
CHAPTER EIGHT

Behavior Genetic Research Methods

Testing Quasi-Causal Hypotheses Using Multivariate Twin Data

ERIC TURKHEIMER AND K. PAIGE HARDEN

I find the use of a correlation coefficient a dangerous

symptom. It is an enemy of generalization, a focuser on

the “here and now” to the exclusion of the “there and

then.” Any influence that exerts selection on one variable

and not the other will shift the correlation coefficient.

What usually remains constant under such circumstances

is one of the regression coefficients. If we wish to seek for

constancies, then, regression coefficients are much more

likely to serve us than correlation coefficients.

(Tukey, 1969, p. 89).

INTRODUCTION

The suggested topic of this chapter – methods for

behavioral genetic research in personality – is poten-

tially misleading. Behavioral genetics, of course, is

simply the science of genetics in its many forms as

it is applied to behavior, and for the most part there

is no reason for genetic research methods for the

study of behavior to be any different than genetic

methods applied to nonbehavioral characteristics of

organisms. The genetics of behavior can be studied in

humans or in nonhuman animals, using correlational

or experimental methods; it can be inferred from pat-

terns of familial relations or observed more directly in

DNA. Like any characteristic of an organism, behav-

ior can be thought of in terms of individual differences

or unvarying species-typical characteristics; it can be

studied in the cross-sectional context of the current

moment or as an ongoing process in a life span or

evolutionary time; and it can be seen as an aspect

of normal functioning or as a reflection of disorder

and distress. The same is true of personality. There is

little about personality that requires it to be studied

differently than diabetes, or height, for that matter.

The domain of behavioral genetic research methods in

personality is in principle no less extensive than the

intersection of genetics and personality. As such it is

too vast to review in a single chapter.

Research methods in both behavioral genetics and

personality are currently at a crossroads. Although the

history of the behavioral genetics of personality has

its origins in animal breeding, and the foundational

work in the field is largely about temperament in dogs

(Scott & Fuller, 1965), what has come to be thought

of as behavioral genetics are the methods of quan-

titative genetics, in which genetic and environmen-

tal processes are inferred from differences in genetic

and environmental relationships in twin and sibling

pairs, families, and pedigrees. Over roughly the same

period, “personality” has come to refer largely to indi-

vidual differences in human personality, especially as

they are assessed via paper-and-pencil and self-report.

The intersection of these more specific paradigms, in

which correlations between the self-reported person-

ality scores of family members are analyzed using

quantitative genetic statistical models, has defined the

behavioral genetics of personality for the last 50 years

(Tellegen, Lykken, Bouchard, Wilcox, Segal, & Rich,

1988).

That methodological era is coming to an end. The

wider availability of specific genetic markers and the

sequencing of the human genome has supplemented,

and to some degree supplanted, the classical quanti-

tative methods of the last century (Charney, 2012).

Researchers in personality have recognized the lim-

itations of a narrow focus on self-report (Oltmanns

& Turkheimer, 2009), and the recent explosion in

evolutionary thinking in the behavioral sciences has

had a profound effect on the field (Penke, Denissen,

& Miller, 2007), in particular by rekindling interest

in species-general aspects of personality as opposed
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160 ERIC TURKHEIMER AND K. PAIGE HARDEN

to individual differences, and by reminding us of

the importance of personality in nonhuman animals

(Gosling & John, 1999).

With that in mind, it may seem retrograde to focus

a review of behavioral genetic research methods in

personality on twin methods for the study of individ-

ual differences in self-reported responses in humans.

The choice can be defended on several grounds, other

than the simple fact that this is where the expertise

of the authors happens to lie. First is to counter the

too-frequent tendency in the behavioral sciences to

move on from one poorly understood method to the

next, motivated not by the theoretical completion

of the old paradigm but rather by the availability

of new technology. This review endeavors to show

that both the foundations and implications of classical

twin studies of personality have not been fully under-

stood. Related to this motivation, the new molecular

genetic methodologies have themselves led to a com-

plex tangle of methodological difficulties, which one

of us has recently reviewed elsewhere (Turkheimer,

2012), although not in the context of personality per

se (but see Munafo, Clark, Moore, Payne, Walton, &

Flint, 2003). Finally, there is the undeniable but some-

what mysterious fact that notwithstanding the thou-

sands of twin studies of personality that have been

conducted, and an equally rich history of theoretical

writing on the subject, the quantitative genetics of per-

sonality remains stubbornly controversial, both widely

accepted as foundational yet regularly rejected as mis-

leading or worse. Its merits and implications continue

to be debated in the top journals (Charney, 2012). The

perhaps unrealistic goal of this chapter is to soften the

disagreement about the genetics of behavior by refor-

mulating its methodological foundation of twin and

family studies. Later, we also apply our reformulation

of older methods to gain realistic understanding of the

newer ones that capitalize on the availability of mea-

sured DNA.

PERSONALITY AS NONEXPERIMENTAL

SCIENCE

Focusing the chapter on individual differences in

humans highlights a particularly problematic aspect

of scientific inference in the human behavioral sci-

ences: the inference of causality from nonexperimen-

tal data (see West, Cham, & Liu, Chapter 4 in this

volume). It is, of course, possible to study personality

experimentally, using random assignment to experi-

mental conditions to isolate causal effects of manipu-

lations from extraneous variables that might otherwise

confound them. The branch of personality psychol-

ogy that interfaces with social psychology consists

largely of this kind of work. It is even possible to con-

duct randomized experimental research while includ-

ing genetic information (Burt, 2009), although this is

not often attempted in humans.

When studying human individual differences in

personality, the observations are usually correlational,

beginning with the most fundamental observations in

personality, the patterns of association among per-

sonality items that have been the basis for factor

analytic studies of personality structure since Cattell

(1957). Even at a more molar level, the basic observa-

tions of personality science usually involve statistical

associations, either among the personality traits them-

selves or with external variables that are indicators

of validity. We refer to these relations as phenotypic

associations, with “phenotype” denoting a character-

istic of an organism at the observational level, as op-

posed to its underlying causes. Phenotypic associa-

tions with personality are easy to observe, but in

nonexperimental work the important underlying

questions are about cause: What causes individual dif-

ferences in personality, and what do individual differ-

ences in personality cause? For example, does neu-

roticism cause poor physical health (Shipley, Weiss,

Der, Taylor, & Deary, 2007)? Does military service

change one’s personality, or are men with certain per-

sonality characteristics more likely to select military

service (Jackson, Thoemmes, Jonkmann, Ludtke, &

Trautwein, 2012)? Do changes in impulsivity cause a

young adult to “mature out” of alcohol use, or does

heavy drinking cause increases in impulsivity (Little-

field, Sher, & Wood, 2009; Quinn, Stappenbeck, &

Fromme, 2011)? These causal questions are very dif-

ficult to answer, and phenotypic associations alone

are causally ambiguous. The only way to demonstrate

conclusively that a phenotypic association between

heavy drinking and impulsivity is causal would be

to assign individuals randomly to different heavy-

drinking conditions and see what happens. Random

experimentation of this kind is, of course, often impos-

sible for practical or ethical reasons. In the absence

of random assignment, how can a social scientist

proceed?

As is usually the case in the social sciences, the

answer is that social scientists can resort to quasi-

experimental methods, in the hope of capturing some

of the causal certainty offered by the idealized random

experiment (see West et al., Chapter 4 in this volume).

Suppose, for example, there existed pairs of children

who had been matched for cultural background and
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genetic predisposition, yet who nonetheless differed in

some hypothesized causal factor. To continue with the

example of heavy drinking and impulsivity, if there

were pairs of children matched for genetic and envi-

ronmental family background but differing in their

drinking habits, and if differences in drinking within

pairs of matched children was still related to their per-

sonality, this association could not be the result of

environmental or genetic family background, because

the pairs had been matched for these traits. Asso-

ciations within matched pairs would not prove cau-

sation, because matching can never be comprehen-

sive and perfect, but to the extent the matching

succeeded in holding constant important confounds,

the within-pair associations would strengthen our

impression that the association may have a causal

basis. We have adopted the qualified term quasi-causal

to denote associations that have survived analysis

using quasi-experimental methods.

Needless to say, the matched pairs we have

described do exist: they are called identical (monozy-

gotic; MZ) twins reared together. Other kinds of famil-

ial clusters – fraternal (dizygotic; DZ) twins, siblings,

half-siblings, twins reared apart, adoptive siblings, and

so forth – are also matched, but to a lesser degree

than are identical twins reared together. This chapter

makes the case that the essential contribution of what

is commonly called behavior genetics is the use of

such familial clusters to obtain a significant but imper-

fect degree of quasi-experimental control over nonex-

perimental phenotypic associations. To illustrate this

point, we begin by presenting a regression-based anal-

ysis of MZ twin data on religiosity (involvement in

organized religious activities) and delinquent behav-

ior during adolescence. This starting-off point differs

from what is typically thought of as a “twin study” in

two important respects. First, the focus of our anal-

ysis is on the relation between two individual differ-

ences variables, rather than on dividing the sources

of variation in a single behavior into genetic versus

environmental components. By the end of this first

analysis, we will not know much about how much

genes matter for either religiosity or delinquency, but

we will know much more about how they are related

to each other. Second, we begin by using data from

only MZ twins rather than from both MZ and DZ

twins. As we describe later, the familiar decomposi-

tion of observed variance into genetic and environ-

mental components depends on comparing the rela-

tive similarity of MZ versus DZ twins, but we hope to

convince the reader that the clearest exposition of the

twin method starts elsewhere. Indeed, we request that

the reader lay aside what he or she already knows

or has heard about twin studies, including the idea

that the purpose of behavioral genetics is to estimate

the magnitude of genetic and environmental contri-

butions to a trait. In later sections, we expand on our

simple MZ-twin regression analysis to show how it

intersects with more complex – and perhaps more

familiar – methods for analyzing twin data. (The

reader interested in a more traditional introduction to

the twin method can see Plomin, DeFries, Knopik, &

Neiderhiser, 2012 for an exhaustive account, or Neale

& Maes, 2007 for a more computationally oriented

approach.).

RELIGIOSITY AND DELINQUENCY IN MZ TWINS

To provide a brief substantive background for our

example, the incidence of delinquency increases so

dramatically in adolescence that some researchers

consider it to be developmentally normative (Moffitt,

1993). Adolescents commit more than 30% of major

crimes in the United States (Federal Bureau of Inves-

tigation, 2004). One potential protective factor against

delinquency is religiosity – that is, affiliation with and

involvement in religious organizations and activities.

