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Comparison of methods that use whole genome 
data to estimate the heritability and genetic 
architecture of complex traits
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Steven Gazal   4,5, Douglas W. Bjelland1, Teresa R. de Candia1, Haplotype Reference Consortium6, 
Michael E. Goddard7,8, Benjamin M. Neale   5, Jian Yang   9, Peter M. Visscher9 and  
Matthew C. Keller1,10*

Multiple methods have been developed to estimate narrow-sense heritability, h2, using single nucleotide polymorphisms (SNPs) 
in unrelated individuals. However, a comprehensive evaluation of these methods has not yet been performed, leading to confu-
sion and discrepancy in the literature. We present the most thorough and realistic comparison of these methods to date. We 
used thousands of real whole-genome sequences to simulate phenotypes under varying genetic architectures and confounding 
variables, and we used array, imputed, or whole genome sequence SNPs to obtain ‘SNP-heritability’ estimates. We show that 
SNP-heritability can be highly sensitive to assumptions about the frequencies, effect sizes, and levels of linkage disequilibrium 
of underlying causal variants, but that methods that bin SNPs according to minor allele frequency and linkage disequilibrium 
are less sensitive to these assumptions across a wide range of genetic architectures and possible confounding factors. These 
findings provide guidance for best practices and proper interpretation of published estimates.

Narrow-sense heritability, h2, the proportion of a trait’s pheno-
typic variance attributable to additive genetic variance, is a 
fundamental concept in quantitative genetics. In addition to 

being the central descriptor of the genetic bases of traits, h2 deter-
mines the response to selection and the potential utility of individ-
ual genetic prediction1,2. h2 estimated in traditional designs using 
pedigrees or twins, ĥPED

2 , relies on strong assumptions about the 
causes of covariance between close relatives and can be biased to the 
degree these assumptions are unmet3,4. Over the last 8 years, alterna-
tive ‘SNP-based’ methods5 have been developed to estimate h2 using 
measured SNPs, denoted ĥSNP

2 . When estimated in samples of nomi-
nally unrelated individuals, ĥSNP

2  is unlikely to be confounded by 
common environmental or nonadditive genetic effects that increase 
similarity of close relatives and should reflect the proportion of 
phenotypic variation due to causal variants (CVs) tagged by SNPs. 
When common SNPs are used in the analysis, ĥSNP

2  is expected to be 
less than h2 and ĥPED

2  because rare CVs are typically poorly tagged 
by common SNPs, and indeed ĥSNP

2  is substantially lower than 
ĥPED

2  for most complex traits in such analyses, with schizophrenia6 
(ĥ ~ .0 23SNP

2  versus ĥ ~ .0 8PED
2 ) being a typical example.

More recently, imputed SNPs have been used to capture the 
effects of rarer CVs and to gain insight into the genetic architecture 
of traits, examine genetic networks and annotation classes, and test 
evolutionary hypotheses6–18. For example, the substantial fraction of 
the variance in prostate cancer risk due to rare variants suggests that 

negative selection has reduced the frequency of risk alleles18, and 
across a range of traits, young alleles explain more of the heritabil-
ity than old alleles, suggesting widespread purifying selection13,14. 
Whole-genome sequence (WGS) SNPs are likely to be increasingly 
used for such purposes in the future.

As SNPs in these analyses begin to more accurately reflect the 
density and frequency distributions of CVs, ĥSNP

2  should approach 
total h2, making it important to understand the factors that can bias 
ĥSNP

2 . Moreover, the proliferation of methods (Table  1) has led to 
discrepancies in estimates. For example, schizophrenia ĥSNP

2  has 
been reported as 0.56 (linkage disequilibrium (LD) score regres-
sion19) and as 0.23 (univariate genomic relatedness matrix residual 
maximum likelihood analysis (GREML)16). Recently, Speed et al.15 
argued that typical assumptions about the relationships between 
SNP effect size, minor allele frequency (MAF), and LD are inac-
curate and reported ĥSNP

2  values substantially higher than previous 
estimates under different assumptions. How should such discrepan-
cies be interpreted? Under which conditions do biases exist across 
different methods, and when should researchers prefer one method 
over another? Answers to these questions are important, yet to date, 
comparisons across methods have been restricted to a small subset 
of methods in the primary papers they were introduced in, and have 
been compared across simulations that are unrealistic with respect 
to properties of real genomes. For example, simulating CVs from 
imputed genotypic data rather than measured WGS data15 can lead 
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to CVs with highly atypical levels of LD and therefore to conclu-
sions about ĥSNP

2  that apply to genetic architectures unrepresentative 
of real traits.

Here we used thousands of fully sequenced genomes to simulate 
traits across different genetic architectures and degrees of popula-
tion stratification, and we compared the performance of the most 
popular SNP heritability estimation methods using three different 
SNP types (array, imputed, and WGS). By simulating phenotypes 
from real WGS data rather than from simulated, array, or imputed 
SNPs, we were able to mimic patterns of LD and stratification found 
in real genomes and to include the effects of CVs down to a MAF 
of 0.0003. We then estimated heritability and the allelic spectra of 

six complex traits in the UK Biobank. Our findings provide insight 
into the most important factors influencing, and best practices for 
estimating, ĥSNP

2 .

Results
Comparison of ĥSNP

2  across estimation methods under typical 
assumptions about CV effect sizes. For all methods described 
here other than LD score regression, evidence for ĥSNP

2  occurs to 
the degree to which the genome-wide average correlation between 
pairs of individuals i and j at measured SNPs, Aij, is related to pheno-
typic similarity. Aij values between all pairs of individuals are stored 
in an n × n genomic relationship matrix (GRM), used to estimate 

Table 1 | Summary of commonly applied methods and a description of findings from simulations

Method Description Major assumptions Simulation findings regarding ĥSSNNPP
22 Computational issues

GREML-SC5 Often called the GCTA 
approach. Originally applied 
to common array SNPs only. 
Estimates ĥSNP

2 , the amount of 
h2 caused by CVs tagged by 
SNPs used to create the GRM.

(i) Genetic similarity is 
uncorrelated with environmental 
similarity; (ii) an infinitesimal 
model; (iii) SNP effects 
are normally distributed, 
independent of LD, and inversely 
proportionate to MAF (α  =  –1).

Biased to the degree that the 
average LD among SNPs is different 
from the average LD between SNPs 
and CVs. This occurs in stratified 
samples and when MAF and LD 
distributions of SNPs do not match 
those of CVs.

