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Abstract

Aggression mediates competition for food, mating partners, and
habitats and, among social animals, establishes stable dominance
hierarchies. In humans, abnormal aggression is a hallmark of neuropsy-
chiatric disorders and can be elicited by environmental factors acting
on an underlying genetic susceptibility. Identifying the genetic archi-
tecture that predisposes to aggressive behavior in people is challenging
because of difficulties in quantifying the phenotype, genetic hetero-
geneity, and uncontrolled environmental conditions. Studies on mice
have identified single-gene mutations that result in hyperaggression,
contingent on genetic background. These studies can be comple-
mented by systems genetics approaches in Drosophila melanogaster,
in which mutational analyses together with genome-wide transcript
analyses, artificial selection studies, and genome-wide analysis of
epistasis have revealed that a large segment of the genome contributes
to the manifestation of aggressive behavior with widespread epistatic
interactions. Comparative genomic analyses based on the principle of
evolutionary conservation are needed to enable a complete dissection
of the neurogenetic underpinnings of this universal fitness trait.
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Sexual selection:
a type of natural
selection in which
members of one sex
choose mates with
particular features

Stabilizing selection:
selection that selects
against extreme
phenotypic values and
favors intermediate
values of a trait,
thereby reducing
phenotypic variation

Heritability: the
proportion of
phenotypic variation
that is explained by
genetic variation

“It is better to be feared than loved, if you cannot
be both.”

Niccolò Machiavelli (1469–1527)

AGGRESSION: A UNIVERSAL
FITNESS TRAIT

Aggression as a Quantitative Trait

Aggressive behavior enables individuals to sur-
vive by allowing them to compete for limited
resources. Among social animals, aggressive
displays serve to establish hierarchies in which
the most dominant individuals have priority
access to food and mating partners. Because
dominance status reflects fitness, females are
expected to select dominant males as preferred
mating partners. Morphological character-
istics, such as body armor, size of antlers,
and intricate visual and/or vocal displays, can
evolve as secondary characteristics that serve as
proxies for fitness assessment by mating part-
ners (67). Indeed, aggressive behavior is often
under sexual selection (67). The establishment
of social hierarchies prevents the need for
continued aggression and associated risk of
injury. Whereas low levels of aggression may
be detrimental to survival and/or procreation,
excessive levels of aggression are also harmful,

GROUP AGGRESSION

Organized aggression among social insects, in which groups work
together to defend or occupy territory, is reminiscent of human
warfare (or its more benevolent surrogate, team sports), in which
coordinated action against outsiders is shaped by socially accept-
able cultural norms imposed on an underlying susceptibility for
aggression. Social insects, such as ants and honeybees, form so-
cieties in which only the queen is reproductively active. Such
societies, often considered a super organism, have divisions of
labor in which certain individuals are dedicated to defending the
queen and prepared to sacrifice themselves to ensure the survival
of their closely related siblings or work together to aggressively
invade new territories. Self and nonself discrimination in ant war-
fare is mediated by pheromonal cues composed of cuticular hy-
drocarbons (49, 53). This represents an example of a mechanism
for indirect genetic effects.

as they divert energy from other essential
activities, such as foraging; and they may
carry a reproductive cost (86) and a high risk
for injury or death. Thus, one can postulate
that aggression is a trait under stabilizing
selection (Figure 1), a hypothesis that has been
corroborated by studies on species as diverse
as water striders (39) and baboons (86).

From a genetics perspective, aggression is a
quantitative trait, the manifestation of which is
attributable to multiple segregating genes that
are sensitive to the environment (40). Heritabil-
ity estimates for aggressive behavior in people
are generally high, ranging from 0.51–0.72
in a study of 3–10-year-old Dutch twins (57)
and 0.37–0.57 in a study of adult twins (124).
It should be noted, however, that nonadditive
genetic variation from dominance and epistasis,
as well as shared or correlated environments or
shared experiences, is likely to inflate estimates
of heritability in humans by unknown amounts
(40). High heritability estimates for aggressive
behavior have also been observed for other
species, including monkeys (41), dogs (98),
mice (115), and birds (33). These heritability
estimates show that a substantial proportion
of phenotypic variation in aggressive behavior
is due to genetic variation. Consequently, re-
sponse to artificial selection for either increased
or decreased aggressive behavior is generally
rapid and forms the basis for successful domesti-
cation. This is illustrated by the classic example
of Belyaev’s Russian silver foxes, which after
selection for tameness retained their docile
characteristics when selection was no longer ap-
plied, indicating the removal from the popula-
tion of alleles that predispose to aggression (9).

Environmental effects on aggression include
internal effects, i.e., regulation by hormones,
and external effects, determined by the physi-
cal environment (e.g., stress) and, in the case
of aggression, other individuals in the soci-
ety (see sidebar, Hormonal Regulation of Ag-
gression). Effects that arise when the geno-
type of one individual modifies the expres-
sion of traits in another individual have been
coined indirect genetic effects (77) (see sidebar,
Group Aggression). Previous experiences and
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developmental conditions can also affect the
expression of aggression.