Religious involvement may decrease problem behav-

ior by instilling beliefs about divine sanctions, encour-

aging prosocial ties that foster concern for collective

well-being, facilitating the intergenerational commu-

nication of conforming values, and buffering against

psychological distress that otherwise may be acted out

in problem behavior (Alpert, 1939; Smith, 2003). A

meta-analysis of 60 studies concluded that there is

a moderate negative relationship between religiosity

and delinquency (Baier & Wright, 2001). However,

the association between religiosity and delinquency

is confounded by numerous variables related to both,

including genetic factors (Koenig, McGue, Krueger, &

Bouchard, 2005; Miles & Carey, 1997).

Twin data on religiosity and delinquency are drawn

from the National Longitudinal Study of Adolescent

Health (Add Health), a nationally representative study

designed to assess adolescent health and risk behavior,

collected in four waves between 1994 and 2008. Add

Health participants were recruited using a stratified

school-based sampling design. A randomly selected

subsample of 20,745 participants (randomly selected

from school rosters) completed a 90-minute in-home

interview between April and December 1995 (Wave I

interview; 10,480 female, 10,264 male). Participants

ranged in age from 11 to 21 years (M = 16 years,

25th percentile = 14 years, 75th = 17 years). The
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design features of the Add Health data set have been

extensively described elsewhere (Harris, 2011), and

interested readers are referred to the Add Health web-

site (http://www.cpc.unc.edu/addhealth) for addi-

tional information. In this chapter we use a subsam-

ple of the Add Health participants that comprises all

adolescents between 11 and 20 years old who were

identified as monozygotic (MZ) or dizygotic (DZ) twins

raised together in the same household (N = 289 MZ

pairs, 451 DZ pairs). Twin zygosity was determined

primarily on the basis of self-report and four ques-

tionnaire items concerning how often twins were con-

fused with one another and the similarity of their

physical appearance. Eighty-nine pairs of uncertain

zygosity were determined to be identical if they shared

five or more genetic markers. Details regarding the

Add Health twins sample are described by Harris,

Halpern, Smolen, and Haberstick (2006).

Religiosity was measured using four items (rated on

four-point or five-point ordinal scale) assessing impor-

tance of religion, frequency of prayer, attendance at

religious services, and attendance at youth groups.

Additional religiosity items that focused primarily on

type of affiliation (e.g., identification as born-again)

or theological beliefs (e.g., divine authorship of sacred

texts) were excluded. Individuals who denied any reli-

gious affiliation were not assessed for religiosity during

the interview; they were assigned scores as appropri-

ate (e.g., “Never” for frequency of prayer; “Not at all

important” for importance of religion.) Items scored

in reverse direction, such that higher scores reflect

less religiosity, were reversed numerically. Religiosity

scores were computed by summing responses on the

four items (M = 9.44, SD = 4.22, median = 9, range

= 4 to 17, alpha = 0.76).

Adolescents were also asked how often in the last

12 months they had engaged in each of 15 antisocial

behaviors: Never (0), One or Two Times (1), Three

or Four Times (2), or Five or More Times (3). In

addition, they were asked how often in the last 12

months each of 4 violent events happened: Never (0),

Once (1), More Than Once (2). A previous confir-

matory factor analysis of this data indicated that 11

items pertaining to theft, deception, and public row-

diness were indicative of a single factor, labeled here

as delinquency (Harden, Mendle, Hill, Turkheimer, &

Emery, 2008). (The remaining items were indicative

of a factor pertaining to aggressive or violent behav-

ior.) Delinquency factor scores (M = 0.12, SD = 0.81,

range = –1.11 to 3.58, 25th percentile = –0.50, 75th

percentile = 0.68) were estimated using the program

Mplus (Muthén & Muthén, 1998–2010).

RANDOM EFFECTS MODELS

The most readily apparent analytic complexity intro-

duced by MZ twin data (as opposed to data on sin-

gletons) is that observations may no longer be con-

sidered independent: individuals are clustered within

twin pairs. Failure to consider this nonindependence

may cause serious bias in the estimation of parame-

ters and standard errors. Random effects models, also

known as hierarchical linear models or mixed effects

models, are a popular approach for the analysis of clus-

tered data. (For a comprehensive introduction to ran-

dom effects models, see Raudenbush and Bryk (2002)

or Schoemann, Rhemtulla, and Little, Chapter 21 in

this volume.) A basic mixed effects model for our data,

analogous to a simple regression in non-clustered data,

is as follows:

Yi j = B00 + (B01 × Xi j ) + u0J + ei j (8.1)

The subscripts ij represent the ith twin within the jth

pair. The first part of Model 1 is directly comparable

to traditional regression analysis, with B00 represent-

ing the population intercept and β01representing the

expected increase in delinquency given an increase

in one unit religiosity. Together this represents the

fixed portion of the model. The latter, random por-

tion of the model is composed of u0j, the pair-level

error of prediction (i.e., the difference between the

population-level intercept B00 and the intercept for a

given twin pair); and eij, the individual-level error of

prediction. As applied to our example, u0j reflects the

extent to which a twin pair is, on average, less or more

delinquent than the overall population; eij reflects

the extent to which an individual twin is less or

more delinquent than the pair average. Unaccounted-

for variation in delinquency is thus divided into two

components: one part shared by twins in a pair and

another part independent among individual twins.

Taken together, the fixed effects and random effects

parts comprise a model closely related to traditional

regression analysis; the only addition is an estimate of

the dependence between observations within a cluster

(i.e., the pair-level residual variation).

This model was estimated in MZ twin pairs using

PROC MIXED in SAS (see Appendix A at the end of

the chapter for code). Results are listed under Model 1

in Table 8.1. Consistent with previous epidemiolog-

ical research, religiosity was significantly associated

with lower delinquency (β = 0.027). Of the total

unaccounted-for variation in delinquency (0.324 +

0.343 = 0.667), 51.4% (0.343/0.667) was attributable

to genetic and environmental factors that make twins
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TABLE 8.1. Results from Mixed Effects Models of Religiosity and Delinquency

MZ Twins Only MZ and DZ Twins

Model 1 Model 2 Model 3 Model 4

Fixed Effects

Intercept −.178 (.097) −.353 (.113)∗
−.353 (.113)∗

−.404 (.069)∗

Religiosity .027 (.009)∗
−.008 (.017)

Religiosity Deviation −.008 (.017) −.008 (.018)

Deviation∗Zygosity

(DZ Effect – MZ Effect)

.027 (.021)

Religiosity Pair Average .055 (.020)∗ .047 (.011)∗ .050 (.007)∗

Random Effects

MZ Twin Pair .343 (.048)∗ .335 (.046)∗ .335 (.046)∗ .314 (.045)∗

Within-MZ Residual .324 (.029)∗ .317 (.028)∗ .317 (.028)∗ .317 (.028)∗

DZ Twin Pair .225 (.031)∗

Within-DZ Residual .389 (.028)∗

∗ Significant at P < .05.

similar. Put another way, the intraclass correlation

for twin pairs was 0.51. The remaining 48.6% of

the variance existed within twin pairs and can thus

be attributed to environmental influences that make

twins different and to measurement error.

Besides dividing unaccounted-for variation in

delinquency into between-pair and within-pair com-

ponents (and providing accurate estimates of the stan-

dard errors), the results of Model 1 tell us nothing that

we could not have known from an ordinary correla-

tional study. There is, however, an additional piece of

information that we can include in the model – the

average level of religiosity for the twin pair (X̄0 j ):

Yi j = B00 + (B01 × Xi j ) + (B02×X̄0 j ) + u0 j + ei j (8.2)

Consider how the addition of this one piece of

information changes the meaning of the parameter

B01, which now quantifies whether an individual who

is more religious is less delinquent, controlling for the

overall level of religiosity in his or her twin pair. Because

religiosity is not randomly assigned, controlling for the

average level of religiosity in the pair essentially con-

trols for being from the “type” of family that is reli-

gious, including all the between-family genetic and

environmental differences that are confounded with

average religiosity. Results from this model are listed

under Model 2 in Table 8.1. Twin pairs who are

more religious, on average, have lower levels of delin-

quency (β02 = 0.055). However, if Twin A is more reli-

gious than Twin B, this within-pair difference does not

significantly predict delinquency (β01 = −0.008), as

would be predicted by a causal hypothesis.

A difficulty with including the pair average as a

predictor is that it may be strongly correlated with an

individual’s score. To ameliorate the problem of multi-

collinearity, Model 2 may be re-parameterized to yield

orthogonal covariates, namely the twin-pair average

(X̄0 j ) and the deviation of each twin from the twin-pair

average (Xi j − X̄0 j ):

Yi j = B00 +(BB × X̄0 j )+(BW ×(Xi j − X̄0J ))+u0 j +ei j

(8.3)

The between-cluster regression coefficient BB esti-

mates whether pairs with higher average religiosity

have lower average delinquency, including the effects

of the unmeasured covariates that vary at the pair

level. In contrast, the within-cluster regression coef-

ficient BW estimates whether the MZ twin with higher

religiosity than his or her co-twin also has lower delin-

quency than his or her co-twin. Results from this

model (Model 3) are shown in Table 8.1. The regres-

sion of delinquency on religiosity within twin pairs is

not significant (βW = −0.008), but the regression on

mean pair religiosity is significant (βB = 0.047). Model

3 is merely a re-parameterization of Model 2, such

that BB in Model 3 equals the sum of the two regres-

sion coefficients from Model 2 (.053 – .008 = .047),

but because the covariates are orthogonal the stan-

dard error for the between-cluster regression is slightly

smaller in Model 3.
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Again, how to interpret these results? The within-

cluster regression is not biased by the exclusion of

cluster-level confounds; therefore, the within-cluster

regression better approximates the “true” quasi-causal

relation between religiosity and delinquency in the

population. In other words, BW is the key parame-

ter of interest for evaluating a quasi-causal hypoth-

esis. In the current analysis, the quasi-causal rela-

tion between religiosity and delinquency appears to

be nonexistent: Families who are more religious are

less delinquent, but a twin who is more religious than

his co-twin is not. Another way of making the same

point is to observe that to the extent the relationship is

ultimately causal, the structural relation between reli-

giosity and delinquency should not differ depending

on whether one is comparing means of twin pairs,

deviations of individual twins from their pair mean,

or unrelated individuals (see the discussion of rat pups

in Turkheimer & Waldron, 2000). These comparisons

are invariant causally but differ in their confounds:

twin comparisons are confounded only by environ-

mental influences unique to each twin, while compar-

isons between unrelated individuals are confounded

by all genetic and environmental differences between

families. Inequality of BW and BB, therefore, suggests

the operation of third-variable confounds operating

between families.

Comparison of within- and between-cluster regres-

sion coefficients is a strategy found frequently in

the medical literature, with the aim of disentangling

“maternal” factors from “fetal origins” of disease aeti-

ology (for a review, see Carlin, Gurrin, Sterne, Morley,

& Dwyer, 2005). Mixed effects models of twin data

have been productively applied to the study of birth

weight and cord blood erythropoietin (Morley, Moore,

Dwyer, Owens, Umstad, & Carlin, 2005), birth weight

and blood pressure (Mann, De Stavola, & Leon, 2004),

and tobacco use and bone density (Hopper & Seeman,

1994), to name just a few examples. This statistical

method would be just as productively applied to the

study of psychological development as to the study of

disease.

