Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors

(Recombinant DNA; molecular cloning; polycloning sites; progressive deletions)

Celeste Yanisch-Perron, Jeffrey Vieira and Joachim Messing
Department of Biochemistry, University of Minnesota, St. Paul, MN 55108 (U.S.A.) Tel. (612) 3761509

(Received July 27th, 1984)
(Accepted September 21st, 1984)

Abstract

SUMMARY

Three kinds of improvements have been introduced into the M13-based cloning systems. (1) New Escherichia coli host strains have been constructed for the E. coli bacteriophage M13 and the high-copy-number pUC-plasmid cloning vectors. Mutations introduced into these strains improve cloning of unmodified DNA and of repetitive sequences. A new suppressorless strain facilitates the cloning of selected recombinants. (2) The complete nucleotide sequences of the M13mp and pUC vectors have been compiled from a number of sources, including the sequencing of selected segments. The M13mp18 sequence is revised to include the G-to-T substitution in its gene II at position 6125 bp (in M13) or 6967 bp in M13mp18. (3) M13 clones suitable for sequencing have been obtained by a new method of generating unidirectional progressive deletions from the polycloning site using exonucleases HI and VII.

INTRODUCTION

Single-stranded DNA isolation has been facilitated by the properties of the single-stranded bacteriophage M13 (Messing et al., 1977). Though it is not a naturally transducing system, recombinant DNA techniques have been used to construct a

[^0]general transducing system where double-stranded DNA can be introduced into the double-stranded RF of the phage. Upon transfection of appropriate host cells, the DNA strand ligated to the (+) strand of the RF is strand-separated, packaged and secreted without cell lysis as a recombinant single-stranded DNA phage.

Although inserts seven times longer than the wildtype viral genome have been cloned in M13 (Messing, 1981), the presence of large inserts can cause deletions. Accelerated growth of phage containing smaller inserts that arise from deletions makes maintaining large-fragment clones difficult (Messing, 1983). Differential growth can be observed in the plaque-size variety that results from infection of M13 clones possessing inserts of $>2000 \mathrm{bp}$.

With the introduction of a universal primer (Heidecker et al., 1980), M13 was used primarily for
the subcloning or shotgun cloning of small fragments (for review, see Messing, 1983). Cloning of 10000 bp fragments now appears possible with deletions occurring less frequently than previously predicted. One of the factors interfering with the cloning of large fragments is the restriction of unmodified DNA. JM103, a restrictionless host strain, was developed to circumvent this problem (Messing et al., 1981), but later lost the mutation (Felton, 1983; Baldwin, T., personal communication, C.Y.-P. and J.M., unpubl.), and instead carried a P1 lysogen which also contains a restriction and modification system.
This paper describes the construction and characterization of a number of new strains developed for use with the M13 and pUC cloning vectors. Each strain carries a specific set of mutations that help prevent various cloning problems. A complete

TABLE I
E. coli strains and genotypes

E. coli strain	Genotype
JM83	ara, $\quad \Delta(l a c-p r o A B), \quad r p s L(=s t r A), \quad \phi 80$, lacZ4M15
JM101	$\sup E$, thi, $\Delta(l a c-p r o A B),\left[\mathrm{F}^{\prime}, \operatorname{traD} 36\right.$, proAB, lacI $\left.{ }^{\text {q }} \mathrm{Z} 0 \mathrm{M} 15\right]$
JM105	thi, rpsL, endA, sbcB15, hspR4, $\Delta(l a c-p r o A B)$, [$\mathrm{F}^{\prime}, \operatorname{traD} 36$, proAB, lacI $\left.{ }^{\mathrm{q}} \mathrm{Z} \Delta \mathrm{M} 15\right]$
JM106	endA 1, gyra 96, thi, hsdR 17 , supE44, relA $1, \lambda^{-}$, $\Delta($ lac-proAB)
JM107	endA 1, gyra 96, thi, hsdR 17, supE44, relA 1, λ^{-}, $\Delta($ lac-proAB $), \quad\left[\mathrm{F}^{\prime}, \quad \operatorname{traD} 36, \quad\right.$ proAB, lacI ${ }^{\text {q }} \mathrm{Z4M15]}$
JM108	recAl, endA1, gyra96, thi, hsdR17, supE44, relA 1, $\Delta(l a c-p r o A B)$
JM109	```recA1, ondA1, gyrA96, thi, hsdR17, supE44, relA 1, 㞰, }\triangle(lac-proAB), [[', traD36 proAB, lacI '`Z\M15]```
JM110	rpsL, thr, leu, thi, lacY, galK, galT, ara, tonA, tsx, dam, dcm, supE44, $\Delta(l a c-p r o A B),\left[\mathrm{F}^{\prime}\right.$, $\left.\operatorname{traD} 36, \operatorname{proAB}, \operatorname{lac} I^{9} Z \Delta \mathrm{M} 15\right]$
DH1	F^{-},recA 1, endA 1, gyrA96, thi, hsdR17, supE44, relA $1, \lambda^{-}$
GM48	thr, leu, thi, lacY, galK, galT, ara, tonA, tsx, dam, dcm, supE 44
SL10	
TD1	MC4100, recA 56, srlC300:: Tn 10
MC4100	araD, rpsL, thi, $\triangle(l a c I P O Z Y A) U 169$
SK1592	thi, supE, endA, sbcB 15, hsdR4
71-18	$\Delta($ lac-proAB $)$, thi, supE, $\quad\left[\mathrm{F}^{\prime}, \quad\right.$ proAB. lacI $\left.{ }^{\text {q }} \mathbf{Z} 4 \mathrm{M} 15\right]$

listing of M13mp18 and pUC19 sequences and restriction sites is also presented. The M13mp sequence was compiled from published data (Van Wezenbeek et al., 1980; Messing et al., 1977; 1981; Farabaugh, 1978; Dickson et al., 1975; Kalnins et al., 1983; Messing and Vieira, 1982; Norrander et al., 1983). Re-sequencing of pUC was necessary, as a number of mutations had been introduced into the pBR 322 region of the pUC vectors. A new method of generating unidirectional deletions from a full-length M13 clone of pUC6 by Exo III and VII was used for this purpose. The results have been combined with those published earlier (Ruther, 1980; Vieira and Messing, 1982; Rubin and Spradling, 1983; Stragier, P., personal communication).

MATERIALS AND METHODS

(a) Strains

The bacterial strains listed in Table I are E. coli K-12 derivatives. SK1592 was obtained from Sidney Kushner, DH1 from Jurgen Brosius, GM48 and HB101 from Raymond Rodriguez, and SL10 and TD1 from James Fuchs. Phages $\lambda b 2 c$ were from Bruno Gronenborn, and f2 from David Pratt. Strains were tested for relevant markers by standard methods and as described below.

