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Objective: Clinically, attention-deficit/hyperactivity disorder (ADHD) is characterized by
hyperactivity, impulsivity, and inattention and is among the most common childhood disor-
ders. These same traits that define ADHD are variable in the general population, and the
clinical diagnosis may represent the extreme end of a continuous distribution of inattentive and
hyperactive behaviors. This hypothesis can be tested by assessing the predictive value of
polygenic risk scores derived from a discovery sample of ADHD patients in a target sample
from the general population with continuous scores of inattention and hyperactivity. In addi-
tion, the genetic overlap between ADHD and continuous ADHD scores can be tested across
rater and age. Method: The Psychiatric Genomics Consortium has performed the largest
genome-wide analysis (GWA) study of ADHD so far, including 5,621 clinical patients
and 13,589 controls. The effects sizes of single nucleotide polymorphisms (SNPs) estimated
in this meta-analysis were used to obtain individual polygenic risk scores in an indepen-
dent population-based cohort of 2,437 children from the Netherlands Twin Register. The
variance explained in Attention Problems (AP) scale scores by the polygenic risk scores
was estimated by linear mixed modeling. Results: The ADHD polygenic risk scores signifi-
cantly predicted both parent and teacher ratings of AP in preschool- and school-aged
children. Conclusion: These results indicate genetic overlap between a diagnosis of ADHD
and AP scale scores across raters and age groups and provides evidence for a dimensional
model of ADHD. Future GWA studies on ADHD can likely benefit from the inclusion of
population-based cohorts and the analysis of continuous scores. J. Am. Acad. Child Adolesc.
Psychiatry, 2014;53(10):1123-1129. Key Words: ADHD, attention problems, polygenic scores,
genetics, dimensional models
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ttention-deficit/hyperactivity ~disorder
(ADHD) is a condition characterized by
age-inappropriate hyperactivity /impul-
sivity and inattention, resulting in significant
impairment in about 5% of children."” In the
diagnostic manuals used in clinical practice,
for example, the International Classification of
Diseases, 10th Revision (ICD-10), DSM-IV, and the
DSM-5,"%* a clinical diagnosis of ADHD is a

A
Supplemental material cited in this article is available online.

binary trait that can be useful for guiding
treatment and care. At the population level,
ADHD may represent the extreme end of a
continuous distribution of inattentive and hy-
peractive behaviors.”” Classical twin studies
support the validity of the dimensional model®
but at this point in time, an additional ap-
proach to test for a dimensional model of
ADHD is to assess whether genetic risk factors
for an ADHD diagnosis influence behavior
across the entire spectrum of inattentive and
hyperactive behavior. Such an approach also
may clarify apparent differences in the ADHD
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assessment across raters and age groups. Cor-
relations between parent and teacher ratings are
generally only moderate, as are correlations
within maternal ratings across preschool and
school age.®'? Previous studies indicate that the
extent to which assessment from different raters
and across different ages overlap is due to
overlap of genetic effects across both raters and
time,s'12 but these results are based on, for
example, latent variable modeling approaches
rather than on measured genetic variants.
ADHD diagnoses and continuous measures of
ADHD behaviors are highly heritable in child-
hood, with about 60% to 80% of the variance
due to genetic factors.">"” Despite this high
heritability, current genome-wide association
(GWA) studies have thus far been unsuccessful
in detecting genetic risk variants for ADHD at
genome-wide significant levels, suggesting a
high degree of polygenic inheritance.'® A study
by the Psychiatric Genomics Consortium (PGC)
showed that 28% of the liability to ADHD is
explained by single nucleotide polymorphisms
(SNPs) present on platforms that are commonly
used for genome-wide genotyping.'® These ob-
servations imply that many common variants of
small effect stay undetected in current GWA
studies due to limited sample size but very
likely contribute to the genetic liability of
ADHD. The effect sizes obtained in ADHD
GWA studies can be used to estimate the genetic
risk of the individual; so-called polygenic risk
scores are obtained by multiplying the measured
number of risk alleles at a particular locus by the
effect size observed in a GWA study summing
over all SNPs that surpass a certain threshold of
significance.”**' With regard to ADHD, poly-
genic risk scores based on the results of the PGC
ADHD meta-analysis published in 2010 signifi-
cantly predicted ADHD status in an indepen-
dent sample of 452 clinical patients with ADHD
and 5,081 controls, with higher polygenic risk
scores in patients with ADHD and comorbid
aggression.'®** Polygenic risk scores can also be
used to assess the genetic overlap across traits.
For example, polygenic risk scores based on a
GWA study on schizophrenia predict quantita-
tive measures of psychosis.>> Similarly, poly-
genic risk scores based on a GWA study in
patients with major depressive disorder (MDD)
are predictive of continuous scores of anxiety
and depression in a general population sam-
ple?* In the current study, we obtained poly-
genic risk scores to assess the genetic overlap