Simple model tractable 
with large samples  
(> 100,000).

GREML-MS11 The first multicomponent 
approach, usually applied 
by binning SNPs according 
to their MAF, annotation, or 
physical regions to explore 
genetic architecture.

Requires that the same 
assumptions of GREML-SC hold 
within each GRM.

Biased when CVs have generally 
higher or lower levels of LD than 
the SNPs used to make the GRM. 
Relatively large standard errors.

Run times and memory 
requirements higher 
than GREML-SC and 
increase as a function of 
the number of variance 
components estimated.

GREML-LDMS-R7 A multicomponent approach 
that bins imputed SNPs by 
their MAF and regional LD.

Same as GREML-MS. Use of regional LD scores can lead 
to biases when CVs have different 
LD on average compared to 
surrounding SNPs. Relatively large 
standard errors.

Same as GREML-MS.

GREML-LDMS-I A multicomponent approach 
introduced here that bins 
imputed SNPs by their MAF 
and individual LD.

Same as GREML-MS. Appears to be the least biased 
approach, even when traits have 
complex genetic architectures. 
Relatively large standard errors.

Same as GREML-MS.

LDAK-SC15,20 Introduced to account for 
redundant tagging of CVs 
by common SNPs. Recently 
modified to incorporate 
error due to imputation and 
to alter the MAF effect-size 
relationship.

Same as GREML-SC, except that 
allelic effects are a function of 
LD. Extended to assume that 
effects are also a function of 
imputation quality and weakly 
inversely proportionate to MAF 
(α  =  –0.25).

Can correct for the overestimation 
observed in GREML-SC from 
redundant tagging of CVs, but 
otherwise about as biased as 
GREML-SC when assumptions are 
unmet, although the biases are 
sometimes in different directions.

Same as GREML-SC.

LDAK-MS15 A multicomponent extension 
of LDAK-SC that bins SNPs 
by MAF.

Requires that the same 
assumptions of LDAK-SC hold 
within each GRM.

Less biased on average than 
LDAK-SC, but more biased than 
GREML-LDMS-I or -R). Relatively 
large standard errors.

Same as GREML-MS.

Threshold 
GRMs24

A multicomponent approach 
with two GRMs: the normal 
(unthresholded) GRM built 
from all SNPs and a second 
GRM with entries set to 0 if 
below a threshold. Conducted 
in samples that include close 
relatives.

Same as GREML-SC for the 
unthresholded GRM. Assumes 
no shared environmental 
influences among close relatives.

Estimates associated with 
unthresholded GRM similar to 
those of GREML-SC. When used 
in samples that include close 
relatives, the second GRM captures 
pedigree-associated variation but 
can be upwardly biased by shared 
environmental influences.

See GREML-SC.

LD score 
regression19

Uses the slope from χ 2 (from 
GWAS) regressed on SNPs’ LD 
scores to estimate the h2 due to 
CVs in LD with common SNPs.

Infinitesimal model with allelic 
effects normally distributed.

Largely robust to confounding 
due to stratification and shared 
environmental influences. Estimates 
h2 due to common CVs only, even 
when used on imputed or WGS data. 
Underestimates h2 if the trait is not 
highly polygenic.

The most computationally 
efficient method of those 
compared and tractable 
for very large datasets.
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ĥSNP
2  with restricted maximum likelihood (REML). Such models 

can be fit using a single GRM (‘single-component GREML’)5,20 or 
by binning SNPs according to MAF, LD, and/or other annotations 
into multiple GRMs (multicomponent GREML)7,11, akin to multiple 
regression and leading to one ĥSNP

2  per GRM, which can be summed 
to derive total ĥSNP

2 .
We used WGS data from the Haplotype Reference Consortium21 

to mimic four levels of stratification found within Europe by 
varying the ancestry compositions of samples (each n =  8,201; 
see  Methods). We simulated traits using 1,000 randomly chosen 
WGS CVs within five different MAF ranges under typical assump-
tions (CV effect sizes independent of LD and inversely proportion-
ate to MAF, per-CV contribution to h2 invariant across MAF). Later, 
we tested alternative assumptions. While all CVs are SNPs in our 
simulations (i.e., we did not simulate non-SNP CVs, such as repeat 
polymorphisms), we hereafter restrict our usage of ‘SNPs’ to denote 
the markers used to create GRMs and ‘CVs’ to denote underlying 
causal variants. We estimated h2 using commonly applied methods 
(see Supplementary Note for additional methods) and used SNPs 
on a typical commercial platform (the UK Biobank Axiom array22), 
SNPs imputed from an independent reference panel, or WGS SNPs 
to create GRMs. When WGS SNPs were used to create GRMs, CVs 
were necessarily included in the markers that created the GRMs, 
whereas this occurred sporadically for array and imputed SNPs. 
We simulated 100 phenotypes for each parameter combination and 
found the means of ĥSNP

2  and their empirical 95% confidence inter-
vals across replicates. We did not simulate any phenotypic effects as 
a function of ancestry, and thus biases related to stratification in our 
results were due to the genotypic (for example, long-range LD), not 
environmental, effects of stratification.

We note that, in some contexts, it is useful to compare ĥSNP
2  to a 

corresponding population parameter, hSNP
2 , which is defined as the 

true proportion of variance explained by the set of SNPs used in 
the analysis23 and which in most cases is less than the full h2 due 

to imperfectly tagged CVs. However, such a formulation is cum-
bersome in the current context because hSNP

2  changes across each 
combination of genetic architecture and SNP data type. Instead, 
in all cases we compare ĥSNP

2  to the full (simulated) h2, with the 
recognition that downward biases in ĥSNP

2 are expected when CVs 
are imperfectly tagged by (array and imputed) SNPs used in the 
analysis and that such underestimates do not necessarily reflect 
estimation problems. Because this expected underestimation 
does not apply to WGS data, and because these methods will be 
increasingly applied to WGS data in the future, in this section we 
focus primarily on results from WGS data; results from imputed 
SNPs (which were similar) and array SNPs (which were often dis-
similar) are discussed briefly below but are presented in full in 
the Supplementary Note.

