) scales of disease. Sowhile

the statistical genetics community prefers to say that complex

disease is underpinned by genetic effects working additively in

liability to risk, for a molecular geneticist studying samples

from diseased and healthy individuals, interactions between ge-

netic effects are indeed implied, but on a scale that is challenging
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to study, both in terms of number of contributing genes and

uniqueness of individuals. We can hypothesize about epistasis

on the liability scale (Zuk et al., 2012), but unachievably massive

sample sizes would be needed to distinguish epistasis from

additivity empirically.

In summary, the additive polygenic disease architecture pro-

vides a homogeneous representation of disease for a population

that is entirely consistent with a high degree of non-additivity at

the biological level and between-individual heterogeneity that is

challenging to differentiate based on clinical presentation. These

properties of common disease must be acknowledged when

formulating priorities for experimental design if we are to accel-

erate clinical outcomes from genetic research.



Implications for Future Experimental Design for Gene
Discovery
Boyle et al. conclude their Perspective by asking if the concep-

tual distinction between core genes and peripheral genes is

useful for understanding disease. Addressing their question

matters because it potentially informs experimental design for

gene mapping and functional studies. If it is not a useful

distinction, then the implications for experimental designs

that follow from the core gene model, including the most effec-

tive strategies for gene mapping and functional studies, are

invalid. It seems to us to be a strong assumption that only a

few genes have a core role in a common disease. Given the

extent of biological robustness, we cannot exclude an etiology

of many core genes, which in turn may become indistinguish-

able from a model of no core genes. Boyle et al. suggest that

in the short term, exome sequencing should be a priority in

common disease research to identify additional core genes

to identify larger-effect variants that are more likely to affect

protein-coding sequences. The core gene hypothesis has in-

terpreted by some (Callaway, 2017) to imply that continuing

to build GWAS cohorts for common disease will not be cost

effective as part of the research portfolio to advance our under-

standing of common disease. However, this viewpoint as-

sumes a simplicity that may not apply to some common

diseases. In our opinion, whether the goal is discovery of rare

variants or common variants, sample sizes are a key limiting

factor for furthering our understanding of polygenic diseases,

and increasing sample size remains a research priority needed

to further the genetic discoveries that will ultimately make

impact for those affected.

To date, follow-up analyses have been limited by a lack of

depth of phenotypic information in GWAS cohorts. A pragmatic

choice is to focus on collection of large sample sizes today (with

relatively detailed but cost-effectively collected, phenotypes)

and use of cheap SNP chip arrays (now less than $40 USD/sam-

ple) to generate genome-wide genotype data from which

variants of frequency >0.5% can be imputed with high accuracy

from fully sequenced reference samples (McCarthy et al., 2016;

Yang et al., 2015). As these reference cohorts have become

larger and better sequenced, disease associations with variants

of frequency as low as 0.25% have been reported (Mahajan

et al., 2018). For many diseases, it will take time before accumu-

lated sample sizes are powered to detect associations of risk

alleles that are less common in the population than alleles accu-

rately assessed through imputation.

By the time such samples have been accumulated,

sequencing technology is likely to have improved (to allow bet-

ter detection in some of the most structurally challenging but

perhaps very interesting genomic regions (Frith and Khan,

2018; Sekar et al., 2016; Treangen and Salzberg, 2011) and

become cheaper, allowing for experimental designs less prone

to confounders (Leek et al., 2010). Moreover, enhancement of

reference datasets (whole-genome sequence, gene expression,

etc.) will lead to improved annotation of GWAS-imputed data—

for example, to include loss-of-function variants (Havrilla et al.,

2017; Samocha et al., 2017), the key motivator of WES studies.

