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The standard approach in genetic association studies is to ana-
lyze a single trait. Such studies do not exploit information 
contained in summary statistics from GWAS of related traits. 

In this report, we develop a method, multi-trait analysis of GWAS 
(MTAG), that enables joint analysis of multiple traits, thus boosting 
statistical power to detect genetic associations for each trait analyzed.

In comparison to the many existing multi-trait methods1–5, 
MTAG has a unique combination of four features that make it 
potentially useful in many settings. First, it can be applied to GWAS 
summary statistics (without access to individual-level data) from an 
arbitrary number of traits. Second, the summary statistics need not 
come from independent discovery samples: MTAG uses bivariate 
linkage disequilibrium (LD) score regression6 to account for (possi-
bly unknown) sample overlap between the GWAS results for differ-
ent traits. Third, MTAG generates trait-specific effect estimates for 
each SNP. Finally, even when applied to many traits, MTAG is com-
putationally quick because every step has a closed-form solution.

The MTAG estimator is a generalization of inverse-variance-
weighted meta-analysis that takes summary statistics from single-
trait GWAS and outputs trait-specific association statistics. The 
resulting P values can be used like P values from a single-trait 

GWAS, for example, to prioritize SNPs for subsequent analyses such 
as biological annotation or to construct polygenic scores.

The key assumption of MTAG is that all SNPs share the same 
variance–covariance matrix of effect sizes across traits. This 
assumption is strong and is violated in many circumstances, most 
intuitively in scenarios where some SNPs influence only a subset of 
the traits. Even if this assumption is not satisfied, however, we show 
analytically that MTAG is a consistent estimator and that its effect 
estimates always have a lower genome-wide mean-squared error 
(MSE) than the corresponding single-trait GWAS estimates. Hence, 
polygenic scores constructed from MTAG results are expected to 
outperform GWAS-based predictors very generally.

The main potential problem arises for SNPs that are truly null 
for one trait but non-null for another trait. For such SNPs, MTAG’s 
effect size estimates for the first trait are biased away from zero, 
leading to an increased rate of false positives (and an inflated type I 
error rate). We derive an analytic formula for the resulting false dis-
covery rate (FDR), given any specified mixture-normal distribution 
of effect sizes (including multivariate spike-and-slab distributions), 
and we illustrate how the formula can be used to probe the credibil-
ity of MTAG-identified loci.
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To demonstrate the utility of MTAG empirically, we analyze 
three traits: depressive symptoms (DEP; Neff =  354,862), neuroticism 
(NEUR; N =  168,105), and subjective well-being (SWB; N =  388,538). 
Prior GWAS of each of these traits have identified only a handful of 
loci7–11. Because of the high genetic correlations between the three 
traits—in our data, roughly 0.7 in absolute value for each pair—some 
papers have conducted cross-trait analyses to replicate findings for one 
of the traits11 or joint meta-analysis to identify new loci5. We applied 
MTAG to these traits because we expected that the gains in power 
would be substantial, the violations of MTAG’s assumptions would be 
limited, and the substantive results would be of interest.

Finally, we compare MTAG to the three existing multi-trait meth-
ods we are aware of that can be applied to GWAS summary statistics 
from an arbitrary number of traits with unknown sample overlap12,13. 
We find that MTAG has greater power across a wide range of simula-
tion scenarios and in two separate applications to real data.

Results
Overview of MTAG. The key idea underlying MTAG is that, when 
GWAS estimates from different traits are correlated, the effect esti-
mates for each trait can be improved by appropriately incorporating 
information contained in the GWAS estimates for the other traits.

Correlation between GWAS estimates can arise for two reasons. 
First, the traits may be genetically correlated, in which case the true 
effects of the SNPs are correlated across traits. Second, the estimation 
error of the SNPs’ effects may be correlated across traits. Such cor-
relation will occur if (i) the phenotypic correlations are nonzero and 
there is sample overlap across traits or (ii) biases in the SNP effect esti-
mates (for example, population stratification or cryptic relatedness) 
have correlated effects across traits. MTAG boosts statistical power 
by incorporating information about these two sources of correlation.

MTAG framework. In the framework that follows, all traits and 
genotypes are standardized to have mean zero and variance one. 
For SNP j, we denote the vector of marginal (i.e., not controlling for 
other SNPs), true effects on each of the T traits by βj. We treat these 
true effects as random effects with E(βj) =  0 and var(βj) =  Ω. If the 
true effects are correlated across traits, then the off-diagonal ele-
ments of Ω are nonzero. MTAG’s key assumption is that Ω is homo-
geneous across SNPs, i.e., that it does not depend on j.

We denote the vector of GWAS estimates of the effects for SNP j 
on the traits by βj. We assume that the GWAS estimates are unbiased, 

β β β=( )E j j j
, and we denote the variance–covariance matrix of their 

estimation error by β β Σ=( )var j j j. The off-diagonal elements of Σj 
are nonzero whenever the estimation errors are correlated.

MTAG is an efficient generalized method of moments (GMM) 
estimator based on the moment condition
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(Supplementary Note).

There are several useful special cases of MTAG (Methods). 
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When the GWAS estimates are obtained from non-overlap-
ping samples (i.e., Σj is diagonal), this formula specializes to 
the well-known formula for inverse-variance-weighted meta-
analysis. When the genetic correlations across all traits are zero 
and there is no sample overlap (i.e., when both Ω and Σj are 
diagonal), the MTAG estimates are identical to the GWAS esti-
mates. This equivalence is intuitive, as it corresponds exactly to 
the case of no correlation between the GWAS estimates that can  
be leveraged.

To make equation (1) operational, we use the consistent esti-
mates of Σj and Ω described next (Supplementary Note).

Estimation of Σj. In standard meta-analysis, the diagonal elements 
of Σ j would be constructed using the squared standard errors from 
the GWAS results and the off-diagonal elements of Σ j would be set 
to zero. In MTAG, however, we want to allow the estimation error to 
include bias (in addition to sampling variation) and to be correlated 
across the GWAS estimates.