The most widely used estimation method, single-component 
GREML5 (GREML-SC, or the ‘genome-wide complex trait analy-
sis’ (GCTA) approach15), underestimated h2 when average CV 
MAF <  average SNP MAF, such as when CVs were rare and array 
SNPs were analyzed, and overestimated h2 when average CV 
MAF >  average SNP MAF, such as when CVs were common and 
WGS SNPs were analyzed (Fig.  1, Supplementary Figs.  1–6, and 
Supplementary Tables 1–3). These biases are predictable based on 
SNP–SNP versus SNP–CV LD: when the mean LD between CVs 
and SNPs (r 2

QM) is less than the mean LD between all SNPs (r 2
MM), 

which occurs when CVs are on average rarer than SNPs, ĥSNP
2  under-

estimates h2, and vice versa when >r r2
QM

2
MM (Supplementary 

Fig.  7)7. GREML-SC analyses using array SNPs led to modest 
overestimation of h2 when CVs were common (Supplementary 
Fig.  1), presumably because array SNPs are chosen to maximally 
tag surrounding genomic regions. Stratification led to long-range 
tagging between ancestry-specific (rare) CVs and ancestry-infor-
mative common SNPs, which altered these biases. In the most 
stratified sample, average LD for very rare SNPs was higher than 
average LD for common SNPs (Supplementary Fig. 7), which led to  
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Fig. 1 | Comparison of heritability estimation methods. Mean ĥSSNNPP
22  across 100 replicates from GRMs built from WGS SNPs in the least structured 

subsamples. hTotal
2  =  hSNP

2  +   >hIBS t
2 ; LDSC is shown using no principal components (PCs) as covariates in GWAS, using PCs as covariates, or partitioned  

using PCs with MAF-stratification. Estimates are from samples of unrelated individuals (relatedness <  0.05) except for those from the Threshold GRM 
method, which included all individuals. Simulated (true) h2 =  0.5. Colors represent the MAF range of the 1,000 randomly drawn CVs. See Methods for 
descriptions of each method, Supplementary Figs. for additional estimates, and Supplementary Table 2 for numerical results. Error bars represent 95% 
confidence intervals.
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overestimation of h2 when CVs were very rare and underestimation  
of common CV h2 when using WGS or imputed variants 
(Supplementary Figs. 3–5). Controlling for ancestry principal com-
ponents as fixed effects had no influence on these biases. Thus, 
stratification, CV MAF, and data type strongly influenced patterns 
of CV and SNP LD, leading to over- or underestimated h2 using 
GREML-SC.

Speed et al. introduced an approach (LD-adjusted kinships or 
LDAK) to LD-weighted SNPs, to account for the redundant tagging 
of CVs by multiple SNPs, which can bias ĥSNP

2  in certain situations20. 
We limit discussion here to single-component LDAK (LDAK-SC) as 
originally described20, and explore recent extensions of this model15 
below with different simulations. As with GREML-SC, LDAK-SC 
estimates were highly sensitive to stratification, CV MAF, and 
SNP data type. When using common SNPs for the analysis (array, 
imputed, or WGS), LDAK-SC underestimated h2 arising from rare 
CVs, but corrected the overestimation arising from common CVs 
observed with GREML-SC (Fig. 1 and Supplementary Figs. 1 and 2).  
However, when using all SNPs from WGS data, LDAK weighted 
SNPs inversely proportionally to their LD, resulting in near-zero 
weights for common SNPs and very high weights for rare SNPs 
(Supplementary Figs. 8 and 9). This led to underestimated h2 when 
CVs were common and overestimated h2 when CVs were very rare 
(Fig. 1 and Supplementary Fig. 4). This overweighting of rare SNPs 
appeared to exacerbate biases arising from stratification versus the 
unweighted (GREML-SC) approach (Supplementary Figs. 3–5). On 
the other hand, when all imputed SNPs were modeled in unstrati-
fied samples, LDAK appeared to provide decent estimates of h2 
(Supplementary Fig.  5), although results in the next section sug-
gest that this was due to offsetting biases that happened to cancel 
out across this particular combination of parameters. Overall, the 
LDAK-SC results reiterate that GREML-SC models are highly sensi-
tive to assumptions about genetic architecture.

We compared four multicomponent approaches: (i) GREML-MS7 
(4 GRMs), which binned SNPs into four MAF categories; (ii) 
regional LD- and MAF-stratified GREML (GREML-LDMS-R)7 (16 
GRMs), which binned SNPs by the MAF crossed by the average LD 
of SNPs in the surrounding ~200-kb region; (iii) individual LDMS 
GREML (GREML-LDMS-I; 16 GRMs), which we introduce here 
and which binned SNPs by MAF crossed by their individual levels 
of LD; and (iv) MAF-stratified LDAK (LDAK-MS)15,20 (4 GRMs), 
which binned SNPs by MAF and weighted them according to the 
LDAK model. There were no major differences between the results 
of the first three approaches: all provided roughly unbiased total 
ĥSNP

2  (the sum of ĥSNP
2  from each GRM) when used on imputed or 

WGS data (Fig. 1 and Supplementary Figs. 1–5). The similarity of 
these estimates was anticipated in this set of simulations because 
CV effects were unrelated to LD, but below we demonstrate that 
GREML-LDMS-I provides the most robust estimates when this is 
not the case. LDAK-MS provided less biased ĥSNP

2  than LDAK-SC 
but more biased ĥSNP

2  than the other three multicomponent GREML 
methods when CVs were rare. Biased ĥSNP

2  from LDAK-MS could 
occur because the simulation model does not match the LDAK 
assumption that CV effect sizes are a function of LD; we explore this 
issue below. In general, multicomponent models outperform single-
component models because r 2

QM is closer to r 2
MM within narrower 

MAF and LD ranges, and therefore ĥSNP
2  values associated with each 

partitioned GRM—and their sums—are likely to be approximately 
unbiased, consistent with previous work7. For similar reasons, these 
models were less biased in stratified samples than single-component 
models (Supplementary Figs. 3–5). However, the empirical standard 
errors of ĥSNP

2  from GREML-LDMS-I were ~20–50% higher than 
those from GREML-LDMS-R, which were in turn ~100% higher 
than those from GREML-SC (Supplementary Figs.  10–12). Thus, 
multicomponent GREML models require large sample sizes (for 
example, n >  30,000) to be informative.