Differentiating Genetic and Shared

Environmental Confounds

Thus far, we have considered average family reli-

giosity and within-twin pair differences in religios-

ity in pairs of identical twins. The former effect is

confounded by all genetic and environmental fac-

tors that vary between families and are systemati-

cally associated with religiosity. The latter effect is

confounded only by those factors that vary within

twin pairs.

Inclusion of DZ twin pairs complicates the analysis

of between- and within-pair variances to some extent,

but ultimately allows the estimation of a third vari-

ance, and with the addition of some statistical and

biological assumptions leads to the familiar terms of

the classical twin model. In MZ twins, who are iden-

tical genetically, within-pair confounds are necessar-

ily environmental in origin. In DZ twins, who share

only 50% of their genes, there are both genetic and

environmental within-pair confounds. Therefore, to

the extent that the relation between religiosity and

delinquency is attributable to genetic confounds, there

should be a larger within-pair effect for DZ twin pairs

than for MZ twin pairs. To model this, we can spec-

ify an additional interaction term to our mixed effects

model:

Yi j = B00 + (BB × X̄0 j ) + (BW × (Xi j − X̄0 j ))

+ (B03 × ZYG ) + (B04 × ZYG

× (Xi j − X̄0 j )) + u0 j + ei j (8.4)

When zygosity (abbreviated ZYG) is dummy-coded as

0 in MZ twins and 1 in DZ twins, BW estimates the

the within-pair regression for MZ twins, whereas B04

estimates the difference between MZ and DZ twins in

the within-pair effect. To the extent that confounding

variables are genetic in origin, the within-pair effect

will be larger for DZ twins than MZ twins. In contrast,

MZ and DZ twin pairs raised together control equally

well for shared environmental factors, thus there will

be no difference between pair types if the relevant

confounds are environmental in origin. There is no

reason to expect a main effect of zygosity on the out-

come of interest; however, it is necessary to include

the main effect of a covariate included in an interac-

tion term.

Results from this model (Model 4), using data from

both MZ and DZ twin pairs, are shown in Table 8.1.

See Appendix A at the end of the chapter for the

corresponding SAS program. The primary result of

Model 4 is the same as Model 3: differences in reli-

giosity between MZ twins do not significantly pre-

dict delinquency, inconsistent with a causal hypoth-

esis (BW = −0.008). Second, the within-pair effect

is not significantly larger in DZ pairs than in MZ

pairs (B04 = 0.027), indicating that the association

between religiosity and delinquency is attributable

to environmental factors that vary between families.

Third, the residual variance shared by MZ twins
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(0.314) is larger than the variance shared by DZ twins

(0.225), indicating that genetic factors account for

residual variation in delinquency not accounted for by

religiosity.

In the classical twin study, the three pieces of avail-

able information – between- and within-pair vari-

ances and zygosity – are re-parameterized to yield the

three components of the classical twin model: addi-

tive genetic influences (A), which are assumed to be

perfectly correlated in MZ twin pairs and correlated at

0.5 in DZ twin pairs; shared environmental influences

(C), which are environmental influences that make

twins raised in the same home more similar, regard-

less of zygosity; and non-shared environmental influ-

ences (E), which are environmental influences that

are unique to each twin and thus contribute to within-

pair differences, plus measurement error. Differentiat-

ing these sources of variation depends on the relative

similarity of MZ and DZ twins for a given pheno-

type. MZ twins are assumed to share all of their genes

and, by definition, their shared environment; conse-

quently, to the extent that MZ twins are not perfectly

correlated for a phenotype, this is reflected in the esti-

mate for E. To the extent that MZ twins, who share

all of their genes, are more similar than DZ twins,

who are assumed to share 50% of their genes, this

will be reflected in the estimate of A. Finally, to the

extent that the similarity of DZ twins exceeds half that

observed in MZ twins, this will be reflected in the esti-

mate of C.

Although most commonly discussed in terms of

genetic and shared environmental contributions to an

individual phenotype, we can also apply these same

concepts to the association between two phenotypes,

just as we could with the between and within vari-

ances in an analysis of MZ twins. To the extent the

relation between religiosity and delinquency is truly

causal, one would expect the same causal forces to be

operating within families as between them. Our MZ

twin analysis, however, indicated that the association

between delinquency and religiosity was driven by

between-family confounds rather than a “true” quasi-

causal effect of religious involvement: Twin pairs who

were more religious were less delinquent, but twins

who differed in their religiosity did not differ in their

delinquency. This model could be extended to ask

whether the between-family confounds that drive the

religiosity-delinquency association are genetic versus

shared environmental in origin. It should be noted

that both of these extensions are somewhat tan-

gential to the central point of the analysis: testing

whether the quasi-causal hypothesis can be excluded.

Nevertheless, this extension may be valuable in more

fully characterizing the relation between predictor and

outcome.

Assuming that the between-pair variance in MZ

twins equals all genetic variance and all shared envi-

ronmental variance, whereas the twin-pair variance

in DZ twins equals one-half the genetic variance plus

all shared environmental variance, simple arithmetic

yields a more precise estimate for the genetic variance

(A = 2 × (MZ Twin Pair Var – DZ Twin Pair Var) =

0.178) and shared environmental variance (C = MZ

Twin Pair Var − A = 0.136). The within-pair vari-

ance in MZ pairs is a direct estimate of the E variance

(0.317).

In summary, random effects models of the relation

between an environment and putative psychological

outcome in twin pairs can be used to assess the fol-

lowing: (1) the extent to which within-twin pair dif-

ferences in environmental experience predict differ-

ences in the outcome of interest, as would be expected

under a causal hypothesis; (2) the extent to which the

within-pair regression and the between-cluster regres-

sion are different, suggesting the operation of con-

founding variables; (3) the extent to which the within-

pair regression in DZ pairs differs from MZ pairs, which

suggests that the relevant confounds are genetic in ori-

gin; and (4) the extent to which the residual within-

and between-pair variance components differ between

MZ and DZ pairs, which suggests that genetic fac-

tors account for variation in outcome independent of

the predictor of interest. The proposed mixed effects

model, therefore, provides a rich characterization of

how X and Y are related, with very minimal program-

ming (six lines of SAS code).

Nevertheless, translating parameters that are speci-

fied in terms of pair means and deviations or between-

and within-cluster variation into the components

familiar in behavior geneticists – namely, additive

genetics, shared environment, and non-shared envi-

ronment – requires either post hoc arithmetic of the

kind we have used here or rather elaborate weight-

ing schemes (McArdle & Prescott, 2005). Moreover,

whereas the current example clearly indicates that the

relevant confounds were shared environmental in ori-

gin, there will obviously be cases in which the con-

founding variables are both genetic and environmen-

tal, and the proposed random effects model does not

explicitly quantify genetic versus shared environmen-

tal selection effects. We now turn our attention to an

analytic approach more commonly used in behavior

genetics that addresses some of these shortcomings:

structural equation modeling.
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Figure 8.1. Phenotypic regression model in a pair of twins.

Delinquency is regressed on religiosity, with equal regression

coefficients bP for each member of the pair. Curved paths rep-

resent twin correlations for delinquency and religiosity.

STRUCTURAL EQUATION MODELS

Unstandardized ACE Regression

Since the development of powerful and relatively

user-friendly structural equation modeling software,

such as Mplus or Mx, twin data are most commonly

analyzed using structural equation models, which,

above and beyond offering a graphical means of rep-

resenting the underlying equations, make it simpler

to execute the reparameterizations of variances that

we conducted in the preceding section using post hoc

arithmetic. Figure 8.1a is a SEM representation of a

twin regression, with delinquency predicted from reli-

giosity in twin pairs. As was the case in the random

effects regressions employed in the previous section,

the dependence of the observations taken from the

same twin pair is modeled explicitly, here simply by

including estimates of the twin correlations for reli-

giosity and delinquency, separately for MZ and DZ

twins. Also similar to the random effect regressions,

those MZ and DZ covariances can be re-parameterized

as ACE variances, as shown in Figure 8.1b. Notably,

the unstandardized regression of delinquency on reli-

giosity, bP, is the same in both figures; partitioning

the variance of religiosity and delinquency has no

consequences for the regression coefficient between

them.

Nevertheless, in bivariate twin data of the kind

required to fit the model in Figure 8.1b, one can fit

a model, illustrated in Figure 8.2, in which separate

regressions are estimated for Y on the three biomet-

ric components of X (only one twin is shown). If the

true model is represented by Figure 8.1a (i.e., X causes

Y), it is easy to see what will happen in a bivariate

model. Because the phenotype X is the sum of its

three unstandardized components A, C, and E, we will

have

bP (A + C + E) = bP A + bP C + bP E (8.5)

This shows that when the relationship between X

and Y is causal at the level of the phenotype, the
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Figure 8.2. Phenotypic regression model in which twin

covariances in MZ and DZ twins have been decomposed into

biometric components; doing so has no effect on the regres-

sion bP.

three unstandardized coefficients in a bivariate ACE

regression model will be equal to each other and

to the phenotypic causal parameter that underlies

them.

The reasons for this equivalence are simple but

easily misunderstood, and very important. Intuitions

about the parameters of the classical twin model in

the context of regression may be better served by

temporarily suspending the classical “genes and envi-

ronment” interpretation of the twin model in which

the A term is identified with a latent construct called

“the additive effect of genes,” the C term is identi-

fied as “the shared environment” and the E term as

the “nonshared environment” in favor of something

more literal, as follows. The classical twin model can

use covariances in identical and fraternal twins to par-

tition a phenotype into three components, defined by

their covariances between members of twin pairs. One

(E) is uncorrelated between members of a pair, one

(C) is perfectly correlated between members of a pair,

and one (A) is correlated 1.0 in identical twins and

0.5 in fraternal twins. All three are components of the

phenotype being analyzed, and their sum, A+C+E,

is equal to the phenotype. Understood this way, the

invariance of structural regression components in an

unstandardized bivariate model of a causal relation

is completely unsurprising. If one unit change in the

phenotype of religiosity causes bP units of change in

delinquency, that will remain the case no matter what

component of the phenotype one is examining, and

whether one thinks of the origins of the component as

genetic or environmental.