Therefore, MTAG proceeds by running LD score regres-
sions14 on the GWAS results and using the estimated intercepts 
to construct the diagonal elements of Σ j. Next, bivariate LD 
score regressions6 are run using each pair of GWAS results, and 
the estimated intercepts are used to construct the off-diagonal 
elements of Σ j. Under the assumptions of LD score regression 
(including that the LD reference sample and GWAS samples 
all be drawn from the same population), the resulting matrix 
Σ j captures all relevant sources of estimation error, includ-
ing not only sampling variation but also population stratifica-
tion, unknown sample overlap, and cryptic relatedness. Because 
the LD-score-intercept adjustment is already built into MTAG  
estimates, MTAG-generated association results do not require 
further adjustment for these biases.
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Fig. 1 | Bias in standard errors from ignoring sampling variation in Σ  
and Ω . a,b, The y axis shows the percentage increase in (χ2–1) of the 
MTAG test statistics from using estimated values of Σ  and Ω  rather than 
the true values. Each line corresponds to results from applying MTAG 
to identically powered single-trait GWAS of T traits. For every pair of 
traits, the correlation in true effect sizes is rβ =  0 (a) or rβ =  0.7 (b). 
Complete results for the full set of simulation scenarios can be found in 
the Supplementary Note.
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Estimation of Ω. We estimate Ω by method of moments using the 
moment condition

β β Ω Σ− − =′
( )E 0j j j

with Σ j substituted in place of Σj. This is the step that relies on the 
assumption of homogeneous Ω: this assumption justifies using all 
SNPs when estimating Ω.

Summary. The MTAG results for SNP j are obtained in three 
steps: (i) estimate the variance–covariance matrix of the GWAS 
estimation error, Σ j, by using a sequence of LD score regressions,  
(ii) estimate the variance–covariance matrix of the SNP effects, Ω,  
using method of moments, and (iii) for each SNP, substitute these 
estimates into equation (1). We have made available for download 
a Python command line tool that runs our MTAG estimation pro-
cedure (see URLs). Because each of the above steps has a closed-
form solution, genome-wide analyses using the MTAG software run 
quickly (Methods).

Theoretical analysis of MTAG’s performance. This section 
briefly discusses three analytic formulas we have derived regarding 
the expected performance of MTAG for each trait: its MSE across 
SNPs, its statistical power to detect a true single-SNP association, 
and its FDR (Methods). All the formulas hold for an arbitrary 
number of traits. The  Supplementary Note contains illustrative 
calculations.

The MSE formula is very general: it holds under any distribu-
tion of effect sizes, including distributions that violate the assump-
tion of homogeneous Ω. The formula implies that, for each trait, the 
MTAG estimates always have a lower genome-wide MSE than cor-
responding GWAS estimates. This in turn suggests that polygenic 
predictors constructed from MTAG results are likely to outperform 
GWAS-based predictors very generally.

The power and FDR formulas (in contrast to the fully general MSE 
formula) assume that the true effect sizes, βj, are drawn from some 
known mean-zero mixture of multivariate normal distributions.  
This class of distributions includes multivariate spike-and-slab dis-
tributions and other fat-tailed distributions that may be relevant in 
applications of MTAG.

Potential biases in MTAG’s test statistics. The derivation of 
MTAG relies on three important assumptions: (i) that Ω is 
homogeneous across SNPs, (ii) that sampling variation in Ω and 
Σ j can be ignored, and (iii) that the off-diagonal elements of Σ j  
(estimated by bivariate LD score regression) accurately capture 
sample overlap. In light of each assumption, here we probe when 
and to what extent MTAG’s test statistics for individual SNP asso-
ciations may be biased.

Assumption of homogeneous Ω. If the assumption of homogeneous 
Ω is violated, then there are different types of SNPs with different 
Ω values. Because MTAG combines GWAS estimates using the 
genome-wide (i.e., across-SNP) variance–covariance matrix, in 
general MTAG estimates will be biased in finite samples. For the 
type of SNP that is null for one trait but non-null for other traits, 
the effect estimate on the first trait will be biased away from zero. 
For that reason, the FDR will be inflated.

Replication is the best way to assess the credibility of individ-
ual SNP associations. In addition, credibility can be probed using 
the FDR formula, computed under plausible assumptions about 
genetic architecture. In our application below, we calculate what we 
call ‘maxFDR’, which is an upper bound for the FDR under certain 
assumptions (Methods). In particular, we assume that the effect 
size distribution is a multivariate spike-and-slab distribution in 
which at least 10% of SNPs are non-null for each trait. Illustrative 
calculations indicate that a trait’s maxFDR can be high when the 
GWAS for the trait is low powered while the GWAS for another 
trait is higher powered (Supplementary Note).
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Fig. 2 | evaluation of MTAG’s standard error when there is sample 
overlap. The x axis shows a SNP’s z statistic from a baseline GWAS 
conducted in UKB data. The y axis shows a SNP’s z statistic from applying 
MTAG to three GWAS of each trait conducted on equally sized subsamples 
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a, Height. b, DEP. The figure illustrates near-perfect alignment. See 
the Supplementary Note for details and results from analogous analyses on 
additional phenotypes.
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Fig. 3 | Cohorts included in GWAS meta-analyses for DeP, NeuR, and 
SWB. In UKB, the sample overlap in the summary statistics across the 
traits is known, whereas in 23andMe the sample overlap in the summary 
statistics is unknown. MTAG accounts for both sources of overlap. 
SSGAC results20, GPC results19, GERA results18, and 23andMe results for 
DEP21 all come from previously published work. The data from 23andMe 
for SWB are newly analyzed data for this paper. Data from the UKB for 
all three traits have previously been published20, although we reanalyzed 
them in this paper with slightly different protocols. Neff is used instead 
of N when the cohort had case–control data (Supplementary Note). The 
sample size listed for each cohort corresponds to the maximum sample 
size across all SNPs available for that cohort. The total sample size for 
each trait corresponds to the maximum sample size among the SNPs 
available after applying MTAG filters. For details, see the  
Supplementary Note.
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Ignored sampling variation in Ω and Σ j. To assess the magnitude of 
the bias for finite samples in MTAG’s standard errors from ignor-
ing sampling variation in Ω and Σ j, we simulated GWAS summary 
statistics for up to T =  20 traits and applied MTAG using Ω and Σ j 
(as in any real data application of MTAG). We then calculated the 
inflation of the mean χ2 statistic, defined relative to what the mean 
χ2 statistic would be if the true values Ω  and Σj were used. The infla-
tion is plotted as a function of T in Fig. 1a,b, where each GWAS has 
a mean χ2 statistic of 1.1, 1.4, or 2.0. The effect size correlation for 
every pair of traits is rβ =  0 (Fig. 1a) or rβ =  0.7 (Fig. 1b); we set the 
correlation in estimation error for every pair of traits to rε =  0 in 
these simulations. The figure shows that inflation increases roughly 
linearly with the number of traits. The bias is larger when the GWAS 
are lower powered and when rβ is smaller. Our application to DEP, 
NEUR, and SWB (discussed below) corresponds roughly to a 
mean χ2 statistic of 1.4 with T =  3 in Fig. 1b. In that setting, infla-
tion is negligible. Even when inflation is at its largest—for the low- 
powered GWAS with T =  20 in Fig. 1a—it is only 3%.