(b) Maintenance of strains

Long-term storage of desired strains was accomplished by mixing 1 ml of a stationary-phase culture with 1 ml of glycerol and freezing at $-70^{\circ} \mathrm{C}$. Bacteria were revived by streaking aliquots on appropriate selective media and incubating at $37^{\circ} \mathrm{C}$. Short-term working strain stocks were maintained at $-20^{\circ} \mathrm{C}$. Bacteria were revived by inoculating 10 ml of broth with 0.05 ml of the stock and shaking overnight at $37^{\circ} \mathrm{C}$. Alternatively, strains containing the F^{\prime} from JM101 were maintained on glucose minimal plates for 2-4 weeks at $4^{\circ} \mathrm{C}$.

(c) Media

Bacterial strains were grown in 2YT or LB broth (Miller, 1972) supplemented with $15 \mu \mathrm{~g} / \mathrm{ml} \mathrm{Tc}$,
$500 \mu \mathrm{~g} \mathrm{Sm} / \mathrm{ml}$, or $50 \mu \mathrm{~g} / \mathrm{ml}$ Ap when required. Bacteria were plated on M-9 minimal plates (M-9 minimal medium plus 1.5% agar; Miller, 1972) and supplemented with the following as required (per $\mathrm{ml}): 1 \mu \mathrm{~g}$ thiamine, $40 \mu \mathrm{~g}$ nalidixic acid, $20.1 \mu \mathrm{~g}$ 5-fluorocytosinc, $40 \mu \mathrm{~g}$ amino acids, $12.5 \mu \mathrm{~g} \mathrm{Cm}$, and $500 \mu \mathrm{~g} \mathrm{Sm}$. Fusaric acid medium (Tcs broth plus 1.5% agar; Maloy and Nunn, 1981), B-broth medium (Miller, 1972) supplemented with 0.3% yeast extract and 1.4% agar, 1XA medium (Miller, 1972), or MacConkey plates were also used. B-broth plates were supplemented with 0.1 mM IPTG and 0.004% Xgal per plate. The Xgal and IPTG were stored as 2% and 0.1 M stocks, respectively.

(d) Reagents

$\mathrm{Tc}, \mathrm{Sm}, \mathrm{Cm}, \mathrm{Ap}$, amino acids, 5 -fluorocytosine, nalidixic acid, chlorotetracycline, and IPTG were obtained from Sigma. Agar, MacConkey agar, yeast extract, and Bacto tryptone were obtained from Difco. Boehringer Mannheim supplied the Xgal. Restriction endonucleases were provided by Amersham, Bethesda Research Labs, New England Biolabs and PL Biochemicals and used as recommended by their suppliers.

(e) Transductions

Lysates of P1Cm1, clr 100 and P1 vir were prepared by heat induction of lysogenic cells (Miller, 1972). Transductions were performed as described by Miller (1972).

(f) Matings

Matings using F^{\prime} and Hfr strains were conducted as described by Miller (1972).

(g) Curing of transposon

Elimination of the Tn 10 transposon was accomplished via selection on Tcs media (Maloy and Nunn, 1981).

(h) Transformations

Preparation of competent cells for transformation by pUC plasmid and M13 RF DNA (Hanahan,

1983; Cohen et al., 1972) was modified by using $50 \mathrm{mM} \mathrm{CaCl}{ }_{2}$ and cell harvest at $A_{550 \mathrm{~mm}}$ 0.550-0.720 (0.800-0.890 for JM109). Transformation by M13 RF DNA was as described by Hanahan (1983) and Cohen et al. (1972) except that the heatshocked cells and DNA were added to B-broth top agar, IPTG, Xgal, and 0.3 ml of host cells grown to an $A_{550 \mathrm{~nm}}$ of $0.720-1.200$ (JM109 to 1.200-1.8). No antibiotic amplification period was required for RF DNA. Transformation of each strain were repeated five or more times.

(i) RF and plasmid DNA preparations

pUC plasmid DNA was prepared by inoculation to an $A_{550 \mathrm{~nm}}$ of 0.050 of $2 \times \mathrm{YT}$ medium plus Ap with an overnight culture of the plasmid-carrying host strain. The culture was shaken $8-13 \mathrm{~h}$ at $37^{\circ} \mathrm{C}$ before cell harvest. Cm amplification was not required of the multicopy pUC plasmid. RF DNA was prepared by inoculation of $2 \times \mathrm{YT}$ medium to an $A_{550 \mathrm{~nm}}$ of 0.05 . At $A_{550 \mathrm{~nm}} 0.300-0.420$, phage supernatant was added to an moi of $10: 1$, and the culture was shaken $8-13 \mathrm{~h}$ at $37^{\circ} \mathrm{C}$. DNA was extracted by the Birnboim and Doly method (1979) and purified on CsCl gradients as described by Messing (1983).

(j) Marker tests

The restriction-minus and modification-plus phenotypes were tested by plating 0.1 ml of overnight cultures resuspended in 1XA buffer plus 0.01 M MgSO_{4} on B-broth plates. $10 \mu \mathrm{l}$ of the appropriate phage $\lambda b 2 c$ dilutions (either K-12 modified by two serial propagation cycles through JM101 or $\mathrm{K}-12$ unmodified by two serial propagation cycles through HB 101) were spotted on the plates. Plaques were counted after overnight incubation at $37^{\circ} \mathrm{C}$. To confirm the modification-plus phenotype, an HB101 $\lambda b 2 c$ lysate ($\mathrm{K}-12$ unmodified phage) was propagated in the questioned strain for two serial cycles with dilutions of the resultant phage lysate plated on JM101 and HB101. The HB101 lysate was used as a control. No difference in titer was correlated with a modification-plus phenotype.
Phage M13mp10a containing amber mutations in genes I and II (Messing and Vieira, 1982) and M13mpl0w with no amber mutations (Norrander
et al., 1983) were tested for the presence of the suII suppressor and the F episome that possesses mutation lacI ${ }^{\mathrm{q}}$ and deletion lacZ0M15. The presence of the suII suppressor in F^{-}strains was confirmed by infection with amber phage T4amN130N82. Tests confirming the lacI ${ }^{\text {a }}$ and lacZ \mathbf{Z} M15 deletions via blue plaque production required media supplemented with Xgal and IPTG as described (Messing et al., 1977).

Phage f 2 tested for the presence of the $\operatorname{traD} 36$ mutation on the F episome. Unlike M13, the traD gene product is required for phage $\mathbf{f} 2$ propagation (Achtman et al., 1971). Phage f2's inability to infect an F^{\prime} strain confirmed presence of the NIH-recommended traD36 mutation on the F^{\prime}.

The recA mutation was tested by streaking cells on M9 minimal plates and irradiating with a wavelength of 254 nm for 90 s at a distance of 22.5 cm (handheld UV lamp model UVGL- 25 from UVP, Inc. of San Gabriel, CA). As a control, half the agar plate was masked with a paper card during UV exposure. Cells were then incubated overnight at $37^{\circ} \mathrm{C}$. UVresistant growth indicated absence of the recA mutation.