between clinically assessed ADHD and attention
problems (AP) in a general population sample of
children who were rated by their parent at
preschool age and by their parents and teachers
at school age.

METHOD

Genotype and phenotype data were available in a
sample of 2,437 children of Dutch descent who are
registered with the Netherlands Twin Register
(NTR).*?® In the Young NTR (YNTR), surveys as-
sessing the health and behavior of newborn twins are
sent out to their parents at registration and at age 2, 3,
5,7,10, and 12 years. At age 7, 10, and 12 years, parents
are asked for their consent to invite the teachers of the
twins to provide ratings of the children’s behavior.

AP

Age-appropriate versions of the Achenbach System
of Empirically Based Assessment (ASEBA) have been
included in the YNTR surveys.27’28 At ages 3, 7, 10,
and 12 years the Child Behavior Checklist (CBCL)
was collected from parents. At ages 7, 10, and 12
years, the Teacher Report Form (TRF) was included
in teacher surveys. Respondents were asked to rate
the child’s behavior on ~120 items on a 3-point scale
(0 = not true; 1 = somewhat or sometimes true; 2 =
very true or often true). The AP scale describes hy-
peractive and inattentive behavior. The AP scale
contains 5 items at preschool age, and at school age,
10 items for parents, and 26 items for teachers. When
multiple measures were available for the school-age
(age 6-13 years) mother or teacher ratings, the mea-
sure closest to age 10 was chosen. There were 2,132
twins with maternal AP ratings at school age; for
1,888 twins (89%), AP was assessed between age 9
and 11, for 50 twins at age 12, and for 194 twins, at
age 7 or 8 years. Teacher ratings were available at
age 9 to 11 for 1,018 twins, at age 7 to 8 for 152 twins,
and at age 12 for 442 twins. Maternal and paternal
ratings were highly correlated (r = 0.71 and 0.73 for
preschool and school age) and gave similar results;
therefore, we report only on the larger set of
maternal ratings.

Genotype Data

All participants were genotyped on the Affymetrix
6.0 platform, which contains more than 900,000 SNPs.
Quality control and imputation were performed
on a larger dataset (N = 14,003) that also included
genotype data from the parents of the twins. SNP
data were cleaned with the following criteria: Hardy—
Weinberg equilibrium (HWE) p value >.00001, minor
allele frequency (MAF) >0.01, call rate >0.95, concor-
dance rate in duplicate samples >0.98, Mendelian
error rate <0.02, and allele frequency difference
with reference set <0.20. C/G and A/T SNPs
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were only included if MAF was <0.35. Samples
were cleaned on the following criteria: call rate
>0.90, heterozygosity —0.10 < F < 0.10, consistency
of X chromosome genotypes with known gender,
consistency of expected and observed family relations,
and Mendelian error rate <0.02. Ethnic outliers were
excluded from the association analyses. Next, imputa-
tion was done by using known haplotypes from the
1000 Genomes Project (http://www.1000genomes.
org/). The SNP data were phased in Mach 1.0 and
imputed with Minimac using all ethnicity panels of the
1000 Genomes Phase I Integrated Release Version 3
build 37 (2010-11-23 sequence data freeze, 2012-03-14
haplotypes).