Zaitlen et al.24 proposed a two-GRM approach to obtain ĥPED
2  and 

ĥSNP
2  in samples containing close relatives. The first GRM contains 

Aij for all pairs of individuals, while Aij values below a threshold, 
t (here t =  0.05), are set to 0 in the second GRM. The first GRM 
contains information on sharing of CVs tagged by SNPs and is 
used to obtain ĥSNP

2 , while the second GRM only contains informa-
tion from closely related individuals, reflecting sharing of CVs not 
tagged by SNPs, and is used to obtain ĥ >IBS t

2 , the additional h2 cap-
tured by close relatives. The sum of ĥ >IBS t

2  and ĥSNP
2  therefore pro-

vides an estimate of ĥPED
2 . In our simulations, ĥPED

2  was an unbiased 
estimate of h2 across most situations examined (Supplementary 
Figs. 13 and 14). However, ĥ >IBS t

2  and ĥSNP
2  were often severely over- 

or underestimated individually, depending on the CV MAF range 
and data type, with patterns of ĥSNP

2  similar to those observed for 
GREML-SC. Thus, attempts to use this method to infer genetic 
architecture should be treated with caution. Moreover, as acknowl-
edged by Zaitlen et al.24 and demonstrated in additional simulations, 
ĥPED

2  may be biased upward when environmental factors cause simi-
larity within nuclear or extended families (Supplementary Fig. 15).

LD score regression (LDSC) is an alternative, computation-
ally efficient approach that estimates h2 from the relationship 
between LD-tagging of individual SNPs and their expected 
genome-wide association study (GWAS) test statistics under an 
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Fig. 2 | Partitioned heritability methods to explore allelic spectra of traits. 
Mean ĥSSNNPP

22  for four MAF bins across 100 replicates from multicomponent 
approaches in unrelated individuals using WGS SNPs in the least 
structured subsample. Black horizontal lines are the true (simulated) h2 
values; note that in the top panel, the true h2 values differ across MAF. 
See Methods for descriptions of each method, Supplementary Figs. for 
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Error bars represent 95% confidence intervals.
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infinitesimal model10,19. Results from LDSC were similar when 
using array, imputed, or WGS SNPs (Fig.  1 and Supplementary 
Figs. 1, 2, and 16–18), as were estimates of the intercept, which 
reflect the contribution of stratification and cryptic relatedness 
to the GWAS test statistics (see Supplementary Note for further 
discussion of LDSC statistics). Across data types, LDSC gener-
ally underestimated h2 by 5–10% when CVs were common. LDSC 
increasingly underestimated h2 when CVs were rare, regardless 
of data type, because rare SNPs and CVs generally have very low 
LD scores. However, LDSC was largely immune to the genomic 
effects of stratification (see Supplementary Note), and we found 
no upward bias when unmodeled shared environmental effects 
were included in the simulations (Supplementary Fig.  15), sug-
gesting that ĥSNP

2  from LDSC is robust to familial environmental 
effects and provides a reasonable estimate of the lower bound of 
h2 tagged by common CVs.

We also simulated ascertained, case–control phenotypes apply-
ing the standard transformation to the liability scale25. While the 
smaller sample size from ascertainment increased standard errors, 
patterns of ĥSNP

2  estimates across methods were similar to those 
found with continuous phenotypes (Supplementary Fig. 19), sug-
gesting that our conclusions here apply to categorical outcomes.

Finally, multicomponent methods can also estimate h2 across 
different annotations or different MAF bins (the ‘allelic spectra’ of 
traits). Multicomponent GREML approaches accurately estimated 
the allelic spectra when using WGS data (Fig. 2 and Supplementary 
Fig. 20). However, these approaches underestimated the contribution 
of very rare CVs by up to 20% using imputed data (Supplementary 
Fig.  21), due to the poorer imputation quality of rare SNPs, and 
substantially underestimated their contribution when using array 
SNPs (Supplementary Fig. 22) due to the low LD typically observed 
between array SNPs and rare CVs (Supplementary Tables 4 and 5).

Comparison of ĥSNP
2  models under alternative assumptions. 

Recent work has shown that, conditioning on MAF, SNPs with 
individually low levels of LD contribute disproportionately to the 
heritability of multiple complex traits13, suggesting that CV effects 
are not independent of their levels of LD. The simulations above 
assumed that CV effect sizes, βk, were independent of LD and that 
rare CVs had, on average, larger effect sizes than common CVs, 
and therefore that the per-CV h2 was invariant on average across 
MAF. This is achieved by applying an α  of –1, which governs the 
MAF effect-size relationship, and assuming βk ~ N(0, 1), the default 
scaling of GREML-SC, GREML-LDMS-R, and GREML-LDMS-I5,7 
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(see Methods). Recently, Speed et al.15 argued that less biased ĥSNP
2  

estimates are obtained using a single-component model, but by 
assuming a higher contribution of common CVs (i.e., α  =  –0.25), 
by assuming SNP effect sizes, wk, are inversely proportionate to LD 
(Supplementary Figs. 8 and 9), and by weighting SNPs by imputa-
tion quality (r2) (the LDAK model). Across numerous traits, they 
observed LDAK-SC-based ĥSNP

2  25–43% higher than ĥSNP
2  from 

GREML-SC and GREML-LDMS-R, as well as higher log-likeli-
hoods from LDAK-SC models.

We compared the performance of these alternative assump-
tions of MAF, LD, and CV effect-size relationships with simulated 
phenotypes using CVs drawn from different MAF ranges under 
four different combinations of MAF effect-size (α  =  –1 or –0.25) 
and LD effect-size (βk ~ N(0, 1) or βk ~ N(0, wk)) relationships. We 
also simulated phenotypes from two distinct, functionally relevant 
genetic architectures. We first simulated phenotypes with CVs ran-
domly chosen from all DNase-I hypersensitivity sites, which have 
systematically lower LD17. Second, we simulated phenotypes using 
the empirically estimated, LD-dependent effect size distribution,  
βk ~ N(0, τ k), where τ k was estimated across 31 traits using parti-
tioned LDSC13 (see Methods). This latter simulation is particularly 
important because the functional, LD-dependent genetic archi-
tecture it used was independent of the assumptions made in the 
GREML and LDAK models used in estimation. Because LDAK-SC 
was intended to be used on imputed data, our primary results below 
are based on imputed SNPs, but results from WGS data are also pre-
sented in the Supplementary Note.