These simulations suggest that, in most realistic applications of 
MTAG, the bias from ignoring sampling variation in Ω and Σ j is 
negligibly small. A possible exception, not discussed so far, arises 
if MTAG is used for GWAS meta-analysis across a large number 
of cohorts (in which case T is large). MTAG may be valuable for 

this purpose because (i) it accounts for sample overlap and cryp-
tic relatedness across cohorts and (ii) different cohorts often have 
phenotypic data from different measures, which may be imperfectly 
genetically correlated and have different heritabilities. For such 
applications, to reduce bias in the MTAG standard errors, we rec-
ommend imposing reasonable parameter restrictions on the Ω and 
Σ j matrices (for example, assuming that within groups of cohorts 
that analyzed identical phenotype measures the heritability is equal 
and all pairwise genetic correlations are one).

Σ j accurately captures sample overlap. MTAG relies on bivariate LD 
score regression (and, by extension, its assumptions) to estimate 
the correlation in GWAS estimation error due to sample overlap. 
To gauge MTAG’s performance, we simulated an extreme case of 
sample overlap using real data from the UK Biobank (UKB). We ran 
three GWAS of height, each using two-thirds of the data, with 50% 
overlap between the samples for each pair of GWAS. Then, we ran 
MTAG on the three GWAS. A scatterplot of the resulting MTAG 
z statistics against the z statistics from a single GWAS run on the 
entire UKB sample is shown in Fig. 2a. The scatterplot from an anal-
ogous analysis of DEP in UKB is shown in Fig. 2b. The regression 
slope and coefficient of determination (R2) are both essentially one 
for both phenotypes, indicating that MTAG generates the correct  
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z statistics in these cases. The results were similar when we repeated 
this analysis using four other phenotypes (Methods).

GWAS summary statistics for depression, neuroticism, and sub-
jective well-being. For our empirical application of MTAG, we 
built on a recent study by the Social Science Genetic Association 
Consortium (SSGAC) of three traits that have been found to be 
highly polygenic and strongly genetically related: DEP, NEUR, 
SWB. In these analyses, we combined data from the largest previ-
ously published studies7–9,11 with new genome-wide analyses from 
the genetic testing company 23andMe, Inc., and the first release 
of UKB data. As depicted in Fig.  3, there was substantial overlap 
between the estimation samples for the three traits (for additional 
details, see the Methods and Supplementary Note).

MTAG results. We applied MTAG to the summary statistics from 
the three single-trait analyses described above. To enable a fair 
comparison between the MTAG and GWAS results, we restricted all 
analyses to a common set of SNPs (see the Methods for details and 
recommended filters for MTAG).

Manhattan plots from the GWAS and MTAG analyses for each 
trait are shown side by side in Fig. 4. Approximately independent 
genome-wide significant SNPs, hereafter referred to as ‘lead SNPs’, 
were defined by clumping with an r2 threshold of 0.1, where r2 is the 
squared correlation between a pair of SNP genotypes (Methods). 
From GWAS to MTAG, the number of lead SNPs increased from 32 
to 64 for DEP, from 9 to 37 for NEUR, and from 13 to 49 for SWB.

For the MTAG hits, we calculated the maxFDR assuming that 
at least 10% of SNPs were non-null for each trait (our estimates 
of the actual percentage that was not null were 59–65% across the 
three traits; Methods). The maxFDR was 0.0014 for DEP, 0.0080 for 
NEUR, and 0.0044 for SWB. This calculation suggests that the hits 
are unlikely to be an artifact of the assumption of homogeneous Ω.

For each trait, we assessed the gain in average power for MTAG 
relative to the GWAS results by the increase in the mean χ2 statistic.  

We used this increase to calculate how much larger the GWAS sam-
ple would have to be to attain an equivalent increase in the expected 
χ2 statistic (Methods). We found that the MTAG analysis of DEP, 
NEUR, and SWB yielded gains equivalent to augmenting the origi-
nal samples by 27%, 55%, and 55%, respectively. The resulting 
GWAS-equivalent sample sizes were thus 449,649 for DEP, 260,897 
for NEUR, and 600,834 for SWB.

Replication of MTAG-identified loci. To test the lead SNPs for 
replication, we used the Health and Retirement Study (HRS) and 
the National Longitudinal Study of Adolescent to Adult Health 
(Add Health), which both contain high-quality measures of DEP, 
NEUR, and SWB. Because HRS was included in the SSGAC discov-
ery sample for SWB, we reran the GWAS and MTAG analyses for 
SWB after omitting it. Although our replication samples were too 
small for well powered replication analyses of single-SNP associa-
tions, we were adequately powered to test the SNPs jointly. For the 
set of MTAG-identified lead SNPs for each trait, we regressed the 
effect sizes in HRS and in Add Health on the MTAG effect sizes, 
after correcting the MTAG effect size estimates for winner’s curse 
(Supplementary Note). The regression slopes for the two replica-
tion cohorts were then meta-analyzed. If the SNP effect sizes taken 
all together replicate, then we expect a slope of one. The regres-
sion slopes were 0.88 (standard error (s.e.) =  0.22) for DEP, 0.76 
(s.e. =  0.21) for NEUR, and 0.99 (s.e. =  0.33) for SWB (Fig.  5). In 
all cases, the slope was statistically significantly greater than zero 
(one-sided P =  2.16 ×  10–5, 1.87 ×  10–4, and 1.52 ×  10–3, respectively) 
but not statistically distinguishable from one.

Polygenic prediction. We next compared the predictive power of 
polygenic scores constructed from GWAS versus MTAG association 
statistics. We again used the HRS and Add Health cohorts as our 
prediction samples (and obtained the SNP effect estimates for SWB 
from the analyses that omitted HRS from the discovery sample).

We measured the predictive power of each polygenic score by 
its incremental R2 value, defined as the increase in R2 as we moved 
from a regression of the trait only on a set of controls (year of birth, 
year of birth squared, sex, interactions of these variables, and ten 
principal components of the genetic data) to a regression that addi-
tionally included the polygenic score as an independent variable.