The significant heritability of aggressive
behavior presents a favorable scenario for
identifying quantitative trait loci (QTLs)
that affect aggression by linkage mapping and
association analyses. To understand the genetic
architecture of aggression, it is necessary to
address the following questions. What are the
genes that contribute to aggressive behavior?
How do these genes interact in functional
ensembles? How do polymorphisms within a
subset of these genes contribute to phenotypic
variation? How do genetic ensembles that me-
diate aggressive behavior within an individual
respond to changes in environmental condi-
tions (phenotypic plasticity), and how and to
what extent do different genotypes vary in their
responses to different environments (genotype-
by-environment interactions)? In this review,
we argue that it is difficult (if not impossible) to
obtain answers to these complex questions by
exclusively studying human populations, and
we advocate a comparative genomics approach
that integrates human genetics studies with
studies on model organisms.

Pathological Aggression in People

Abnormal expression of aggressive behavior
is a common consequence of traumatic brain
injury, neuropsychiatric disorders, alcohol
and substance abuse, and neurodegenerative
diseases. Studies on the relationship between
genetic variation and neurodegeneration-
related aggression have focused primarily on
Alzheimer’s disease. Physical aggression and
agitation occur in a variable portion (20%–
65%) of patients diagnosed with probable
Alzheimer’s disease and are emotionally stress-
ful for family members and caregivers. The
genetic factors that determine comorbidity
of aggression with neurodegeneration remain
largely unknown. Difficulty in obtaining
sufficiently large sample sizes and phenotypic
heterogeneity have prevented large-scale
linkage studies and genome-wide association
studies and have limited genetic studies to

Reproductive cost 

Foraging 

Parental care 

Grooming  

Injury risk 

Mating priority 

Resource access 

Predator defense 

Survival 

Social dominance 

Fitness 

Costs Benefits

Aggression

Figure 1
Schematic representation of the balance between costs and benefits for
aggressive behavior as it relates to fitness.

HORMONAL REGULATION OF AGGRESSION

The relationship between aggression and testosterone—or its
counterpart in fish, 11-ketotestosterone—is well established. In
mice, aromatization of testosterone into estrogen in the brain re-
sults in territorial behaviors (121). In rats, the estrogen receptor β

has been associated with aggressive behavior (87), whereas exper-
iments employing virally delivered shRNA show some evidence
for increased aggressiveness against juveniles mediated, in part,
by the estrogen receptor α (102). Estrogen receptor–mediated
mechanisms for aggression in mice display sexual dimorphisms;
studies on estrogen receptor knockout mice have shown that es-
trogen receptor α increases male aggression but decreases female
aggression, whereas the opposite pattern is observed for the estro-
gen receptor β (23). Additional hormonal systems that contribute
to aggression have been implicated by studies on voles and cich-
lid fishes. Among prairie voles, a variable length microsatellite in
the promoter region of the vasopressin 1a receptor regulates re-
ceptor level expression and is associated with anxiety-related and
social behaviors (50). However, this correlation does not hold up
across the vole phylogeny (44). In the African cichlid fish Asta-
totilapia burtoni, administration of a somatostatin antagonist in-
creased aggression, whereas an agonist reduced aggression (110).
Somatostatin receptor gene expression was negatively correlated
with aggressive displays (111).
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Quantitative trait
locus (QTL): a
chromosomal region
that harbors one or
more genes with alleles
that contribute to
phenotypic variation

Linkage mapping:
locating quantitative
trait loci by linkage to
polymorphic marker
loci within a family or
a mapping population
derived from crosses
between inbred lines

Association analysis:
identification of
quantitative trait loci
associated with a
statistical difference in
phenotype between
genotypes at
polymorphic markers
that segregate in a
natural population

Tryptophan
hydroxylase: the
rate-limiting enzyme
in the biosynthetic
pathway of serotonin
that attaches a
hydroxyl group to the
amino acid tryptophan

Catechol-O-methyl
transferase: a methyl
group–transferring
enzyme involved in the
breakdown of
catecholamine
neurotransmitters,
including dopamine,
epinephrine, and
norepinephrine

Monoamine oxidase
A (MAOA):
an enzyme that
inactivates
monoamines, such
as norepinephrine and
serotonin, by
catalyzing their
oxidation

association analyses of single candidate genes.
Such studies have focused on a small number
of genes either previously known to be asso-
ciated with Alzheimer’s disease or implicated
in aggression. Alzheimer’s disease patients ho-
mozygous for the apolipoprotein E e4 allele were
reported to be more susceptible to aggressive
episodes (25, 114), but this observation was not
replicated in a population with a larger sample
size (1,120 patients versus ∼100–400 patients)
(54). Several studies have examined association
of Alzheimer’s disease–related aggression with
polymorphisms in tryptophan hydroxylase (24),
serotonin 5HT-2A and 5HT-2C receptors
(5, 91), and the serotonin transporter (5, 92,
106, 113), but these studies have been contro-
versial because of low statistical power.