ĥSNP
2  from single-component models, including GREML-SC and 

LDAK-SC, were highly sensitive to model assumptions about MAF 
and LD effect-size relationships, as well as to differences between CV 
and SNP MAF distributions (Fig. 3, Supplementary Figs. 23 and 24,  
and Supplementary Tables 6 and 7). Moreover, in simulations with 
empirically derived genetic architectures13 (βk ~ N(0, τ k)), both 
GREML-SC and LDAK-SC (Fig. 4 and Supplementary Fig. 25 and 26)  
were highly biased. On the other hand, multicomponent GREML 
models were much more robust to model misspecification (Figs. 3 
and 4 and Supplementary Figs.  23–28). In particular, when we 
binned SNPs by their individual LD scores (GREML-LDMS-I), 
ĥSNP

2  estimates were robust across every genetic architecture we 
investigated (Fig. 3), including when CV effect sizes were drawn 
from the empirically estimated genetic architectures (Fig.  4). 
Across all genetic architectures and all data types investigated, 
GREML-LDMS-I had the lowest absolute bias of any method 
(Fig. 5). This suggests that particular assumptions regarding MAF 
and LD effect-size relationships are mitigated by the use of multi-
ple-component models.

Of note, log likelihood was not a reliable indicator of degree 
of bias. Speed et al.15 argued that higher log-likelihood assuming 
α  =  –0.25 than α  =  –1 suggested that the former was more tenable. 
Across single-component models, which had the same number 
of predictors and therefore comparable log likelihoods, models 
with higher log likelihoods were typically less biased. However, 
we observed multiple cases in which negligible differences in log 
likelihood translated into large differences in bias, as well as situa-
tions in which models with higher average log likelihoods produced 
more biased results than models with lower average log likelihoods 
(Supplementary Figs. 23–26).

Heritability of complex traits in the UK Biobank. We applied 
seven approaches using imputed SNPs to six complex traits in 
the UK Biobank26 (Fig.  6, Supplementary Figs.  29 and 30, and 
Supplementary Table 8). Differences in ĥSNP

2  across methods were 
consistent with our simulations. Estimates from single-component 
models were often higher than those from multicomponent mod-
els that bin SNPs by MAF and LD. For instance, the majority of 
height h2 is attributable to common CVs27, and GREML-SC and 

LDAK-SC ĥSNP
2  of height were unrealistically high (> ĥPED

2 ), which 
can occur when CVs are more common than SNPs used to build 
the GRM (Figs. 1, 3, and 4). On the other hand, estimates from mul-
ticomponent GREML were much more reasonable. These results 
provide context for understanding previously published estimates 
(see Supplementary Note), including those from Speed et al.15 show-
ing higher LDAK ĥSNP

2 , and highlight the dangers of using single-
component models that rely on strong assumptions about CV-effect 
sizes and MAF distributions.

Our results also suggest that the allelic spectra differ across the 
six traits, as estimated using GREML-LDMS-I, the most accu-
rate approach in our simulations (Supplementary Fig.  31 and 
Supplementary Tables 9 and 10). For example, while the majority 
of height heritability was explained by common SNPs, 59% of fluid 
intelligence h2 was due to rare CVs, with a total ĥSNP

2  (~0.35) that 
approached ĥPED

2 . Nevertheless, our simulations suggest that vari-
ance due to increasingly rare CVs was underestimated by ~20% for 
all traits, due to low imputation quality at lower MAF. This under-
estimate was probably more severe because the imputation refer-
ence panel (combined UK10K and 1,000 Genomes) used in the UK 
Biobank data was smaller by roughly half and less diverse than the 
reference panel used in our simulations.
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Discussion
We have demonstrated that estimates of h2 and allelic spectra using 
SNP data can be biased in a number of ways that are sometimes 
difficult to foresee and depend strongly on a complex interplay 
between the method and type of data used in the analysis, trait 
genetic architecture, degree of sample stratification, shared environ-
mental effects, and whether close relatives are included or excluded. 
Understanding how these factors influence ĥSNP

2  is crucial for proper 
interpretation of often-conflicting published estimates and for opti-
mal design of future studies. Additional factors that we did not 
investigate might also influence the biases of ĥSNP

2  across methods, 
such as technical artifacts28, environmental factors that co-vary with 
ancestry29,30, CVs with MAF <  0.0003, or non-SNP CVs.

LD is central to the performance of all the methods compared here, 
particularly the LD among SNPs used to create the GRM and that between 
CVs and SNPs7,20. Single-component models, such as GREML-SC and 
LDAK-SC, are highly sensitive to assumptions, especially when rare 
imputed or WGS SNPs are used to create the GRM. This is problematic 
given that it seems unlikely that a single set of assumptions will hold for 
all traits and across the entire allelic spectrum. Alternatively, multicom-
ponent models that partition ĥSNP

2  across multiple LD and MAF bins pro-
vide the most robust estimates across the majority of contexts explored 
here, while simultaneously providing insight into the allelic spectra of 
complex traits. However, they are more computationally intensive and 
have higher standard errors than single-component models, and they 
require larger datasets to achieve reliable estimates. Nevertheless, such 
data are now at hand, and if the goal is to obtain the least biased estimates 
of h2 or to estimate allelic spectra, we recommend using multicompo-
nent GREML models. Even when using multicomponent approaches, h2 
is likely underestimated, but will improve as sample sizes increase and 
larger imputation panels and/or WGS data are used.

Based on the results of the present and previous studies, we sum-
marize our suggestions for using SNPs to estimate h2 and allelic 
spectra of complex traits. First, quality control of genetic data 
is crucial, particularly for case–control and/or multiple-cohort 
datasets, in which technical artifacts can inflate or deflate ĥSNP

2 28.  
Covariates (ancestry principal components, cohorts, plates, etc.) 
that might be confounded with genetic similarity should be included 
as fixed effects in GREML models and in the GWAS models for 
LDSC31. Related individuals may share common environmental 
and nonadditive genetic effects, upwardly biasing estimates of h2;  
using unrelated individuals should provide estimates not inflated 
by such factors32.

