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A B S T R A C T   

Tilts arise from within-subject differences in performance between two distinct cognitive ability measures (e.g., 
verbal minus quantitative). These are independent of general cognitive ability (GCA) and are likely a function of 
differential investment of time and other resources into the cultivation of one ability, at the expense of another. 
There is some debate about the meaning and measurement of tilts among psychometricians, but a body of 
research is emerging demonstrating that these are predictive of real-world outcomes independent of GCA. An 
open question concerns the heritability of tilts. Since nearly all phenotypic individual differences are heritable, 
tilts, if substantive, should not be an exception. It was found that tilts are modestly heritable (after controlling for 
participant age and residual correlations with GCA) in three samples (US children, Georgia Twin Study; Swedish 
adults, Swedish Twin Registry; US adults, MIDUS II). AE models better fit the tilt data in all but one case (Verbal - 
Reasoning, in the GTS, where an ACE model better fit the data). Comparatively large (non-shared) environ-
mentalities were noted in all cases, potentially consistent with models predicting a role for niche-picking and 
experience-producing-drive dynamics in generating tilts. A Wilson-like effect was observed when the tilt heri-
tabilities in the GTS were compared with their equivalent parameters in the other two (older) samples. The 
finding that tilts exhibit non-zero heritability in different age ranges and in two countries strengthens their 
external validity, and weakens claims that they are measurement artifacts, as predisposing genetic and envi-
ronmental factors are part of their nomological network.   

1. Introduction 

Tilt refers to an ability pattern and is based on within-subject dif-
ferences between two abilities (e.g., technical and academic) (for re-
views, see Coyle, 2018; Coyle & Greiff, 2021; Lubinski, 2009, 2016; see 
also Coyle, 2018, 2019, 2020, 2021, 2022a, 2022b). Abilities in this 
context can refer to high-level domains (e.g., technical vs. academic), 
middle-level scales (e.g., verbal vs. visuospatial reasoning), or low-level 
scales (e.g., vocabulary vs. numeric scales). These differences yield 
relative strength in one ability and relative weakness in another ability, 
demonstrating different types of tilt. For example, differences in tech-
nical (mechanical, electrical, tools) and academic (math or verbal) 
abilities produce tech tilt (technical > academic), indicating technical 

strength, or academic tilt (academic > technical), indicating academic 
strength. Tilts have been attributed to differential investment, with in-
vestment in a particular domain (e.g., technical) boosting analogous 
abilities and inhibiting competing ones (e.g., academic) (Cattell, 1987, 
pp. 138–146; see also, Coyle, 2018; Coyle & Greiff, 2021; von Stumm & 
Ackerman, 2013). Tilts are either independent of general cognitive 
ability (GCA) or very nearly so—and GCA largely explains the predictive 
power of cognitive tests (Coyle, 2018; Coyle & Greiff, 2021). GCA is 
associated with variance common to different mental tests, indicating 
that people who do well on one test generally do well on all other tests. 
Despite their independence from GCA, tilts robustly predict outcomes at 
school and work (e.g., achievements, jobs, college majors). The pre-
dictive power of tilts is surprising because it has been argued that non- 
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GCA cognitive factors generally have negligible predictive validity 
(Jensen, 1998, pp. 270–305). 

Early research on tilts focused on ability tilts, which denote relative 
strengths of math and verbal abilities (for reviews, see Coyle & Greiff, 
2021; Lubinski, 2009, 2016; see also, Coyle, 2016, 2019; Coyle, Purcell, 
Snyder, & Richmond, 2014; Coyle, Snyder, & Richmond, 2015; Lubin-
ski, Webb, Morelock, & Benbow, 2001; Park, Lubinski, & Benbow, 
2007). Ability tilts result from within-subject differences in math and 
verbal abilities on standardized tests such as the SAT, ACT, and PSAT, 
yielding math tilts (math > verbal) and verbal tilts (verbal > math) of 
varying strength. The SAT, ACT, and PSAT are college admissions tests 
and correlate strongly with GCA (Frey & Detterman, 2004; Koenig, Frey, 
& Detterman, 2008; see also, Coyle, 2015; Coyle & Pillow, 2008). 
Despite their independence from GCA, ability tilts predict diverse 
criteria, with math tilt positively predicting STEM (science, technology, 
engineering, math) criteria (e.g., jobs, degrees, patents) and verbal tilt 
positively predicting humanities criteria (e.g., college majors, jobs, 
novels). Similar results have been found for spatial tilt, which represents 
stronger spatial relative to academic abilities (math or verbal), and tech 
tilt (noted above), which represents stronger technical (mechanics, 
electronics, cars) relative to academic abilities (for reviews, see Coyle, 
2018; Coyle & Greiff, 2021; see also Coyle, 2019, 2020, 2021, 2022a, 
2022b). Both spatial tilt and tech tilt predict STEM criteria (e.g., STEM 
achievements and jobs), which often involve spatial and technical skills. 
Moreover, spatial tilt and tech tilt correlate negatively with verbal and 
humanities criteria. Such a pattern is consistent with investment the-
ories, which assume that investment in one domain (e.g., technical) 
comes at the expense of (trades off against) investment in competing 
domains (e.g., academic), producing negative relations among these 
(Cattell, 1987, pp. 138–146; see also, Coyle, 2018; Coyle & Greiff, 2021; 
von Stumm & Ackerman, 2013). 

Tilt relationships with different outcomes have been found in diverse 
groups, including gifted and non-gifted individuals (Lubinski, 2009, 
2016), males and females (Coyle, 2020; Coyle et al., 2015; Coyle, 
2022b), and different socially identified racial groupings (e.g., Whites 
and Blacks in the US) (Coyle, 2016; Coyle, 2021). Tilt obtained in high 
school predicts educational and occupational outcomes in STEM and 
humanities >20 years later, with math tilt predicting STEM criteria and 
verbal tilt predicting humanities criteria (e.g., jobs and achievements). 
Tilt predicts both performance (e.g., achievement test scores) and 
preference criteria (e.g., job choice and college major choice), indicating 
that the predictive power of tilt is not limited to vocational interests (for 
reviews, see Coyle & Greiff, 2021; Lubinski, 2009, 2016). 