Within the Psychiatrics Genomics Consortium, a
meta-analysis of 5,621 clinical patients with ADHD
and 13,589 controls was conducted (P. Holmans for the
PGC: presentation 21st World Congress of Psychiatric
Genetics, October 2013, Boston, MA). These data were
imputed using CEU+TSI Hapmap Phase 3 build 36 as
the reference set (http://hapmap.ncbi.nlm.nih.gov/).
Polygenic risk scores were calculated in Plink. SNPs
were selected on the following criteria: info score
>0.30 (a measure of imputation quality) in both the
discovery and the target set, MAF >0.02 in both sets,
consistency of reported alleles across sets, and a
frequency difference across sets <.15. SNPs with C/G
or A/T alleles were included only if MAF was <0.35.
For each individual, the number of observed risk
alleles at a particular locus (0,1,2) was multiplied with
the In(OR) observed in the PGC meta-analysis and
summed over all SNPs. Several sets of polygenic risk
scores were created based on different p value
thresholds in the discovery set (thresholds .0001, .001,
.01, .05, .1, .2, .3, 4, .5, and 1).

Data Analyses

AP scores were regressed on the polygenic risk
scores in a linear mixed model, as implemented in
SPSS (version 20). AP was predicted from the
polygenic risk scores, plus sex and age at
measurement and 4 principal components (PCs)
that reflect Dutch population structure.” These
predictors were included as fixed effects in the
model. The dependency between measures in
related individuals were accounted for by including
a random effect of family. Because families consist
of monozygotic (MZ) and dizygotic (DZ) twin pairs
who differ in their genetic relatedness (mono-
zygotic twins share all additive [A] and dominance
[D] genetic variation, whereas dizygotic twins do
not), the effect of family was allowed to be different
for MZ and DZ families. A script detailing the
analyses is included in Supplement 1 (available
online). Within each analysis, polygenic risk scores
and AP scales were standardized, that is, the mean
of the subsample was subtracted from each score
and divided by the standard deviation. The variance

explained by the polygenic risk scores was obtained by
squaring the regression coefficient. All AP measures
showed significant skewness and kurtosis (Figure S1,
available online). To test whether the violation of
distributional assumptions influenced the results, all
analyses were repeated on quantile normalized scores
(van der Waerden transformation,®® ranks averaged for
tied data). This led to similar conclusions (Table S1,
available online). To further corroborate these findings
and to obtain corrected robust (“Huber—White”) stan-
dard errors of the regression coefficients, analyses were
replicated in R (version 2.15). This was accomplished
by respecification of the mixed model (in R package
lavaan). This approach, which is detailed in Supple-
ment 1 (available online), also led to similar conclu-
sions. A detailed overview of the results can be found
online in Supplement 1 (Figure S2 and Table SI).
Finally, the analyses were repeated to a subset of in-
dependent SNPs present in both the discovery and
target set by using the clumping procedure in Plink
(option —clump, with settings —clump-pl 1 —clump-p2
1 —clump-12 0.25 —clump-kb 500). Results can be found
in Figure S3, available online, where the explained
variance was lower.

RESULTS

Table 1 shows the number of individuals and the
means and standard deviations of age at mea-
surement, and AP scores for the mother and
teacher ratings at preschool and school age.
Because of the longitudinal structure of the
data, there is substantial overlap of individuals
across these measures; 1,899 of 2,132 children
with maternal ratings at school age also had
ratings at preschool age (phenotypic correlation
0.44), and 1,516 of 1,612 children with teacher
ratings also had school-age maternal ratings
(phenotypic correlation 0.49). In Figure 1, the
variance in AP explained by the polygenic risk

TABLE 1 Number of Children and Mean and Standard
Deviation of Age at Measurement and Attention Problems
(AP) Scores for Maternal Ratings at Preschool and School
Age, and for Teacher Ratings

Age, AP Score,
Mean (SD)  Mean (SD)

2,087 3.32(0.26) 2.29 (2.00)