Second, the model and data type used in the analysis strongly 
influence estimates. When genotype data are unavailable or imprac-
tical to use, LDSC provides a lower bound of the h2 captured by 
common CVs and is unaffected by confounding due to stratifica-
tion and the common environment. Single-component methods 
such as GREML-SC and LDAK-SC are highly sensitive to model 
misspecification, which can lead to severely biased estimates of 
heritability. Moreover, they are also sensitive to the effects of strati-
fication, which are not mitigated by inclusion of ancestry covariates. 
We recommend these approaches only when sample sizes are small 
(for example, n <  30,000) and homogeneous. Multicomponent 
approaches with WGS or imputed SNPs provide the most accurate 
estimates of h2 and allelic spectra across a range of genetic archi-
tectures and stratification levels. When using imputed data, SNPs 
should be imputed using the largest and most diverse reference 
panel possible (for example, Haplotype Reference Consortium21) 
in order to more reliably capture the effects of rare CVs. However, 
more GRMs lead to larger standard errors, necessitating larger sam-
ple sizes (n >  30,000). Of the multicomponent approaches, GREML-
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Fig. 5 | Bias of heritability estimates under different model assumptions. Boxplots of the absolute bias of heritability estimates (∣ ∣ĥ −E h( )SNP
2 2 ) across 

all simulated phenotypes. Results are derived from Supplementary Figs. 24 and 26 using WGS data to estimate GRMs (top), and from Figs. 3 and 4 using 
imputed variants to estimate the GRMs (bottom). The x axis indicates the parameters for the estimation model; all used a single GRM except for LDMS, 
which used 16 GRMs (α  =  –1) stratified by MAF and either regional (R) or individual SNP (I) LD score. *Typical GREML-SC parameters. †Typical LDAK-SC 
parameters. Boxplots show medians and interquartile ranges, with whiskers extending to 1.5 ×  the quartiles and more extreme points shown for n =  22 
(WGS) and 26 (imputed) mean estimates of heritability.
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LDMS-I, which we introduce here and which bins SNPs by MAF 
and individual LD levels, appears to perform the best.

URLs.BOLT-REML, https://data.broadinstitute.org/alkes-
group/BOLT-LMM/. GCTA, http://cnsgenomics.com/software/
gcta/#Overview. Haplotype Reference Consortium, http://www.
haplotype-reference-consortium.org. LDSC, https://github.com/
bulik/ldsc/wiki. LDAK, http://dougspeed.com/ldak/. UK Biobank, 
http://www.ukbiobank.ac.uk/.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41588-018-0108-x.
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Methods
Samples and population structure. We simulated continuous phenotypes derived 
from WGS data in the Haplotype Reference Consortium (HRC)21. The HRC 
comprises ~32,500 individuals from multiple WGS studies, with called genotypes 
at all sites with minor allele count ≥  5. We had access to a subset (Supplementary 
Note) of 21,500 individuals with genotype calls at 38,913,048 biallelic SNPs. 
This large WGS dataset allowed phenotype simulation with differing genetic 
architectures under realistic patters of LD structure, stratification, and relatedness.

The HRC is mainly composed of individuals with European ancestry. To reduce 
the effects of worldwide stratification, we identified European individuals using 
principal components analysis (PCA). We used flashpca33 on 133,603 MAF- and 
LD-pruned SNPs (plink234 commands -maf 0.05-indep-pairwise 1000 400 0.2) and 
extracted the first ten PCs. We used the 1,000 Genomes individuals in the HRC as 
anchor points for ancestry and identified 19,478 individuals of European descent, 
including individuals of Finnish and Sardinian ancestry using k-means clustering 
in R35 (Supplementary Fig. 32).

To identify subsets of these 19,478 individuals spanning different levels of 
genetic heterogeneity, we reran PCA with only these individuals, then identified 
four increasingly homogenous subgroups within them using k-means clustering 
(Supplementary Fig. 33 and Supplementary Note). We sampled an equal number 
of individuals from each subset at a relatedness cutoff of 0.1 (n =  8,201) and also 
identified individuals with relatedness less than 0.05 within each group (n =  7,792; 
n =  8,115; n =  8,129; and n =  8,186 for the four subsamples) to examine how 
relatedness and stratification influence ĥSNP

2  estimates.

Simulation of phenotypes and whole genome data types. To assess how different 
methods performed on a range of genetic architectures, we simulated phenotypes 
from CVs drawn randomly from five MAF ranges from the WGS data: common 
(MAF ≥  0.05), uncommon (0.01 ≤  MAF <  0.05), rare (0.0025 ≤  MAF <  0.01), very 
rare (0.0003 ≤  MAF <  0.0025), and all SNPs that had a minor allele count (MAC) 
≥  5 (MAF ≥  0.0003). We generated phenotypes from 1,000 CVs from the model 
yi = gi + ei, where gi =  ∑ Xikβk and Xik =  (zik – 2pk)[2pk(1 – pk)]α/2, where zik was the 
genotype, coded as 0, 1, or 2 of individual i at the kth CV, pk was the MAF within 
a population subset, and βk was the kth allelic effect size, drawn from ~N(0,1). In 
these simulations, we used α  =  –1, assuming larger average effect sizes for rarer 
SNPs. The gi values were standardized and added to residual error drawn from 
~N(0,(1 – h2)/h2) for h2 =  0.5. A total of 100 replicated phenotypes were simulated 
for each CV MAF range and for each of the four population stratification subsets. 
Note that simulations did not include any ancestry (i.e., PC) effects, and thus 
stratification-driven biases were due to the genotypic (for example, long-range LD) 
effects of stratification.

To simulate ascertained case–control phenotype data in samples with some 
or low stratification (Supplementary Fig. 33b,c), we converted the continuous 
phenotypes simulated above to dichotomous case–control data using a prevalence 
of 20% (k =  0.2). We then combined the cases with an equal number of randomly 
sampled controls to simulate ascertained datasets, which reduced sample sizes 
(~40% of the continuous trait data). Note that this altered sample size reduces the 
genetic variance for phenotypes derived from rarer CVs. We transformed estimates 
of h2 to the liability scale using the transformation described in Lee et al.25.

To simulate array, imputed, and WGS data types, we first extracted from the 
WGS data SNP positions corresponding to a widely used commercially available 
genotyping array, the UK Biobank Affymetrix Axiom array (the array SNP 
dataset). We then imputed genome-wide variants using these Axiom SNPs and 
independent HRC samples as a WGS reference panel (the imputed dataset). Finally, 
we used the HRC WGS data directly (the WGS dataset). See Supplementary Note 
for details of each dataset. MAF distributions of the different data types for two of 
the structure subsamples are shown in Supplementary Fig. 34.

Heritability estimation methods tested. We briefly describe our implementation 
of the most commonly used methods to estimate h2 and partition genetic variation 
using genome-wide data (see Supplementary Note for descriptions of and results 
from additional, less commonly used methods). For all methods except LDSC 
(described below), we generated GRMs following the standard procedures of each 
method, and estimated ĥSNP

2  using GCTA36. In all models, variance component 
estimates were unconstrained (for example, by using the -reml-no-constrain option 
of GCTA) and included 20 PCs (10 from worldwide PCA and 10 from the specific 
subsample PCA) and sequencing cohort as fixed effects.

