
CHAPTER 6

Communication in Economic Mechanisms∗

Ilya Segal

1 INTRODUCTION

This chapter considers the problem of finding allocations that satisfy certain

social goals when economic agents have private information regarding their

preferences. This problem has been discussed since at least the early 20th-

century debate on alternative economic mechanisms, but it has received re-

newed attention recently in the literature on “market design,” which proposes

mechanisms to solve various allocation problems of practical importance. For

example, the “two-sided matching problem” arises in allocating workers across

firms, students across schools, or medical interns across medical schools (Roth

and Sotomayor (1990)). The “combinatorial auction problem” arises in allocat-

ing bundles of indivisible items among bidders (Cramton et al. (2006)). Both

agents’ preferences and social goals in these problems differ substantially from

those in the classical economies studied earlier. In particular, agents’ prefer-

ences often exhibit nonconvexities and indivisibilities, and the social goals may

include exact or approximate efficiency, voluntary participation, stability to

group deviations, and even some notions of fairness.

A major theme in the “market design” literature is that the choice of mech-

anism is not determined by incentives alone. Indeed, if incentive compatibility

were the only concern, it could be verified with a direct revelation mechanism.

However, full revelation of agents’ preferences is often impractical or undesir-

able, for several reasons: First, sometimes full revelation requires a prohibitive

amount of communication – e.g., a bidder in a combinatorial auction would

have to announce his valuations for all possible bundles of objects, whose
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number is exponential in the number of objects. Second, agents may have to

incur “evaluation costs” to learn their own preferences. Finally, the more in-

formation is revealed, the more deviations exploiting the revealed information

become available to agents or the designer, as noted in the literature on commu-

nication and mechanisms without perfect commitment (e.g., Myerson (1991,

Section 6) and Salanie (1997, Section 6)). For all these reasons, the “market

design” literature has examined a variety of mechanisms that aim to achieve

the desired goals without fully revealing agents’ preferences. For example, in

the many proposed “iterative” combinatorial auction designs, bidders submit

and modify their bids for various bundles over time. This raises the question:

What is the minimal information that must be elicited from the agents in order

to achieve the goals? Note that the question arises even if agents are willing to

communicate sincerely.

An early discussion of the communication problem can be found in Hayek’s

(1945) critique of socialist planning. Hayek called attention to the “problem of

the utilization of knowledge that is not given to anyone in its totality,” when

“practically every individual . . . possesses unique information of which bene-

ficial use might be made.” He argued that “we cannot expect that this problem

will be solved by first communicating all this knowledge to a central board,

which, after integrating all knowledge, issues its orders.” Instead, “the ultimate

decisions must be left to the people who are familiar with the . . . particular

circumstances of time and place.” At the same time, the decisions must be

guided by prices, which summarize the information needed “to co-ordinate the

separate actions of different people.” While Hayek did not discuss allocation

mechanisms other than the price mechanism and central planning (full reve-

lation), he noted that “nobody has yet succeeded in designing an alternative

system” that would fully utilize individual knowledge.

While Hayek’s ideas inspired economists to study the workings of price

mechanisms, their place among all other conceivable allocation mechanisms

and their domain of applicability have remained unclear. For example, consider

the best-known results about price mechanisms – the Fundamental Welfare

Theorems. The First Welfare Theorem says that announcing supporting prices

is sufficient to verify the Pareto efficiency of an allocation, but not that it is

necessary. The Second Welfare Theorem says only that supporting prices can

be constructed for a given Pareto efficient allocation once all the information

about the economy is available. However, once all the information is available,

an efficient allocation can be computed and imposed directly, without using

prices.1 The theorems have nothing to say about possible efficient non-price

mechanisms in an economy with distributed knowledge of preferences.