While tilts have primarily been attributed to differential investment 
(Coyle, 2018; Coyle & Greiff, 2021; Lubinski, 2009, 2016), tilts might 
also be explained by the influence of underlying genetic factors that 
transact with environmental factors in order to channel these in-
vestments. Relevant models include experience-producing-drive theory 
(EPDT; Bouchard, 1997, 2016; see also Johnson, 2010) and niche- 
picking theories (Scarr & McCartney, 1983). Both models assume that 
people seek out activities compatible with their heritable personality 
and vocational interests, which, via feedback, boost analogous abilities 
(Bouchard, 2004, p. 150). EPDT and niche-picking theories complement 
trait complex theories (Ackerman & Heggestad, 1997, p. 239; see also 
Ackerman, 2003). Trait complexes refer to clusters of correlated abili-
ties, personality traits, and vocational interests, which are heritable and 
may produce different types of tilt. For example, people with a genetic 
propensity toward realistic or investigative interests may seek out STEM 
activities, producing math tilt. In contrast, people with a genetic pro-
pensity toward artistic or social interests may seek out humanities ac-
tivities, producing verbal tilt. EPDT and niche-picking theories suggest 
that tilt levels should increase as people invest in activities that are 
compatible with their interests and that magnify tilt (Coyle, 2018, p. 
12). Consistent with this prediction, levels of tilt increase with age in 
adolescence, suggesting that investment in specific abilities (e.g., tech-
nical or academic) magnifies tilt over time (Coyle, 2022a). 

Thus far there have been no behavior-genetic studies of tilt. Such 
research has the potential to not only enhance the nomological validity 
of tilts, but could counter recent criticisms of tilt to the effect that their 
patterns of association are merely statistical artifacts (Sorjonen, Nil-
sonne, Ingre, & Melin, 2022). This deficiency will here be rectified via 
analysis of the heritability of tilts in three datasets: i) the Georgia Twin 
Study (GTS), a publicly available behavior-genetic database of children 
and young adults; ii) Swedish adults sourced from the Swedish Twin 
Registry (STR); and iii) US adults from the second wave of the Midlife in 
the United States (MIDUS II) dataset. In the GTS, data on four primary 
mental abilities (Thurstone & Thurstone, 1938) will be used to deter-
mine the goodness-of-fit of various behavior-genetic models to the 
resultant set of six tilts (one for each pair-wise estimation). In the STR, 
tilt will be estimated using the difference between a 24-item measure of 
fluid reasoning ability and a composite measure of three different 
chronometric (reaction time and accuracy) items (Madison, 2020). In 
MIDUS II, tilt will be estimated using the difference between the episodic 
memory and executive functioning group factors of the Brief Test of 
Adult Cognition by Telephone (Lachman, Agrigoroaei, Tun, & Weaver, 
2014). It is anticipated that these tilts will generally exhibit modest 
additive heritabilities, in addition to substantial environmentalities, 
owing to the hypothetical action of EPDT and niche-picking dynamics, 
both of which are expected to operate via the establishment of active 
gene-by-environment correlations. As virtually all individual differences 
in human phenotypic traits likely have non-zero heritability (see, e.g., 
Polderman et al., 2015), it is reasonable to expect that tilts are also 
heritable. The finding of modest heritability for tilts would be further-
more consistent with a recent meta-analysis indicating that specific 
abilities are heritable, even when residualized for GCA (Procopio et al., 
2022). 

2. Methods 

2.1. Twin samples 

2.1.1. Georgia Twin Study 
The first analysis draws its data from the Georgia Twin Study (GTS), 

a publicly available behavior-genetic database. These data were 
compiled by R. Travis Osborne (1913–2013) in the late 1970s (Osborne, 
1980), and were included as an appendix to a book published in 1980 
entitled Twins: Black and White. The total sample of twins includes 496 
pairs with data on a large variety of cognitive, personality, electro-
physiological, and anthropometric measures. The twins ranged in age 
from 12 to 20 years at time of assessment (M = 15.01, SD = 1.44), and 
were sampled from public and private schools in Kentucky and Indiana, 
in addition to Georgia. Blood typing, along with other methods, were 
used to establish zygosity (Osborne, 1980). Osborne (1980, p. 36) notes 
that blood typing will occasionally lead to misclassification of zygosity, 
the effect of which will be to attenuate, rather than potentiate, herita-
bility estimates. 

2.1.1.1. Cognitive ability measures. The GTS contains data on three 
cognitive ability assessments, a basic ability measurement set (mostly 
capturing narrow aspects of crystallized intelligence, in addition to more 
personality-oriented measures, such as social competence), four primary 
mental abilities (PMAs; Thurstone & Thurstone, 1938), and Cattell’s 
Culture Fair assessment forms A and B. The four PMAs will be used in the 
current analysis to generate tilts, as these were designed to yield distinct 
and broad group factors with high face validity (see discussion in 
Thurstone, 1963). Complete PMA data were available for a subsample of 
190 pairs (82 monozygotic [MZ] and 108 dizygotic [DZ]). Of these, 155 
individuals were male, and 225 were female. Furthermore, 170 in-
dividuals were White and 210 were Black. The four PMAs are: 
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i) Verbal meaning: This corresponds to “[t]he ability to understand 
ideas expressed in words” (Osborne, 1980, p. 84).  

ii) Number facility: This corresponds to the “[a]bility to work with 
numbers, to handle simple quantitative problems rapidly and 
accurately, and to understand and recognize quantitative differ-
ences” (Osborne, 1980, p. 84).  

iii) Reasoning: This corresponds to the “[a]bility to solve logical 
problems” (Osborne, 1980, p. 84).  

iv) Spatial relations: This corresponds to the “[a]bility to visualize 
objects and figures rotated in space and the relations between 
them” (Osborne, 1980, p. 84). 

2.1.2. Swedish Twin Registry (STR) 
The Swedish Twin Registry Study of Twin Adults: Genes and Envi-

ronment (STR STAGE) cohort (henceforth STR) is comprised of all twins 
born in Sweden between 1959 and 1985. An invitation to participate 
was sent to all 32,005 individuals in the STR, of whom 11,543 provided 
responses to at least one test or item. Except for age, sex, and zygosity, 
the data used here were obtained via online data collection through a 
web interface. Zygosity was determined via questions concerning intra- 
pair similarities, subsequently validated through genotyping in a sub-
sample (27 % of the total twin sample) (Lichtenstein et al., 2002, 2006). 
Further details on this cohort and data collection can be found elsewhere 
(Madison, 2020; Mosing, Madison, Pedersen, Kuja-Halkola, & Ullén, 
2014; Ullén, Mosing, Holm, Eriksson, & Madison, 2014). 