Studies on the catechol-O-methyl transferase
(COMT ) gene have identified an association
between the Val158Met polymorphism and ag-
gression in schizophrenics (109). The Met/Met
genotype has lower enzyme activity and is
associated with higher levels of aggression and
incidence of suicide attempts in schizophren-
ics and alcoholics (80, 85). These studies
should be viewed with caution, however,
because of the small sample sizes, differences
in gender, patient history, environmental
conditions, and heterogeneity of psychiatric
manifestations. Furthermore, interpretations
of studies on polymorphisms in candidate
genes for neuropathology-related aggression
are complex, as it is difficult to discriminate
correlations with disease status from causality
in the aggressive phenotype.

THE GENETICS OF AGGRESSION
IN HUMAN POPULATIONS

Implication of Bioamines

The first major breakthrough to shed light on
the neurogenetic basis of human aggression
came in 1993 from a study on a large Dutch
family (11). Several males in this family
showed borderline mental retardation and
abnormal violent behavior, which included
impulsive aggression, arson, attempted rape,

and exhibitionism. Affected individuals were
deficient in the activity of monoamine oxidase
A (MAOA), a central enzyme in the catabolism
of biogenic amines, because of a point mutation
in the eighth exon of the MAOA gene, which
changed a glutamine to a termination codon.
This was the first demonstration that bioamine
metabolism may be critical in the regulation of
impulsive aggression. Subsequent studies have
corroborated the association between MAOA
polymorphisms and aggression in humans
(56, 71), mice (12), and rhesus monkeys (83).

The discovery that bioamine signaling may
play a critical role in modulating aggressive
behavior directed attention to serotonin as a
central neurotransmitter involved in aggres-
sion, as lower levels of serotonin were related
to increased aggression. A polymorphism in the
promoter region (referred to as the short versus
long allele) of the serotonin transporter gene
(SLC6A4) has been associated with aggression
and a wide range of neuropsychiatric disorders
(79).

In addition to serotonin, genetic analy-
ses have implicated dopamine, norepinephrine,
and GABA neurotransmitters in aggression (72,
75). A study based on self reports of 298 15-
year-old adolescents and assessments from 296
primary caregivers and 253 teachers identified
an association of externalizing behavior with a
variable number tandem repeat (VNTR) poly-
morphism in the third exon of the dopamine D4
receptor (DRD4) gene. Individuals homozy-
gous for the short allele of the serotonin trans-
porter and carrying the DRD47r variant had
higher scores for aggression and/or delinquent
behavior than other combinations of these loci
(51). This is a rare example of a demonstra-
tion of epistasis in a human association study,
in which the effect of the short allele of the sero-
tonin transporter is modified by a polymorphic
site in the DRD4 gene (see sidebar, Epistasis).

Genotype-by-Environment
Interactions

Aggression, like most behaviors, is plastic, and
its manifestation depends on the environment.
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A
nn

u.
 R

ev
. G

en
et

. 2
01

2.
46

:1
45

-1
64

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
K

ao
hs

iu
ng

 M
ed

ic
al

 U
ni

ve
rs

ity
 o

n 
11

/1
0/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



GE46CH07-Anholt ARI 3 October 2012 11:48

Externalizing
behavior: behavior
that directs
problematic energy
outward and is
expressed as
aggression, defiance,
bullying, vandalism,
theft, and other
socially unacceptable
actions

Furthermore, this phenotypic plasticity may
depend on the genotype (Figure 2). Following
the identification of risk alleles for aggressive
behavior of the MAOA and serotonin trans-
porter genes, it became clear that the effects
of these alleles were dependent on previous
experience. A study on a large sample of boys
with a history of childhood maltreatment
showed that the VNTR at the promoter of the
MAOA gene is associated with violent behavior
only in individuals who were abused as children
(13, 60). Maltreated children with high levels
of this enzyme were less likely to develop
antisocial problems than maltreated children
with low levels of MAOA expression (35, 56).
Further studies reported that this genotype-
by-environment interaction is gender specific
(56) and that extreme cases of maltreatment
overshadowed the differences between alter-
nate MAOA alleles (120). In addition, parental
care could mitigate the effects of stress on
behavioral outcomes in female carriers of the
MAOA allele with low monoamine oxidase
activity (61). A study on rhesus monkeys mir-
rored these observations. Rhesus monkeys that
were reared under adverse social conditions
(small social groups versus large interactive
groups) were more aggressive, especially when
they carried the MAOA allele corresponding
to low levels of enzyme activity (59).

A similar genotype-by-environment inter-
action effect has been reported for the short
and long allele polymorphism of the serotonin
transporter gene. Here, people with one or
two copies of the short allele exhibited more
depressive symptoms as a result of stressful life
experiences than did individuals homozygous
for the long allele (14, 62). Associations of
promoter polymorphisms of the serotonin
transporter gene with aggressive behavior have
been reported in some cases (48, 74, 107), but
associations with suicidal behavior (which can
be considered a form of self-aggression) have
been controversial (10, 96, 112). Also, cocaine
dependence did not affect differences in
aggressive behavior among African-American
individuals with alternative alleles (88).