The foregoing discussion has not taken into account

the problem at the heart of this chapter, namely that

individuals are not randomly assigned to religiosity

conditions, with the result that religiosity is potentially

correlated with a host of unmeasured confounds that

will then bias the phenotypic regression of delin-

quency on religiosity and vitiate the causal interpreta-

tion of simple regressions. In a manner entirely anal-

ogous to the random effects models developed earlier,

with some key assumptions, twin models can pro-

vide insight into the nature of the confounding and

any causal relations that remain. The key to the anal-

ysis is that any unmeasured confounds of religios-

ity can themselves be partitioned into ACE compo-

nents, in the same way that confounds in a random

effects model can be decomposed into a component

correlated with variation in twin pair means and

another component correlated with variation within

pairs. The ACE components of the unmeasured con-

founds will then differentially bias the ACE regression

coefficients with which they are associated. The model

including the unmeasured confounds is illustrated in

Figure 8.3

Figure 8.3 is identical to Figure 8.2, except for

the addition of unobserved confounds inside the dot-

ted rectangle, and dotted arrows with coefficients

b′

A, b′

B and b′

E , which represent the causal effects

of the confounds on the outcome. The confounds

are perfectly correlated with the predictor of interest,

because by definition the predictor and the uncon-

trolled confounds cannot be distinguished. In actual

data, the ACE regression model is fit without refer-

ence to the unmeasured confounds, which then bias

the unstandardized ACE regressions away from the
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Figure 8.3. Genetically informed phenotypic regression,

including unmeasured confounds (only one twin shown).

Latent regressions along A, C, and E paths are equal to bP,

but observed regressions are biased by unmeasured A and C

confounds in dotted box.

true causal value bP. In the model fit to the observed

data,

bA = bP + b′

A; bC = bP + b′

C ; bE = bP + b′

E (8.6)

This situation would appear to present something of

a dilemma, because there are three equations (one

for each of the observed ACE regressions) and four

unknowns (the true causal parameter and three ACE

confounds). This is no small shortcoming, and should

serve to remind us of the impossibility of reaching

strong causal inferences from nonexperimental data.

Nonetheless, the ACE partitioning of the unmeasured

confounds offers a partial solution. The A and C terms,

representing variation in the confounds shared by

identical twins, includes most of the plausible con-

founds of developmental causal relations. Socioeco-

nomic status, parental education, culture, and, of

course, genotype are all shared by identical twins, and

therefore are not potential explanations of differences

between members of a pair.

In contrast, the E component represents aspects

of religiosity and its confounds that are uncorrelated

within pairs of identical twins. It is more difficult –

not impossible, just more difficult – to posit con-

founds of the relationship between religiosity and

delinquency that are not shared by identical twins.

At the very least, we can say that the E regression

is free of the many genetic and environmental con-

founds that identical twins share. The partial solution

to the underdetermination of Equation 8.6 (or, alter-

natively, the twin-based quasi-experimental solution

to the unavailability of random assignment in studies

of natural variation in humans) is as follows: To the

extent we are willing to make the quasi-experimental

assumption that relations within identical twin pairs

are unconfounded by other variables, which is to say

that b′

E is zero, then bE estimates bP, the true causal

relation, while bA and bC estimate the sum of the

causal coefficient plus the effects of confounds that

vary in each of the domains, respectively.

The E regression estimates the causal effect of X

on Y to the extent we can assume that differences

within MZ pairs are not confounded by uncontrolled

factors. We have already seen why this is a reason-

able assumption to make. MZ twins are, to a first

approximation, genetically identical, so differences in

delinquency associated with differences in religiosity

within pairs cannot be attributed to genetic differences

between the pairs. When twins are reared together,

they are roughly identical for a host of socioeconomic

variables that might otherwise explain differences in

delinquency: socioeconomic status, place of residence,

and so on. It is, however, quite possible to think of

uncontrolled third variables that might confound the

within-pair association. For example, parents might

choose to send one child to a religious school and

the other to a public school. The child in the religious
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school would become more religious, and might also

make friends that predisposed him or her lower lev-

els of delinquency than the twin in the public school,

even in the absence of any direct causal effect of reli-

giosity on delinquency. Accepting the E regression as

an estimate of the causal effect is therefore an assump-

tion, or one might better say an approximation, of the

true state of affairs. In the absence of random assign-

ment, strict inference of causality is simply impossible,

and all twins offer is a quasi-experimental method for

approaching it. As before, we prefer the term quasi-

causal to describe a regression of Y on X (in either ran-

dom effects or structural equation models) that has

survived exposure to a genetically informed design

that controls for genetic and shared environmental

confounds.

The latent E component of religiosity is analogous

to the within-pair deviation in religiosity (xij − x.j),

entered as a covariate in mixed effects Models 2 –

4, above, and they offer the same inferential benefits

and limitations. To understand this connection, con-

sider again the case of MZ twins. They are necessar-

ily identical for additive genetic and shared environ-

mental factors; any difference between MZ twins is

reflected in their scores on the latent E variable. That

is, a higher score on the latent E variable indicates that

an individual twin has higher levels of religiosity, rela-

tive to his or her co-twin. Consequently, the bE path is

directly analogous to the within-pair regression coef-

ficient βW. The bE path asks, if Twin A has higher lev-

els of religiosity than his or her co-twin (i.e., higher

latent E scores), does Twin A also have lower levels

of delinquency? Therefore, the regression on E is the

key parameter of interest for testing a causal hypoth-

esis about the relation between religiosity and delin-

quency.

Some readers may find this interpretation of the

regression on E to be counterintuitive. Historically,

there have been two important obstacles to a proper

understanding of quasi-causal relations in behavior

genetics, and the crucial role that is played by “non-

shared environmental” differences within pairs of MZ

twins. First, the three variance components of the

classical twin model – additive genetics, shared and

unshared environment – have been reified as “genes,”

“shared environment,” and “nonshared environment”

for so long that it is easy to forget that ultimately

they are all just components of the variable being ana-

lyzed, specifically the predictor in a bivariate regres-

sion model, which in this case is phenotypic religiosity.

That is to say, although according to a fairly restrictive

set of assumptions the A component in a classical twin

model of religiosity can be thought of in an abstract

way as a stand-in for genetic variance in religiosity,

the component itself is religiosity, phenotypic religios-

ity. The same is true of the C and E terms, which refer

not so much to latent shared and nonshared environ-

ments underlying religiosity as to a portion of religios-

ity itself. By naming the latent variance that is not cor-

related between twins the non-shared environment,

behavior geneticists have promoted as environmental

what is really just within-pair variation in the phe-

notype of interest. Although the origin of within-twin

pair variation is, by definition, environmental influ-

ences (and measurement error) that make twins raised

in the same family different, the effect of within-twin

pair variation consists of the effect of X itself, con-

founded by the effects of any uncontrolled variables

that also vary within pairs.

When describing the relation of a latent E vari-

able with other variables in the model, many authors

have mistakenly concluded that the E regression esti-

mates only the role of non-shared environmental con-

founds, and have neglected that this relation is actu-

ally the best estimate of the phenotypic causal effects

of X itself. Given that detection of this causal effect is

usually the primary goal of the study, misinterpreting

the term “non-shared” can sometimes snatch defeat

from the jaws of victory in an otherwise success-

ful study. For example, Pike, McGuire, Hetherington,

Reiss, and Plomin (1996), although implying that their

goal was to evaluate a causal hypothesis (“differen-

tial treatment affects adolescent adjustment”, p. 599),

described their results as follows: “mothers’ negativ-

ity is significantly associated with depressive symp-

toms through nonshared environmental processes.

(p. 597)” A reader could easily interpret this state-

ment as meaning that some other environmental pro-

cess, unique to each sibling, was responsible for both

maternal negativity and depressive symptoms, rather

than as evidence for a quasi-causal effect of moth-

ers’ negativity on depression. Similarly, Spotts, Ped-

erson, Neiderheiser, Reiss, Lichtenstein, Hansson, &

Cederblad (2005) described a previous result (Reiss,

Neiderhiser, Hetherington, & Plomin, 2000) as fol-

lows: “For example, more than half the correlation

between mother’s positivity and child’s social respon-

sibility is accounted for by genetic influences, with the

remainder being accounted for by shared and non-

shared environmental influences. (p. 339)” This state-

ment makes it seem as though the association has

been carved up into various types of confounds –

a little attributable to genes, a little to social class

or other between-family environmental differences, a
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little to peer groups or other within-family envi-

ronmental differences – with nothing left over to

comprise a causal relation. In fact, that “non-shared

environmental influences” account for the “correla-

tion between mother’s positivity and child’s social

responsibility” means that within-pair differences in

maternal positivity predicted within-pair differences in

social responsibility – a quasi-causal relation. A third

example is a report by McGue, Iacono, and Krueger

(2006), whose stated goal was to evaluate whether

early adolescent problem behavior is related to adult

disinhibitory psychopathology via a causal mecha-

nism, but who devoted a single sentence to describing,

without comment, whether the twin with more prob-

lem behavior grew up to have more psychopathology

than his or her co-twin – “non-shared environmental

factors accounted for the remaining 11% and 5% of

the correlation [in females and males, respectively]”

(p. 599).

MODELING SEQUENCE

We previously described four ways in which the rela-

tion between an environment and putative psycholog-

ical outcome in twin pairs can be characterized, each

of which is explicitly characterized in the unstandard-

ized bivariate ACE regression model. First, the extent

to which within-twin pair differences in environmen-

tal experience predict differences in the outcome of

interest, as would be predicted by a causal hypothe-

sis, will be reflected in the be path. If be can be fixed

to zero without significant loss of model fit, this pro-

vides disconfirmatory evidence regarding the quasi-

causal hypothesis. Second, to the extent that the asso-

ciation between X and Y is confounded by variables

that differ between unrelated individuals, the be path

will differ from the ba and bc paths. If the three paths

cannot be fixed to equality, this provides evidence that

the quasi-causal association is confounded. Third, the

relative magnitudes of ba and bc indicate the extent

to which the confounding variables are genetic or

environmental in origin. Finally, the extent to which

genetic, shared environmental, and non-shared envi-

ronmental factors contribute to residual variation in

delinquency is directly estimated by the A, C, and E

components of delinquency.

Nested SEMs can be compared using two mea-

sures of goodness-of-fit, Bayesian Information Crite-

rion (BIC), and Root Mean Square Error of Approx-

imation (RMSEA), as well as differences in χ2. BIC

is an information-theoretic fit criterion that estimates

the Bayes factor, the ratio of posterior to prior odds in

comparisons of a model with a saturated one (Raftery

& Richardson, 1996; Schwarz, 1978). BIC outper-

forms other fit criteria in its ability to discriminate

between multivariate behavior genetic models, partic-

ularly for complex model comparisons in large sam-

ples, and is more robust to distributional misspecifi-

cations (Markon & Krueger, 2004). Interpretation of

BIC values is entirely comparative, with lower val-

ues of BIC indicating better model fit. RMSEA mea-

sures error in approximating data from the model-per-

model parameter (Steiger, 1990). RMSEA values of

less than 0.05 indicate a close fit, and values up to 0.08

represent reasonable errors of approximation. Browne

and Cudeck (1993) have argued that the RMSEA pro-

vides very useful information about the degree to

which a given model approximates population values.