2.1.2.1. Cognitive ability measures. One of the survey instruments 
included the 24 items comprising the Swedish-language translation of 
the Wiener Matrizen Test (WMT; Formann & Piswanger, 1979), which is 
similar to the Raven’s Progressive Matrices test, a measure of fluid 
reasoning ability. The internal consistency among the items comprising 
the WMT has been found in previous research to be high (alpha = 0.81, 
Formann & Piswanger, 1979). Also included were three items measuring 
aspects of processing speed and accuracy (collectively termed chrono-
metric items), including both simple and (four) choice audio reaction 
time, and a measure of isochronous serial interval production (ISIP), 
which assesses sensorimotor synchronization with respect to a time- 
varying sequence of sounds (a low time-score on this measure corre-
sponds to a low error rate; for a detailed description of this task see 
Madison, 2020, pp. 131–132). For full details on the steps that were 
employed to control these measures for sources of method variance 
stemming from participant differences in computer software and hard-
ware see Madison (2020). A common factor among these three items is 
used as a chronometric ability measure, which is matched with respect to 
the WMT in terms of Brunswik Symmetry (as both ability measures are 
multi-item composites). All of these chronometric measures correlate 
significantly and in the theoretically expected (negative) direction with 
the WMT (Madison, 2020, p. 144). In the case of the simple reaction time 
measure, the correlation with WMT has been found to be completely 
mediated by common additive genetic variance (Madison, Mosing, 
Verweij, Pedersen, & Ullén, 2016). This indicates the presence of a 
broader genetically pleiotropic GCA factor in the STR comprised of items 
tapping the domains of fluid and chronometric ability. A tilt between 
fluid and chronometric ability would make theoretical sense given (i) 
that fluid reasoning has characteristics that make it distinct from GCA 
more broadly, indicating domain specificity (Blair, 2006), and (ii) that 
grey matter thickness makes a distinct contribution to fluid reasoning 
(Kievit, Fuhrmann, Borgeest, Simpson-Kent, & Henson, 2018), whereas 
variation in chronometric measures relates mostly to white matter 
integrity (Booth et al., 2019). A GCA-independent tilt between these two 
group factors might therefore be reflected in a tradeoff between grey and 
white matter allocation. 

In total, complete data on both the fluid and chronometric ability 
measures were available for 1376 pairs (711 MZ and 665 DZ), aged 
between 27 and 54 years at the time of their participation (M = 40.7, SD 

= 7.74). Of these, 1091 individuals were male and 1661 were female. All 
twins were White. 

2.1.3. MIDUS II 
MIDUS (Midlife in the United States) is a longitudinal study con-

ducted in two waves. The data for the first Wave (MIDUS) were collected 
from 1995 to 1996, and the data for the second Wave (MIDUS II) were 
(mostly) collected from 2004 to 2006, with final data collection in 2009 
(Ryff et al., 2004–2006). In MIDUS II, data on 4963 participants were 
collected in total, aged between 32 and 84 years. MIDUS II contains data 
on 392 pairs (164 MZ and 228 DZ) aged between 39 and 87 years (M =
60, SD = 11). Of these, 345 individuals were male and 439 were female. 
Furthermore, 794 individuals were White, 13 were Black, and 22 
identified with other racial and/or ethnic categories. Zygosity in MIDUS 
was determined on the basis of questions concerning physical similarity 
and self-reported frequency of twin-confusion (Felson, 2014). Unlike 
GTS and STR, no biological materials were used in validating zygosity, 
however it has been found that questionnaire-based approaches have a 
zygosity assignation accuracy of >90 % (Kasriel & Eaves, 1976). 

2.1.3.1. Cognitive measures. Cognitive performance data were obtained 
in MIDUS II using the seven scales comprising the Brief Test of Adult 
Cognition by Telephone (BTACT). This test is typically used to measure 
“baseline” cognitive decline in patients where dementia is suspected. 
Lachman et al. (2014) found that these scales yield two group factors 
corresponding to episodic memory and to executive functioning, exhibiting 
significant positive inter-factor correlation. This suggests the presence of 
a GCA factor. These group factor scores are provided on a precomputed 
basis in the MIDUS II datafile. A tilt between episodic memory and ex-
ecutive functioning is theoretically anticipated, as there are distinct 
neuroanatomical associations with each factor in healthy subjects. Such 
associations were observed by Cacciaglia et al. (2018), who found that 
“efficiency in [episodic memory] was predicted by lower GMv [grey 
matter volume] in brain areas belonging to the default-mode network 
(DMN). By contrast, [executive function] performance was predicted by 
larger GMv in a distributed set of regions, which overlapped with the 
executive control network (ECN)” (p. 4565). Tradeoffs between grey 
matter allocation in the DMN and ECN may therefore generate a tilt 
between episodic memory and executive functioning. 

2.2. Exploratory and unit-weighted factor analysis 

The analysis involving GTS used both the psych (Revelle, 2015) and 
paran packages (Dinno, 2018) to conduct parallel and exploratory factor 
analysis to determine the presence of a GCA factor among the four 
PMAs. Kaiser-Meyer-Olkin and Bartlett tests for sample adequacy were 
also used. Only data from dizygotic twins were employed in these 
computations in order to control for pseudo-repeated measures prob-
lems (the inclusion of MZ twin pairs in these sorts of non-behavior- 
genetic analyses can inflate model degrees of freedom by virtue of 
their [nearly] 100 % shared genetics). 

Unit-weighted estimation was employed to derive a GCA factor using 
the STR and MIDUS II samples. This was conducted by simply stan-
dardizing each of the group factor scores (fluid and chronometric in the 
case of STR and episodic memory and executive functioning in the case 
of MIDUS II) and then averaging them. The part-whole correlation be-
tween each group factor score and the average functions as a factor 
loading (Gorsuch, 1983). Prior to doing this, a separate unit-weighted 
estimation was conducted on the three items comprising the chrono-
metric factor (SRT, CRT, and ISIP) in order to determine the consistency 
of this factor. The following factor loadings were obtained (estimated 
using DZ twins, n = 1330): SRT = 0.684, 95 % CI = 0.655, 0.711 ; CRT =
0.652, 95 % CI = 0.620, 0.681 ; ISIP = 0.674, 95 % CI = 0.644, 0.702. 
This indicates adequate internal structure for this factor and is consistent 
with the findings of previous factor-analytic research indicating the 
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existence of latent variables among diverse mental chronometric mea-
sures (Jensen, 2006). The finding of a positive correlation between the 
fluid ability and (reverse-scored) chronometric factor in the STR is 
consistent with the presence of GCA variance among these measures (r 
= 0.224, 95% CI = 0.173, 0.274, n = 1330). The correlation between 
episodic memory and executive functioning in MIDUS II is 0.465 (95 % 
CI = 0.390, 0.533, n = 458), also indicating shared (GCA) variance. This 
is consistent with the finding of Lachman et al. (2014). 