EPISTASIS

Epistasis occurs when the action of one gene is modified by
one or several other genes, resulting in nonadditive phenotypic
effects. Such modifiers can be enhancers or suppressors. The
analysis of epistatic interactions, especially higher-order inter-
actions, is statistically challenging under conditions in which the
genetic background cannot be precisely controlled, as is the case
for most human genetics studies. Consequently, human genetics
studies have mostly been restricted to the resolution of additive
effects. In Drosophila melanogaster, the genetic background can
be controlled precisely, and large numbers of individuals can
be reared under controlled environmental conditions. Analysis
of double heterozygous P-element insertion lines has shown
extensive epistasis for olfactory behavior (42, 99), startle behavior
(123), and aggression (129), and suppressing epistasis of naturally
segregating modifiers of transposon-tagged genes that affect
startle behavior (122), olfactory behavior, sleep phenotypes, and
waking activity has been demonstrated (105). It is likely that
widespread epistasis is a general feature across phyla, including
humans, in which it may be an underlying cause for the missing
heritability conundrum, the observation that the addition of the
effects of many loci that contribute to complex trait variation
falls short of explaining the total observed genetic variation
(70, 128). Thus, it is reasonable to predict that in people, as in
flies, the genetic underpinnings of aggressive behavior involve
epistatic networks of pleiotropic genes.

Genotype-by-environment interactions of
the MAOA and SLC6A4 alleles on aggression
have not been universally replicated. This is
likely because of the low statistical power of
some studies; differences in ethnicity, age,
and sex of the study subjects; and different
environmental factors analyzed to determine
genotype-by-environment effects. Confound-
ing factors of other neuropsychiatric influences
of allelic variants at these loci introduce a
further confounding element in the interpreta-
tion of genotype-by-environment interactions.
Genotype-by-environment interactions, to-
gether with genetic background effects, present
major complicating factors for larger-scale
genome-wide association studies in human
populations.
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Figure 2
Interactions between the genome and the environment. The blue and red colors represent different
genotypes. (a) Phenotypic plasticity. Phenotypic values shift for both genotypes in the two different
environments but to the same extent, resulting in parallel reaction norms. (b) Genotype-by-environment
interaction. Phenotypic values are affected differently for both genotypes in the two environments. The
genotype indicated by the blue line has identical phenotypic values in environments 1 and 2, whereas the
phenotypic value of the genotype indicated by the red line is substantially higher in environment 2 than in
environment 1, resulting in crossing of reaction norms.

Challenges for Genome-Wide
Association Studies in Human
Populations

Whereas polymorphisms in genes encoding
the serotonin transporter and MAOA have
been definitively implicated in predisposition
to antisocial and violent behavior, it is clear that
they represent only the tip of the iceberg of a
complex neurogenetic architecture that deter-
mines aggressive behavior. Human studies on
the genetics of violent behavior have centered
mostly on excessive aggression rather than
on the genetic underpinnings that contribute
to phenotypic variation in the normal range
of aggression in the human population, with
phenotypes encompassing the full spectrum of
shyness, assertiveness, chronic suppressed or
overt anger, intimidating behavior, and incli-
nation toward violence. As with most studies
of neuropsychiatric disorders, quantification
of aggression relies on questionnaires or, in
the case of studies on children, interviews with
parents or teachers. Nevertheless, the pheno-
typic complexity of aggression, with its many
manifestations and multiplicity of triggers,

makes it difficult to quantify this trait at a level
of specificity conducive to genome-wide asso-
ciation studies. In addition, gender differences,
differences between ethnic groups, and the
need to recruit a large homogeneous sample of
individuals make it virtually impossible to ob-
tain phenotypic information and DNA samples
from enough subjects to surpass a genome-
wide multiple testing threshold for statistical
significance. These daunting challenges have
corralled the majority of human genetics stud-
ies on aggression into a search for the lost key
under the streetlight, as they continue to focus
mostly on a small number of well-established
candidate genes related to bioamine function
and metabolism. Advances in understanding
the complex genetic architecture of aggressive
behavior will benefit from the recruitment
of model organisms in which the phenotype
can be accurately quantified and the genetic
background and environmental conditions can
be precisely controlled. Comparative genomic
studies can discover evolutionarily conserved
principles and orthologous genes and genetic
networks that are associated with aggression
across phyla.
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INSIGHTS INTO THE GENETICS
OF AGGRESSION FROM MODEL
ORGANISMS

Genetics of Aggression in Mice

Aggressive behaviors in mice can be readily
quantified by the number of attacks and attack
duration when mice are placed in various
situations of social confrontation (76). In the
resident-intruder assay, a resident male defends
his territory (i.e., home cage) by attacking an
intruder. Maternal aggression of a female with
pups against a strange male can also be readily

recorded. Aggression in mice is mediated via
neural pathways similar to those in people
(Figure 3) (82). Furthermore, similar neuro-
transmitters are implicated in the manifestation
of aggressive behavior (82). Mice with a dele-
tion of the MAOA gene show enhanced
intermale aggression as adults (90, 101).
Serotonin suppresses aggressive behavior
(20, 74), whereas dopaminergic (94, 117)
and noradrenergic (72) mechanisms enhance
aggression. Modulation of aggression by
serotonin is, however, dependent on the type
of serotonin receptor that is activated (47, 82).
Male mice that lack the 5-HT1B receptor show