Measure n

AP preschool; age 3 y;
mother rating, CBCL
AP school; age 7—13 y; 2,132 9.93 (0.88) 3.26 (3.38)

mother rating, CBCL
AP school; age 7—13 y; 1,612 10.61 (1.40) 6.73 (7.92)
teacher rating, TRF

Note: CBCL = Child Behavior Checklist: SD = standard deviation;
TRF = Teacher Report Form; y = years.
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FIGURE 1

Proportion of variance explained in attention problems by polygenic risk scores based on different p-value

bins. Note: the number displayed below the bins is the upper threshold of p values for inclusion; the lower threshold is

always 0.
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scores is shown for the mother and teacher
ratings at preschool and school age, for
different p value bins. The polygenic risk scores
based on the GWA meta-analysis results of
clinical patients with ADHD versus controls
significantly predicted maternal ratings of AP at
preschool and school age, as well as teacher
ratings at school age. All significant effects were
in the expected direction, that is, higher poly-
genic risk scores were associated with higher
AP scores. The maximum explained variance
for each of the ratings varied between 0.5%
and 0.6%, with no clear difference across pre-
school and school age or mother and teacher
ratings.

DISCUSSION

Polygenic risk scores based on a GWA
meta-analysis of clinical patients with ADHD
significantly predicted AP in an independent
population-based sample of children, indicating
a genetic overlap between ADHD assessed as a
categorical disorder and AP assessed as a
continuous trait in a general population sam-
ple. Other studies that examined whether
ADHD should be considered a category or a
continuum have used latent class analysis
(LCA), factor analysis (FA), factor mixture
models (FMM), and taxometric procedures on
item-level data to detect the underlying struc-
ture. Whereas some studies found evidence for
distinct subtypes (e.g., predominantly inatten-
tive, predominantly hyperactive/impulsive, or
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combined inattentive and hyperactive/impul-
sive symptoms), others found evidence for
the existence of a continuum within or
across subtypes.®*'> The current study pro-
vides evidence in support of a dimensional
model of ADHD at the genetic level. Although
categorical models of ADHD are necessary in
clinical contexts where one needs to answer
categorical questions with regard to treatment,
for example, future research on the under-
lying continuous trait could provide the
necessary information to decide on the appro-
priate cutoffs for these categories. The National
Institute of Mental Health has therefore
launched the Research Domain Criteria (RDoC)
project that aims to develop a research classi-
fication system for mental disorders based on
dimensions of neurobiology and observable
behavior.>® Meanwhile, awareness of the
dimensional nature of ADHD may already
have an impact on clinical practice, as shown
by clinics that have successfully incorporated
dimensional models in their daily clinical
practice.””

Our findings of significant prediction of
AP based on a clinical discovery set have
important implications for gene-finding studies.
Despite the lack of genome-wide significant
findings in current GWA studies of ADHD,
such studies apparently contain relevant
signals."” The small proportion of explained
variance by the genetic risk scores does not
preclude this conclusion. The estimated ex-
plained variance is similar to the estimates of
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Hamshere et al.*? that predicted patient-with-

ADHD status by ADHD GWA meta-analysis
results, and to other studies using genetic risk
scores to investigate the genetic architecture of
other psychiatric phenotypes.***’ The explained
variance is mostly dependent on the sample size
of the discovery set; when this sample size is
large, the effects detected in the GWA contain
less noise, leading to more accurate predictions
in the target sample. Genetic Complex Trait
Analyses (GCTA), such as those performed for
ADHD in PGC,* generally provide higher es-
timates of the variance explained by all SNPs.
This is due to the difference in approaches, as
the GCTA method does not rely on imprecise
effect estimates but on a regression of pheno-
typic similarities on genotypic similiarities.*!
However, the different approaches all imply
that GWA studies on ADHD can be successful.
Moreover, our results for continuous ADHD-
related traits indicate that patient—control co-
horts may benefit from an increase in power by
including the available information on symp-
tom severity in their analyses,** although this
gain in power could be limited by the nonuni-
formity of measurement error across the distri-
bution. In practice, the choice of study design
will likely depend on the costs of genotyping
and phenotyping and the availability of already
existent datasets. In this context, it is worth-
while to note that many population-
based cohort studies have both genome-wide
SNP data and continuous measures of ADHD
available, but are currently underused for gene-
finding studies on ADHD and other psychiatric
phenotypes. Although patient—control studies
benefit from the ascertainment of individuals
from the extreme end of the distribution, the
power to find genetic variants for ADHD is
roughly equal in an equal-sized population-
based cohort with a continuous measure of
ADHD, as in the latest PGC meta-analysis of
ADHD, because of the relatively high prevalence
of ADHD and the somewhat small proportion
of patients in the latest PGC meta-analysis.*®
Other advantages of population-based studies
include the richness of available phenotypic
information allowing for multivariate analyses
and the investigation of gene-environment
interactions.**