The heritabilities of these GCA scores will be estimated as a basis for 
comparison with those generated for each of the tilts. 

2.3. Tilt computation 

All cognitive variables were standardized prior to conducting the 
analyses. These z-scores were then used to calculate the various cogni-
tive tilts as difference scores (e.g., Verbal-Spatial tilt = zVerbal – zSpatial). 
In total eight tilts were computed, six of which were generated using the 
GTS: 1) Verbal-Spatial; 2) Verbal-Numeric; 3) Verbal-Reasoning; 4) Spatial- 
Numeric; 5) Spatial-Reasoning; and 6) Numeric-Reasoning, with the 
remaining two stemming from the STR and MIDUS II cohorts (Fluid- 
Chronometric and Episodic memory-Executive functioning respectively). In 
each case both participant age and the (residual) correlation between 
the tilt and its associated GCA factor were controlled via residualization. 

2.4. Variance component analyses 

The twinlm function associated with the mets package (Holst & 
Scheike, 2015) was used for computing the various behavior-genetic 
parameter estimates and variance components. According to Burkett 
et al. (2015) this package is able to conduct a classic twin model analysis 
providing an estimation of the model’s variance components and cor-
responding heritability estimates. Burkett et al. (2015) define the classic 
twin model as a path model that incorporates the following variance 
components: 
Yij = xijβ+ aAij + dDij + cCij + eEij 

In this equation Yij corresponds to the phenotypic value for twin j 
within twin pair i. In contrast xijβ denotes the fixed effects associated 
with a vector of covariates. The analysis also estimates an intercept 
along with the parameters a (additivity), d (dominance effects), c 
(shared environmentality), and e (non-shared environmentality +

error), each corresponding to a path coefficient in the model. According 
to Burkett et al. (2015), Aij,Dij,Cij, Eij are mutually independent pa-
rameters exhibiting standard normal distributions. The analysis can also 
yield the corresponding variance components (additive genetic σ2

A; 
dominance genetic σ2

D; shared environment σ2
C; and residual [non-shared 

environment + error] variance σ2
E). The model computes the heritability 

estimate as the proportion of σ2
A/ (σ2

A+ σ2
C + σ2

E). All analyses were con-
ducted in R v. 4.0.1. 

The correlations for both MZ and DZ twins were estimated separately 
for each tilt. These were used to check the reasonableness of the resul-
tant heritability estimates (via re-estimation using Falconer’s formula). 
These are listed in the appendix (Table A1). 

3. Results 

3.1. Georgia Twin Study 

3.1.1. Tilt computations 
In total six unique tilt scores were generated by simply subtracting 

the standardized score for one PMA from that of another. These tilts 
include Verbal-Spatial, Verbal-Numeric, Verbal-Reasoning, Spatial- 
Numeric, Spatial-Reasoning, and Numeric-Reasoning. When correlations 
between these and GCA (for details on how this was estimated see 
below) were estimated for the dizygotic twin sample none reached 

statistical significance (range of magnitude of r = 0.021 to 0.113). A 
correlation matrix including each tilt, GCA, and each PMA is presented 
in the appendix (Table A2). These tilts were residualized for participant 
age and any association with GCA. 

3.1.2. Exploratory factor analysis 
The Kaiser-Meyer-Olkin factor adequacy test indicated that all four 

cognitive indicators exhibited adequate values (Verbal = 0.82; Numeric 
= 0.83; Reasoning = 0.75; Spatial = 0.85). The Bartlett test reached 
statistical significance (x2 = 391.402, p < .0001). The parallel analysis 
identified a single GCA dimension. The exploratory factor analysis 
revealed that this single latent dimension exhibited sizable factor 
loadings ranging from 0.69 to 0.90. Fig. 1 describes this factor structure 
in more detail. The factor structure between the male and female sub-
samples was perfectly congruent (Coefficient of congruence = 1.000). 
Very high congruence was observed when comparing the factor struc-
ture of the White and Black subsamples (Coefficient of congruence =
0.999). 

3.1.3. Model comparison 
Table 1 describes in detail the AIC, BIC, and corresponding statistical 

weights evaluating the model’s fit. In terms of the Verbal-Spatial tilt the 
AE model fit the data the best followed respectively by the ADE and the 
ACE models. This pattern also extended to the Verbal-Numeric tilt with 
the AE model exhibiting the best fit followed by the ADE and the ACE 
models. In contrast, the Verbal-Reasoning tilt values better fit an ACE 
model compared to an ADE or AE model. The AE model, relative to the 
ACE and ADE models, exhibited the best fit in the case of the Spatial- 
Numeric, Spatial-Reasoning, and Numeric-Reasoning tilts. Lastly, the ACE 
model better fit GCA compared to the ADE and the AE models. These 
results were replicated when contrasting the various BIC values along 
with their respective statistical weights. 

3.1.4. Georgia Twin Study: variance component analyses 
The results of estimating the behavior-genetic variance components 

associated with the best-fitting models are presented in Table 2. 

3.2. Swedish Twin Registry 

A unit-weighted GCA factor (estimated using the DZ subsample) 
loaded positively and significantly onto fluid ability (r = 0.782, 95%CI =
0.761, 0.802; n = 1330) and the reversed chronometric factor (r =
0.782, 95%CI = 0.761, 0.802; n = 1330). The factor structure between 
the male and female subsamples was perfectly congruent (Coefficient of 
congruence = 1.000). Table 3 summarizes the results of a comparison 
between ACE, ADE, and AE models estimated for the (age- and GCA-) 
residualized tilt (the correlation between the tilt and GCA in this sample 
is non-significant at r = 0.060). A correlation matrix including the (age- 
and GCA-residualized) tilt, GCA, and the fluid and chronometric factor 
scores is reported in the appendix (Table A3). The analyses (reported in 
Table 3) revealed that the AE model best fit the data, followed by the 
ACE and the ADE models respectively. The analyses also indicated that 
the additive genetic component explained 42 %, and the residual 
component 58 %, of the variance. The additive genetic component 
reached statistical significance. A model comparison indicated that the 
AE model exhibited the best fit in the case of the GCA factor. The vari-
ance component estimations revealed that the additive genetic compo-
nent and the residual components both reached statistical significance, 
with the additive genetic component explaining 59 % and the residual 
component 41 % of the variance. 