The dam and dcm mutations in GM48 and JM110 were confirmed by propagating pUC plasmids or M13 phage in these strains for at least two overnight culture cycles, isolating the DNA as described above, and cleaving the DNA with either MboI or EcoRII. MboI cleavage correlated with the dam mutation and EcoRII cleavage with the $d c m$ mutation. Sau3A cleavage served as a control.

(k) Construction of JM105

Spontaneous $\mathbf{S m}^{\mathrm{R}}$ mutants of strains SK 1592 were selected for on minimal media plates containing high concentrations ($500 \mu \mathrm{~g} / \mathrm{ml}$) of Sm. A chromosomal $\triangle(l a c-p r o A B)$ deletion was introduced into SK1592rpsL by crossing with SL10 and selected for by growth in the presence of Sm , 5 -fluorocytosine, and proline. The F^{\prime} episome, carrying mutations traD36, proAB, and lacI ${ }^{9}$ ZAM15, was transferred to SK1592-rpsL$\Delta($ lac-proAB) by mating with JM101. The resulting strain was called JM105 and tested for markers as described above.

(l) Construction of JM106 and JM107

$\mathrm{RecA}^{+}, \mathrm{Tc}^{\mathrm{R}}$ derivatives of DH1 were obtained by transducing DH1 with P1Cm1cir-100 propagated in TD1. The desired transductants, DH1-Tn10$r e c A^{+}$, were selected by growth on Tc and nalidixic acid, resistance to UV irradiation, and screened for Cm sensitivity.

The $\Delta(l a c-p r o A B)$ chromosomal deletion was introduced into DH1-Tn $10-$ rec A^{+}by mating with SL10 and selected for by growth on minimal media plates containing nalidixic acid, 5-fluorocytosine, and proline. Positive progeny were further tested for resistance to UV irradiation and production of white colonies on MacConkey plates or B-broth plates plus Xgal and IPTG.

The recA ${ }^{+}, \Delta(l a c-p r o A B)$, gyra 96 progeny were tested for retention of the Hsd^{-}and Su^{+}(suppres-sor-plus) phenotypes. Correct progeny were then cured of the Tn 10 transposon by selection on fusaric acid medium. This strain, recA ${ }^{+}, \Delta(l a c-p r o A B)$, endA 1, gyra 96, thi, hsdR 17, supE44, relA 1, was called JM106. JM106(F^{-}) was mated with JM101(F^{\prime}), and the F^{\prime} transfer confirmed by blue plaque production when cells were infected with M13mp10 amber . The final strain was designated JM107.

(m) Construction of JM108 and JM109

The RecA- phenotype was introduced into JM106 by transducing with Plvir propagated on JC10240 (recA ${ }^{-}$, srlC::Tn10). Progeny were selected for by growth on Tc, proline, nalidixic acid, and 5 -fluorocytosine, and screened for inability to grow following exposure to UV light. Further tests affirmed the Hsd^{-}and Su^{+}phenotypes and demonstrated white colonies on MacConkey plates and B-broth plates plus Xgal and IPTG.

Positive progeny were cured of the $\operatorname{Tn} 10$ as before and named JM108. JM108 was mated with JM101; progeny were tested for the presence of the F^{\prime}. The end product (recA 1, endA 1, gyra 96, thi, hsdR17, $\sup E 44$, relA $1, \lambda^{-}, \Delta(l a c-p r o A B),\left[\mathrm{F}^{\prime}, \operatorname{traD} 36\right.$, proAB , lac $\left.I^{9} Z \Delta M 15\right]$ was called JM109.

(n) Construction of JM110

Spontaneous Sm^{R} in GM48 was selected for by plating on minimal plates plus Sm. Inability to
grow without leucine or threonine confirmed the desired phenotypes. The $\Delta($ lac-proAB) was established in GM48-rpsL by mating with SL10 and selecting for on minimal plates plus proline, leucine, 5-fluorocytosine and Sm .

Correct genotype confirmation was by screening for white colony production on B-broth plates plus Xgal and IPTG, and by lysis with T4amN130-N82. JM110 was the result of mating GM48-rpsL- - (lacproAB) with JM101. Infection by M13mp10amber affirmed the F^{\prime} presence.
(o) Generation of clones for sequencing

M13UC RF DNA ($2 \mu \mathrm{~g}$) was digested with 10 units each of SstI and BamHI for 1.5 h at $37^{\circ} \mathrm{C}$. Next, 0.12 vol. of 80 mM EDTA, 0.4 vol. of 5 M $\mathrm{NH}_{4} \cdot$ acetate and 2 vols. of isopropanol were added; after vortexing and RT incubation for 15 min , the DNA was pelleted by centrifugation at $9000 \times \mathrm{g}$ for 5 min . The pellet was carefully washed with cold 70% ethanol-water and dried under vacuum. It was resuspended in $40 \mu \mathrm{l}$ Exo III buffer (50 mM Tris $\cdot \mathrm{HCl} \mathrm{pH} 8,5 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 1 \mathrm{mM}$ DTT), 8 units of Exo III were added, and it was incubated at $37^{\circ} \mathrm{C}$ for 20 min , with $2 \mu \mathrm{l}$ aliquots removed at $1-\mathrm{min}$ intervals to a tube on ice containing $2 \mu \mathrm{l}$ of $10 \times$ Exo VII buffer ($500 \mathrm{mM} \mathrm{K} \cdot$ phosphate, $\mathrm{pH} 7,80 \mathrm{mM}$ EDTA, 10 mM DTT). Two tubes, each containing the pooled aliquots from a $10-\mathrm{min}$ time period, were thus generated. Then 0.1 unit of Exo VII was added to each, and the tubes were incubated at $37^{\circ} \mathrm{C}$ for 45 min , and then at $70^{\circ} \mathrm{C}$ for 15 min . Next, $1.5 \mu \mathrm{l} 0.2 \mathrm{M} \mathrm{MgCl} 2,0,5$ units large fragment DNA polymerase, and $1 \mu 1$ of an $8-\mathrm{mM}$ solution of dATP, dCTP, dGTP, TTP were added and incubated at RT for 30 min . To a $5-\mu \mathrm{l}$ (200 ng of DNA) aliquot were added $5 \mu 110 \times$ ligation buffer (250 mM Tris $\cdot \mathrm{HCl} \mathrm{pH} 7.5,100 \mathrm{mM} \mathrm{MgCl} 2,25 \mathrm{mM}$ hexamine cobalt chloride, and 5 mM spermidine), $5 \mu \mathrm{l} 10 \mathrm{mM}$ ATP, $2.5 \mu \mathrm{l} 0.1 \mathrm{M}$ DTT, and 2 units DNA ligase and the volume was adjusted to $50 \mu \mathrm{l}$ with $\mathrm{H}_{2} \mathrm{O}$. After a 3-h incubation at RT, the DNA was precipitated as described above. The pellet was resuspended in $40 \mu \mathrm{I}$ STE ($10 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ Tris $\cdot \mathrm{HCl}, \mathrm{pH} 7.5$, and 1 mM EDTA) and $10 \mu \mathrm{l}$ were used to transform JM105.