Single-component GREML (GREML-SC). Yang et al.5 introduced the single-
component approach using a mixed-effects model, with GRM entries:
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− −

−
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x p x p

p p
1 ( 2 ) ( 2 )
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(1)ij
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m
ik k jk k

k k

where m is the number of SNPs, xjk is the genotype (coded as 0, 1, or 2) of individual j 
at the kth locus, and pk is the MAF of the kth locus. The variance of the phenotypes is

σ σ= +y A Ivar ( ) (2)v e
2 2

where the variance explained by the SNPs (σv
2) and error variance (σe

2) are  
estimated using restricted maximum likelihood (REML) implemented in the 
GCTA package36. The proportion of the total variance explained by all SNPs is then 
a measure of heritability (ĥ σ σ σ= ∕ +( )SNP v v e

2 2 2 2 ). Typically, the set of m SNPs used 
to build the GRM is the set of SNPs with MAF ≥  0.01 (hereafter ‘common SNPs’) 
and unrelated individuals (relatedness ≤  0.05). We compared this typical approach 
to one using all SNPs with MAC ≥  5 (hereafter ‘all SNPs’) in each particular 
stratification subsample and for each data type (note that ~9.5% of Axiom array 
positions have MAF <  0.01 in our sample), as well as to an approach using less 
stringent relatedness thresholds (relatedness <  0.10 and no relatedness threshold). 
For analyses that used no relatedness threshold, inclusion of close relatives 
increased our sample sizes to n = 9,916; n = 8,701; n = 8,715; and n = 8,506 for  
the samples with most, some, low, and least stratification, respectively 
(Supplementary Fig. 33).

MAF-stratified GREML (GREML-MS). ĥSNP
2  is expected to be a biased estimate 

of h2 when using the GREML-SC method when the MAF distribution of the 
CVs does not match the MAF distribution of SNPs used to generate the GRM11. 
Stratifying SNPs into MAF bins in a multiple GRM GREML approach can mitigate 
this bias and can partition ĥSNP

2  into that explained by different SNP MAF bins, 
lending insight into the allelic spectra of complex traits6,7. For each data type, we 
applied this approach using four MAF bins, matching the CV MAF bins used for 
phenotype simulation.

LD- and MAF-stratified GREML (GREML-LDMS-R and GREML-LDMS-I). 
Extending the GREML-MS method to account for different levels of LD 
throughout the genome, Yang et al.7 introduced an approach (originally termed 
GREML-LDMS but which we term GREML-LDMS-R here) that stratifies SNPs 
jointly by their MAF and regional LD scores, defined as the sum of r2 between the 
focal SNP and all other SNPs in a 200-kb sliding window. We estimated LD scores 
using the default settings in GCTA (200-kb block size with a 100-kb overlap), and 
stratified SNPs into LD score quartiles (see Yang et al.7 for details). This resulted 
in 16 GRMs (4 MAF bins ×  4 LD bins) and therefore 16 values of ĥSNP

2 , which were 
summed to derive total ĥSNP

2 . SNPs with individually low levels of LD contribute 
disproportionately to the heritability for multiple complex traits, particularly low 
LD SNPs in regions of high LD13. Because these results suggest individual rather 
than regional LD levels influence heritability, we developed and compared results 
from an alternative approach (GREML-LDMS-I) that stratified by individual 
(rather than regional) SNP LD scores, again binning SNPs by LD quartiles and four 
MAF bins, for a total of 16 GRMs.

Single- and multicomponent LD-adjusted kinships (LDAK-SC and LDAK-MS). 
Speed et al.20 noted that because LD varies across the genome, CVs in regions 
of high LD receive disproportionate weight by equation (1) above. The original 
LDAK20 approach weights SNPs according to individual LD, potentially correcting 
for the bias introduced when there is variation in how well CVs are tagged by 
SNPs, and assumes standard MAF-CV effect size scaling (α =  –1). We used 
LDAK520 to estimate these LD-weighted GRMs, which first thins SNPs in very high 
LD to reduce redundant tagging, then estimates SNP weights, wk, that are inversely 
proportional to their average LD with other SNPs. We also applied the MAF-
stratified approach described above, but using LDAK weights (LDAK-MS). For the 
single-component model (LDAK-SC), we used all SNPs (MAC ≥  5) as well as only 
common SNPs (MAF ≥  0.01) to build the GRM for each data type. For the MAF-
stratified approach, following recommendations in the LDAK documentation, we 
estimated SNP weights over the union of all SNPs (MAC ≥  5), and then computed 
GRMs for each MAF class separately. We then applied the multiple GRM method 
with these LDAK-weighted GRMs to estimate ĥSNP

2  using GCTA. Results from the 
first set of simulations (Figs. 1 and 2) come from the traditional LDAK approach 
described above; results from the second set of simulations (Figs. 3–5) come from 
the updated LDAK approach described in the section below (Simulation of data 
and comparison of ĥSNP

2  under alternative assumptions about CV effect sizes).

Extended genealogy with thresholded GRMs. Zaitlen et al.24 introduced a method 
to simultaneously obtain ĥSNP

2  and ĥPED
2  by using two GRMs in a sample containing 

close relatives. The first GRM contains all Aij, whereas the second GRM sets Aij 
values below a threshold, t, to 0. The first GRM, therefore, contains information 
on allele sharing of (mostly common) variants in unrelated and related individuals 
(estimating ĥSNP

2 ), while the second only contains information from closely related 
individuals (estimating ĥ >IBS t

2 , following Zaitlen et al.24). We tested two relatedness 
thresholds (t ≤  0.05 and t ≤  0.1) for the second GRM. The sum of ĥ >IBS t

2  and ĥSNP
2  

provides an estimate of total h2, similar to ĥPED
2 , with all the same potential biases 

that exist in ĥPED
2  from designs that use close relatives. By necessity, all analyses 

using this approach included close relatives, which could lead to confounding 
between genetic and environmental similarity if shared environmental effects 
are not modeled37,38. Indeed, Zaitlen et al.24 argue that such shared environmental 
effects were the likely cause of higher ĥPED

2  estimates among relatives who shared an 
environment through cohabitation (for example, half-siblings) compared to equally 
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related relatives that did not share a cohabitation environment (for example, 
grandparents and grandchildren). We therefore assessed whether ĥSNP

2  and ĥPED
2  

estimates from this method (as well as from GREML-SC and LDSC) were biased 
when extended family shared environmental effects were present but unmodeled in 
samples of closely related individuals (see Supplementary Note).