To bias experimental design toward a hypothesis based on a

critical assumption that only a few genes play key roles in
complex disease would be putting all eggs in one basket. Of

course, sequencing is the appropriate technology in many

experimental settings (e.g., discovery of de novo mutations in

severe childhood syndromes, Deciphering Developmental Dis-

orders, 2017; rare Mendelian disorders; extreme-phenotype

families, Chakravarti and Turner, 2016; cancer tumor versus

normal cells; single-cell gene expression). Even for common

complex diseases and disorders, a transition to sequencing is

inevitable as prices decline; however, we should focus first on

building sample size and GWASs. In the long term, we believe

this approach will be bothmore cost effective andmore produc-

tive compared to turning immediately to underpowered WES.

Our approach will deliver not only in discovery of less common

associated variants, but also in advancing disease-risk predic-

tion and patient stratification. For example, risk prediction has

already achieved clinical utility for prostate cancer (Grönberg

et al., 2015) and for stratification in adult-onset diabetes

(Oram et al., 2016).

In our opinion—for some flagship disorders, at least—we need

to increase sample sizes until the discovery of common associ-

ated variants starts to plateau, which has not happened yet. In

psychiatry, for example, obvious choices are schizophrenia, as

it is the most intensively studied disorder (Pardiñas et al., 2016;

Schizophrenia Working Group of the Psychiatric Genomics,

2014) and major depression, which as a very common disease

can benefit fromGWASmeta-analyses utilizing international bio-

bank projects (Levinson et al., 2014). Together, these disorders

span the extremes of several key epidemiological dimensions,

including frequency of disease, sex ratios, known non-genetic

risk factors, and heritability. There is a rapidly increasing number

of ways to combine GWAS summary statistics with biologically

informed datasets linked through associated SNPs or genes

(and enhancements of such reference datasets are also a prior-

ity) for further understanding of complex diseases (Pasaniuc and

Price, 2017).

To access the large samples needed to extend and complete

risk-variant discovery of common disease, new strategies may

be needed to enable large-scale sample collections through

clinical facilities, which may require clarification and reform on

consenting policy (Caulfield andMurdoch, 2017). With very large

sample sizes genotyped on cheap SNP chips, followed by impu-

tation, we will gain a very good understanding and more

complete picture of the gene regulatory networks that contribute

to complex disease. Such samples allow for studies that asso-

ciate phenotypes to risk variants previously identified as associ-

ated with a disease or trait (so-called PheWAS analyses) (Denny

et al., 2010). Notably, in a very short period of time, the UK

Biobank dataset (Sudlow et al., 2015) of 500,000 deeply pheno-

typed and SNP-genotyped individuals has proven to be a

phenomenal resource of discovery of new genetic associations

for quantitative traits, as well as very common diseases such

as type 2 diabetes and depression—exactly in line with a priori

predictions. Therefore, new gene discoveries for common

disease will follow once powered in the same way as the UK

Biobank, which as a community sample has at most 5,000 cases

of a disease with lifetime risk of 1%. Accumulation of larger

samples is also needed for patient stratification, which needs

to progress in parallel with biological research.
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Patient Stratification Is a Limiting Factor for Precision
Medicine
The ultimate goal of research into common complex genetic

diseases is to improve outcomes for those individuals affected

through prevention, diagnosis, and treatment. Many research

directions are needed to achieve this goal, and the Boyle et al.

omnigenic core gene Perspective has been widely interpreted

as a call for a research focus on cell-specific gene regulatory net-

works. We concur, and indeed, this work is already underway in

many disease areas.