Template preparation, sequencing reaction, gel electrophoresis, and data analysis were as described
(Carlson and Messing, 1984; Messing, 1983; Larson and Messing, 1983).

RESULTS AND DISCUSSION

(a) E. coli hosts

(1) Conjugation mutants

The male-specific E.coli bacteriophage M13 requires an F episome for infection of host cells. Current NIH guidelines regarding the use of recombinant DNA discourage the use of E. coli strains carrying conjugation proficient plasmids like the F^{\prime} episome (Federal Register, 1980). Since the tra operon controls conjugation (Achtman et al., 1971), tra mutations have been isolated on F^{\prime} lac DNA episomes to develop conjugation deficiencies that still allow infection by M13. M13 vector utility is also based on proper α-complementation between the phage and host β-galactosidase gene. A host strain containing the $\Delta($ lac-proAB) deletion on the chromosome and an F^{\prime} lac possessing the tra mutation and lac 4 M15 deletion was constructed and named JM101 (Messing 1979). JM101 has a suppressor that permitted growth of M13mp7, $8,9,10$, and 11 phage that contain amber mutations in genes I and II (Messing et al., 1981; Messing and Vieira, 1982).

(2) Restriction mutants

A restrictionless host strain that facilitated cloning of unmodified DNA was constructed and called JM105. As described in materials and methods, section \mathbf{k}, the $\Delta($ lac-proAB) chromosomal deletion was introduced into SK1592 via an Hfr cross. Although conjugation of F^{\prime} with the traD36 mutation was reduced by a factor of 10^{-5}, the leaky mutation allowed conjugation at a reduced rate. Therefore, JM101 was used as a donor for the F^{\prime} traD36AproAB lacI ${ }^{9} Z 4 \mathrm{M} 15$ episome in mating experiments by using the complementation of proline as selection and drug resistance as counterselection. The resulting strain did not contain the supE mutation of JM101, so it permitted growth of wild-type M13mp10, 11, 18, and 19, but not of the amber mutants. This provides selection for transferring inserts from an M13 amber phage into a wild-type

M13 vector and for obtaining M13 recombinants with inserts in the opposite orientation (Carlson and Messing, 1984). Since JM105 is $\mathrm{r}^{-} \mathrm{m}^{+}$, any unmodified DNA cloned directly into wild-type M13 vectors and propagated in JM105 is modified but not restricted. The relevant markers have been tested as shown in Table II.

(3) Recombination mutants

E. coli $\mathrm{K}-12$ restriction was not the only cause for reduced efficiency in cloning larger DNA fragments ($>2000 \mathrm{bp}$) into M13; another source of instability was recombining sequences. Since recA mutations reduce recombination, a host with a reci mutation would be useful. A new recA, $\mathrm{r}^{-} \mathrm{m}^{+}$, su II host for all

TABLE II

Marker tests

(a) Testing for the Hsd^{-}and Su^{+}phenotypes.
$\lambda b 2 c$ propagated in modifying JM101 or unmodifying HB101 for two serial cycles was spotted on lawns of questioned strains and incubated at $37^{\circ} \mathrm{C}$ overnight. The JM101-modified and restricted $\lambda b 2 c$ was able to efficiently infect $\mathrm{r}^{+} \mathrm{m}^{+}$strains, while HB101 unmodificd and unrestricted $\lambda b 2 c$ phage was destroyed in $\mathrm{r}^{+} \mathrm{m}^{+}$strains. Amber phage T4amN130-N82 was spotted upon lawns of the strains in question and incubated at $37^{\circ} \mathrm{C}$ overnight. Only strains possessing the suII suppressor gene support growth of the amber phage.

Phage	Phage dilution	Number of plaques on E. coli strain:			
		$\begin{aligned} & \mathrm{r}^{+} \mathrm{m}^{+} \\ & \text {JM101 } \end{aligned}$	$\begin{aligned} & \mathbf{r}^{-} \mathrm{m}^{+} \\ & \text {JM105 } \end{aligned}$	$\begin{aligned} & \mathrm{r}^{-} \mathrm{m}^{+} \\ & \text {JM106 } \end{aligned}$	$\begin{aligned} & \mathrm{r}^{-} \mathbf{m}^{+} \\ & \mathrm{JM} 108 \end{aligned}$
$\lambda b 2 c$ propagated in	10^{-2}	40	lysis	lysis	lysis
HB101 ($\mathrm{r}^{-\mathrm{m}^{-} \text {) }}$	10^{-4}	0	lysis	lysis	lysis
$\left(1 \times 10^{9} \mathrm{pfu} / \mathrm{ml}\right)$	10^{-6}	0	8	18	5
$\lambda b 2 c$ propagated in	10^{-2}	lysis	lysis	lysis	lysis
JM101 ($\mathrm{r}^{+} \mathrm{m}^{+}$)	10^{-4}	40	lysis	lysis	lysis
$\left(1 \times 10^{8} \mathrm{pfu} / \mathrm{ml}\right)$	10^{-6}	0	0	1	0
T4amN130-N82 propagated in JM101 $\left(1 \times 10^{10} \mathrm{pfu} / \mathrm{ml}\right)$	10^{-2}	lysis	0	lysis	lysis

(b) Testing for $\mathrm{F}^{\prime}, \operatorname{traD} 36, \operatorname{lac} I^{9}, \operatorname{lac} \boldsymbol{Z} \Delta \mathrm{M} 15$, and for Su^{+}, $\mathrm{Hsd}, \mathrm{Rec}^{-}$, and Gyr phenotypes.

Infection of plate lawns by spotted dilutions of amber phage M13mp11 + Xgal and $+/$ IPTG demonstrated presence of the suII suppressor gene and the need for IPTG induction of the lacZ gene for proper blue plaque production. Phage f^{\prime} 's infectious incapability indicated presence of the traD36 mutation in the host strain. Tests for r^{-}and m^{-}were as given above in Table IIa. Plates of freshly streaked cells were subjected to UV irradiation to test for the RecA phenotype. Strain growth on plates containing nalidixic acid affirmed the presence of the gyr mutation.