The results from our pooled analysis of Add Health and HRS 
are shown in Fig. 6 and Table 1. The GWAS-based polygenic scores 
had incremental R2 values of 1.00% for DEP, 1.27% for NEUR, and 
1.20% for SWB. The corresponding MTAG-based polygenic scores 
all had greater predictive power: 1.17% for DEP, 1.65% for NEUR, 
and 1.57% for SWB. The proportional improvement in incremental 
R2 values was in the range of 17–30% for each trait, with 95% confi-
dence intervals that did not overlap zero. The absolute levels of pre-
dictive power were clearly too small to be of clinical utility, but the 
improvements in R2 values were close to those we would expect the-
oretically on the basis of the observed increases in mean χ2 statistics 
(Methods). Polygenic scores based on trait-specific MTAG results 
had greater predictive power than scores based on MTAG results for 
the other traits (Fig. 6c,d), consistent with the theoretical result that 
MTAG results can be interpreted as trait-specific estimates.

Biological annotation. For a final comparison, we analyzed 
both the GWAS and MTAG results using the bioinformatics tool 
DEPICT15. We present the prioritized genes, enriched gene sets, 
and enriched tissues identified by DEPICT at the standard FDR  
threshold of 5%.

The results are summarized in Table  1. In the GWAS-based 
analysis, very little enrichment was apparent. For DEP, three genes 
were identified, but no gene sets and only ten tissues. For NEUR and 
SWB, no genes, gene sets, or tissues were identified. In contrast, the 
MTAG-based analysis was more informative. The strongest results 
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were again for DEP, now with 72 genes, 347 gene sets, and 22 tissues. 
For NEUR, there were 51 genes, 1 gene set, and 21 tissues, and for 
SWB there were zero genes, 7 gene sets, and 12 tissues.

For brevity, we discuss the specific results only for DEP; the 
results for NEUR and SWB were similar but more limited. For the 
tissues tested by DEPICT, Fig. 7a plots the P values based on both 
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Table 1 | Summary of comparative analyses of GWAS and MTAG results

DeP NeuR SWB

GWAS MTAG GWAS MTAG GWAS MTAG

SNP-based comparisons

Lead SNPs (P <  5 ×  10−8) 32 64 9 37 13 49

Mean χ2 1.43 1.55 1.29 1.45 1.30 1.47

Neff 354,861 449,649 168,105 260,897 388,538 600,834

Polygenic score incremental R2 (%) 1.00 1.17 1.27 1.65 1.20 1.57

Biological annotation (DEPICT FDR <  0.05)

No. prioritized genes 3 72 0 51 0 0

No. gene sets 0 347 0 1 0 7

No. tissues and cell types 10 22 0 21 0 12
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the GWAS and MTAG results. As expected, nearly all of the enrich-
ment of signal was found in the nervous system. To facilitate inter-
pretation of the enriched gene sets, we used a standard procedure16 
to group the 347 gene sets into ‘clusters’ defined by degree of gene 
overlap. Many of the 46 resulting clusters, shown in Fig. 7b, impli-
cate communication between neurons (‘synapse’, ‘synapse assembly’, 
‘regulation of synaptic transmission’, ‘regulation of postsynaptic 
membrane potential’). This evidence is consistent with that from 
the DEPICT-prioritized genes, many of which encode proteins that 

are involved in synaptic communication. For example, PCLO, BSN, 
SNAP25, and CACNA1E all encode important parts of the machin-
ery that releases neurotransmitter from the signaling neuron17.

The results include some intriguing findings. For example, 
while hypotheses regarding major depression and related traits 
have tended to focus on monoamine neurotransmitters, our 
results as a whole point much more strongly to glutamatergic 
neurotransmission. Moreover, the particular glutamate receptor 
genes prioritized by DEPICT (GRIK3, GRM1, GRM5, and GRM8) 
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suggest the importance of processes involving communication 
between neurons on an intermediate time scale18,19, such as learn-
ing and memory. Such processes are also implicated by many of 
the enriched gene sets, which relate to altered reactions to stress 
and novelty in mice (for example, ‘decreased exploration in a new 
environment’, ‘increased anxiety-related response’, ‘behavioral 
fear response’).

Comparison to other multi-trait methods. We compared MTAG to 
three multi-trait methods that can be applied to an arbitrary number 
of GWAS summary statistics with unknown overlap between them12,13 
(Supplementary Note). Unlike MTAG, these methods do not provide 
trait-specific SNP effect estimates but instead test whether the SNP 
is associated with none of the traits. We generated a (conservative) 
MTAG-based test of the same null hypothesis by using the minimum 
of the trait-specific MTAG P values, Bonferroni adjusted for the 
number of traits. In two-trait simulations, we found that MTAG had 
greater power when the correlation in true effect sizes or GWAS esti-
mation error was nonzero, especially when the GWAS for the traits 
were higher powered. In real data applications to (i) DEP, NEUR, 
and SWB and (ii) six anthropometric traits, MTAG identified more 
loci. We tested the anthropometric trait–associated loci in GIANT 
Consortium results and found that the loci identified by MTAG and 
missed by the other methods replicated at a higher rate than the loci 
identified by one of the other methods and missed by MTAG.

Discussion
We have introduced MTAG, a method for conducting meta- 
analysis of GWAS summary statistics for different traits that is 
robust to sample overlap. Both our theoretical and empirical results 
confirm that MTAG can increase the statistical power to identify 
trait-specific genetic associations. In our empirical application to 
DEP, NEUR, and SWB, we found that, relative to the separate GWAS 
for the traits, MTAG led to substantial improvements in the number 
of loci identified, the predictive power of polygenic scores, and the 
informativeness of a bioinformatics analysis. Table  1 summarizes  
the gains from MTAG across these analyses.

Because summary statistics from large-scale GWAS are accessible 
for an ever-increasing number of traits and tools are now available 
for using summary statistics to easily identify clusters of genetically 
correlated traits20, there will be many sets of traits to which MTAG 
could be applied. Which potential applications will be most fruitful? 
Our theoretical results indicate that, relative to single-trait GWAS, 
MTAG will improve polygenic prediction quite generally. For iden-
tifying individual associated loci, MTAG will yield the greatest gains 
in statistical power and little inflation of the FDR for traits with high 
genetic correlation. We caution, however, that the FDR can become 
substantial if MTAG is applied to a large number of low-powered 
GWAS or to GWAS that differ a great deal in power—conditions that 
did not apply to our empirical application here. In all applications of 
MTAG, we recommend conducting FDR calculations and, of course, 
conducting replication analyses if possible.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41588-017-0009-4.
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Methods
This article is accompanied by a Supplementary Note with further details.