Differences in model χ2 are themselves distributed

as χ2, with df equal to the difference between the

models’ df.

We fit a series of five nested models to data from

MZ and DZ twins in the program Mplus (Muthén

& Muthén, 1998–2010). Results from the full model

(Model 5) are summarized in Table 8.2. Of the

total variance in religiosity, additive genetic effects

accounted for approximately 24% [4.30/(4.30+9.06+

4.64)], shared environmental influences for approxi-

mately 50%, and non-shared environmental influ-

ences for approximately 26%. Similarly, of the unique

variance in delinquency, additive genetic effects

accounted for approximately 25%, shared environ-

ment for 20%, and non-shared environment for 55%.

Notice that the estimate for non-shared environmen-

tal variance (EDel = 0.334) is equal (to the second

decimal place) to the within-pair random effect, θMZ,

estimated in the mixed effects Models 2–4. The regres-

sion onto E is not significantly different from zero

(be = 0.000, 95% CI = –0.031, 0.30), a result that fal-

sifies the hypothesis that religiosity causes decreases in

adolescent delinquency. The regression onto A is also

not significantly different from zero (ba = 0.043, 95%

CI = –0.056, 0.142), suggesting that genetic pathways

are not a significant confound of the quasi-causal rela-

tion between religiosity and delinquency. The regres-

sion onto C is significantly different from zero (bc =

0.061, 95% CI = 0.020, 0.102), suggesting that envi-

ronmental circumstances related to familial religios-

ity, such as parental education or socioeconomic sta-

tus, account for the association between religiosity and

delinquency.
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TABLE 8.2. Results from Structural Equation Models of Religiosity and Delinquency

Model 5: Model 6: Model 7:

Full Model Regressions Equal No A or E Regression∗∗

Parameters Unstandardized Standardized Unstandardized Standardized Unstandardized Standardized

Variance Components of Religiosity

Additive

Genetic

4.30 (1.21)∗ h2
= 24% 4.19 (1.21)∗ h2

= 23% 4.30 (1.21)∗ h2
= 24%

Shared

Environmental

9.06 (.121)∗ c2
= 50% 9.15 (1.21)∗ c2

= 51% 9.04 (1.21)∗ c2
= 50%

Non-Shared

Environmental

4.64 (.39)∗ e2
= 26% 4.66 (.40)∗ e2

= 26% 4.64 (.39)∗ e2
= 26%

Regression Paths

Areligion →

Delinquency

.043 (.050) β = .111 .036 (.005)∗ β = .091 [0] [0]

Creligion →

Delinquency

.061 (.021)∗ β = .228 .036 (.005)∗ β = .135 .078 (.013)∗ β = .292

Ereligion →

Delinquency

.000 (.016) β = −.001 .036 (.005)∗ β = .096 [0] [0]

Residual Variance Components of Delinquency

Additive

Genetic

.151 (.073)∗ h2
= 25% .144 (.073)∗ h2

= 23% .158 (.072)∗ h2
= 27%

Shared

Environmental

.124 (.060)∗ c2
= 20% .136 (.058)∗ c2

= 22% .103 (.058) c2
= 17%

Non-Shared

Environmental

.334 (.026)∗ e2
= 55% .341 (.027)∗ e2

= 55% .334 (.026)∗ e2
= 56%

Model Fit Indices

χ2 (df, P) 30.36 (17, .02) 42.09 (19, .002) 31.64 (19, .03)

	χ2 (	df, P) − 11.73 (2, .003) 1.28 (2, .527)

CFI / TLI .979 / .985 .963 /. 977 .980 / .987

RMSEA .046 .057 .044

∗ Significant at P < .05.
∗∗ Model accepted as the best representation of the data.

Model 6 tested whether environmental and genetic

differences between families confound the associa-

tion between religiosity and delinquency by fixing the

regression paths to equality. This model resulted in a

significant increase in χ2 (�χ2 = 11.73, �df = 2, P =

0.003) and an increase in RMSEA, suggesting that the

association is indeed confounded by between-family

differences. The parameter estimates from Model 5,

in which the only significant path between religiosity

and delinquency was the regression on C, suggested

that the relevant between-family confounds were

shared environmental in origin. Model 7, then, fixed

the regressions of delinquency on the A and E compo-

nents to zero, allowing the association between reli-

giosity and delinquency to be accounted for entirely

by environmental differences between families. Com-

pared to the full model (Model 5), Model 7 did not fit

significantly worse (�χ2 = 1.28, �df = 2, P = 0.53),

indicating that shared environmental confounds could

account for the association between delinquency and

religiosity.

The same conclusion is apparent, regardless of

whether we use mixed effects models or structural

equation models – religiosity is not causally related

to delinquency, but families whose environmental cir-

cumstances make them the “type” of family to be
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Figure 8.4. Genetically informed phenotypic regression,

including unmeasured confounds (only one twin shown).

Delinquency is regressed on religiosity along A, C and E

pathways. E pathway estimates bP.

religious have less delinquent children. This example,

in particular, demonstrates the usefulness of ostensibly

“genetic” designs in evaluating hypotheses about phe-

notypic causation in the presence of genetic and envi-

ronmental confounds. The structural equation mod-

els have the added benefit of explicitly parameterizing

genetic and shared environmental variance compo-

nents, as well as separate genetic and shared environ-

mental regressions. However, fitting these structural

equation models requires substantially more program-

ming than the mixed effects models (see Appendix B

at the end of the chapter for program).

ALTERNATIVE PARAMETERIZATIONS

The genetically informed regression model we have

described provides a straightforward test of hypothe-

ses regarding environmental causation, yet a scan

of the behavior genetics literature reveals a plethora

of alternative parameterizations for bivariate twin or

sibling data. While these parameterizations are, in

most cases, mathematically indistinguishable (Loehlin,

1996), there are important conceptual differences

among them that have implications for interpretative

clarity. We include discussion of two reparameteriza-

tions that were not included in Loehlin (1996). One of

these we recommend, the other not.

Genetically Informed Phenotypic Regression

A re-parameterization of the bivariate regression

model that we find to be interpretively useful is

illustrated in Figure 8.4. As before, the outcome vari-

able is regressed on the unstandardized A and C com-

ponents of the predictor, but instead of also being

regressed on the E term, it is regressed on the full phe-

notype of the predictor. This parameterization most

closely approximates the substantive goal of research

of this kind, which is to examine the phenotypic

regression of Y on X while controlling for the between-

pair genetic and environmental confounds contained

in A and C, respectively.

The interpretation of the coefficients in the geneti-

cally informed phenotypic regression model is to mul-

tiply through the coefficients for the ACE regression

Equation 8.6. Redistributing, we obtain,

Y = bA′ A + bC ′′C + (bP bE ′)(A + C + E) (8.7)

The sum of A, C, and E, of course, is simply X. So in

this parameterization, the regression on the pheno-

type tests for the quasi-causal effect, on the assump-

tion that there are no confounds within pairs of iden-

tical twins. The A and C regressions test the difference

between the quasi-causal effect and the effects of the

A and C confounds, respectively. They are equal to

zero when the quasi-causal relation is unconfounded.

In this parameterization, the sequence of inferences is

to test the phenotypic regression for the quasi-causal

effect, then test whether bA and bC differ from 0 to test

for the presence of confounding, then test the differ-

ence between bA and bC to determine if confounds are

genetic or shared environmental in origin, and finally

to test the residual variation in Y, as before.

The results of fitting the genetically informed phe-

notypic regression model are given in Table 8.3. The

phenotypic regression, analogous to the non-shared

environmental regression in the previous models, is

equal to zero, suggesting that once shared familial
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TABLE 8.3. Results from Alternative Parameterization of Bivariate

Cholesky (with Phenotypic Path from Religiosity to Delinquency)

Model 8:

Alternative Full Model

(Phenotypic Path)

Parameters Unstandardized Standardized

Variance Components of Religiosity

Additive Genetic 4.30 (1.21)∗ h2
= 24%

Shared Environmental 9.06 (.121)∗ c2
= 50%

Non-Shared Environmental 4.64 (.39)∗ e2
= 26%

Regression Paths

Areligion → Delinquency .043 (.050) β = .112

Creligion → Delinquency .061 (.021)∗ β = .229

Religion → Delinquency .000 (.016) β = −.002

Residual Variance Components of Delinquency

Additive Genetic .151 (.073)∗ h2
= 25%

Shared Environmental .124 (.060)∗ c2
= 20%

Non-Shared Environmental .334 (.026)∗ e2
= 55%

Model Fit Indices

χ2 (df, P) 30.36 (17, .02)

	χ2 (	df, P) −

CFI / TLI .979 / .985

RMSEA .046

∗ Significant at P < .05.

confounds have been controlled, there is no reason

to hypothesize a quasi-causal relation between reli-

giosity and delinquency. The values of the A and C

regressions are the same as they were in the previous

models, although this is not the usual result. In gen-

eral, the A and C regressions in a phenotypic model

will be equal to the differences between the A and C

regressions and the E regression in an ACE regression

model, which is to say they measure the magnitude

of the bias introduced by the A and C confounds. In

this example, however, the quasi-causal parameter is

equal to exactly zero, so we conclude that the phe-

notypic regression is all confound, and the A and C

regressions are the same in the ACE and phenotypic

regression models.

INTERPRETATION AND STANDARDIZATION

The reader experienced in fitting SEM models to twin

data may have noticed that we have chosen to param-

eterize our models by estimating A, C, and E vari-

ances while fixing to 1.0 the paths from A, C, and

E to the phenotype. We refer to this as an unstan-

dardized parameterization. It is far more common to

standardize the A, C, and E components of the pre-

dictor variable to a variance of 1, and estimate the

paths to the observed variable, which we call a stan-

dardized parameterization. In univariate behavioral

genetics, the choice between the standardized and

unstandardized parameterizations is trivial. In the un-

standardized parameterization, the variance accoun-

ted for by A, for example, is equal to the estimated

A variance; in the standardized parameterization, it is

equal to the square of the estimated path. The fit of

the models is identical, and in a univariate design they

are identical in interpretation.

In the context of multivariate regression mod-

els, however, these parameterizations have important

conceptual differences. The complication arises from

the fact that the variances of the latent compo-

nents of X have consequences for the regressions of

Y on X. Return to Equation 8.7. Under conditions

of no confounding, the unstandardized regression bE

estimates the quasi-causal regression bP, and the three
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ACE regressions bA, bC, and bE will be equal to each

other. If we consider instead the standardized regres-

sions βA, βC, and βE, these relations no longer hold.