A major advance in understanding the role of prices was made by the lit-

erature on the “informational efficiency” of Walrasian equilibria, spurred by

1 There are many computational optimization techniques that do not compute supporting dual

variables – e.g., the ellipsoid method or the simplex method for linear programming (Karloff

1991).
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224 Ilya Segal

Hurwicz (1977) and Mount and Reiter (1974). In contrast to the Fundamental

Welfare Theorems, the literature followed Hayek in modeling allocation mech-

anisms in an economy with decentralized knowledge of preferences. (Similar

techniques were independently developed in the computer science literature

on “communication complexity,” which considered discrete communication

problems – see Kushilevitz and Nisan (1997)). The literature considered the

problem of verifying Pareto efficiency in economies with convex preferences,

and showed that the Walrasian equilibrium verifies an efficient allocation using

the minimal number of real variables among all continuous verification mecha-

nisms. However, the recent “market design” problems have different preference

domain (e.g., with nonconvexities and indivisibilities, Walrasian equilibria or

continuous mechanisms may not exist), different social goals (e.g., coalitional

stability or approximate efficiency), and different relevant communication costs

(e.g., the number of bits, or the cost of evaluating preferences).

It turns out that the necessity of price revelation can be demonstrated in

a general social choice setting that covers most recent “market design” prob-

lems. This is shown in Segal (2005), who characterizes the class of social choice

problems (defined by preference domains and social goals) for which any com-

munication mechanism must reveal supporting “prices” (which in general take

the form of abstract subsets of alternatives offered to the agents). The class turns

out to include a number of important economic problems. Segal (2005) also

suggests an algorithm for deriving the form of budget sets that need to be used

to verify the solution of a given problem with minimal information revelation.

These results have implications for the communication costs of various social

choice problems, measured in bits, real numbers, evaluation costs, or in other

ways. In particular, the results are used to see which problems can be solved in

a practical way and which problems cannot, and what role prices must have in

mechanisms that solve them.

The objective of this chapter is to survey the results described above, a

substantial body of related work, and some potential extensions. We begin in

Section 2 with a very simple example in which the concepts of communication

and minimally informative messages are defined, and the necessity of price rev-

elation is demonstrated. Section 3 extends these ideas to a large class of social

choice problems. In Section 4 we apply the general analysis to several social

choice problems, including classical convex economies, combinatorial auctions

and two-sided matching. In each of these applications, we derive the space of

budget equilibria corresponding to minimally informative messages, and use

this space to identify the communication cost. Section 5 discusses and relates

several alternative measures of communication cost, such as the number of

real variables versus bits transmitted, communication cost of individual agents

rather than in the aggregate, the number of preference evaluations performed

by agents, and some notions of privacy preservation. Section 6 discusses some

further issues, such as comparison between the costs of communication and

verification, probabilistic (average-case) social goals, the additional communi-

cation cost of incentivizing agents, and the role of prices when agents’ utilities
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are interdependent. Many of the questions raised in Section 6 are still open and

require further investigation.

2 A SIMPLE EXAMPLE

We illustrate the main ideas with a very simple example: One object is to be

allocated between two agents with valuations v1, v2. Each agent’s valuation is

his privately observed type, and the the valuation pair (v1, v2) is called the state.

Suppose that we know a priori that the valuations lie in the set {0, 1, 2, 3}. The

goal is to find an “optimal” allocation, which for now we define as efficiency –

giving the object to the agent with the higher valuation (when the valuations

coincide, both allocations are optimal). What communication is needed to find

an optimal allocation?

To begin with, we measure the communication cost as the number of bits

needed to encode the agents’ messages, as in the “communication complexity”

literature (Kushilevitz and Nisan 1997).2 While in this simple example the

communication cost proves to be trivial, the ideas developed in this section will

prove useful in much more complex settings.

2.1 Communication Protocols

An obvious way to find an optimal outcome is by asking agents to reveal their

private information:

Protocol 1 (Full Revelation): The agents announce their valuations v1, v2 (en-

coded in bits). Since each agent needs log2 4 = 2 bits to encode his valuation,

in total 4 bits are sent. The object is allocated to agent 1 if v1 > v2 and to agent

2 otherwise.

Can we find an optimal allocation with less communication? The answer

is yes, by letting agents make announcements sequentially and condition their

announcements on the past announcements. Thus, we define sequential com-

munication as follows:

Definition 1 A communication protocol is (i) an extensive-form game form

in which all moves are binary, (ii) agents’ strategies in this game (each agents’

strategy contingent on his private type as well as history), and (iii) an assignment

of allocations to the terminal nodes of the game.