Given the small predictive value of the
polygenic risk scores on AP, they cannot be
used to predict patient or control status at the

individual level or be used as biomarkers.
However, they are still informative on the
population level, as polygenic risk score ana-
lyses and GCTA do provide information on the
genetic architecture of traits and on the associ-
ation between traits.'”” The current study not
only showed genetic overlap between clinical
diagnoses and continuously measured traits,
but also indicated that this overlap was present
at both preschool and school age and for
different raters. This similarity of genetic effects
across age is in line with twin studies that
demonstrate a high genetic stability of
maternal-rated AP in childhood,'!' and the
finding that the behavior that parents and
teachers rate in common is highly heritable
despite a moderate phenotypic correlation.®*
Moreover, an ADHD diagnosis requires the
behavior to be present in multiple settings, and
it is therefore expected that the genetic factors
that influence a clinical diagnosis of ADHD
correlate with both parent and teacher ratings
of ADHD symptoms. The results from the
clumping analyses in which a smaller set of SNPs
limited to independent SNP sets (Figure S3,
available online) also speak to the highly poly-
genic nature of ADHD and AP: by leaving out
SNPs (based on a statistical criterion), the vari-
ance that is explained by polygenic scores de-
creases. When correlated SNPs are analyzed, it
is not the case that such correlation results in
inflation or bias in the amount of variance
explained. In the regression of the phenotype on
the polygenetic scores, the collinearity due to
correlations among predictors does not actually
affect the estimates; that is, in least-squares
regression, these remain best, linear, unbiased
estimates (BLUE). If regression estimates are un-
biased, then the estimate of the explained vari-
ance is also unbiased.*®

Thus, ADHD/AP can be predicted from
ADHD polygenic risk scores at the population
level, and it is clear that the PGC ADHD meta-
analysis picks up genetic variation relevant to
ADHD. Next, these GWA results can be used to
investigate the genetic overlap between ADHD
and other disorders and gene—environment
interplay. Our study supports the use of
dimensional models of ADHD and indicates
that future GWA studies can benefit from the
inclusion of both population-based and patient-
control studies, and by analyzing ADHD as a
quantitative rather than a categorical trait. &
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SUPPLEMENT 1
SPSS Syntax for Mixed Model

Glossary of Terms.  Twin: 1: first twin, 2:
second twin

MZ: 0: monozygotic twin, 1: dizy-
gotic twin

A: additive genetic effect
D: dominant genetic effect
Famnr: family identifier

Zscore_APl10_m: Z-score Attention
Problems at age 10 as rated by
mother

Zscore_sum_Sl: Z-score of the ge-
netic risk profile for the first set
of SNPs

PCl to PC4: principal components
controlling for stratification

Syntax. **Dummy coding 1is wused to
decompose the variance into addi-
tive genetic and dominant genetic
effects.

compute Ac=0.
compute Atwl=0.
compute Atw2=0.
compute Dc=0.
compute Dtwl=0.
compute Dtw2=0.

Execute.

if (twin=1) Ac=sqgrt(.5).
if (twin=1) Atwl=sqgrt(.5).
if (twin =1) Dc=sqgrt(.25).

if
if
if

twin =2) Ac=sqgrt(.5).
twin =2 and MzZ=0) Atw2=sqgrt (.5).