Test	Plaques on E. coli strain ${ }^{\text {a }}$			
	JM101	JM105	JM107	JM109
Infection with M13mp11 amber				
+ Xgal + IPTG	blue	0	blue	blue
+ Xgal alone	clear	0	clear	clear
Infection with f 2	0	0	0	0
Test for r^{-}	-	+	+	+
Test for m^{-}	-	-	-	-
Growth after UV exposure ${ }^{\text {a }}$	+	+	+	-
Growth on nalidixic acid ${ }^{\text {a }}$	0	0	+	+

[^1]M13 vectors was thus constructed. Strain DH1, developed for high transformation efficiencies (Hanahan, 1983), was selected as the initial strain because it possessed a recA, hsdR17, $\operatorname{supE} 44$ genotype and high transformation efficiency. The recA mutation was transduced to recA ${ }^{+}$(Csonka and Clark, 1978) to permit deletion of the $\Delta(l a c-p r o A B)$ region producing JM106. After introduction of the F^{\prime} from JM101, the resultant strain JM107 could be used in the same manner as JM101 for infection by amber or wild-type M13 or by the pUC plasmids. P1 transduction of JM106 restored the recA 1 mutation and produced strain JM108. The introduction of JM101's episome into JM108 produced JM109. All four DH1 derivative strains, JM106, JM107, JM108, and JM109, have been screened for the correct $\mathrm{r}^{-} \mathrm{m}^{+}$and suII phenotype, and JM107 and JM109 have been tested for the $\Delta \mathrm{M} 15$ deletion, the lacI ${ }^{9}$ and traD mutations (Table II).

(4) Applications

These new strains broaden applications of the M13mp and pUC plasmid vector systems. JM106 and JM108 may prove useful as hosts for cosmid libraries, because deletion of the chromosomal lac DNA can prevent background hybridization. JM109 could be useful as the host for cDNA libraries (Helfman et al., 1983; Heidecker and Messing,
1983) and for examining the expression of mutant proteins in E. coli. Transformation efficiencies of all strains have been tested by the transformation protocols of Cohen et al. (1972) and Hanahan (1983). All strains approximated the efficiencies of standards DH1 and 71-18, with JM107 and JM109 proving to be slightly higher (Table III). Higher transformation efficiencies have been reported (Hanahan, 1983) and may be possible for these new strains. This work attempted only to ensure that under defined transformation conditions the new strains gave the same transformation efficiencies as the parental strains.
JM109 has proven useful by virtue of its recal mutation. Plasmids form multimers when propagated in recA ${ }^{+}$strains like JM83 (Bedbrook and Ausubel, 1976). JM109 maintains pUC species of a unique size whether monomer or multimer. The reca 1 mutation destroys the mechanisms for the recombination and/or replication events that produce the multimers.
Although it is not possible to predict whether large fragments cloned into M13 and grown in JM109 will experience fewer deletions than when propagated in JM101, the following observations have been made. When a $4.5-\mathrm{kb}$ fragment of the maize-controlling element activator (Ac) was cloned in M13 and propagated in JM107, deletions were found to extend from the Ac sequences into M13 sequences near the

TABLE III
Transformation efficiencies of pUC18 and M13 RF DNAs

Method	Transformants per $\mu \mathrm{g} \mathrm{pUC18} \mathrm{DNA}$ employing E. coli recipient strain:			
	$\mathrm{DH1}$	$\mathrm{JM105}$	$\mathrm{JM107}$	$\mathrm{JM109}$
CaCl_{2}	4.2×10^{6}	8.2×10^{6}	5.3×10^{6}	1.0×10^{6}
Hanahan	6.3×10^{6}	3.9×10^{5}	1.4×10^{7}	1.2×10^{7}

Method	Transformants per $\mu \mathrm{g}$ M13 RF DNA employing E. coli recipient strain:			
	$71-18$	JM105	JM107	JM109
CaCl_{2}	7.3×10^{5}	3.9×10^{5}	2.6×10^{5}	3.4×10^{5}
Hanahan	3.0×10^{5}	1.2×10^{5}	2.0×10^{6}	1.9×10^{6}

${ }^{\text {a }}$ Transformation with the plasmid or M13 RF DNA into specified host strains, as to compare the traditional CaCl_{2} method (Cohen et al., 1972) with the Hanahan (1983) protocol.

 TTAGAATACCGGATAAGCCTTCTATATCTGATTTGCTTGCTATTBGBCBCGGTAA TBATTCCTACBATBAAAATAAAAAC

 $4010 \quad 4020 \quad 4030 \quad 4040 \quad 4050 \quad 4050 \quad 4070 \quad 4080$ TATAACCCAACCTAAGCCGGAGGTTAAAAAGGTAGTCTCTLAGACCTATEATTTTBATAAATTCACTATTGACTCTTCTC

 유N orze

Fig. 1A. The nucleotide sequence of M13mp18. The sequence has been compiled as described in RESULTS, section \mathbf{b}, and entered into an Apple II computer. Using the programs described earlier (Larson and Messing, 1983), the sequence has been printed out in the single-strand form using the original HincII site as reference point. This strand also represents the $(+)$ or message strand. Numbers correspond to bases aligned with the last digit.

NOTE ADDED IN PROOFS:

Fig. 1 was modified in proofs because after our paper went into press, we learned from a publication by Dotto and Zinder [Nature 311 (1984) 279-280] that the M13mp phage vectors contain an altered gene II product. They used marker rescue experiments to characterize a G to T substitution at position 6125 of the M13 wild-type sequence (6967 in Fig. 1A), leading to a methionine-to-isoleucine change in the gene II protein (codon 40). The altered gene II protein is expressed at normal wild-type levels in M13mp infected cells, but compensates for the disruption of domain B of the M13 ori region. The presented M13 sequence has been changed accordingly.