We have, instead,

βA = bpvar(A); βc = bpvar(C ); βE = bpvar(E) (8.8)

When the shared and non-shared variances are stan-

dardized, the regression of Y on the latent variables

no longer depends solely on the structural coefficient

relating the phenotypes, but is a function of this coeffi-

cient and the magnitude of the A, C, and E components

of the predictor variable. Even when the phenotypic

relation between X and Y is invariant – a structural,

causally determined property – the magnitude of the

latent variances can be expected to vary from popula-

tion to population and study to study. In particular –

as would be considered obvious in a typical regression

context – the amount of variance in Y accounted for

by the ACE components of X depends on the relative

magnitudes of the ACE components.

Although the issue of standardization may at first

seem to be a technical issue of biometric structural

equation modeling, in fact it cuts to the heart of

the behavior genetic enterprise. We will therefore

make the point in a few different ways. One way

to understand the difference between standardized

and unstandardized regressions is as the difference

between structural regression parameters (estimated

by unstandardized regression coefficients) and vari-

ance explained (estimated by standardized regres-

sions). Consider a concrete physical system that has

been designed in a way that a change of one unit of X

causes a change of two units of Y, with no other causes

and no error. In any set of observations in which X

varies, the unstandardized regression of Y on X will

estimate the causal parameter – that is, two. (The stan-

dard error of the estimate will increase as the variance

of X decreases, and of course no estimate can be com-

puted when the variance of X becomes zero.) But what

is the amount of variance in Y that is accounted for by

X, or equivalently, the standardized regression coeffi-

cient of Y on X? That quantity is equal to the square of

the causal parameter multiplied by the variance of X.

In conditions of high variability in X, it will account for

a large amount of variability in Y, and in conditions of

low variability in X it will account for a small amount

of variability; but the unstandardized parameter, two

units of Y per unit of X, remains constant regardless of

how variance in X may change.

The same kind of thinking applies to regressions

with error of the kind we are considering here. Sup-

pose that data on religiosity and delinquency were

collected in the Netherlands rather than the United

States, and that the phenotypic causal relationship

between religiosity and delinquency was the same

there as here, but for whatever reason in the Nether-

lands twins varied less in their religiosity. If the un-

standardized model were fit, the investigator would

gain insight into the similarities and differences

between the American and Dutch populations: the

quasi-causal relations represented by the unstandard-

ized regressions (presumably the point of the study)

would be identical, but the A, C, and E variance com-

ponents would be generally be different from each

other, and different in the Netherlands than they

were in the United States. If the standardized model

were fit, the structural invariance of the unstandard-

ized parameter would be lost. The standardized regres-

sion parameters would be equal to the product of the

invariant unstandardized parameters and the respec-

tive ACE variances. The investigator would observe

that the regression coefficient linking adolescent rule-

breaking to the E component of religiosity is larger in

the Dutch study than in the American one, and, in

the opaque language commonly encountered in mul-

tivariate behavior genetic research, conclude that the

relation between religiosity and rule-breaking appears

to be mediated along non-shared environmental

pathways.

Another way of understanding the issue is in terms

of metrics. When a phenotype is partitioned into

unstandardized ACE components with estimated vari-

ances, all three components are expressed in the same

units of X, so regression coefficients of Y on X are

all expressed in the same units, that is, units of Y

per units of X. If the latent components are standard-

ized to have unit variance, however, their metric is

no longer in units of X, but instead is equal to the

standard deviations of each particular component. The

A regression is in units of Y per standard deviation

of A, the C regression in terms of the standard devi-

ation of C, and so forth. In a biometric study, the

magnitudes of these standard deviations are going to

differ from each other, and across studies they will

vary even more. Therefore the standardized regression

coefficients relating Y to the biometric components of

X will no longer be the same metric, and cannot be

meaningfully compared.

Suppose a social psychologist interested in the fun-

damental attribution error set herself the task of deter-

mining the percentage of variance that the fundamen-

tal attribution error (FAE; the FAE refers to a tendency
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to emphasize internal as opposed to situational expla-

nations of the behavior of other people.) accounts for

in some outcome. The research program would be a

lost cause, because even assuming a fixed causal effect

of the FAE that can be observed across situations,

there is no invariant percentage of variance accounted

for. In situations in which reliance on the FAE varies

a great deal, it will account for a lot of variance in

Y; in situations where it hardly varies at all, it will

account for very little. On the other hand, although

the question of how much variance is accounted for

by the fundamental attribution error is ill-conceived

and not useful scientifically, it would be incorrect to

conclude on this basis that the FAE itself was causally

unimportant or that its effect could not be quantified.

Based on either randomized experimentation or what-

ever quasi-experimentation can be cobbled together,

causation is quantifiable by unstandardized regression

coefficients, which are invariant against changes in the

variance of X. The percentage of variance explained,

quantified by standardized regression parameters, is

not invariant, even when the underlying causal pro-

cesses are.

To summarize: The structural constant underly-

ing covariation between a cause and an effect is the

unstandardized regression coefficient, expressing the

units of Y caused by each unit of change in X. When

regressions are standardized, they no longer estimate

this quantity. Instead they estimate the variance in

Y that is accounted for by X (if Y is also standardized,

the variance explained will be a proportion), a quan-

tity that depends on the structural parameter and the

variance of X. Questions of how many units of reduc-

tion in delinquency are caused by an increase in one

unit in religiosity, and whether that value is the same

for religiosity itself as for the uncontrolled genetic and

environmental traits that confound it, despite their

myriad methodological and interpretive complexities,

at least have an invariant correct answer that a dili-

gent investigator can hope to estimate. It is true that

relying on unstandardized coefficients forces us to take

seriously the sometimes arbitrary units in which our

constructs are measured, but that is ultimately a good

thing, and in any event throwing the units away by

standardizing makes regression analyses even harder

to interpret. How much variance in delinquency is

accounted for by religiosity and its ACE components

has no invariant answer: It depends on the variability

of delinquency and its biometric decomposition in a

particular situation, and is not a worthwhile scientific

question.

Heritability

We have saved until last the most important rea-

son for the misapprehension of research methods in

behavioral genetics: the concept of heritability, which

we have intentionally delayed mentioning until this

sentence. We have conducted a reasonably extensive

review of behavioral genetic research methods with-

out once referring to the construct that most defenders

or critics of the field view as its central idea. (The most

recent biologically oriented broadside against behav-

ior genetics [Charney (2012)] refers to the object of

its derision as “heritability studies.”) A full evaluation

of heritability would take us far afield, but note that

heritability is the proportion of phenotypic variability

accounted for by the total effect of genotype (broad

heritability) or by the additive effect of genotype (nar-

row heritability). Heritability is thus a standardized

variance component, and as such it is not invariant as

the genetic or phenotypic variance changes, so it is not

a meaningful indicator of the causal effect of genotype

on phenotype.

A good way to characterize the unstandardized

multivariate models we have described in this chap-

ter is that rather than being focused on the esti-

mation of heritability, they are designed to estimate

relationships between variables that are invariant as

regards heritability. Religiosity and delinquency are

heritable – everything is heritable or potentially so

(Turkheimer, 2000) – and it would not be difficult to

estimate heritability coefficients using the models we

have described. The goal of our analyses, however, is

not to estimate these coefficients, but rather to esti-

mate the part of regression of delinquency on reli-

giosity that is independent of their heritabilities. We

want to estimate the extent to which delinquency is

causally associated with religiosity above and beyond

any variation in genetic background they may share.

In the same way, the models control for any shared

environmental variability that is common to religios-

ity and delinquency, again without attending to the

magnitude of the shared environmental variance com-

ponent. The only way to accomplish such invariance

is to estimate unstandardized regressions, because the

standardized alternative will depend in part on magni-

tudes of the biometric variances.

MOLECULAR GENETIC APPROACHES

Twenty years ago, most scientists studying the genetics

of personality would not have predicted that the most

crucial questions regarding causation would involve
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complex issues in the design and analysis of twin stud-

ies. As the Human Genome Project neared its com-

pletion, it was widely anticipated that the availability

of data from actual DNA, as opposed to the statisti-

cal inferences of quantitative genetics, would provide

the causal, biologically based foundation that twin and

family studies lacked. From the beginning, personal-

ity has played a signature role in the development of

what are called “molecular” genetic methods for the

study of behavior, providing some of the earliest suc-

cesses but also some of the greatest frustrations. On the

assumption that the molecular genetic methods are

not yet as widely incorporated into the general body

of research methods in personality, we review some

of the basic techniques that are available. The review

suggests that, in fact, the problems of scientific infer-

ence facing DNA-based studies of behavior turn out to

have much in common with traditional family studies:

The core scientific problem is still the inference of cau-

sation in a nonexperimental setting, and the contrast-

ing of comparisons within and between family mem-

bers continues to play a crucial role.

Linkage Analysis

The first DNA-based method that was applied to

personality, linkage analysis operates within families.

The word “linkage” refers the nonindependence of

genetic loci that occur close to each other on a chro-

mosome, a phenomenon called “linkage disequilib-

rium” (LD). In general, genes on different chromo-

somes are passed on independently, and crossover

processes lead to independence for genes well sepa-

rated on a single chromosome. Genes close together

on the same chromosome will tend to be transmitted

together, however. If within a family (either a com-

plete pedigree or a pair of siblings and their parents),

individuals who share a behavioral trait are also iden-

tical by descent (IBD) for a particular gene, it can be

inferred that the trait in question is related to the gene

or to another gene close to it on the chromosome.

Linkage analysis has been the earliest molecu-

lar method to be adopted in the study of behav-

ior because it requires minimal knowledge of actual

genetic sequence. The first linkage study of person-

ality to be reported (Benjamin, Press, Maoz, & Bel-

maker, 1993) looked for linkage between the 16 PF

and phenotypic color-blindness in 17 pairs of brothers

of whom at least one was color-blind. Because color-

blindness was known to be caused by a single X-linked

locus, to the extent brothers concordant for color-

blindness were more similar for personality, it would

locate some of the variance in personality somewhere

on the X chromosome. The results of the study fore-

shadowed much of what has happened since in the

molecular genetics of personality. Of the 16 scales of

the 16PF, one (Q2, self-sufficiency vs. group adher-

ence) was more similar in the brothers concordant for

color-blindness compared to the discordant brothers:

The authors conclude with a recommendation that the

finding be replicated. The authors do not even men-

tion statistical power, but with 17 sibling pairs it is

obviously quite limited. More advanced linkage meth-

ods (e.g., Fullerton et al., 2003) use multiple mark-

ers to evaluate the probability of linkage continuously

across the genome.

Linkage analysis has an important disadvantage as

a means of studying personality. Although linkage

can be detected with reasonable power using plausi-

ble sample sizes for single genes of large effect, it is

almost certain that no such genes exist for normal

variation in personality. For multiple genes of very

small effect, which is just as certainly the situation that

does obtain, the power to detect linkage is very small

(Risch, 1990). At the same time, when genetic mul-

tiple markers are used in combination with multiple

potential outcomes, the number of significance tests

employed increases rapidly, meaning that both Type

1 and Type 2 error rates are often severely inflated.