Accessory
olfactory bulb

Orbitofrontal
cortex

Lateral
septum

Hippocampus

Bed nucleus
of the stria
terminalis

Olfactory
bulb

Paraventricular
nucleus

Medial
amygdala

Periaqueductal
gray

Visual and auditory
social cues, stress

Chemical
cues

AggressionInhibitory inputs

Rodent brain

Anterior
hypothalamic

area

Figure 3
Brain regions implicated in aggressive behavior in rodents. Chemosensory inputs can trigger aggression through the olfactory and
accessory olfactory systems, whereas visual and acoustic input, adverse social interactions, and stress generally elicit aggression in
humans. In rodents, chemosensory signals activate the medial amygdala, which sends projections to the lateral septum, the bed nucleus
of the stria terminalis, and the anterior hypothalamus. Projections from these regions to the periaqueductal gray result in the expression
of aggression. Inhibitory inputs (dashed lines) can modulate aggression. Projections from the orbitofrontal cortex to the amygdala inhibit
aggression. Optogenetic stimulation of neurons in the ventrolateral subdivision of the ventromedial hypothalamus elicits indiscriminate
aggressive behavior in male mice (66). Patients with orbitofrontal cortical lesions are prone to uninhibited aggressive behaviors (for a
more detailed description of neural mechanisms of aggression, see Reference 82).
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Homologous
recombination:
breakage and reunion
between homologous
lengths of DNA, used
in knockout mice to
generate defective
alleles of the target
gene

high levels of aggression (100), whereas mice
treated with a 5-HT1A receptor antagonist
show reduced aggression (8). Raising synaptic
serotonin levels by deleting the serotonin
reuptake transporter via homologous recombi-
nation also lowers aggressive behavior (52, 65).
The diverse effects of serotonin implicate mul-
tiple neural circuits that orchestrate aggressive
behavior.

Although internal hormonal factors
influence the propensity for aggression, envi-
ronmental triggers can elicit acute expression of
aggressive behaviors through activation of the
endocrine system. These environmental signals
are primarily chemical cues that are recognized
by pheromone receptors in the vomeronasal
organ, a chemosensory organ located above the
palate that mediates the reception of chemical
signals that provide social information about
kinship or gender or information about the
presence of predators (58, 78, 108). V1R
pheromone receptors are G-protein-coupled
receptors that signal via Gi2, are expressed by
apical vomeronasal neurons and are activated
by small molecules found in urine (63). V2R
receptors constitute a class of pheromone
receptors related to metabotropic glutamate
receptors and are expressed by neurons in the
basal layer of the vomeronasal organ. These
receptors signal via G0 and recognize peptide
ligands, including breakdown products of major
histocompatibility antigens (17). Mice in which
the TRP2 channel, a central signal transduc-
tion component of vomeronasal neurons, was
removed by homologous recombination were
no longer aggressive in the resident-intruder
assay and had lost gender discrimination, show-
ing similar mating behavior toward males and
females (104). Furthermore, removal of a large
cluster of 16 genes that encode vomeronasal
V1R receptors resulted in reduced maternal
aggression, indicating that one or more of
the deleted receptors interact with chemical
cues that elicit maternal aggression (27). V2R
receptors have been implicated in male-male
aggression triggered via major urinary proteins
(17). Tissue-specific deletion of the Gα0

subunit through homologous recombination

prevents signaling via V2R receptors and
results in increased aggression (16).

The genetic analysis of aggression in mice
has employed two approaches: QTL mapping
and analysis of single-gene mutations. In the
former approach, an aggressive strain of mice
(e.g., BALB/cJ) is crossed with a nonaggres-
sive strain (e.g., A/J), and linkage analysis is
performed in an F2 population. Such a study
identified chromosomal regions that harbor
genes with allelic variants associated with
variation in aggression between the parental
strains (31). However, these studies are limited
in that the mapping population is derived from
only two parental strains and thus captures a
relatively limited sample of natural phenotypic
variation. It has been difficult to identify causal
alleles within large chromosomal QTL regions
in mice. Testing the effect of knockouts of every
candidate gene within such a region is generally
not feasible. The Collaborative Cross, which
consists of inbred lines derived from an ad-
vanced intercross population of eight different
mouse strains and is being generated as a
community resource for high-resolution QTL
mapping (22), holds great promise for the iden-
tification of narrower QTL regions (6) but may
still fall short of identifying causal alleles (73).