Theory. There are T traits, which may be binary or quantitative. We standardize 
each trait and the genotype for each SNP j so that they all have mean zero and 
variance one. The length-T vector of marginal (i.e., not controlling for other 
SNPs) true effects of SNP j in each of the traits is denoted as βj. We assume that 
these are random effects with mean zero and variance–covariance matrix Ω that 
is the same across j. The mean is zero because we treat the choice of reference 
allele as arbitrary. We make the common assumption14,21,22 that the βj values 
are identically distributed across j. The assumption implies that the expected 
amount of phenotypic variance explained is equal for each SNP, regardless of SNP 
characteristics such as allele frequency.

The length-T vector of GWAS estimates is denoted βj, which is equal to the 
true effect vector plus estimation error, βj +  εj. The estimation error is the sum 
of sampling variation and biases (such as population stratification or technical 
artifacts). With any standard GWAS estimator (such as OLS or logistic regression), 
sampling variation is uncorrelated with βj. We assume that the biases are also 
uncorrelated with βj. The variance–covariance matrix of εj, denoted Σj, may differ 
across SNPs j owing to differences in the SNPs’ sample sizes per trait and the SNPs’ 
sample overlap between traits, although we only account for the former in our 
estimation of Σj. MTAG is a generalized method of moments (GMM) estimator. 
To obtain the key moment conditions we will use, we consider the best linear 
prediction of the GWAS estimate for trait s, βj s, , from the SNP’s true effect on trait 
t, βj,t. We use a first-order condition of this best linear prediction as the moment 
condition for trait s
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where ω​st is the (s,t)th element of Ω . There are T such moment conditions for s =  1, 
2, … , T, giving us the vector of moment conditions
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where ωt is a vector equal to the tth column of Ω. Although βj,t is a random effect, 
we aim to estimate its (unknown) realized value. The efficient GMM estimator 
for βj,t based on the vector of moment conditions in equation (1) solves
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 is the efficient weight matrix. 

Intuitively, the GMM estimator chooses the value of βj,t that minimizes a weighted 
sum of the squared deviations from the moment conditions, with deviations 
weighted more heavily if they are estimated more precisely. In the Supplementary 
Note, we show that the solution to the minimization problem in equation (3) is
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Standard asymptotic properties of GMM relate to T →  ∞ . In the Supplementary 
Note, we show that for a fixed number of traits T, as the sample size for the GWAS 
of any trait t becomes large, the MTAG estimator β j tMTAG, ,  is consistent and 
asymptotically normal.

The sampling variance of the estimator is
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For each trait t, the standard error of the estimate is the square root of this quantity. 
As is standard, we obtain a P value using the fact that, in large samples, β j tMTAG, ,  
divided by its standard error follows a standard normal distribution under the  
null hypothesis.

Because of the homogeneous Ω assumption, the above formulas for the MTAG 
estimator and its standard error effectively use the variance–covariance matrix of 
true SNP effects across all SNPs, Ω, to calculate the MTAG estimate for each SNP. 
If in fact there are different types of SNPs characterized by different variance–
covariance matrices, then the MTAG estimator remains consistent but could be 
made more efficient if it took into account the different types of SNPs. In addition, 

the standard error formula is conservative on average across SNPs, which reduces 
MTAG’s statistical power to identify truly associated SNPs. Most importantly, the 
MTAG estimator is in general biased in finite samples, and it is biased away from 
zero for SNPs that are truly null, which causes the false positive rate to be inflated.

For each SNP j, treating Σj as known, the matrix Ω is estimated using the 
method of moments (see the Supplementary Note for discussion of the relationship 
to GMM). For each (t,s)th entry of Ω, ωts, we use the moment condition 

β β ω− −Σ = . ( )E 0j t j s ts j ts, , ,  This moment condition is derived from observing that 
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simply replaces the population expectation with the sample mean
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where M is the number of SNPs in the analysis. Intuitively, the estimated 
covariance in true genetic effects between trait t and trait s is equal to the 
covariance in their observed GWAS coefficients minus the covariance in GWAS 
coefficients that is due to correlated estimation error.

For expositional simplicity, our derivations above and in the Supplementary 
Note are parameterized in terms of the parameter vector βj. We note, however, 
that the input to the MTAG software is the standard output from meta-analysis 
software: z statistics and sample sizes. Because MTAG is applied to z statistics, the 
GWAS summary statistics do not need to have been estimated using traits and 
genotypes that were standardized.

Special cases. There are three special cases of MTAG that may often be relevant in 
practice and for which the estimation procedure is made faster and more efficient. 
The MTAG software offers the option to specialize the analysis for these cases.

No sample overlap across traits. In this case, the off-diagonal elements of Σj can 
be set equal to zero, so LD score regression needs to be run only T rather than 
T(T +  1)/2 times. Note that this version of MTAG does not take into account 
correlation in estimation error across traits that is due to bias. For this reason, LD 
score regression should be run on the MTAG results, and the resulting MTAG 
standard errors should be inflated by the square root of the estimated intercept.

Perfect genetic correlation but different heritabilities. This case arises when the ‘traits’ 
are different measures of the same trait, some with more measurement error than 
others, or when the variance in the trait due to non-genetic factors differs. Here the 
Ω matrix has only T rather than T(T +  1)/2 unique parameters to be estimated.

Perfect genetic correlation and equal heritabilities. This special case corresponds 
to the ‘traits’ being (the same measure of) a single trait; in other words, applying 
MTAG instead of inverse-variance-weighted meta-analysis to T GWAS results. 
Doing so can be useful if there is sample overlap in the GWAS results. In this case, 
as noted in the main text, MTAG specializes to ββ =

Σ

Σ

′

′
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−
 

j t j
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1 1MTAG, ,
j

j

1

1  for all t and it is 
no longer necessary to estimate Ω.

MTAG’s genome-wide mean squared error. The genome-wide mean squared 
error (MSE) of the MTAG estimates is simply equal to their sampling variance 
(given above)

β β β≡ −












 ( ) ( )MSE Ej t j t j tMTAG, , MTAG, , ,

2

∑
β β

Ω
= − =

− +ω ω ω ω
ω ω ω

−′ ′







( )var 1 ,j t j t

j

MTAG, , , 1
t
tt

t t
tt

t
tt

where the first equality follows because both the true effects βj,t and the MTAG esti-
mates β j tMTAG, ,  are mean zero. Illustrative calculations of this formula in a two-trait 
setting are shown in Supplementary Fig. 1. This formula for the MSE holds very 
generally; in particular, it does not require assuming that Ω is homogeneous across 
SNPs (because the genome-wide MSE is a property regarding the mean across all the 
SNPs included in the analysis). In the formula, Ω is (re)defined as the genome-wide 
(i.e., across-SNP) variance–covariance matrix of the SNPs’ true effects on the traits. 
By simulation, we verify that the MSE formula is a good approximation when using 
estimates of Ω and Σj (Supplementary Table 1).