Another problem is that linkage analysis does not

identify a single genetic locus that is associated with

a phenotype, but rather a region of a chromosome

within which variation in a gene is likely to be in LD

with an outcome. Further analysis must be conducted

(using association methods described later in the chap-

ter) to establish the particular gene that is responsible

for the linkage.

Candidate Gene Studies

In contrast to linkage analysis, which is conducted

within families, most candidate gene or association stud-

ies are conducted between families. In its most basic

form, the candidate gene study is about as simple as a

study can be: A candidate genetic locus is mapped and

a personality variable measured in a sample of unre-

lated individuals, and the outcome of the study is the

correlation between the two. Most of the well-known

molecular genetic studies of personality have been

association studies. In what is still the most widely

cited study of this kind, Ebstein et al. (1996) studied

the relation between novelty seeking as measured by

Tridimensional Personality Questionnaire (Cloninger,

Svrakic, & Przybeck, 1993) and the D4 dopamine
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receptor gene (DRD4) in a sample 124 normal vol-

unteers. Thirty-four participants who had at least one

copy of the seven repeat allele scored about half a stan-

dard deviation higher than 90 who did not.

Whether or not the relation between DRD4 and

novelty seeking has held up is a matter of meta-

analytic controversy that we cannot review here

(Kluger, Siegfried, & Epstein, 2002; Munafo, Yalcin,

Saffron, & Flint, 2008). What has become crystal clear,

however, is that the effect size of half a standard devi-

ation was unrealistically large. In the years since the

heady early days of the genome project, it has become

clear that associations between individual genetic loci

and psychological outcomes are small and context-

dependent, even when they appear to be statistically

reliable. It has proven extremely difficult to screen

reports of association studies for what is known as the

“winner’s curse” (Xiao & Boehnke, 2009): Faced with

thousands of potential alleles, thousands of potential

outcomes, intense pressure to publish, and a strin-

gent peer-review system that prefers positive results,

even a well-intentioned and honest community of

scientists will produce effect sizes that are severely

biased upward. The winner’s curse is not exclusive

to genomics; it is rampant in the behavioral sciences

generally. It is just that the modern technology of

genomics has brought with it an expectation of scien-

tific rigor and replicability that the social sciences have

long since gotten used to doing without (Turkheimer,

2011).

Genome-Wide Association Studies

The Gordian knot of methodology in association

studies – myriad hypotheses, small effects, inadequate

power, and results that seem to depend on context –

has combined with the next wave of technological

possibility in genomics to launch a new paradigm of

DNA-based research. Genome-wide association stud-

ies, or GWAS, capitalize on the existence of sin-

gle nucleotide polymorphisms (SNPs), individual seg-

ments of DNA that take only two values of the four

(ATCG) that are possible. Upward of a million SNPs

can be inexpensively assessed in a dense array across

the genome. SNPs are not genes – they are indicators

of genes, and associations between SNPs and outcomes

are indicative of corresponding associations with genes

at some location on the chromosome close enough to

be in LD with the SNP.

With GWAS, it is possible to search for associations

between personality and literally millions of locations

in the genome. It quickly became apparent that for

any trait of psychological interest, any one association

would be tiny at best. The extremity of the inferen-

tial problems brought on by this situation has led to a

radical restructuring of the way GWAS-based science

is conducted. When candidate gene studies were first

introduced, the theory-dependent process by which

genes became candidates seemed like a tonic for the

atheoretical gene searches of the early linkage era. But

it turned out that the theory by which genes were

selected could not be separated from the chaotic prob-

lems of the winner’s curse and publication bias. GWAS

finally made these problems intractable, and the field

has reversed course: rather than being guided by

theory-driven hypotheses, GWAS is now conducted

completely atheoretically, using highly stringent

(p < 10–8) significance levels to guard against Type I

error. GWAS has produced important discoveries in

the medical domain (Visscher & Montgomery, 2009),

but it has been disappointing at best in the behavioral

sciences, and particularly so for personality (Munafo,

Clark, Moore, Payne, Walton, & Flint, 2003).

There is another threat to the validity of association

studies, usually identified with GWAS but in fact rel-

evant to all studies of genetic association: population

stratification, sometimes called the “chopsticks gene”

problem (Hamer, 2000). Here is how one could find

a gene associated with the use of chopsticks. Assem-

ble a sample consisting of half North American and

half Japanese participants, and identify a gene – any

gene will do – that occurs more frequently in the

Japanese than in the North Americans. Assuming the

Japanese are more likely to use chopsticks, eating

style will necessarily be correlated with variation in

the gene. Population stratification is usually controlled

either by ensuring ethnic homogeneity in the sample

or by using statistical methods like principal compo-

nent analysis to identify ethnic dimensions in the SNPs

and then controlling for them statistically. The prob-

lem, however, extends beyond the confines of eth-

nic identification (Turkheimer, 2011). In the context

of GWAS, culture of origin is an instance of the core

problem that we identified in the analysis of twin stud-

ies – a shared environmental confound. In the chop-

sticks example, the problem is not that the candidate

gene and chopsticks may not actually be associated,

because their correlation is a simple statistical fact.

The problem is that the statistical association is not an

indicator of an actual causal pathway from the gene to

the chopstick, in exactly the same sense that holds for

an association between religiosity and delinquency. In

fact, in a mixed sample of Japanese and North Amer-

ican youth in which the Japanese are more religious
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and less delinquent, there would be a statistical associ-

ation that would probably not be indicative of a causal

relation.

What can be done to rescue causal inference under

such extreme nonexperimental conditions? Resisting

the temptation to say “nothing,” one interesting pos-

sibility is to return to within- and between-families

approach that we endorsed as a structure for causal

inference in twin studies, and which formed the basis

for linkage studies in the early days of molecular

genetics. An association between a gene and chopstick

use within families (the sibling with the gene used

chopsticks; the one without the gene did not) effec-

tively rules out population stratification as an alter-

native explanation. Designs combining within- and

between-families genetic associations and the statis-

tical methods to analyze them are available and pre-

date GWAS (Fulker, Cherny, Sham, & Hewitt, 1999),

but have not been widely employed for personality.

One exception is a study by Middeldorp, de Geus,

Beem, Lakenberg, Hottenga, Slagboom, and Boomsma

(2007), which studied the relation between the sero-

tonin transporter gene (5-HTTLPR) and neuroticism,

anxiety, and depression in a sample of 1,804 twins,

both sibling and parents. Only two of the eighteen

within-family tests reached a significance level of

p<.05, leading the authors to reject the hypothesis of a

causal relation between 5-HTTLPR and the outcomes.

The molecular genetics of personality has reached

a conundrum. One can design “theory-driven” stud-

ies within and between families, which control for

a subset of potential confounds of genomic causa-

tion, but which are unavoidably contaminated by data

exploration and the winner’s curse, cherry picking of

results, and publication bias. These studies wind up

looking like non-genomic social science: locally inter-

esting but frustratingly noncumulative. Or, one can

opt for GWAS of massive populations with tiny p lev-

els, atheoretical by design and blind to the possibil-

ity of noncausal confounds, hoping for a few reliably

significant effects that collectively account for a few

percent of the variance at best, and which have not,

in the behavioral sciences at any rate, produced sub-

stantive causal science. What would seem to be the

logical compromise – GWAS of enormous samples of

siblings – simply isn’t practical.

Genome-Wide Complex Trait Analysis

We close this section with a consideration of

the newest molecular genetic method. Genome-wide

complex trait analysis (GCTA) uses GWAS data in a

novel way that closes the methodological gap between

quantitative and molecular genetics (Visscher, Yang, &

Goddard, 2010; Yang et al., 2010; see also Turkheimer,

2012). In a sample of individuals from whom SNP

chips have been obtained, pairwise coefficients are

computed that quantify the degree of genetic similar-

ity between pairs of individuals across the SNPs. These

coefficients, which are analogous to the coefficients of

genetic relatedness in twin and family studies (e.g.,

siblings are on average 50% genetically related), are

generally close to zero, and in fact pairs with coef-

ficients higher than 2.5% are usually eliminated as

genetically related. Once the genetic similarity matrix

is obtained, one can compute the relationship between

the degree of SNP-based genetic similarity and the

degree of similarity in the trait of interest, obtaining

a proportion of variance that is essentially a heritabil-

ity coefficient computed in a sample of unrelated indi-

viduals. These heritabilities are generally smaller than

those computed from family members, but consider-

ably larger than the percentage of variance that can be

obtained by adding up the effects of individual SNPs or

genes.

Vinkhuyzen et al. (2012) conducted GCTA of

neuroticism and extraversion scores in a sample of

approximately 12,000 individuals collected from sev-

eral research centers. Across the centers, the traits had

quantitative heritabilities (computed in the usual way)

of .4 to .45. In contrast, 6% of the variation in neuroti-

cism and 12% of the variation in extraversion could be

explained by SNP-based similarity. These proportions

are somewhat smaller than they have been for other

traits, like height and intelligence, for which almost

half of the phenotypic heritability has been recovered

from the SNPs, although 6% and 12% are still signif-

icantly more than the 1% that can be recovered by

quantifying the effects of individual genes. It should

be emphasized that the methodology of GCTA is in

fact much more similar to a twin study than it is to

a GWAS. No distinction is made between the effects of

individual SNPs, and no inference of the causal effects

of individual SNPs is even attempted (Turkheimer,

2012).

CONCLUSIONS AND RECOMMENDATIONS

Historically, it is undeniable that behavior genetics has

progressed from Galtonian ideas about “nature and

nurture,” by way of supportable notions of heritabil-

ity in animal breeding, to a long era of concern, if not
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outright obsession, with the values of heritability coef-

ficients for human individual differences. Other than

the important task of disconfirming any remnants of

blank-slate environmentalism mistakenly held over

from previous eras of behaviorism or psychoanalysis,

this effort was in our view not especially productive.

Heritability is greater than zero for all individual dif-

ferences, and takes a determinate value for none of

them. Figuring out how “genetic” traits are, either in

absolute terms or relative to each other, is a lost cause:

Everything is genetic to some extent and nothing is

completely so. There is little more to be said.

But despite the endless assertions of heritability

and the similarly endless denunciations of behavior

genetic studies and their conclusions, both of which

continue unabated to this day, we contend that her-

itability was never the most important motivation

for human of behavioral genetics. Instead, behavioral

genetics is justified by the simple observation that

there is more than one reason why differences among

people are correlated with each other, either within

individual lives or across genetically related individu-

als. There are genetic as well as environmental reasons

why extraverted mothers have extraverted children,

or why religiously committed youth are less likely to

become delinquent. Any question worth asking about

the behavioral genetics of personality comes down to

a question about why two or more traits are related

to each other, and like any other kind of association-

based psychology, such questions are ultimately about

whether and how one trait causes another. Once that

point is conceded, a huge segment of nonexperimental

human psychology threatens to collapse unless geneti-

cally informative designs can be called on to support it,

and such designs turn out not to depend on point esti-

mates of heritability at all; indeed, their correct analy-

sis relies on methods that are invariant with regard to

changes in the genetic and environmental variability

of individual differences.