In studies complementary to QTL mapping
approaches, several single-gene mutations have
been identified that result in hyperaggression.
A spontaneous mutation that lacks a functional
gene for the nuclear receptor NR2E1, known
as the fierce mutant, showed extreme hyper-
aggression (125), which could be suppressed by
introduction of a functional human homolog of
the NR2E1 gene (1). Similarly, a knockout mu-
tation of the neuronal nitric oxide synthetase
gene resulted in mice that relentlessly attacked
even opponents who had surrendered or dis-
played no interest in fighting and that killed
their cage mates (81). Interestingly, maternal
aggression against male intruders was reduced
in these mice (46), whereas neuronal nitric ox-
ide synthetase expression was increased in mice
selected for high maternal aggression (45). It
has been suggested that abnormal behaviors in
the neuronal nitric oxide synthetase knockout
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Attention
deficit/hyperactivity
disorder (ADHD): a
family of neurological
disorders that prevent
an individual from
regulating activity
level, inhibiting
behavior, and focusing
on tasks

Ethogram:
a diagrammatic
depiction of a
behavioral repertoire

mice may be due to compromised serotoner-
gic neurotransmission (20). Subsequently, a hu-
man association study, which included 1,308
patients with personality disorder, familial or
adult attention deficit/hyperactivity disorder
(ADHD), suicide attempters, and criminal of-
fenders along with 1,954 controls, revealed a
promoter polymorphism in the NOS-I gene as-
sociated with impulsivity, including hyperactive
and aggressive behaviors (93). This study con-
firmed earlier studies with smaller sample sizes,
which implicated polymorphisms and haplo-
types in the NOS-I and NOS-III genes in sui-
cidal behavior in Caucasians (97) and a poly-
morphism in the 3′-UTR of the NOS-I gene in
completed suicides of Japanese men (26).

As is often found with single-gene muta-
tions, the effects of both the null mutation in
neuronal nitric oxide synthetase and the fierce
mutation were influenced by genetic back-
ground. The hyperaggressive phenotype of
the neuronal nitric oxide synthetase knockout
allele was abolished after backcrossing from
the C57BL/6J-129 background to the pure
C57BL/6J genetic background (64). Similarly,
the hyperaggressive phenotype of the fierce
mutation was attenuated in the B6129F1
genetic background compared with C57BL/6J
(125). These findings illustrate that genes
that contribute to aggression are subject to
modulation by modifiers in different genetic
backgrounds, underscoring the notion that ag-
gressive behavior is a phenotype that emerges
from a genetic architecture that consists of
ensembles of interacting genes. Disruption of
certain components within such an ensemble
can either unleash a hyperaggressive phenotype
or can be buffered by other members of the
gene ensemble to attenuate the mutational ef-
fect. Studies on Drosophila melanogaster mutants
in controlled wild-derived genetic backgrounds
have shown that epistatic modifiers that seg-
regate in nature tend to reduce the magnitude
of newly arising mutations (105, 122). The
identification of genetic networks that underlie
complex behavioral traits and the identification
of epistatic interactions on a genome-wide
scale are currently still impractical in people

and in mice but can be accomplished in the
powerful D. melanogaster genetic model.

Aggression in Flies: Enabling
Systems Genetics

Drosophila presents a powerful model for the
dissection of complex traits, including aggres-
sion, because large numbers of individuals
of the same genotype can be reared rapidly
under controlled environmental conditions
and without regulatory restrictions. The first
documentation of aggression in flies and its
relation to mating behavior was reported in
1975 by Dow & von Schilcher (32), but it
took more than 25 years before Drosophila
materialized as a model organism for the
systematic genetic dissection of aggressive
behavior (21). This required the development
of quantitative measures of aggression by
either videotaping (28) or direct observations
of flies fighting in the presence of a decapitated
female (21) or a food droplet after a period
of food deprivation (37). Aggressive behavior
involved kicking, chasing, wing threat, and,
in extreme cases, boxing, in which flies would
tussle while holding one another with the front
legs. Ethograms documenting these behaviors
showed sexual dimorphism in fighting styles
between males and females (84) in accordance
with behavioral dimorphism between the sexes
observed for virtually every other behavior (4)
and most quantitative traits. Male-male aggres-
sive interactions can be modulated by previous
experience and social context (89, 126), and
subgroups of neurons of the sexually dimorphic
neuronal circuit that expresses the male-specific
form of the sex determination gene fruitless
have been implicated as one component of the
nervous system essential for mediating inter-
male aggression (15, 18, 116). Similar to studies
in people, serotonin has been implicated as a
neurotransmitter that mediates aggression in
Drosophila (2, 30). In addition, octopamine, the
fly counterpart of norepinephrine expressed
in a subgroup of neurons that project to the
subesophageal ganglion (15, 55, 127), and neu-
ropeptide F (30) modulate aggression in flies.
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False discovery
rate: the expected
proportion of false
positives among all
significant results

Artificial selection for increased aggression
implicated a cytochrome P450, Cyp6a20, in
mediating aggressive behavior (29). Further
experiments showed that social experience
modulates expression levels of Cyp6a20 and that
Cyp6a20 expression levels are inversely related
to levels of aggressive behavior (119). Expres-
sion of Cyp6a20 in support cells of olfactory
sensilla suggested that the activity of Cyp6a20
might be related to regulating pheromone
sensitivity that triggers intermale aggression
(119). The pheromone 11-cis-vaccenylacetate
elicits male-male aggression via the Lush
odorant-binding protein and the Or67d
odorant receptor (118), and the effects of 11-
cis-vaccenylacetate are modulated by olfactory
neurons expressing the Or65a receptor (68).
Furthermore, masculinization of females by
expressing transgenes that are components of
the sex determination pathway in pheromone-
producing oenocytes elicited attacks rather
than courtship from males (43). These observa-
tions show that pheromonal signals can trigger
aggressive behavior, analogous to pheromone
signaling in the mouse vomeronasal organ.