3.3. MIDUS II 

A unit-weighted GCA factor (estimated using the DZ subsample) 
loaded positively and significantly onto executive functioning (r =
0.856, 95%CI = 0.830, 0.878; n = 458) and episodic memory (r = 0.856, 
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95%CI = 0.830, 0.878; n = 458). The factor structure between the White 
and Black subsamples reached congruence (Coefficient of congruence =
1.000). A similar pattern emerged for the male and female subsamples 
(Coefficient of congruence = 1.000). Table 4 summarizes the results of a 
model comparison between ACE, ADE, and AE models estimated for the 
residualized tilt. The examination revealed that the AE model best fit the 
data, followed by the ACE and the ADE models respectively. The ana-
lyses also indicated that the additive genetic component explained 41 %, 
and the residual component 60 % of the variance. The additive genetic 
component reached statistical significance. A model comparison 
revealed that the AE model fit the best in the case of GCA. The variance 
components indicated that the additive genetic and residual components 
reached statistical significance, with the additive genetic component 
explaining 60 %, the shared environment and the residual component 
40 % of the variance. 

3.4. Testing for the presence of a Wilson-like effect on tilt heritability 

Fisher’s z-tests along with Bonferroni correction for multiple com-
parisons were used to determine whether, when considered together, 
the tilt heritabilities estimated in each of the previous studies might be 
associated with a Wilson-like effect, where the Wilson effect is the ten-
dency for the additive heritability of IQ to increase with age, up until 
about age 20 when it reaches an asymptote (Bouchard, 2013; but see 

Sarraf, Woodley of Menie, & Peñaherrera-Aguirre, 2023). As tilts are 
thought to result from active gene-by-environment correlation, (unique) 
environmental factors might play an initially greater role in condition-
ing the pattern of tradeoffs, which gives way to the influence of 
(narrowly heritable) genetic factors once niche-picking, EPDT dy-
namics, and related gene-by-environment correlation generating pro-
cesses are maximized. These would have the effect of genetically 
crystallizing the tilts once established later in life. The results of these 
comparisons are presented in Table 5. 

Negative values indicate that the heritability of tilts computed with 
older samples (STR or MIDUS II) is higher when compared to a younger 
sample (GTS). These results indicate that tilt heritability in the younger 
GTS is significantly lower than in the older STR and MIDUS II cohorts. 
There are no significant differences in the tilt heritabilities when STR 
and MIDUS II are compared however. 

4. Discussion 

The current results extend the nomological network of tilts, 
demonstrating for the first time that these are moderately additively 
heritable. The results are consistent with behavior-genetic theories of 
the cultivation of specific abilities (Procopio et al., 2022), including 
EPDT (Bouchard, 1997, 2016; see also, Johnson, 2010) and niche- 
picking models (Scarr & McCartney, 1983). Both EPDT and niche- 

Fig. 1. GCA loading onto the four primary mental abilities. The analyses were restricted to the sample of 216 dizygotic pairs in order to avoid problems with pseudo- 
repeated measures. 

Table 1 
Model comparison based on model fit indicators (AIC and BIC) with their corresponding weights for each cognitive tilt (residualized for age and GCA) and GCA.   

ACE ADE AE  
Measure AIC Weight AIC Weight AIC Weight Favored model 
Verbal-Spatial  1079.484  0.211  1079.433  0.216  1077.484  0.573 AE 
Verbal-Numeric  1074.621  0.207  1074.413  0.230  1072.621  0.563 AE 
Verbal-Reasoning  1065.201  0.827  1070.960  0.046  1068.960  0.126 ACE 
Spatial-Numeric  1074.095  0.205  1073.808  0.237  1072.095  0.558 AE 
Spatial-Reasoning  1072.961  0.189  1072.053  0.297  1070.961  0.514 AE 
Numeric-Reasoning  1072.656  0.207  1072.422  0.232  1070.656  0.561 AE 
GCA  918.757  0.995  932.114  0.001  930.114  0.003 ACE    

ACE ADE AE  
Measure BIC Weight BIC Weight BIC Weight Favored model 
Verbal-Spatial  1089.225  0.063  1089.175  0.065  1083.978  0.872 AE 
Verbal-Numeric  1084.362  0.063  1084.155  0.070  1079.115  0.867 AE 
Verbal-Reasoning  1074.943  0.546  1080.701  0.031  1075.454  0.423 ACE 
Spatial-Numeric  1083.836  0.063  1083.549  0.072  1078.589  0.865 AE 
Spatial-Reasoning  1082.702  0.061  1081.794  0.096  1077.455  0.843 AE 
Numeric-Reasoning  1082.397  0.063  1082.163  0.071  1077.150  0.866 AE 
GCA  928.498  0.982  941.855  0.001  936.608  0.017 ACE  
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picking models assume that people seek out activities compatible with 
vocational interests (e.g., STEM or humanities), which are heritable 
(Bouchard, 2004, p. 150). Vocational interests then increase the acqui-
sition of specific knowledge, which cultivates tilt. In addition, vocational 
interests form trait complexes with specific abilities (Ackerman & 
Heggestad, 1997, p. 239; see also, Ackerman, 2003), which may produce 
different tilt patterns. 

An objection could be raised to the effect that tilts might be little 
more than proxies for ability residuals, and that estimating their 

heritability may therefore be redundant, especially given that the heri-
tability of cognitive ability residuals has already been comprehensively 
demonstrated elsewhere (e.g., Procopio et al., 2022). It should first be 
noted that the tilts estimated here, despite being independent of GCA, do 
(as might be expected) correlate with their constituent abilities, albeit 
imperfectly, indicating the presence of both shared and unique variances 
between tilts and ability measures (see Tables A2-A4 in the appendix). 
Moreover, tilt can only be defined with reference to two ability mea-
sures, as both are needed to define a tradeoff. As such, tilts are therefore 

Table 2 
Parameter estimates and variance components indicating the partitioning of phenotypic variance for six tilts and GCA.  