Our analysis leads to a several specific recom-

mendations for the conduct of genetically informed

research in personality, and we will close by enumer-

ating them.

1. Behavioral genetic investigations of relations

among personality variables or between person-

ality and exogenous variables should begin with

an observation of a phenotypic association, which

will usually be uncontrolled by random assign-

ment. The goal of the genetically informed part

of the analysis is to expose the causal basis of

the phenotypic association to risk of disconfir-

mation.

2. Regression-based genetically informative analy-

ses can be conducted more or less equivalently

using multilevel models, structural equation mod-

els, or a combination of the two. Multilevel mod-

els usually have the advantage of being easier to

code, whereas structural equation models have

the advantage of greater flexibility, especially in

their ability to re-parameterize random variances

into the familiar biometric components.

3. Although behavior genetic designs are commonly

thought of as a means of identifying and con-

trolling genetic effects, shared environmental con-

founds are often equally important threats to

causal hypotheses. If neuroticism is associated

with poorer school performance, but living in

a violent neighborhood contributes to both, the

shared environmental effect of neighborhood is

an alternative, noncausal environmental explana-

tion of the phenotypic association.

4. Causal hypotheses are almost always about phe-

notypic relations among variables, not relations

among abstract variance components presum-

ably representing genetic and environmental pro-

cesses underlying observed behavior. Non-shared

environmental regressions are usually the best

available estimate of causal relations among

uncontrolled variables, because neither genes nor

shared environments can account for them. The

non-shared environment plays a special role in

genetically informed social scientific methodol-

ogy because it encompasses associations among

variables that cannot be accounted for by shared

genes or environments, and are thus more plausi-

ble instances of phenotypic causation.

5. Notwithstanding the aforementioned, uncon-

trolled associations within identical twin pairs

are not immune from confounds, and behavior

genetic methodology is ultimately just another

quasi-experimental tool in the social scientific

workshop. Once phenotypic associations have

survived exposure to analyses of genetic and

shared environmental confounds, confidence in

the causal relation may increase, but it is not

proven. We prefer the term “quasi-causal” to

describe the hypothesis that remains.

6. From the point of view of understanding

the relationship between behavior genetics and

the rest of naturalistic developmental psychol-

ogy, the inferential imperfection of genetically
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informed designs is a good thing. Too often,

proponents and detractors of behavior genetics

describe the discipline as though it were some-

how alien to the rest of social scientific methodol-

ogy, generating either robustly scientific or falsely

reductionist genetic counterhypotheses to psycho-

logical theories of human development. Neither

is true. Behavior genetics is only a threat to psy-

chological theories in the same sense that the

cross-lagged panel design is. Yes, behavior genetic

designs can sometimes make it harder to believe

in causal hypotheses (Turkheimer & Waldron,

2000), but that is as it should be, and ultimately

behavior genetics is no more probative of causal

relations than any other quasi-experimental

method.

7. To a surprising degree, issues of standardization

are crucial to placing behavior genetic methodol-

ogy on a strong foundation. Since Tukey, it has

been well-understood that only unstandardized

regression coefficients provide invariant estimates

of causal relations in the face of changes in the

variances of predictor and outcome, but unfortu-

nately those old insights have been lost in con-

temporary practice that still relies on correlations

and standardized “beta weights.” Accounting for

variance and explaining causation are two differ-

ent and ultimately independent enterprises, and

science is almost always properly concerned with

the latter.

8. As Tukey famously said about correlation coef-

ficients, we believe that the world would be a

less confusing and contentious place without her-

itability coefficients, at least if one is concerned

with a more complex and uncontrollable aspect of

behavior than, say, milk production in cows. As

with the heritability of milk production, the her-

itability of neuroticism informs us that we could

selectively breed for human neuroticism if we

wanted to, but fortunately we do not. Genes, in

the very abstract sense in which the term is used

in human quantitative genetics, influence neu-

roticism, and this will generally ensure that the

heritability of neuroticism is not zero. Beyond that

the numerical value of heritability is indetermi-

nate, and the question of “how important” genes

are to differences in neuroticism has no meaning-

ful answer.

9. Skepticism about the utility of heritability coef-

ficients should not be a basis for believing that

genetic variance in neuroticism does not matter. It

does matter, because familial variance in neuroti-

cism and its familial covariance with other traits

are alternative explanations of causal hypotheses

about its phenotypic origins and consequences.

10. Molecular genetic methods have added to the

tools available to behavior geneticists, but they

have not replaced twin studies and quantitative

genetic statistical methods. Just as we have con-

tended that the goal of twin studies was never

to quantify the magnitude of genetic effects on

phenotypes, the goal of molecular genetics is not

to discover the individual genes that underlie dif-

ferences in personality. Instead, the goal of both

quantitative and molecular genetics is to aid in

the identification of causal processes in develop-

ment, and in that regard molecular genetics faces

many of the same problems as quantitative genet-

ics, often in even more intractable forms.

11. Viewed in this way – as a quasi-experimental

method that sits alongside many others – behav-

ior genetic research methods can be seen for

what they truly are rather than as the threat-

ening or naı̈ve stereotypes that are often repre-

sented. Behavior genetics is not a radical, reduc-

tive alternative to psychological explanation of

behavior, as earlier critics once feared (Lewon-

tin, Rose, & Kamin, 1984), and it is not a poorly

specified, dumbed-down version of the astound-

ing understanding of genomics we have achieved

at a biological level of analysis, as more recent

critics have contended (Charney, 2012). Behavior

genetics is not oversimplified genomics any more

than nonexperimental developmental psychology

is oversimplified developmental biology. Behav-

ior genetics is ordinary social science, with all the

problems that come with a lack of experimental

control; it is, however, social science conducted a

little more carefully, analyzed with a little more

realism about why individual differences are asso-

ciated with each other, and interpreted with a lit-

tle more skepticism about the vagaries of correla-

tion and causation.
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APPENDIX A: SAS CODE

f11 = Delinquency factor score at Wave I

religsum = Individual religiosity sum score

religavg = Twin pair average religiosity

religdev = Individual deviation from twin pair average religiosity

MZ = 0 or 1; Monozygotic twin pair

MODEL 1

proc mixed data=mztwin12 method= ml covtest noclprint;
class pair;
model f11 = religsum / solution;
random intercept / subject=pair type=vc;
run;

MODEL 2

proc mixed data=mztwin12 method= ml covtest noclprint;
class pair;
model f11 = religsum religavg / solution;
random intercept / subject=pair type=vc;
run;

MODEL 3

proc mixed data=mztwin12 method = ml covtest noclprint;
class pair;
model f11 = religdev religavg / solution;
random intercept / subject=pair type=vc;
run;

MODEL 4

proc mixed data=twin12 method = ml covtest noclprint;
class pair MZ twinid;
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model f11 = religdev religavg religdev*MZ / solution;
random intercept / subject=pair group=MZ type=vc;
repeated / group=MZ type=vc;
run;

SAS OUTPUT FOR MODEL 4

The SAS System 12:43 Thursday, December 1, 2011 75
The Mixed Procedure
Model Information

Data Set WORK.TWIN12
Dependent Variable f11
Covariance Structure Variance

Components
Subject Effect PAIR
Group Effects MZ, MZ
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Dimensions
Covariance Parameters

4
Columns in X

5
Columns in Z Per Subject

2
Subjects

644
Max Obs Per Subject

2
Number of Observations

Number of Observations Read
1370

Number of Observations Used
1286

Number of Observations Not Used
84

Iteration History
Iteration Evaluations -2 Log Like

Criterion
0 1 3035.96177444
1 2 2906.05165136

0.00000000
Convergence criteria met.

Covariance Parameter Estimates
Standard

Z
Cov Parm Subject Group Estimate Error

Value Pr > Z
Intercept PAIR MZ 0 0.2112 0.03214
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(CONTINUED ON NEXT PAGE)
6.57 <.0001

Intercept PAIR MZ 1 0.3354 0.04633
7.24 <.0001

Residual MZ 0 0.3889 0.02778
14.00 <.0001

Residual MZ 1 0.3172 0.02831
11.20 <.000

The SAS System 12:43 Thursday, December 1, 2011 76
The Mixed Procedure

Fit Statistics
-2 Log Likelihood

2906.1
AIC (smaller is better)

2922.1
AICC (smaller is better)

2922.2
BIC (smaller is better)

2957.8
Solution for Fixed Effects

Standard
Effect MZ Estimate Error DF

t Value Pr > |t|
Intercept -0.4036 0.06920 641

-5.83 <.0001
religdev -0.00848 0.01681 641

-0.50 0.6138
religavg 0.05042 0.006817 641

7.40 <.0001
religdev*MZ 0 0.02717 0.02068 641

1.31 0.1894
religdev*MZ 1 0 . .

. .
Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value

Pr > F
religdev 1 641 0.24

0.6221
religavg 1 641 54.69

<.0001
religdev*MZ 1 641 1.73

0.189

APPENDIX B: MPLUS CODE

data: file = model6.txt;
variable:
names = pair zygo f11a f11b religa religb;
missing =.;
grouping = zygo (1=mz 2=dz);
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usevariable = religa religb f11a f11b;
analysis:
type = missing h1;
model = nocovariances;
model:
a11 by religa@1;
c11 by religa@1;
e11 by religa@1;
a21 by religb@1;
c21 by religb@1;
e21 by religb@1;
[religa* religb*] (relmean);
[a11-e21@0];
a11*4 (amz);
c11*8 (c);
e11*4 (e);
a21*4 (amz);
c21*8 (c);
e21*4 (e);
a11 with a21*4 (amz);
c11 with c21*8 (c);
religa@0;
religb@0;
religa with religb@0;
f11a on a11*.01 (areg)
c11*.04 (creg)
e11*.01 (ereg);
f11b on a21*.01 (areg)
c21*.04 (creg)
e21*.01 (ereg);
a12 by f11a@1;
c12 by f11a@1;
e12 by f11a@1;
a22 by f11b@1;
c22 by f11b@1;
e22 by f11b@1;
[f11a* f11b*] (delmean);
[a12-e22@0];
a12* (xmz);
c12* (y);
e12* (z);
a22* (xmz);
c22* (y);
e22* (z);
a12 with a22* (xmz);
c12 with c22* (y);
f11a@0;
f11b@0;
f11a with f11b@0;
model dz:
a11 with a21*4 (adz);
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a12 with a22* (xdz);
model constraint:
amz= 2*adz;
xmz =2*xdz;
output:
sampstat tech1 cinterval standardized;
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