The artificial selection experiment that led
to the identification of Cyp6a20 had limited
power because it employed a base population
with low heterogeneity composed of a mixture
of different Canton S laboratory strains and
a single selected replicate (29). In contrast,
bidirectional selection from a heterogeneous
base population followed by microarray ex-
pression analyses contrasting duplicate high
and low aggression lines revealed differential
expression of as many as 1,539 transcripts at
a stringent false discovery rate (>0.001), pro-
viding a glimpse of the genetic complexity that

underlies aggressive behavior (37). The large
number of genes implicated in aggression is
consistent with the large mutational target
evident from a study in which a screen of 170 co-
isogenic P-element insertion lines identified 57
genes (∼35%) with aberrant aggressive behav-
ior compared with the control (38). These stud-
ies indicate that a large segment of the genome
contributes to the manifestation of aggressive
behavior, an observation that is likely to apply
across phyla, and underscore the importance of
defining how individual loci interact in genetic
networks to gain an understanding of the
complex genetic underpinnings of aggression.

Two approaches have been used to identify
ensembles of genes that mediate aggression,
one based on covariant expression of transcripts
and the other based on epistatic interactions.
Microarray expression analysis of 40 inbred
wild-derived Drosophila melanogaster lines
showed that the transcriptome is highly ge-
netically intercorrelated and organized as 241
biologically meaningful modules of covariant
transcripts (7). The lines are vastly divergent
for aggressive behavior, and regression of phe-
notypic values and transcript abundance levels
followed by clustering analysis of the residuals
revealed a genomic signature of modules
containing 266 transcripts associated with ag-
gression (Figure 4) (34). As with differentially
expressed transcripts among low- and high-
aggression selection lines, covariant transcripts
span a wide variety of biological processes,
and many are the products of computationally
predicted genes of yet unknown functions (34).

The first evidence for extensive epistasis
in the genetic architecture for aggression in
Drosophila came from gene mapping studies

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 4
Modules of correlated transcripts associated with aggressive behavior among genome-wide transcriptional profiles from 40 inbred
wild-derived Drosophila melanogaster strains. (a) Heat map of correlated probe sets organized as modules, using modulated modularity
clustering (MMC) (103). Phenotypic values were regressed on transcript abundance levels, and the residuals of significant regressions
were clustered into modules so that members within each module are more highly correlated with each other than with those outside
the module. The diagram shows pairwise correlations between 133 transcripts and the strength of correlations within the modules
decreases down the diagonal. Highly correlated modules appear in red. (b) A network view of the most highly correlated modules, in
which the edges represent correlated transcripts and the color codes of the nodes represent the different modules in panel a. Figure
used with permission from Reference 34.
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Mushroom bodies:
higher-order
integrative structures
in the insect brain

Pleiotropy: the
condition in which a
gene product affects
multiple phenotypes

on recombinant inbred lines (36). Subsequent
studies revealed epistatic interactions among
six co-isogenic P-element insertion mutants
that were hyperaggressive (129). Transcrip-
tional profiling studies on heads from double
heterozygotes derived from these P-element
insertion lines showed widespread transcrip-
tional epistasis. Assessment of the correlations
between variation in gene expression, varia-
tion in aggressive behavior, and variation in
morphological parameters of the mushroom
body and central complex identified 1,197
transcripts that were associated with both ag-
gressive behavior and the length of the α lobes
of the mushroom body (129). The complexity
of the neurogenomic architecture of aggression
was also underscored by an analysis of the
coordinated actions of transcription factors
in the honeybee brain, which resulted in the
construction of a transcriptional regulatory
network model that predicted gene expression
changes of more than 2,000 genes related
to different behaviors, including aggression
(19).

Fighting involves learning because social
defeat reduces subsequent aggressive behavior
(89). Thus, it is perhaps not surprising that
mutations that reduce or enhance aggression
show correlated effects on the structure of
the mushroom bodies, which are integrative
brain centers implicated in learning (95, 129).
However, epistatic networks for brain mor-
phology were largely distinct from the network
observed for aggressive behavior, showing that
these phenotypes, although dependent on an
overlapping array of pleiotropic transcripts, are
influenced differently by the mêlée of enhancer
and suppressor effects among them (129).

Widespread epistatic interactions at the
level of the transcriptome are in line with pre-
vious documentation of ripple effects through
the transcriptome caused by single P-element
insertions affecting olfactory behavior (3).
These observations have significant impact
on the interpretation of human genome-wide
association studies in which epistatic inter-
actions cannot be readily resolved because
of lack of statistical power. Nevertheless, the

widespread epistasis evident from studies on
model organisms likely is a conserved property
of genetic architectures across phyla. Thus,
it is reasonable to assume that a polymorphic
site associated with disease status or trait
variation can exert its effects either directly or
indirectly through its effects on the regulation
of contextually related transcripts.