Enzyme site			Pas.		Pon.		Pos.
HphiA	(bgtea)	2701	5116	589)	5705	24	5946
Hphib	(tcacc)	1502)	15	1132)	2634	2288)	4922
		2108)	7030				
${ }_{\text {MboI }}^{\text {KpnI }}$	(GBtact)	6242)	6242				
	(BATC)	1381)	1381	332)	1713	507)	2220
		4032)	6252	153)	6405	96)	6501
		434)	6935				
Morita Mbolib	(GAaba)	2217)	2217	1694)	3911	2479)	6390
	(тетtc)	$781)$	781 4936	3293)	4074 5284	196)	4270 5586
		666)	4950	318)	68804	332)	
Mrila	(cetc)	254)	254	119)	373	187)	560
		27)		68)	655	383)	1038
		49)	1097	143)	1230	66)	1296
		21)	1317	8)	1325	19)	1344
		71)	1415	901	1505	391)	1896
		481	1944 ,	75)	2019	243)	2262
			2268	404)	2672	4)	2676
		217)	2893	159)	3051	269)	3320
		31)	3351	351)	3702	604)	4306
		391)	4697	74)	4771	149)	4920
		5)	4925	421)	5346	69)	5415
		265)	5600	340)	6020	235)	6255
		277)	6532	423)	6955		
milis	(6age)	484)	1731 !	141)	${ }_{1835}^{625}$	747)	1372
		${ }^{151}$	1863	15)	1878	129)	2007
		312)	2319	15)	2334	15)	2349
		15)	2364	4)	2369	967)	3335
		685)	4020	799)	4819	15)	4834
		${ }^{6121}$	5446	947)	6393	117)	6510
Mati	(tececa)	6424)					
Matil	(c¢tNAES)	(6507)	6507				
Naer	(secbac)	(5612)	5612				
Nar I	(8BCBCL)	${ }^{6000)}$	6000				
Nacisa	(ecces)	${ }^{\text {6246) }}$	6246				
Neitis	(cicaba)	1923)	1923	4324)	6247	590)	6837
Nlaili	(catate)	2722)	2722	1080)	3802	3043)	6845
	(CATG)	${ }^{1491}$	149	47)	196	910)	1106
		193)	1299	499)	1798	235)	2033
		${ }^{123)}$	2156	698)	2854	677)	3531
		1043)	6221	55)	6276	580)	6856
nasiv	(GGNNCC)	1061)		187)	1248	292)	1540
		10)	1550	252)	1802	248)	2050
		323)		18)		3232)	5643
		12)	5655	21)	5676	190)	5866
		134)	6000	130)	6130	112)	6242
			6251	213)	6464	12)	6476
${ }^{\text {Psti }}$ Pvil	(ctacab) (çatca)	$\left(\begin{array}{l}\text { (} 6269 \\ (8404)\end{array}\right.$	6269 6404				
Pvali	(СавсСт)	(5959)	5959	93)	6052	322)	6374
Rsal	(btac)	173)	173 (107)	280	741)	1021

(A)

 Fig. 2. The nucleotide sequence and restriction sites of pUC19. (A) The sequence has been compiled as described and entered into an Apple II computer. The information derived from sequencing pUC6 (Fig. 4) was used to make corrections via the programs described earlier (Larson and Messing, 1983). Both the bla and the lac α-peptide gene products are read from the same strand. Since all coordinates of the pBR322 sequence refer to the

 complement of pUC19 (referred to as pUC19V). (B) Restriction site coordinates are as in Fig. 1B.

M13 origin of replication (Pohlman, R. and Messing, J., unpubl.). It should be noted that the Ac element contains numerous direct and indirect repeats in regions of low and high $G+C$ contents (Pohlman et al., 1984). When the $4.5-\mathrm{kb}$ PstI-BamHI Ac fragment is cloned into M13 and grown in JM109, stable recombinants have been recovered and no deletions have been detected over numerous generations (not shown).

(5) Methylation

Other E. coli mutations useful for recombinant DNA amplification are DNA methylation deficiencies. For example, $M b o I$ and $B c l I$ can cleave DNA propagated in a dam ${ }^{-}$E. coli strain while EcoRII restriction requires the absence of the dcm product (for review, see Roberts, 1983). If DNA is propagated in E. coli strains lacking the A and C methylases, it is unmodified and can be cleaved by $M b o I, B c I I$, and $E c o$ RII. GM48 contains these mutations, but lacks the $\Delta\left(\right.$ lac-proAB) deletion and the F^{\prime} $\operatorname{traD} 36$ proAB lacI ${ }^{9} Z \Delta \mathrm{M} 15$ episome required for M13mp and pUC vector use. Strain JM110 was developed to be $\mathrm{dam}^{-} \mathrm{dcm}^{-}$by introduction of the $\Delta($ lac-proAB) deletion and JM101 episome into GM48. The dam and $d \mathrm{~cm}$ mutations have been tested as described in materials and methods, section \mathbf{j} (not shown).

(b) M13 phage vectors

Since many specific constructions depend on the knowledge of the vector restriction map, the nucleotide sequences of M13mp18 and pUC19 have been compiled and reprinted here. The wildtype sequence of M13 has been determined by Van Wezenbeek et al. (1980). M13's unique HincII site was used as the sequence reference point. Following this reference, the C in position 3 has been converted to a T to eliminate the HincII site, the G (2220) converted to an A to eliminate the BamHI site, and the C (6917) converted to a T to eliminate the AccI site and introduce the BglII site (positions are for wild-type M13) (Messing et al., 1981). The lac HindII fragment has been inserted into the BsuI site at position 5868 (Messing et al., 1977). The lac sequence has been compiled from the lacI gene (Farabaugh, 1978), the lacZpo region (Dickson et al., 1975), and the lacZ gene sequences (Kalnins et al., 1983). M13mp18 and

M13mpl9 lack the double amber mutation that M13mp10a and M13mp11a had (Messing and Vieira, 1982) but do possess two complementary polylinker regions in the lac Z gene (Norrander et al., 1983). The junctions of lac DNA and M13 DNA were as predicted from the restriction sites used for cloning the lac HindII fragment into the BsuI site at position 5868. The junction sequence at the lac Z gene led to an early ochre termination codon that produced a lac α fragment of 168 amino acid residues; 18 of them represent the polylinker region. The resulting sequence of M13mp18 is presented in Fig. 1.
(c) The pUC plasmids
(1) Construction

The lac Hae II fragment inserted into pBR322 produced a shorter α peptide than that in M13 (Ruther, 1980), yet active. The pBR322 sequence has been modified by removing the EcoRI-PvuII fragment containing the Tc resistance gene via a fill-in reaction and blunt-end ligation. The predicted regeneration of the EcoRI site failed to occur when sequencing data revealed that the deletion extends across nucleotides 4355-1-2072. Similar findings were reported by Rubin and Spradling (1983) and Stragier, P. (personal communication). Restriction sites were removed from the intermediate plasmid in the following way. EMS mutagenesis resulted in a GC to AT transition in the PstI site at position 3610 (positions are for pBR322) (Vieira and Messing, 1982). Hydroxylamine treatment converted another GC to AT in the HincII site at position 3911. The AccI site was eliminated by BAL31 digestion of nucleotides 2210-2250. The lac sequence was inserted at the Haell site at position 2352. The lac sequence was oriented in the same direction as the bla gene coding for β-lactamase. The fusion of the lacZ sequence to the pBR322 DNA at the HaeII site at position 2352 resulted in an α peptide of 107 amino acid residues, 19 encoded by the polylinker region at residue 5. Translation was terminated by the UAG termination codon, which was suppressed in the supE strains. In supE strains the peptide was 15 amino acids longer and terminated by an UGA codon. These small fusion peptides were very unstable in E. coli and detectable only through the highly sensitive complementation test with Xgal. The nucleotide sequence and restriction map for pUC19 are given in Fig. 2.