LD score regression (LDSC). LDSC uses a different approach to estimate the 
heritability tagged by common CVs. Rather than estimating relatedness within 
a sample for use in mixed-model GREML analysis, LDSC regresses GWAS test 
statistics (χ 2) on SNPs’ LD scores, which reflect the degree to which each SNP is 
correlated with surrounding SNPs10,19. For a polygenic model, the expected GWAS 
test statistic of SNP j, χj

2, is

χ = ∕ + +l N h l M NaE[ ] ( ) 1 (3)j j j
2

SNP
2

where N is the sample size, M is the number of SNPs, lj is the LD score (= ∑ rk jk
2 )  

measuring the tagging of surrounding variants by SNP j, and a is a measure of 
confounding biases arising from stratification and cryptic relatedness. Thus, 
regressing GWAS test statistics on per-SNP LD scores allows for both estimation of 
ĥSNP

2  and assessing the degree of confounding or polygenicity of a trait19.  
Bulik-Sullivan et al.19 argue that LDSC provides unbiased estimates of h2 tagged 
by common SNPs regardless of whether GWAS test statistics are estimated with 
or without controlling for ancestry, environmental covariates, or relatedness. Here 
we estimated GWAS test statistics using plink2 without controlling for ancestry 
covariates or for ancestry covariates (20 PCs and sequencing cohort as above).  
We used the ldsc package with default parameters (see “URLs”) to perform  
LDSC. We calculated LD scores for all SNPs using WGS data, including common 
and rare SNPs. As recommended by Bulik-Sullivan et al.19, we used unrelated 
individuals (relatedness ≤  0.05) and only common SNPs to perform the  
regression itself, because the relationship between the GWAS χ 2 and LD score is 
unclear for rare (MAF <  0.01) SNPs. We examined the relationship among ĥSNP

2

, the intercept, the mean χ 2 value, and the genomic control inflation factor, λ GC 
(see Supplementary Note).

LDSC can also be used to partition heritability among annotations10. We 
applied this approach using the four MAF bins described above. Because our 
MAF bins included very rare SNPs, for this MAF-stratified LDSC, we used GWAS 
test statistics from all SNPs (MAF ≥  0.0003, using the -not-5–50 flag in the ldsc 
package) while controlling for covariates as above.

Simulation of phenotypes and comparison of ĥSNP
2  under alternative 

assumptions about CV effect sizes. We tested the LDAK-SC, GREML-SC, and 
GREML-LDMS-R and -I methods on phenotypes emulated under alternative 
assumptions about CV effect sizes to determine the degree to which the methods 
were robust to model misspecification. To simulate phenotypes under alternative 
effect size assumptions, in the low-stratification sample only (Supplementary 
Fig. 33c), we varied the MAF effect-size relationship (α  =  –1 or –0.25) and the 
effect size distribution (βk ~ N(0,1) or ~N(0,wk), where wk is the LDAK weight of 
the kth CV estimated from the WGS data, which is inversely proportional to the 
SNP LD score (Supplementary Figs. 8 and 9). When βk ~ N(0,1) and α  =  –1, this 
model is the same as above and as previously described7. WGS CVs were drawn 
randomly from common SNPs (MAF >  0.05), very rare SNPs (MAF <  0.0025), all 
SNPs (MAF ≥  0.0003), or randomly from all DHS sites (systematically lower LD17), 
annotated for all UK10K SNPs with MAC ≥  2. Note that, in Speed et al.15, effect 
sizes, βk, are also assumed to be proportionate to the imputation quality scores (r2). 
Because we were simulating CVs from WGS data rather than imputed variants, we 
did not include the r2 term for simulating CV effect sizes.

Additionally, we simulated phenotypes using an independent LD architecture 
derived from the 75-annotation baseline-LD model described in ref. 13, which 
contains coding, conserved, DHS and other functional annotations, ten MAF 
bins, and six LD-related annotations modeling multiple LD-related architectures 
(including predicted allele age, recombination rate, and CpG-content). For these 
simulations, we annotated 20,678,452 SNPs with allele count greater or equal than 
2 in 3,567 UK10K unrelated individuals, and modeled the variance of the kth SNP, 
τ k, proportional to θ∑ = a k( )c c c1

75 , where ac(k) was the continuous value annotations 
of CV k for annotation c and θc was the per-SNP contribution of one unit of the 
annotation ac to the heritability. We used the values of θc estimated with stratified 
LDSC on 31 independent traits13 and constrained θc to be positive. Finally, as θc and 
stratified LDSC hold only for common SNPs, we rescaled the variance of all τ k so 
that the heritability explained by the four rarest of the ten MAF bins (delimited by 
0, 0.1%, 0.5%, 1%, and 5% boundaries) were equal to the expected variance of the 
bin ( =  ∑ − α+p p( (1 ))k k

1 , where α  =  –0.28, as estimated by Loh et al.12). We then 
simulated phenotypes as described above with effect sizes βk drawn from ~N(0,τ k).

We compared estimates from models applying different assumptions of α  and 
βk. The traditional GREML-SC, GREML-LDMS-R, and GREML -LDMS-I estimate 
GRMs using α  =  –1 and βk ~ N(0,1), while the updated LDAK-SC model of Speed 
et al.15 uses α  =  –0.25 and βk ~ N(0,wk), as well as weighting SNPs by imputation 
r2. To test these assumptions, we estimated GRMs using either α  =  –1 or –0.25 and 
either weighting by LDAK weights or not. For imputed data, we also weighted SNP 
contributions to the GRM by imputation r2. For GREML-LDMS-R and -I, we used 
α  =  –1 and no LDAK or imputation r2 weighting.

Heritability of complex traits in the UK Biobank. We estimated heritability  
for six continuous phenotypes in the initial release of the UK Biobank26  
(n ~150,000) using the most commonly applied methods (Fig. 6). To reduce the 
effects of stratification, we used individuals of European ancestry (Supplementary 
Fig. 33). To estimate the GRMs, we separately used directly genotyped Axiom 
array positions as well as imputed genome-wide SNPs with IMPUTE info score 
≥  0.3. See Supplementary Table 8 for the list of all methods we applied, and 
see Supplementary Note for additional methods and details.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability. Data are from the Haplotype Reference Consortium (http://
www.haplotype-reference-consortium.org/) and the UK Biobank (http://www.
ukbiobank.ac.uk/) and can be accessed through those resources.
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