Genes implicated in aggressive behavior
through analysis of covariant transcript abun-
dance among inbred wild-derived lines and
transcripts implicated from analyses of epistasis
in double heterozygous P-element insertion
lines show only moderate concordance, indi-
cating that both approaches capture different
aspects of the genetic architecture of aggressive
behavior and bearing further testimony to
the complex genetic underpinnings of this
behavioral trait. Thus, aggression arises as
an emergent property of a vast segment of
the genome. Because of the combination of
extensive epistasis and pleiotropy, disruptions
in genes not primarily associated with aggres-
sion per se may indirectly influence aggressive
behavior. The challenge posed to behavioral
geneticists is to disentangle direct and indirect
effects and to identify the most critical hub
genes with the largest phenotypic effects.

CONCLUDING REMARKS:
A GRAND CHALLENGE
FOR THE FUTURE

Understanding the genetic architecture of
aggression requires a systems-level approach
with the following objectives: (a) achieving
a quantitative interpretation of the effects
of DNA variants in terms of variation in
transcriptional networks and the proteome
as well as analysis of causality of transcript
abundance variation with phenotypic variation;
(b) understanding the relationship between
DNA variants and variation in neural circuitry
and dissecting those components of the neural
circuit, if possible, that are causally associated
with aggression; (c) understanding the effects of
gene-environment and gene-gene interactions
on the genetic architecture of aggressive
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behavior; (d ) understanding how experience
and endocrine factors influence variation in
genome-wide transcript expression to the
extent that we will be able to predict the
consequences on the behavioral phenotype;
and (e) developing methods to disentangle
aggressive aspects from other aspects of
neurological conditions in human populations.
These are daunting endeavors that cannot be
accomplished by human genetics studies alone
but will require comparative genomics studies
on genetically tractable model organisms.
The recent generation of a large panel of 192
inbred wild-derived D. melanogaster lines with
sequenced genomes enables for the first time

association analyses in this powerful model,
empowering comprehensive systems genetics
studies of complex behaviors (69). Systems
genetics studies on model organisms hold great
promise because they can identify not only
evolutionarily conserved genes but also orthol-
ogous networks of genes that can be applied
across phyla and provide novel insights into the
genetic architecture of aggression in people
that will go well beyond the few candidate
genes that have been studied to date. If we can
obtain a comprehensive understanding of the
complex genetic underpinnings of aggressive
behavior, we will, indeed, have gained a
profound insight into human nature itself.

SUMMARY POINTS

1. Aggression is a quantitative trait, the manifestation of which is attributable to multiple
segregating genes that are sensitive to the environment; aggression is under stabilizing
selection.

2. The high heritability of aggressive behavior presents a favorable scenario for linkage
mapping and association analyses.

3. Manifestation of abnormal aggressive behavior is a common consequence of traumatic
brain injury, neuropsychiatric disorders, alcohol and substance abuse, and neurodegener-
ative diseases; however, interpretations of studies on polymorphisms in candidate genes
for neuropathology-related aggression are complex, as it is difficult to discriminate cor-
relations with disease status from causality in the aggressive phenotype.

4. Bioamine signaling plays a critical role in modulating aggressive behavior across phyla;
in mice and Drosophila, pheromones can trigger aggressive behavior.

5. Genotype-by-environment interactions, together with genetic background effects,
present major complicating factors for genome-wide association studies in human
populations.

6. Aggression in mice can be readily quantified and is mediated via neural pathways similar
to those in people; several mutations have been identified that result in hyperaggression.

7. Studies on mice and Drosophila have shown that genes that contribute to aggression are
subject to modulation by modifiers in different genetic backgrounds, underscoring the
notion that aggressive behavior is a phenotype that emerges from a genetic architecture
that consists of ensembles of interacting genes.

8. Aggression arises as an emergent property of a large portion of the genome. Because of
the combination of extensive epistasis and pleiotropy, disruptions in genes not primarily
associated with aggression may indirectly influence aggressive behavior.
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FUTURE ISSUES

1. Systems genetics studies on model organisms will be able to identify not only evolution-
arily conserved genes but also orthologous networks of genes that can be traced across
phyla and provide insights into the genetic architecture of aggression in people that will
go well beyond the few candidate genes that have been studied to date.

2. Studies on possible epigenetic contributions to plasticity in aggressive behavior will be
valuable to complement systems genetics approaches.

3. Future comparative genomic studies will be able to provide insights at the molecular
genetic level into the evolutionary forces that modulate aggressive behavior and drive
the establishment of social hierarchies.

4. The development of novel methods that will allow quantitative monitoring of the dynam-
ics of genome-wide transcript levels in behaving animals in real time in defined neuronal
circuits will enable deeper insights into the dynamic relationships between gene expres-
sion and neural activity during the initiation and execution of aggressive behavior.

5. Further studies in a systems genetics context are needed to examine how environmental
challenges, in particular social or physical stress, modify aggressive behavior.

6. The development of new experimental designs and statistical methods will be needed
to disentangle confounding factors of disease status and aggressive behavior in people
to ultimately predict in early stages of the manifestation of neurological symptoms to
what extent the affected individual is likely to develop agitated and aggressive behavior;
such anticipatory information will facilitate advance preparation of better management
and/or identify novel therapeutic targets for amelioration of behavioral symptoms.
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