In the Supplementary Note, we show that the MSE values of the MTAG 
estimates are always smaller than the MSE of the corresponding single-trait 

GWAS estimates, which equals β β β ε≡ − =












 ( ) ( ) ( )MSE E Ej t j t j t j t, , ,

2

,
2 . Intuitively, this 

result holds because the MTAG estimates have smaller variance than the GWAS 
estimates and both are unbiased on average across all SNPs; the MTAG estimates 
are unbiased on average (despite being biased for particular SNPs when the 
homogeneous Ω assumption is violated) because both the true effects βj,t and the 
MTAG estimates β j tMTAG, ,  are mean zero across SNPs.
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MTAG’s power and false discovery rate when effect sizes are mixture-normal 
distributed. Suppose that the vector of SNP j’s effects on the traits βj is drawn from 
a mixture of mean-zero multivariate normal distributions. The distribution of 
component c =  1, 2, … , C is βj | c ~ N(0, Ωc) and its mixture weight is denoted pc, 
where ∑ == p 1c

C
c1 . In this case, the z statistic associated with the MTAG estimate 

β j tMTAG, ,  is a mixture distribution with component distributions
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To define power and FDR, let D denote the set of components such that a SNP 
is null for trait t, i.e., the tth element of βj is drawn from a degenerate distribution 
with all mass on zero. Power for trait t can be calculated as

∑
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where z0 is the z statistic associated with genome-wide significance. The FDR for 
trait t can be calculated as
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As with the MSE formula, we verify in simulations that these formulas are good 
approximations when using estimates of Ω and Σj (Supplementary Table 1).

Maximum FDR when effect sizes are multivariate spike-and-slab distributed. 
Starting with the mixture-normal setup in the derivation of power and the 
FDR, we assume that there are C =  2T components, corresponding to all possible 
combinations of the SNP being null for some subset of traits and non-null for the 
others. Let Ω∼ denote the variance–covariance matrix of true effect sizes for the 
component in which the SNP is non-null for all the traits. We assume that the 
variance–covariance matrix of true effect sizes for any component c, denoted Ωc, is 
equal to Ω∼ but with the rows and columns zeroed out that correspond to null traits 
in component c. Given our estimate of Ω, for any vector of mixing weights p =  (p1, 
p2, … , pC), to construct an estimate of Ω∼, we set the (t,s)th entry of Ω∼ p( ) equal to 
ω = ω

∑ ∈

∼ p( )ts p
ts

c Et s c,
 where Et,s is the set of components in which the SNP is non-null 

for both traits t and s. We call the mixing weights p ‘feasible’ if the resulting matrix 
Ω∼ p( ) is positive semidefinite. We maximize the FDR (given by the formula above) 
over all feasible mixing weights p. Given that the FDR may not be a unimodal 
function of p, we maximize using a grid search. Because p has 2T elements, it may 
be computationally infeasible to perform a fine grid search when T is larger than 
three or four. Illustrative calculations of maxFDR in a two-trait setting are shown 
in Supplementary Fig. 2.

Evaluation of MTAG’s robustness to sample overlap. Using the same procedure 
described in the main text (and in further detail in the Supplementary Note), 
we also tested the robustness of MTAG to sample overlap using four other traits 
available in the UKB: body mass index, educational attainment, neuroticism, and 
subjective well-being. The results are qualitatively the same as those based on 
height (Supplementary Fig. 3).

Simulations. To speed computations, instead of simulating individual-level data 
and then estimating effect sizes, we directly generated effect size estimates by 
adding multivariate normally distributed noise to the simulated effect sizes. The 
variance of the noise for each trait was determined by the assumed GWAS expected 
χ2 statistics, and the covariance of the noise between the traits was determined 
by the assumed GWAS expected χ2 statistics and correlation of GWAS estimation 
error across traits.

In our simulations, we cannot estimate Σj using LD score regressions 
because we directly simulate effect sizes rather than data. Nonetheless, we would 
like to use a matrix for Σ j that contains the same amount of sampling variance 
that would have been present if we had simulated data and then run LD score 
regressions. To accomplish this, in each replication, we directly generated Σ j  

by adding noise to the true value of Σj. The variance of the noise was calibrated 
against the LD score regression intercept standard errors for the GWAS results 
of DEP, NEUR, and SWB that we estimated in our empirical application but 
scaled to be larger or smaller when the simulated GWAS had more power 
(Supplementary Note).

GWAS meta-analyses of DEP, NEUR, and SWB. Details on the cohorts, 
phenotype measures, genotyping, quality control filters, and association  
models are provided in the Supplementary Note and Supplementary  
Tables 2–5. As shown in Fig. 3, there is substantial overlap in samples  
across the three GWAS meta-analyses.

All analyses were based on autosomal SNPs from cohorts with genotypes 
imputed against the 1000 Genomes reference panel. The input files in 
each meta-analysis were subjected to a uniform set of quality control and 
diagnostic procedures. These are described in the previous SSGAC study11 and 
the Supplementary Note.

As expected under polygenicity23, we observed inflation of the median test 
statistic in each GWAS (λGC,DEP =  1.36, λGC,NEUR =  1.24, λGC,SWB =  1.28;  
Supplementary Fig. 4 and Supplementary Table 6). The intercept estimates  
from LD score regression were all below 1.02, however, suggesting that nearly  
all of the observed inflation is due to polygenic signal14 (Supplementary Fig. 5). 
When we report GWAS results, as in the SSGAC study11, we account for the 
potential bias due to this small amount of stratification by inflating the  
standard errors of our GWAS estimates by the square root of the LD score 
regression intercept.

Manhattan plots from each of the GWAS meta-analyses are shown in 
Supplementary Fig. 6. Our NEUR meta-analysis was based on the same  
cohort-level data as the SSGAC study11 and unsurprisingly yielded substantively 
identical results: ten lead SNPs. Consistent with what studies have reported for 
other complex traits, the larger discovery samples for DEP and SWB relative 
to the SSGAC study increased the number of lead SNPs: from 2 to 32 for DEP 
(Neff =  149,707 to 354,862) and from 3 to 13 for SWB (N =  298,420 to 388,538). 
Applying bivariate LD score regression6 to the GWAS results, we estimated the 
genetic correlations to be 0.72 (s.e. =  0.026) between DEP and NEUR, –0.67 
(s.e. =  0.027) between NEUR and SWB, and –0.69 (s.e. =  0.024) between DEP and 
SWB (Supplementary Table 7). The intercepts from each of these regressions are 
found in Supplementary Table 8. Lead SNPs with a P value less than 1 ×  10−5 from 
the GWAS for each trait are listed in Supplementary Table 9.