We assume that agents obey the prescribed strategies – e.g., agents could well

be computers who follow their programs. (The problem of providing incentives

2 Thus, agents are forced to communicate using only binary messages (bits). If instead they could

communicate using a k-letter alphabet, a letter from the alphabet could be encoded using log2 k

bits, so the communication length would only be reduced by the constant factor log2 k. Thus, the

choice of the alphabet is relatively unimportant in large problems.
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226 Ilya Segal

not to deviate is discussed in Subsection 6.2 below.) We want the protocol

to implement in every state an optimal allocation for this state. Consider the

following example:

Protocol 2 (One-sided Revelation): Agent 1 announces his valuation v1 (en-

coded in 2 bits), then agent 2 announces an allocation of the object (1 bit).

Thus, 3 bits are sent in total. Agent 2’s strategy is to allocate the object to agent

1 if v1 > v2 and to himself otherwise.

In Protocols 1 and 2, the number of bits sent is the same in any state (v1, v2).

In other protocols, the amount of communication may differ across states:

Protocol 3 (English Auction): The protocol starts with a price p = 0, and then

agents send messages in sequence:

1. Agent 2 says “stop” or “raise.” If he says “stop,” allocate the object to

agent 1, otherwise set p = 1 and continue.

2. Agent 1 says “stop” or “raise.” If he says “stop,” allocate the object to

agent 2, otherwise set p = 2 and continue.

3. Agent 2 says “stop” or “raise.” If he says “stop,” allocate the object to

agent 1, otherwise allocate the object to agent 2.

Each agent’s strategy is to say “raise” when his valuation exceeds the current

price p and say “stop” otherwise. Given these strategies, the protocol always

implements an optimal allocation. Depending on the agents’ valuations, the

protocol may stop after the agents send 1, 2, or 3 bits.

We now focus on the simplest measure of the communication cost, known

as “worst-case” communication complexity – the largest number of bits sent

across all states.3 Can we find a protocol with a lower communication cost than

the protocols above?

Protocol 4 (Bisection): Agent 1 says “low” if v1 ∈ {0, 1} or “high” if v1 ∈ {2, 3}

(1 bit). Then agent 2 announces an allocation (1 bit). Agent 2’s strategy is as

follows: If agent 1 said “low,” agent 2 allocates the object to agent 1 if v2 = 0

and to himself otherwise. If agent 1 said “high,” agent 2 allocates the object

to himself if v2 = 3 and to agent 1 otherwise. This protocol finds an optimal

allocation using 2 bits.

3 Alternatively, given a probability distribution over valuation pairs (v1, v2), we could consider

“average-case” communication complexity as the expected number of bits sent in the protocol

(this is also known as “distributional” complexity). In Protocol 3, this expected number could

be close to 1 if the valuations are very likely to be low. This is related to Shannon’s (1948)

information measure, which allows coding more frequent messages with shorter strings of bits.

We consider average-case communication complexity in Subsection 6.3 below.
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Table 6.1. State Space

v2

0 1 2 3

0 1, 2 2 2 2
v1 1 1 1, 2 2 2

2 1 1 1, 2 2
3 1 1 1 1, 2

Can we find an optimal allocation using fewer than 2 bits in the worst case?

In general, how can we find the communication complexity of a given problem,

defined as the minimal communication complexity of a protocol solving this

problem? To tackle this question, it is convenient to represent communication

geometrically in the state space. In our example, the state space is described

by a matrix, where in each state (cell) we put the set of optimal allocations

(Table 6.1).

Each node of a communication game tree corresponds to an “event” – a

subset of the state space in which the node is reached. Note that since agent

1’s message at any of his decision nodes depends only on his own type, it

slices the corresponding event into sub-events horizontally; similarly, agent 2’s

messages slice events vertically. Thus, by induction on the depth of the node

we can see that the event corresponding to any node must be a product set. In

computer science, such events are called “rectangles,” although they need not

be geometric (i.e., contiguous) rectangles.

Now consider the rectangles corresponding to the terminal nodes of a proto-

col. Note that such rectangles must partition the state space (since in each state,

exactly one terminal node is reached). Also, if the protocol finds an optimal

allocation, then for each rectangle corresponding to a terminal node there must

exist a single allocation that is optimal on the whole rectangle, and which could

be assigned to the node. In computer science, rectangles with this property are

called “monochromatic.” Thus, the terminal nodes of the protocol must parti-

tion the state space into monochromatic rectangles. The partitions generated by

Protocols 1–4 are shown in Table 6.2.