Verbal-Spatial 
Parameter estimates Variance decomposition 
Measure Estimate Std. Error z-value Pr(>|z|) Measure σ2 0.025 0.975 
A  0.439  0.111  3.93  0.0001 A  0.193  0.007  0.379 
E  0.898  0.058  15.50  <0.0001 E  0.807  0.621  0.993   

Verbal-Numeric 
Parameter estimates Variance decomposition 
Measure Estimate Std. Error z-value Pr(>|z|) Measure σ2 0.025 0.975 
A  0.546  0.093  5.86  <0.0001 A  0.298  0.113  0.482 
E  0.838  0.058  14.56  <0.0001 E  0.702  0.518  0.887   

Verbal-Reasoning 
Parameter estimates Variance decomposition 
Measure Estimate Std. Error z-value Pr(>|z|) Measure σ2 0.025 0.975 
A  0.000  0.309  0.00  1.0000 A  0.000  0.000  0.000 
C  0.549  0.069  7.97  <0.0001 C  0.302  0.173  0.431 
E  0.834  0.043  19.49  <0.0001 E  0.698  0.569  0.827   

Spatial-Numeric 
Parameter estimates Variance decomposition 
Measure Estimate Std. Error z-value Pr(>|z|) Measure σ2 0.025 0.975 
A  0.537  0.089  6.01  <0.0001 A  0.289  0.114  0.464 
E  0.842  0.055  15.21  <0.0001 E  0.711  0.536  0.886   

Spatial-Reasoning 
Parameter estimates Variance decomposition  

Estimate Std. Error z-value Pr(>|z|) Measure σ2 0.025 0.975 
A  0.558  0.088  6.34  <0.0001 A  0.312  0.135  0.489 
E  0.829  0.056  14.84  <0.0001 E  0.688  0.511  0.865   

Numeric-Reasoning 
Parameter estimates Variance decomposition 
Measure Estimate Std. Error z-value Pr(>|z|) Measure σ2 0.025 0.975 
A  0.575  0.089  6.47  <0.0001 A  0.330  0.148  0.511 
E  0.819  0.057  14.35  <0.0001 E  0.670  0.489  0.852   

General Cognitive Ability 
Parameter estimates Variance decomposition 
Measure Estimate Std. Error z-value Pr(>|z|) Measure σ2 0.025 0.975 
A  0.594  0.087  6.83  <0.0001 A  0.355  0.148  0.560 
C  0.695  0.088  7.93  <0.0001 C  0.486  0.289  0.680 
E  0.398  0.031  12.91  <0.0001 E  0.159  0.105  0.210  
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necessarily going to always be to a degree phenotypically distinct from 
non-GCA ability residuals, which instead represent individual differ-
ences in performance with respect to only ability-specific narrower 
performance criteria. Establishing the heritability of these sources of 
individual differences therefore constitutes a novel addition to the 
behavior genetics canon. 

The heritabilities of tilt identified in the current analysis are of 

similar magnitude to the meta-analytic heritability of a large array of 
individual differences variables reported in Polderman et al. (2015) 
(weighted mean h2 = 0.401, 95 % = 0.375, 0.426 vs. meta-analytic h2 =
0.49 in Polderman et al.), and are generally lower than the heritability of 
GCA estimated with respect to the same samples (weighted h2 = 0.567, 
95 % = 0.546, 0.587). Computing Falconer’s heritability estimates using 
the rMZ and rDZ values for each tilt revealed the exact same h2 values to 

Table 3 
Comparison based on model fit indicators (AIC and BIC) with their corresponding weights for a cognitive tilt between fluid ability and the reversed chronometric factor 
score. The table also includes parameter estimates and variance components examining the partitioning of phenotypic variance for this cognitive tilt and GCA.   

ACE ADE AE  
Measure AIC Weight AIC Weight AIC Weight Favored model 
Fluid reasoning -Rev. chronometric factor 7446.881 0.273 7447.550 0.195 7445.550 0.531 AE    

ACE ADE AE  
Measure BIC Weight BIC Weight BIC Weight Favored model 
Fluid reasoning -Rev. chronometric factor 7462.562 0.035 7463.231 0.025 7456.004 0.939 AE   

Fluid Ability-Rev. Chronometric Factor 
Parameter estimates Variance decomposition 
Measure Estimate Std. Error z value Pr(>|z|) σ2 0.025 0.975 
A  0.628  0.024  25.65  <0.0001  0.423  0.370  0.477 
E  0.733  0.017  42.49  <0.0001  0.577  0.523  0.630   

General Cognitive Ability 
Parameter estimates Variance decomposition 
Measure Estimate Std. Error z value Pr(>|z|) σ2 0.025 0.975 
A  0.759  0.021  35.54  <0.0001  0.587  0.544  0.631 
E  0.636  0.016  40.44  <0.0001  0.412  0.369  0.456  

Table 4 
Model comparison based on model fit indicators AIC and BIC with their corresponding weights for a tilt between executive functioning and episodic memory scores. 
The table also includes parameter estimates and variance components examining the partitioning of phenotypic variance for this tilt.   

ACE ADE AE  
Measure AIC Weight AIC Weight AIC Weight Favored model 
Executive functioning-Episodic memory 2194.543 0.212 2194.543 0.212 2192.543 0.576 AE    

ACE ADE AE  
Measure BIC Weight BIC Weight BIC Weight Favored model 
Executive functioning-Episodic memory 2206.457 0.046 2206.457 0.046 2200.486 0.908 AE   

Executive Functioning-Episodic Memory 
Parameter estimates Variance decomposition 
Measure Estimate Std. Error z value Pr(>|z|) σ2 0.025 0.975 
A  0.637  0.050  12.76  <0.0001  0.405  0.298  0.511 
E  0.773  0.036  21.75  <0.0001  0.595  0.489  0.702   

General Cognitive Ability 
Parameter estimates Variance decomposition 
Measure Estimate Std. Error z value Pr(>|z|) σ2 0.025 0.975 
A  0.768  0.040  19.14  <0.0001  0.598  0.515  0.681 
E  0.629  0.031  20.24  <0.0001  0.402  0.319  0.485  
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those identified using the model (weighted mean h2 = 0.401, 95 % CI 
0.375, 0.426). This indicates that these model-derived h2 estimates can 
be considered reasonable. 