Clumping algorithm. We applied the same clumping algorithm to the GWAS and 
MTAG results to identify each set of lead SNPs. Our clumping algorithm is the 
same as in the previous SSGAC study11. First, the SNP with the smallest P value 
was identified in the meta-analysis results. This SNP was designated the index SNP 
of clump 1. Second, we identified all SNPs on the same chromosome whose LD 
with the index SNP exceeded r2 =  0.1 and assigned them to clump 1. To generate 
the second clump, we removed the SNPs in clump 1 and then iterated the process 
to identify further index SNPs and their corresponding clumps until no  
SNPs remained.

MTAG SNP filters. Because the derivation of MTAG relies on some assumptions 
regarding features of the distributions of the effect sizes and estimation error, its 
performance may be sensitive to violations of these assumptions. To reduce the 
risk of extreme violations, when we apply MTAG, we impose three additional SNP 
filters beyond the standard filters used in a GWAS.

First, we restrict the set of SNPs to those with a minor allele frequency greater 
than 1%. This filter is motivated by the homogeneous Ω assumption and by the 
assumption that each SNP explains the same amount of phenotypic variation in 
expectation. Rare variants may follow a different effect size distribution both in 
terms of the variance and covariance of their effect sizes, which could bias the 
MTAG estimates.

Second, for each trait, we restrict variation in SNP sample sizes by calculating 
the 90th percentile of the SNP sample size distribution and removing SNPs with a 
sample size smaller than 75% of this value. This filter is similar to, although slightly 
more strict than, the sample size filter recommended for LD score regression14. 
If a SNP’s effect is estimated in a relatively small subset of the sample, then the 
sample overlap across traits will likely be different for that SNP than for other 
SNPs in the sample. In that case, the covariance of the estimation error across 
traits as estimated by LD score regression may not be a good approximation to the 
covariance of the estimation error for that particular SNP.

Third, we drop SNPs in genomic regions containing SNPs that are outliers 
with respect to their effect size estimates. Because the effect sizes of these SNPs 
appear to have a different variance–covariance matrix than the rest of the genome, 
including these regions would likely lead to the biases and inefficiencies that 
can occur when the homogeneous Ω assumption is violated. In our empirical 
application, in the GWAS of NEUR, the effect sizes of SNPs in a region of 
chromosome 8 that tag an inversion polymorphism have been found to be 
strongly inflated relative to the effects estimated for SNPs in all other regions of 
the genome10,11. Therefore, we omit SNPs in chromosome 8 between base-pair 
positions 7,962,590 and 11,962,591 (Supplementary Table 10).

NATuRe GeNeTiCS | www.nature.com/naturegenetics

© 2017 Nature America Inc., part of Springer Nature. All rights reserved.

http://www.nature.com/naturegenetics


Articles Nature GeNetics

GWAS-equivalent sample size for MTAG. The increase in the mean χ2  
statistic for each trait from the GWAS results to the MTAG results can be  
used to calculate a ‘GWAS-equivalent sample size’ for MTAG. Under the 
assumptions of LD score regression14, the expected χ2 statistic for some SNP  
with LD score ℓj is

χ ℓ =
ℓ

+ +( ) N h
M

NaE 1j j
j j

j
2

2

where Nj is the sample size for SNP j, h2 is the SNP heritability of the trait; M is the 
number of SNPs for which we define the SNP heritability, and a is the variance due 
to biases (for example, due to population stratification). Note that χ ℓ −( )E 1j j

2  
scales linearly with Nj as long as M and ℓj are held constant in the additional 
samples24–26. Because the individuals included in all GWAS are of European 
ancestry, M and ℓj are indeed expected to be approximately constant24–26. Thus, we 
can use the mean χ2 statistic from the GWAS and the MTAG results to calculate 
how much larger the GWAS sample size would have to be to give a mean χ2 statistic 
equal to that attained by MTAG
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where χGWAS
2  is the mean χ2 statistic in the GWAS results and χMTAG

2  is the mean χ2 
statistic in the MTAG results. Put another way, conducting MTAG gives the same 
power (as measured by mean χ2 statistic) as conducting GWAS in a sample size 
that is larger by a factor of χ
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Thus, the MTAG analysis has statistical power equivalent to a GWAS of DEP 
conducted in 354,861 ×  126% =  449,649 individuals. For NEUR, the mean χ2 
statistic rose from 1.284 to 1.557, implying a GWAS-equivalent sample size for 
MTAG that is 96% larger than the GWAS sample size: the effective sample size is 
168,105 ×  196% =  329,835 individuals. For SWB, the mean χ2 statistics rose from 
1.308 to 1.570, implying a GWAS-equivalent sample size 85% larger than the 
GWAS: 388,538 ×  185% =  718,284 individuals (Supplementary Table 11).

MTAG results. The estimated matrices Ω and ΣLD (the LD score regression 
intercepts) are found in Supplementary Tables 12 and 13, respectively. Quantile–
quantile plots corresponding to both the GWAS and MTAG results show an increase 
in power for each trait (Supplementary Fig. 7). Lead SNPs with a P value less than 
1 ×  10−5 from the MTAG analysis for each trait are listed in Supplementary Table 14.

Replication results. To test for sample overlap, we estimated the bivariate LD score 
regression intercept between the GWAS summary statistics for each discovery and 
each replication sample (Supplementary Table 15). The replication results are in 
Fig. 5 and Supplementary Table 16.

Polygenic prediction. We used the HRS27 and Add Health as our prediction 
cohorts. We applied the same SNP filters as in the main MTAG analyses. 
Additionally, we restricted the set of SNPs used to construct the scores to HapMap3  
SNPs for comparability across the two prediction cohorts. We calculated the SNP 
weights using the software package LDpred, assuming a fraction of causal SNPs 
equal to 1. The scores were constructed in PLINK using genotype probabilities 
obtained from 1000 Genomes imputation.

Bootstrapped confidence intervals were calculated by drawing, with 
replacement, a sample of equal size to the prediction sample and then calculating 
the incremental R2 for the GWAS-based polygenic score, the MTAG-based 
polygenic score, and the difference between them. Our pooled results were 
obtained as a sample-size-weighted sum of HRS and Add Health results. As the 
bounds of the 95% confidence intervals, we used the 2.5th and 97.5th percentile 
values of the incremental R2 across 1,000 bootstrap draws. Incremental R2  
estimates and their confidence intervals for the prediction analyses are in 
Supplementary Tables 17–20 and Supplementary Fig. 8.