The worst-case communication complexity W of a protocol is the maximal

depth of the corresponding binary tree. Since the number T of terminal nodes in

such a tree is at most 2W, we must have W ≥ log2 T. Thus, the worst-case com-

munication complexity of finding an optimal allocation can be bounded below

by bounding below the size of any partition of the state space into monochro-

matic rectangles.4

4 The bound in general will not be tight, for two reasons: First, some partitions of the state space

cannot arise in any communication protocol (Kushilevitz and Nisan 1997, Figure 2.1). Second,

the inequality W ≥ log2 T is tight only in balanced trees (such as Protocols 1, 2, and 4) and strict

in unbalanced trees (such as Protocol 3).
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228 Ilya Segal

Table 6.2. Communication Partitions

v2

0 1 2 3

0 2 2 2 2

v1 1 1 2 2 2

2 1 1 2 2

3 1 1 1 2

Protocol 1

v2

0 1 2 3

0 2

v1 1 1 2

2 1 2

3 1 2

Protocol 2

v2

0 1 2 3

0

v1 1 1 2

2 1 2

3

Protocol 3

v2

0 1 2 3

0 1 2

v1 1

2 1 2

3

Protocol 4

2.2 Verification Protocols

Since characterizing all communication protocols has proven to be very hard,

a lot of attention has been put into providing lower bounds on communication

complexity. As discussed before, such a bound can be obtained by finding the

minimal size of a partition of the state space into monochromatic rectangles.

We can further simplify the problem by allowing the rectangles to overlap, i.e.,

allow coverings rather than partitions of the state space.

A covering of the state space into monochromatic rectangles can be inter-

preted as a verification protocol (also called “nondeterministic communica-

tion” in computer science – see Kushilevitz and Nisan (1997, Chapter 2)). To

understand verification, imagine an omniscient oracle who knows the agents’

valuations and consequently the optimal allocation(s), but needs to prove to an

ignorant outsider that an allocation x is indeed optimal. The oracle does this by

publicly announcing a message m ∈ M . Each agent i either accepts or rejects

the message, doing this on the basis of his own type. (Thus, the set of states

on which the message is accepted is a rectangle.) The acceptance of message

m by all agents must verify to the outsider that allocation x is optimal. (Thus,

the rectangle is monochromatic.) The (worst-case) complexity of a verifica-

tion protocol with message space M is the minimum number of bits needed to

encode a message, which is log2 M .5

5 Such communication is called “nondeterministic” in computer science because the oracle

“guesses” an acceptable message (and there may be more than one such message in a given

state). In contrast, the communication protocols defined in the previous subsection are called

“deterministic.”
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While verification protocols are patently unrealistic, their examination

proves useful for the following reasons:

1. Any communication protocol can be verified by the oracle sending all

the messages instead of the agents, and having each agent accept the

message sequence if and only if all the messages sent in his stead are

consistent with his strategy given his type. The oracle’s message space

M is thus identified with the set of the protocol’s terminal nodes (mes-

sage sequences). Therefore, verification is a generalization of commu-

nication, and so communication cost is bounded below by verification

cost.

2. A famous economic example of verification is Walrasian equilibrium.

The role of the oracle is played by the “Walrasian auctioneer,” who an-

nounces the equilibrium prices and allocation. Each agent accepts the

announcement if and only if his announced allocation constitutes his

optimal choice from the budget set delineated by the announced prices.

We will describe a natural extension of such price-based verification

mechanisms to general social choice problems in Section 3.

3. A verification protocol may be viewed as the steady state of an itera-

tive communication protocol. At each stage of the iteration, a message

m ∈ M is announced, and each agent reports a direction in which the

message should be adjusted to become “more acceptable” to him. Ex-

amples of such iterative processes include “tatonnement” processes

for finding Walrasian equilibria, “deferred acceptance algorithms” for

finding stable matchings, and ascending-bid auctions for finding ef-

ficient combinatorial allocations. In some settings, the iterative pro-

cesses converge very quickly, though in general this cannot be guar-

anteed (see Subsection 6.1 below).