(
(
(
if (twin =1) Dtwl=sqgrt(.75).
(
(
(twin =2 and Mz=1) Atwl=sqgrt(.5).
(

if (twin =2) Dc=sqgrt(.25).

if (twin =2 and MZ=0)
Dtw2=sqgrt (.75) .

if (twin =2 and Mz=1)

Dtwl=sqgrt(.75).
Execute.

MIXED Zscore_ AP10 m with Zscore
_sum_S1 PCl PC2 PC3 PC4 sex age Ac
Atwl Atw2 Dc Dtwl Dtw2 int

/FIXED = Zscore_sum_S1 PCl PC2 PC3
PC4 sex age int | SSTYPE (3) noint

/METHOD = ML
/PRINT = CORB SOLUTION TESTCOV

/random Ac Atwl Atw2 | SUBJECT (famnr)
COVTYPE (id)

/random Dc Dtwl Dtw2 | SUBJECT (famnr)
COVTYPE (1d) .
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ADHD POLYGENIC RISK SCORES IN A POPULATION-BASED SAMPLE

FIGURE S1 (A) Distribution of maternal Attention Problems z scores at age 3 years. (B) Distribution of maternal
Attention Problems z scores at age 10 years. (C) Distribution of teacher-rated Attention Problems z scores at age
10 years.
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FIGURE S2 Graphical representation of the statistical model as used in R. Attention problem (AP) scores of twins are
regressed on the polygenic risk scores (regression coefficients 8) as well as on latent additive genetic (A), nonadditive
genetic (D), and unique environmental (E) factors with unit variance (and factor loadings a, d, and e). Note: the
standardized £ is reported in Table S1. Covariates sex, age, and the principal components were also included as
predictors (regression coefficients s, bage, Pel, Pe2, Pe3, and peg). To estimate the intercept (i) of AP and the means (i) of
the risk scores and the covariates, these variables were regressed on a unit vector. Note that the means of the principal
components are O (but were allowed to be estimated freely). The model was identified by fixing the correlation between
the latent genetic factors to 1 in the group consisting of monozygotic twin pairs, and to 0.5 (A) and 0.25 (D) in the group
consisting of dizygotic twin pairs. These constants reflect the (average) proportion of the twins’ shared segregating genes.

Twin 1 Twin 2

Latent variables

Intercept

Dependent variable
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FIGURE S3 Proportion of variance explained in attention problems by polygenic risk scores based on different

p value bins after selection of independent single nucleotide polymorphisms (SNPs) using the clumping procedure in
Plink (option —clump, with settings —clump-p1 1 —clump-p2 1 —clump-r2 0.25 —clump-kb 500). Note: The number
displayed below the bins is the upper threshold of p values for inclusion; the lower threshold is always 0.
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TABLE S1  Standardized 8 and p Values of the Regression Linear Mixed Model of the Polygenic Risk Scores on the z
Scores and the Normalized Attention Problem (AP) Scores and Robust Additive, Dominance, Nonshared Environmental
Genetic Effects (ADE) Twin Model Analyses on the z Scores, for the Different Sets of Single Nucleotide

Polymorphisms (SNPs)

AP-Preschool-
Mother z Scores Normalized Scores z Scores (Twin Model, Robust)

p Value Bin Standardized 3 pValue  Standardized 3 p Value  Standardized 3 Robust SE p Value

0—.00001 0.017836 473113 0.023545 .344100 0.020244 0.024663 411743
0—.0001 0.028484 402203 0.034163 168176 0.030656 0.024493 210722
0—.001 0.050449 .040933 0.052354 .034057 0.052466 0.024047 029121
0-.01 0.071095 004166 0.068679 .005696 0.073984 0.024311 .002341
0-.05 0.070677 .004337 0.068325 .005876 0.071476 0.024675 .003771
0—-.1 0.060387 015234 0.059562 016795 0.060042 0.024850 .015685
0-.2 0.066564 .007575 0.066721 .007492 0.065373 0.024763 .008294
0-.3 0.056002 025142 0.056695 .023529 0.054542 0.024683 027123
0—.4 0.053397 .032941 0.054750 .028905 0.051984 0.024746 .035668
0-.5 0.051189 .040797 0.053112 .033968 0.049498 0.024611 .044306
0-.6 0.049766 046642 0.051885 .038234 0.047865 0.024538 051097
0-.7 0.051403 039743 0.053740 031716 0.049268 0.024460 .043980
0-.8 0.051420 .039711 0.053754 .031703 0.049187 0.024514 .044803
0-.9 0.051373 .039940 0.053702 .031909 0.049042 0.024515 .045450
0-1 0.051556 .039245 0.053897 .03130 0.049206 0.024511 .044691
AP-School-