Expected increase in polygenic score predictive power from MTAG. The 
phenotypic value of a trait in individual i, denoted yi, can be decomposed into the 
sum of the additive genetic variance component and a residual

ε= +y gi i i
y

We denote the GWAS- and MTAG-based polygenic scores for the trait by 
g iGWAS,

 and g iMTAG,
, respectively. Note that GWAS and MTAG produce consistent 

estimates of the SNP effect sizes, and LDpred22 produces a consistent estimate 

of the additive genetic variance component. Therefore, each polygenic score k ∈  
{GWAS, MTAG} is approximately equal to gi plus estimation error

= +g g ek i i k i, ,

By the central limit theorem, the estimation error is approximately normally 
distributed

~e N V(0, )k i k,

The variance Vk is inversely proportional to the sample size as long as the effective 
number of chromosome segments, Me, is the same in every GWAS sample in the 
analysis24–26. As in the calculation of the GWAS-equivalent sample size, where we 
assume that Me is the same in every GWAS sample and in the prediction sample, 
the expected predictive power of a polygenic score is

=
+
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where h2 is the SNP heritability of the trait28–30. (Note that if Me were to differ 
greatly across samples, then it would be important to take this into account when 
calculating the expected predictive power24,25.)

Using the GWAS results, we obtain an estimate of h2 using LD score 
regression14 and an estimate of RE( )k

2  from the predictive power of the GWAS-
based polygenic score. Plugging these estimates into the above formula, we solve 

for an estimate of VGWAS. We then multiply this value by 
χ
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−
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2

MTAG
2

, which 

we showed previously is equal to the ratio of the GWAS sample size to MTAG’s 
GWAS-equivalent sample size, to obtain an estimate of VMTAG. Substituting this 
back into the above formula along with our estimate of h2 gives us the expected 
predictive power of the MTAG-based polygenic score.

Results of this calculation are found in Supplementary Table 17c. For DEP, 
NEUR, and SWB, respectively, we anticipated increases in predictive power 
of 0.21, 0.56, and 0.39 percentage points. All three anticipated increases were 
within their respective estimated confidence intervals: [0.04,0.31], [0.16,0.61], 
and [0.12,0.65]. Overall, the observed gains in predictive power relative to 
conventional GWAS-based polygenic scores are thus consistent with theoretical 
expectations.

Biological annotation. Detailed results from DEPICT for each trait are found in 
Supplementary Tables 21–29. The GWAS- and MTAG-based tissue enrichment 
estimates for DEP, NEUR, and SWB are compared in Fig. 7 and Supplementary 
Figs. 9 and 10, respectively. The complete set of results from DEPICT is 
summarized in Supplementary Table 30.

Comparative analyses. We conducted analyses comparing MTAG to other multi-trait 
methods that can be applied in the specific setting for which MTAG was developed 
(Supplementary Note, Supplementary Figs. 11–13 and Supplementary Table 31).

Data availability. Summary statistics can be found at http://www.thessgac.org/
data. For analyses that include data from 23andMe, only up to 10,000 SNPs can 
be reported. The GWAS of NEUR does not include data from 23andMe, so full 
summary statistics are available. For the GWAS of DEP and SWB and for the 
MTAG of NEUR and SWB, clumped results for SNPs with P <  1 ×  10−5  
are provided. For the MTAG of DEP, clumped results for SNPs with  
P ≤  6.68 ×  10–3 are provided; this P-value threshold was chosen such that the  
total number of SNPs across the analyses that include data from 23andMe  
is equal to 10,000.

URLs. MTAG software is available at https://github.com/omeed-maghzian/mtag/. 
Social Science Genetic Association Consortium (SSGAC) website, https://www.
thessgac.org/data.

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Code availability. MTAG software is available at https://github.com/omeed-
maghzian/mtag/.
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    Experimental design
1.   Sample size

Describe how sample size was determined. For each of the three phenotypes, we combined all publicly available 
summary statistics with summary statistics from new association analyses. 
Details are reported in Section 3.2 of the Supplementary Note. 

2.   Data exclusions

Describe any data exclusions. No data were excluded from the analysis (except for standard quality-
control filters applied to the SNP data, described in Supplementary Note 
sections 3.2 and 3.3 and Supplementary Table 10).

3.   Replication

Describe whether the experimental findings were reliably reproduced. We test the MTAG-identified lead SNPs jointly for replication. Their 
replication record is strong; see Figure 5 and Supplementary Note section 
5.

4.   Randomization

Describe how samples/organisms/participants were allocated into 
experimental groups.

Not relevant because the study is not experimental.

5.   Blinding

Describe whether the investigators were blinded to group allocation 
during data collection and/or analysis.

Not relevant because the study is not experimental.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or the Methods 
section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample 
was measured repeatedly. 

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. p values) given as exact values whenever possible and with confidence intervals noted

A summary of the descriptive statistics, including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this study. The GWASs in the UKB and replication cohorts were done with SNPtest 
v2.5.2. Meta-analyses were performed with Metal, release 2011-03-25. QC 
was run with EasyQC v9.0. Simulated results were generated and 
replication analyses were conducted using Python v2.7. LD score 
regressions were done using ldsc v1.0.0. Clumping was perfomed with 
Plink, 1.90b3p. Polygenic score weights were generated using LDpred 
v0.9.09 and the prediction analyses were executed in Stata v14.2. 
Biological annotation was completed using DEPICT (downloaded Feb 
2015). The comparative analyses estimates for Shom and Shet were 
calculated using the R package CPASSOC v1.01. MTAG analyses were 
conducted in Python v2.7.

For all studies, we encourage code deposition in a community repository (e.g. GitHub). Authors must make computer code available to editors and reviewers upon 
request.  The Nature Methods guidance for providing algorithms and software for publication may be useful for any submission.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of unique 
materials or if these materials are only available for distribution by a 
for-profit company.

No unique materials were used.

9.   Antibodies

Describe the antibodies used and how they were validated for use in 
the system under study (i.e. assay and species).

No antibodies were used.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used.

c.  Report whether the cell lines were tested for mycoplasma 
contamination.

No eukaryotic cell lines were used.

d.  If any of the cell lines used in the paper are listed in the database 
of commonly misidentified cell lines maintained by ICLAC, 
provide a scientific rationale for their use.

No cell lines were used.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived materials used in 
the study.

No animals were used.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population characteristics of the 
human research participants.

Analyses were conducted on GWAS summary statistics. References to the 
studies that report covariate-relevant population characteristics are in 
Supplementary Table 2 and Supplementary Note section 3.2.
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