However, while the results of gene discovery from human

samples feeds into research to identify treatments, it is prudent

to prepare, in parallel, for the patient stratification that is likely

needed for new (or repositioned) drugs to pass the hurdles for

approved use. The goal of precision medicine is to tailor treat-

ments to individuals (Collins and Varmus, 2015). In cancer, prog-

ress toward this goal has been made based on genomic profiles

of tumors (Schram et al., 2017). For other complex genetic

diseases, it is not clear what criteria will be used to determine

allocation of patient groups to treatment options. Heterogeneity

in clinical presentations and variation between individuals in

response to treatment options imply that we need better ways

to map the unique portfolio of risk alleles harbored by individuals

to phenotypic presentations. The realities of data collection

(inherent even in model species; Lucanic et al., 2017; Mott,

2015) can make it difficult to generate data not confounded by

site of collection on the scale needed for interpretation. Bio-

markers are proposed as a route to achieve biologically based

phenotyping, particularly for disorders of the brain, where the

tissue of most interest is hard to study. However, despite many

research dollars spent on hypothesis-driven candidates, repro-

ducibility and utility of such biomarkers seems elusive (Venkata-

subramanian and Keshavan, 2016). New technologies may

provide opportunities for assessment of genome-wide, hypoth-

esis-free biomarkers.

In their Perspective, Boyle et al. called for an emphasis on

developing cell-based models to enable study of key aspects

of complex traits. We agree that there are deep challenges to

fully understanding the impact of very small effects in organismal

systems, so there is a need to develop cell-based model sys-

tems that can recapitulate aspects of complex traits. Our

concurrence is both from the viewpoint of developing a better

understanding of the biological complexity underpinning disease

and from the viewpoint of penetrating the heterogeneity between

individuals predicted by polygenicity. We need high-throughput

scale platforms to characterize vulnerable human genomes (i.e.,

ascertained as cases) for a battery of measures. Technological

advances in cellular reprogramming now approach the cost-

achievable possibility of integrating multiple disease-specific

cell types in complex synthetic human tissues (Fantuzzo et al.,

2017; Junaid et al., 2017; Wevers et al., 2016). These models

can mimic disease pathology by integration with physiological

or pathophysiological stressors, inflammatory cytokines and

inflammatory cells, bacterial or viral challenges, or a wide range

of experimental perturbations (chemical screens, CRISPR

mutations, etc.). The quantitative genetics community should

contribute to experimental design as soon as these technologies

can be applied on a high-sample-size scale, since an under-
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standing of genetic variation will be critical to progressing appli-

cations in complex disease. The resulting models need to

generate technically reproducible cellular phenotypes, but with

genetically controlled variation between individuals (i.e., high

heritability) (Hoffman and Brennand, 2018; Schwartzentruber

et al., 2018). High-throughput cellular phenotypingmay generate

the data needed to allow stratification of patients who will then

need full phenotyping to help interpretation of that stratification

at the clinical level. At least, and perhaps more realistically,

such data will generate the next set of questions that we do

not yet know we need to ask.

Conclusion
In conclusion, Boyle et al. are congratulated for their synthesis of

current data and for articulation of a biological framework that

has prompted extensive constructive discussion. We agree

that understanding the cell-specific role of disease-associated

variants is a crucial step for advancing knowledge of common

disease. However, whereas those authors extrapolate results

of analyses of GWAS summary statistics to make fundamental

assumptions that rare variants of large effect in a small number

of genes play the most critical roles in clinical conditions that

attract a common disease diagnosis, we believe it would be a

major disservice to the field to allow these assumptions to guide

the next steps of research. To assume that a limited number of

core genes are key to our understanding of common disease

may underestimate the true biological complexity, which is bet-

ter represented by systems genetics and network approaches

(Baliga et al., 2017; Parikshak et al., 2015). While Boyle et al.

advocate for WES studies, they did not discuss the sample sizes

needed for such discovery. We believe that in the short term,

large samples recorded for key measures of phenotypic hetero-

geneity and genome-wide SNP data are the best next steps for

research using human DNA samples in moving forward our

understanding of complex genetic diseases. Large numbers of

samples, biobanked for cellular reprogramming, will position

us well for the next generation of sequencing and other new

technologies. High-throughput phenotyping to characterize

cellular properties associated with disease-associated genomes

may be the key to penetrate the polygenic complexity of

common disease and provide the data needed for patient strat-

ification, aswell as to progress toward the goal of newdrug treat-

ments. These are research paths that need to advance in parallel

to advance the promise of precision medicine.
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