Mother z Scores Normalized Scores z Scores (Twin Model, Robust)

p Value Bin Standardized 3  p Value  Standardized 3  p Value  Standardized 3 Robust SE p Value

0—.00001 -0.011348 648725 -0.015085 .543538 -0.012018 0.024152 618782
0—-.0001 —-0.005702 .818364 -0.010771 663462 —-0.005700 0.024240 .814105
0—.001 —0.008005 746834 -0.015790 .523006 —0.008002 0.023854 737271
0—-.01 0.040996 .101246 0.033487 .179508 0.040997 0.023835 .085424
0—-.05 0.065945 .008479 0.062324 .012628 0.065948 0.024369 .006804
0—-.1 0.058733 .019847 0.055984 .026017 0.058636 0.024904 .018550
0-.2 0.067727 .007329 0.065821 .008983 0.067730 0.025782 .008615
0-.3 0.059944 017927 0.057033 .023945 0.059983 0.025906 .020589
0—4 0.058917 .020128 0.056828 .024618 0.058988 0.025845 .022464
0-.5 0.055178 .029518 0.053818 .033310 0.055127 0.025913 .033389
0-.6 0.053078 .036182 0.052328 .038397 0.053086 0.025751 .039256
0—-.7 0.054121 .032664 0.053591 .033950 0.054116 0.025638 .034790
0-.8 0.053553 .034583 0.053263 .035106 0.053596 0.025651 .036667
0—-.9 0.053037 .036408 0.052768 .036882 0.053024 0.025660 .038789
0-1 0.053237 .035718 0.052969 .036180 0.053224 0.025679 .038204
AP-School-

Teacher z Scores Normalized Scores z Scores (Twin Model, Robust)

p Value Bin Standardized 3  p Value  Standardized 3  pValue  Standardized 3 Robust SE p Value

0—.00001 0.011451 .683043 0.003571 .898038 0.011654 0.026981 665798
0-.0001 0.004844 862517 0.001204 965429 0.004998 0.027088  .853603
0-.001 0.020611 460178 0.015020 .587912 0.020730 0.027504  .451028
0-.01 0.052682 .060505 0.054629 .050130 0.052695 0.024714  .032991
0-.05 0.068556 .014485 0.066992 .016193 0.068618 0.026007  .008329
0-.1 0.057494 .041361 0.053904 .054249 0.057482 0.025401 .023636
0-.2 0.065377 .020284 0.062896 .024592 0.065491 0.025990  .011742
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TABLE S1 Continued

AP-School-
Teacher z Scores Normalized Scores z Scores (Twin Model, Robust)

p Value Bin Standardized 3  p Value  Standardized 3  p Value  Standardized 3 Robust SE p Value

0-3 0.067006 .017499 0.064023 .022276 0.067002 0.026160  .010431
0—.4 0.069177 .014303 0.065147 .020204 0.069164 0.026343  .008651
0-.5 0.070475 .012547 0.065410 .019666 0.070554 0.026382  .007488
0-.6 0.074195 .008561 0.068388 .014703 0.074285 0.026354  .004822
0-7 0.075919 .007148 0.070136 .012361 0.076006 0.026248  .003784
0-.8 0.075996 .007114 0.070099 .012445 0.076086 0.026206  .003692
0-.9 0.076641 .006652 0.070750 .011670 0.076736 0.026250  .003463
0-1 0.076877 .006491 0.070965 .011425 0.076969 0.026272  .003393

Note: SE = standard error.
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