Tilt heritability appears to be a robust finding, as it is present in 
samples of differing ages (young vs. middle aged), differing nationalities 
(US vs. Sweden), and is present across very widely differing sets of 
abilities (verbal, visuospatial, fluid, episodic memory, chronometric 
ability, etc.). The effect is not confounded by (within-sample) age dif-
ferences or by the (extremely small) residual associations between the 
tilts and GCA (which were controlled in all models). AE models were the 
best fitting in all but one case, specifically Verbal - Reasoning, in the 
Georgia Twin Study (which was associated more strongly with an ACE 
model). The mean non-shared environmentality for tilts is consistently 
larger than the value for h2 in all estimations (weighted mean e2 =
0.594, 95 % CI = 0.574, 0.613). 

Comparison of the average of the six narrow-sense tilt heritabilities 
in the GTS, with the equivalent values in the STR and MIDUS II cohorts, 
yielded indications of significant Wilson-like effects, as the tilt herita-
bility in GTS was significantly lower than in the older STR and MIDUS II 
cohorts (z = −4.428 and − 7.908 respectively, p < .0001 in both cases). 
The tilt heritabilities were not significantly different when STR and 
MIDUS II were compared, suggesting that tilt heritability remains rela-
tively stable in mid-life. The validity of these potential Wilson-like ef-
fects is strongly predicated upon tilt heritabilities being “indifferent” 

with respect to their indicators, e.g., one tilt should be as good as any 
other as it indicates a common developmental process that leads to the 
cultivation of one arbitrary cognitive ability, or set of cognitive abilities, 
at the expense of another. If these tilt heritabilities are influenced by 
factors that are idiosyncratic to their constituent abilities, then this 
weakens the theory of age-related changes in tilt heritability offered 
here. Future behavior-genetically informed studies might employ lon-
gitudinal measures of tilt, which would allow for the increase/decrease 
in tilt heritabilities with age to be determined in relation to a common 
phenotype. 

This highly consistent finding of lower-magnitude heritability 
coupled with larger-magnitude (non-shared) environmentality is what 
might be expected if EPDT and/or niche-picking models are approxi-
mately true. This is because idiosyncratic interest patterns might be 
expected to concentrate investment in specific domains, boosting spe-
cific knowledge and/or cortical “real estate” that underlies any given 
tilt, with continued investment magnifying tilt levels over time (Coyle, 
2018, p. 12) via the establishment of active gene-by-environment cor-
relations. Moreover, the finding of strong influences stemming from the 
environment is supported by research on the development of tilts, which 
shows that tilt levels increase in adolescence (Coyle, 2022a). Age-related 
increases in tilt are attributable to mental processing speed, which ac-
celerates the acquisition of specific cognitive skills that produces tilt 
(Coyle, 2022a). In related research, ability tilt (math minus verbal) 
showed a robust pattern of sex differences, with males tending to exhibit 
math tilt (math > verbal) and females tending to exhibit verbal tilt 
(verbal > math) (e.g., Achter, Lubinski, Benbow, & Eftekhari-Sanjani, 
1999; Coyle, 2020; Coyle et al., 2015; Lubinski et al., 2001; Park 

et al., 2007). Such a pattern supports theories of sex differences in 
vocational interests, with males tending to prefer math-loaded STEM 
fields and females tending to prefer verbally loaded humanities fields (e. 
g., Achter et al., 1999; see also, Lippa, 1998; Lubinski, 2010; Schmidt, 
2011; Stewart-Williams & Halsey, 2021; Su, Rounds, & Armstrong, 
2009). The tilts estimated in the current work also extend the nomo-
logical network of these with respect to possible tradeoffs between 
different neural substrates (grey matter vs. white matter allocation 
patterns in the case of the fluid ability-chronometric factor tilt in the STR) 
and different neurocognitive systems (DMN vs. ECN in the case of the 
episodic memory-executive functioning tilt in MIDUS II). Prior neurological 
research has found that there is a pattern of volumetric tradeoffs in brain 
regions associated with rotation-verbal and focus-diffusion abilities 
among individuals, which is independent of GCA (Johnson, Jung, 
Colom, & Haier, 2008) suggesting a neurological basis for the tilt be-
tween these two ability clusters. The present research suggests new 
targets for future research into the neurological basis of tilts. 

It should also be noted that non-shared environmentality captures 
measurement error, which may (especially given that difference scores 
are being used to estimate tilts) independently contribute to the atten-
uation of the additive heritability of these tilts. If error were to be 
controlled in the measurement of tilts, it is likely that the resultant 
heritabilities would be higher. This therefore makes the current findings 
conservative. 

Taken as a whole, findings such as these cast doubt on recently made 
claims to the effect that tilts are spurious and cannot be explained by 
investment theories (Sorjonen et al., 2022; for discussion, see Coyle, 
2022b, pp. 12–13). Such claims are straightforwardly inconsistent with 
the existence of a nomological network of tilt effects, as demonstrated in 
the current study and in prior research (for reviews, see Coyle, 2018; 
Coyle & Greiff, 2021; Lubinski, 2009, 2016). Efforts should nevertheless 
be made to further replicate the current findings using other behavior- 
genetic databases containing relevant cognitive data. Moreover, exten-
sion of tilts into the conative (personality and psycho-behavioral) 
domain may add yet another dimension to the tilt research program. 
Do tilts among the dimensions constituting the Big Five or the Big Two 
(Stability and Plasticity) predict personality-related vocational out-
comes above and beyond participant performance at the level of the Big 
Five, Big Two, or General Factor of Personality? Are there similar 
tradeoffs between different neurobehavioral systems believed to un-
derlie these domains (e.g., behavioral inhibition vs. behavioral 
approach)? Are these personality tilts also heritable? 

Finally, the finding that tilts are moderately additively heritable 
suggests that these phenotypes are viable candidates for future genome- 
wide association studies (GWASs) aiming to more directly quantify 
polygenic contributions to specific cognitive and educational 
attainment-related outcomes independent of GCA. The complete inde-
pendence of the tilts from GCA in the current study indicates that the 
sources of additive genetic variance associated respectively with tilts 
and GCA are likely to be distinct. Tilts may reflect the action of heritable 
non-cognitive factors (such as personality, interests, and other devel-
opmental predisposing factors such as neural plasticity) conditioning the 
cultivation of specific ability patterns. The use of methods such as 
GWAS-by-subtraction has already revealed a rich non-cognitive genetic 
architecture contributing to the development of educational attainment 
(Demange et al., 2021). The use of tilts as target phenotypes in future 
GWASs might therefore greatly enhance this sort of research. 
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Table 5 
Fisher z-tests of differences among the additive genetic variances of tilts across 
three samples. Pairwise comparisons are adjusted using a Bonferroni correction. 
Difference scores (z) are above the diagonal, p values are below.  