(2) Sequencing with new method

Since the pUC plasmids have been mutagenized with EMS, HA, and treated with BAL31 before introducing the lac DNA into the pBR322 backbone molecule, the pBR322 portion of pUC6 (Vieira and Messing, 1982) had to be resequenced. Earlier sequencing experiments were based on M13 shotgun

Fig. 3. Method for generating unidirectional deletions. Details of the procedure are as follows: (1) Vector is digested with restriction enzymes a and b. Enzyme a leaves a 4-bp 3' overhang that is resistant to Exo III and protects the PHS site. Enzyme b leaves a recessed 3^{\prime} end that is sensitive to Exo III and exposes the insert to digestion. (2) The DNA is treated with Exo III for $0-20 \mathrm{~min}$ and aliquots removed at 1 min intervals. This generated random insert deletions while leaving the PHS intact. (3) Exo VII removed the single-stranded DNA region left by Exo III. (4) The digest was treated with DNA polymerase I to ensure formation of blunt-ended DNA. DNA ligase was added to recircularize the various deletion products, leading to increasingly smaller circles with the PHS in the same position.
sequencing of pUC6 (Halling, S., Abbot, A., Kridl, J. and Messing, J., unpubl.). Because the asymmetric M13 polylinkers (Vieira and Messing, 1982) could be used to make unidirectional deletions, a different approach of generating pUC6 subclones for sequencing was tested. The polylinker permitted cleavage of the pUC plasmid or the M13 RF by two restriction endonucleases, one producing a 3' protruding end like PstI, the other a 5^{\prime} protruding end. Since Exo III was double-strand-specific and required a $3^{\prime} \mathrm{OH}$ end, the PstI end was not accessible to this enzyme. These features simplified the nonrandom sequencing approach based on BAL31 treatment described below (Poncz et al., 1982) and illustrated in Fig. 3. The method included the following steps: (1a) pUC6 was linearized with NdeI, and the ends were made flush with the large fragment of DNA polymerase and inserted at the HincII site of M13mp19 to make M13UC. This produced, between the inserted DNA and the PHS, a unique SstI site proximal to the PHS and a unique BamHI site distal to it. (1b) M13UC RF was digested with SstI and Bam HI. Sst I leaves a 4-bp 3' overhang that is resistant to Exo III and protects the PHS from digestion. BamHI leaves a recessed 3' end that is sensitive to Exo III and exposes the insert to digestion. (2) The DNA was treated with Exo III for $0-20 \mathrm{~min}$. Aliquots were removed at $1-\mathrm{min}$ intervals. This time course generated random insert deletions while leaving the PHS intact. (3) The single-stranded region of DNA left by Exo III treatment was removed with Exo VII. Since only Exo VII is active in the presence of EDTA, addition of Exo III time-course aliquots to a tube containing Exo VII buffer plus EDTA proves a convenient way to stop the Exo III reaction. (4) To ensure formation of blunt-ended DNA, the digest was treated with DNA polymerase I. DNA ligase was added to recircularize the molecules, which were then used to transform JM105. (5) Phage isolated from transformed cells were used for direct gel electrophoresis (Messing, 1983) to determine clones of appropriate size for sequencing (Fig. 4).

The Exo III, Exo VII, polymerase, and ligase reactions were performed sequentially by adjusting reaction buffers. Alternatively, it was possible to protect the PHS from Exo III digestion via S-NTP incorporation by DNA polymerase at a recessed 3^{\prime} end proximal to the PHS left by restriction endo-

Fig. 4. Mapping of the deletion mutants. Since the position of the PHS is unaltered and all deletions occur only at the opposite end, deletion points are mapped by recombinant phage mobility changes indicated by agarose gel electrophoresis. After exonuclease and ligase treatment, the DNA is transformed into JM105. Plaques are picked from each transformation experiment, grown in small cultures, and supernatant phage used directly for agarose gel electrophoresis as described (Messing, 1983). A picture taken of the agarose gel was used to draw a physical map of the sequenced clones. The first and last lanes (unmarked) contain untreated M 13 UCl and $\mathrm{M} 13 \mathrm{mpl9}$, respectively; the other lanes are labeled alphabetically and represent individual clones. Nine clones from this gel were used to prepare a template for sequencing as described in MATERIALS AND METHODS, section o. The sequence has been entered into an Apple II computer and analyzed using the programs of Larson and Messing (1983). The deletion points are marked in the map by the agarose-gel-derived clone name. The map has been drawn with reference to the $N d e I$ sites used to clone pUC6 into the HincII site of M13mp19. The nucleotide numbers in the map are taken from the reverse complement of $\mathrm{pUC6}$, referred to as pUC6V.
nuclease digestion (Putney et al., 1981; Vieira, J., unpublished results). Cleavage of a site distal to the PHS was then needed to generate an unprotected recessed 3' end for Exo III treatment. The consecutive steps are outlined in Fig. 3.

This approach resembles that described by Poncz et al. (1982), but hastens the construction of recombinant M13 phage needed for sequencing. As opposed to bidirectional deletions, the creation of unidirectional deletions precludes the need for recloning DNA fragments. The speed by which recombinants can be obtained resembles that of shotgun cloning. Ordering clones on a physical map is simple (Fig. 4), so the redundancies and gaps typical of shotgun sequencing are avoided. Hence, the following se-
quencing approach to larger DNA segments is used. Restriction sites present in the polycloning sites of M13mp18 and M13mp19 are used to clone restriction fragments in both orientations. Fragments need to be inserted such that between the PHS and the insert there exist two unique restriction enzyme sites. The restriction enzyme site proximal to the PHS must produce either a 4 bp 3^{\prime} overhang or a reccssed 3^{\prime} end. The other should leave a blunt or recessed 3^{\prime} end next to the insert. Each clone pair representing both orientations is then subjected to Exo III and VII treatment. The optimum insert size for nuclease treatment is $2000-5000 \mathrm{bp}$. Also, the ExoIII unit activity of different commercial preparations can vary, necessitating the calibration of each enzyme lot. This is accomplished by the electrophoresis of DNA samples taken at two time points from an ExoIII reaction on an agarose gel for size analysis.

ACKNOWLEDGEMENTS

We thank Kris Kohn, Tammy Krogmann, Mike Zarowitz, and Stephanie Young for help in preparing the manuscript, Drs. J. Felton, T.Baldwin and P. Stragier for making results available to us prior to publication, and Betsy Kren and James Fuchs for helpful discussions. The work was supported by the Department of Energy DE-FG0284ER13210 and NIH GM31499. J.V. is supported by the NIH training grant No. ST32 GM107094.

REFERENCES

Achtman, M., Willets, H. and Clark, A.J.: Beginning a genetic analysis of conjugational transfer determined by the F-factor in Escherichia coli by isolation and characterization of transfer-deficient mutants. J. Bacteriol. 106 (1971) 529-538.
Bedbrook, J.R. and Ausubel, F.M.: Recombination between bacterial plasmids leading to the formation of plasmid multimers. Cell 9 (1976) 707-716.
Birnboim, H.L. and Doly, J.: A rapid alkaline extraction procedure for screening of recombinant plasmid DNA. Nucl. Acids Res. 7 (1979) 1513-1523.
Carlson, J. and Messing, J.: Efficiency in cloning and sequencing using the single-stranded bacteriophage M13. J. Biotechnol. (1984) in press.