Sample GTS (average of six tilts) 
(Mean age = 15.01) 

STR (Mean age 
= 40.7) 

MIDUS II (Mean 
age = 60) 

GTS (Mean age 
= 15.01)  

1.000  −4.428  −3.497 

STR (Mean age 
= 40.7)  

<0.0001  1.000  0.589 

MIDUS II (Mean 
age = 60)  

<0.0001  0.278  1.000 

Note: Bonferroni corrected significance = p ≤ .0166. 
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Data availability 

The datasets were publicly available (Georgia Twin Study, MIDUS II) 

or restricted to authorized users and obtained without sensitive identi-
fiers (Swedish Twin Registry).  

Appendix A  
Table A1 
Bivariate correlations for each tilt within monozygotic and dizygotic twins.  

Georgia Twin Study 
Verbal-Spatial 
Zygosity Estimate CI 2.5 % CI 97.5 % 
rMZ  0.193  0.002  0.370 
rDZ  0.096  0.003  0.188   

Verbal-Numeric 
Zygosity Estimate CI 2.5 % CI 97.5 % 
rMZ  0.298  0.104  0.469 
rDZ  0.149  0.056  0.240   

Verbal-Reasoning 
Zygosity Estimate CI 2.5 % CI 97.5 % 
rMZ  0.302  0.168  0.425 
rDZ  0.302  0.168  0.425   

Spatial-Numeric 
Zygosity Estimate CI 2.5 % CI 97.5 % 
rMZ  0.289  0.106  0.453 
rDZ  0.145  0.056  0.231   

Spatial-Reasoning 
Zygosity Estimate CI 2.5 % CI 97.5 % 
rMZ  0.312  0.126  0.476 
rDZ  0.156  0.066  0.243   

Numeric-Reasoning 
Zygosity Estimate CI 2.5 % CI 97.5 % 
rMZ  0.330  0.138  0.498 
rDZ  0.165  0.073  0.254   

Swedish Twin Registry 
Fluid Reasoning-Rev. Chronometric Factor 
Zygosity Estimate CI 2.5 % CI 97.5 % 
rMZ  0.423  0.369  0.475 
rDZ  0.212  0.185  0.238   

MIDUS II 
Executive Functioning-Episodic Memory 
Zygosity Estimate CI 2.5 % CI 97.5 % 
rMZ  0.405  0.293  0.505 
rDZ  0.202  0.149  0.255   
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Table A2 
Bivariate correlation matrix, using the GTS, examining the associations among cognitive abilities, a General Cognitive Ability factor, and the corresponding resi-
dualized tilts (controlling for age and GCA scores). Significance values are located above the diagonal. Pearson’s correlation coefficients are below the diagonal. 
Bivariate correlations were computed using both MZ and DZ twins, n = 380.  

Cognitive vector Verbal Numeric Reasoning Spatial General 
cognitive ability 

Verbal- 
spatial 

Verbal- 
numeric 

Verbal- 
reasoning 

Spatial- 
numeric 

Spatial- 
reasoning 

Numeric- 
reasoning 

Verbal  1.000  <0.0001  <0.0001  <0.0001  <0.0001  <0.0001  <0.0001  <0.0001  0.151  0.012  0.275 
Numeric  0.625  1.000  <0.0001  <0.0001  <0.0001  0.533  <0.0001  0.277  <0.0001  0.090  <0.0001 
Reasoning  0.698  0.718  1.000  <0.0001  <0.0001  0.442  0.671  <0.0001  0.398  <0.0001  <0.0001 
Spatial  0.500  0.555  0.620  1.000  <0.0001  <0.0001  0.237  0.070  <0.0001  <0.0001  0.371 
General 

cognitive 
ability  

0.835  0.857  0.898  0.791  1.000  1.000  0.665  1.000  1.000  1.000  1.000 

Verbal-spatial  0.464  0.032  0.040  −0.536  0.000  1.000  <0.0001  <0.0001  <0.0001  <0.0001  0.844 
Verbal-numeric  0.437  −0.429  −0.022  −0.061  −0.022  0.499  1.000  <0.0001  <0.0001  0.348  <0.0001 
Verbal- 

reasoning  
0.459  −0.056  −0.310  −0.093  0.000  0.552  0.594  1.000  0.443  <0.0001  <0.0001 

Spatial-numeric  −0.074  −0.412  −0.043  0.529  0.000  −0.603  0.390  −0.039  1.000  <0.0001  <0.0001 
Spatial- 

reasoning  
−0.129  −0.087  −0.322  0.539  0.000  −0.668  −0.048  0.252  0.665  1.000  <0.0001 

Numeric- 
reasoning  

−0.056  0.422  −0.319  −0.046  0.000  −0.010  −0.552  0.343  −0.497  0.318  1.000   

Table A3 
Bivariate correlation matrix, using the STR, examining the associations among cognitive abilities, a General Cognitive Ability factor, and the corresponding resi-
dualized tilt (controlling for age and GCA scores). Significance values are located above the diagonal. Pearson’s correlation coefficients are below the diagonal. 
Bivariate correlations were computed using both MZ and DZ twins, n = 2752.  

Cognitive vector Fluid reasoning Rev. chronometric factor General cognitive ability Fluid reasoning-rev. chronometric factor 
Fluid reasoning  1.000  <0.0001  <0.0001  <0.0001 
Rev. chronometric factor  0.219  1.000  <0.0001  <0.0001 
General cognitive ability  0.778  0.784  1.000  1.000 
Fluid reasoning-rev. chronometric factor  0.626  −0.618  0.000  1.000   

Table A4 
Bivariate correlation matrix, using MIDUS II, examining the associations among cognitive abilities, a General Cognitive Ability factor, and the corresponding resi-
dualized tilt (controlling for age and GCA scores). Significance values are located above the diagonal. Pearson’s correlation coefficients are below the diagonal. 
Bivariate correlations were computed using both MZ and DZ twins, n = 784.  

Cognitive vector Episodic memory Executive functioning General cognitive ability Executive functioning-episodic memory 
Episodic memory  1.000  <0.0001  <0.0001  <0.0001 
Executive functioning  0.412  1.000  <0.0001  <0.0001 
General cognitive ability  0.842  0.839  1.000  0.754 
Executive functioning-episodic memory  −0.547  0.532  −0.011  1.000  
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