Cohen, S.N., Chang, A.C.Y. and Hsu, L.: Non-chromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R factor DNA. Proc. Natl. Acad. Sci. USA 69 (1972) 2110-2114.
Csonka, L. and Clark, A.: Construction of an Hfr strain useful for transferring recA mutations between Escherichia coli strains. J. Bacteriol. 143 (1980) 529-530.
Dickson, R.C., Abelson, J., Barnes, W.M. and Reznikoff, W.S.: Genetic regulation: the lac control region. Science 187 (1975) 27-35.

Federal Register Vol. 45, No. 147 (1980) 50525.
Felton, J.: M13 host strain JM103 contains two restriction systems. Biotechniques I (1983) 42-43.
Farabaugh, P.J.: Sequence of the lacI gene. Nature 274 (1978) 765-769.
Hanahan, D.: Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166 (1983) 557-580.
Helfman, D.M., Feramisco, J.R., Fiddes, J.C., Thomas, G.P. and Highes, S.H.: Identification of clones that encode chicken tropomyosin by direct immunological screening of a cDNA expression library. Proc. Natl. Acad. Sci. USA 80 (1983) 31-35.
Heidecker, G., Messing, J. and Gronenborn, B.: A versatile primer for DNA sequencing in the M13mp2 cloning system. Gene 10 (1980) 69-73.
Heidecker, G. and Messing, J.: Sequence analysis of zein cDNAs obtained by an efficient mRNA cloning method. Nucl. Acids Res. 11 (1983) 4891-4906.
$\mathrm{Hu}, \mathrm{N}-\mathrm{T}$. and Messing, J.: The making of strand-specific M13 probes. Gene 17 (1982) 271-277.
Kalnins, A., Otto, K., Ruther, U. and Müller-Hill, B.: Sequence of the lacZ gene of Escherichia coli. EMBO J. 2 (1983) 593-597.
Larson, R. and Messing, J.: Apple II computer software for DNA and protein sequence data. DNA 2 (1983) 31-35.
Maloy, S. and Nunn, W.: Selection for loss of tetracycline resistance by Escherichia coli. J. Bacteriol. 145 (1981) 1110-1112.
Messing, J., Gronenborn, B., Müller-Hill, B. and Hofschneider, P.H.: Filamentous coliphage M13 as a cloning vehicle: insertion of a HindII fragment of the lac regulatory region in the M13 replicative form in vitro. Proc. Natl. Acad. Sci. USA 75 (1977) 3642-3646.

Messing, J.: A multipurpose cloning system based on the singlestranded DNA bacteriophage M13. Recombinant DNA Technical Bulletin, NIH Publication No. 79-99, Vol. 2, No. 2 (1979) 43-48.

Messing, J.: M13mp2 and derivatives: a molecular cloning system for DNA sequencing, strand specific hybridization, and in vitro mutagenesis, in Walton, A.G. (Ed.), Proceedings of
the Third Cleveland Symposium on Macromolecules. Elscvier, Amsterdam, 1981, pp. 143-153.
Messing, J., Crea, R., and Seeburg, P.H.: A system for shotgun DNA sequencing. Nucl. Acids Res. 9 (1981) 309-321.
Messing, J. and Vieira, J.: A new pair of M13 vectors for selecting either strand of a double-digest restriction fragment. Gene 19 (1982) 269-276.

Messing, J.: New M13 vectors for cloning. Methods Enzymol. 101 (1983) 20-79.
Miller, J.H.: Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1972.
Norrander, J., Kempe, T. and Messing, J.: Improved M13 vectors using oligonucleotide-directed mutagenesis. Gene 26 (1983) 101-106.
Pohlman, R., Fedoroff, N. and Messing, J.: The nucleotide sequence of the maize controlling element activator. Cell 37 (1984) 635-643.

Poncz, M., Solowiejczyk, D., Ballantine, M., Schwartz, E. and Surrey, S.: "Non-random" DNA sequence analysis in bacteriophage M13 by the dideoxy chain-termination method. Proc. Natl. Acad. Sci. USA 79 (1982) 4298-4302.
Putney, S.D., Benkovic, S.J. and Schimmel, P.R.: A DNA fragment with an alpha-phosphorothioate nucleotide at one end is asymmetrically blocked from digestion by exonuclease III and can be replicated in vivo. Proc. Natl. Acad. Sci. USA 78 (1981) 7350-7354.

Roberts, R.: Restriction and modification enzymes and their recognition sequences. Nucl. Acids Res. 12 (1984) r167-204.
Rubin, G.M. and Spradling, A.C.: Vectors for P elementmediated gene transfer in Drosophila. Nucl. Acids Res. 11 (1983) 6341-6348.

Ruther, U.: Construction and properties of a new cloning vehicle, allowing direct screening for recombinant plasmids. Mol. Gen. Genet. 178 (1980) 475-477.
Sanger, F., Nicklen, S., and Coulson, A.R.: DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74 (1977) 5463-5467.
Sutcliffe, J.G.: Complete nucleotide sequence of the Escherichia coli plasmid pBR322. Cold Spring Harbor Symp. Quant. Biol. 43 (1979) 77-90.
Van Wezenbeek, P.M.G.F., Hulsebos, T.J.M. and Schoenmakers, J.G.G.: Nucleotide sequence of filamentous bacteriophage M13 DNA genome: comparison with phage fd. Gene 11 (1980) 129-148.
Vieira, J. and Messing, J.: The pUC plasmids, and M13mp7derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19 (1982) 259-268.

Communicated by A.J. Podhajska.

[^0]: Abbreviations: Ac, activator; Ap, ampicillin; B-broth, Bactotryptone broth; Cm, chloramphenicol; Δ, deletion; DTT, dithothreitol; EMS, ethylmethane sulfonate; Exo III and VII, exonuclease III and VII; HA, hydroxylamine hydrochloride; IPTG, isopropyl β-D-thiogalactopyranoside; LB, Luria broth; M13UC, see RESULTS, section c2; moi, multiplicity of infection; pfu, plaque-forming units; PHS, primer hybridization site; ${ }^{\mathbf{R}}$, resistance; RF, replicative form; RT, room temperature; Sm , streptomycin; STE, $10 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ Tris $\cdot \mathrm{HCL} \mathrm{pH} 7.5,1 \mathrm{mM}$ EDTA; Tc, tetracycline; Xgal, 5-bromo-4-chloro-indolyl- β-d-galactopyranoside; YT, yeast tryptone; [], indicates plasmidcarrier state; Δ, deletion.

[^1]: ${ }^{\text {a }}$ Two bottom lines refer to bacterial growth.