2.3 Minimally Informative Messages and Prices

In order to verify optimality using the smallest number of bits, we need to

find a minimal covering of the state space with monochromatic rectangles.

For this purpose, we want to use larger rectangles, corresponding to messages

that reveal less information about the agents’ types. Formally, we define the

following partial “informativeness” order on messages:

Definition 2 Message m is less informative than (or verified by) message

m̃ if m is accepted on a larger set of states (rectangle) than m̃. Also, m is a

minimally informative message verifying (the optimality of) allocation x if any

less informative message verifying x is as informative as m.

Graphically, a minimally informative message m verifying x corresponds

to a maximal rectangle contained in the set of states in which x is optimal.

Typically, a given allocation may be verified by many minimally informative
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Table 6.3. Minimally Informative Message

v2

0 1 2 3

0 2 2 2 2
v1 1 2 2 2

2 2 2
3 2

messages, which are not comparable in the informativeness order. For exam-

ple, with two agents, one minimally informative rectangle could be tall and

narrow (revealing little information about agent 1 and much about agent 2),

while another short and wide (revealing much about agent 1 and little about

agent 2).

It can be seen that for any message m verifying x there exists a less infor-

mative message m ′ that is a minimally informative message verifying x .6 Thus,

starting with any verification protocol, we can replace every message with a

minimally informative message verifying the same allocation, and obtain a ver-

ification protocol with the same number of messages that uses only minimally

informative messages. (Furthermore, this replacement may allow us to discard

some of the messages while still covering the state space with the remaining

rectangles.)

We proceed to characterize the minimally informative messages in our simple

example. The states in which allocating the object to agent 2 are optimal are

marked with “2” in Table 6.3. The minimally informative messages verifying

the optimality of allocating the object to agent 2 correspond to the largest

rectangles that fit into this set, i.e., that do not extend below the diagonal. These

are exactly the geometric rectangles with one corner on the diagonal and another

in the top-right state (v1, v2) = (0, 3).

Note that any minimally informative message verifying allocation 2 can be

described as a “price equilibrium”: The oracle names a price p ∈ {0, 1, 2, 3}

and the allocation of the object to agent 2, and each agent accepts if and

only if the allocation is optimal to him given the price. That is, agent 2 ac-

cepts if and only if he is willing to buy at price p (i.e., v2 ≥ p), and agent

1 accepts if and only if he is willing not to buy at price p (i.e., v1 ≤ p).

(The rectangle depicted in Table 6.3 corresponds to p = 1.) Thus, the min-

imally informative messages verifying allocation to agent 2 are character-

ized as price equilibrium messages for prices p ∈ {0, 1, 2, 3}. Symmetrically,

the same is true for minimally informative messages verifying allocation to

agent 1. This implies that any communication protocol that finds an opti-

mal allocation must reveal enough information to construct a supporting price

equilibrium.

6 This observation is trivial when the state space is finite. For general state spaces, this is shown

in Segal (2005, Lemma 2).
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Figure 6.1.

This observation implies a lower bound on the communication cost: Since

each price p ∈ {0, 1, 2, 3} has to be used in the diagonal state (v1, v2) = (p, p)

(regardless of which of the two optimal allocations is verified in this state), we

need to use at least 4 messages. Thus, the worst-case communication cost is at

least log2 4 = 2 bits. This lower bound is achieved by Protocol 4.7

Suppose now that the agents’ valuations instead lie in the [0,1] interval.

The minimally informative messages verifying an allocation again correspond

to price equilibria (see Figure 6.1), but now any price p ∈ [0, 1] is a unique

equilibrium price in the diagonal state (v1, v2) = p, and so any verification pro-

tocol must use an infinite number of messages. Formally, we will allow infinite

protocols with infinite message spaces, and measure their “dimensionality” –

i.e., how many real numbers are announced by the agents or the oracle (see

Subsection 5.1 below for technical details). Intuitively, the message space in

the example must have at least the same dimensionality as the diagonal – i.e.,

be at least one-dimensional. This lower bound is tight: Just like in Protocol 2,

we can find an optimal allocation with agent 1 revealing his valuation with one

real number, and then agent 2 reporting an optimal allocation with 1 bit.

2.4 Other Social Goals

The result on the necessity price revelation can be extended to social goals other

than efficiency:

Example 1 (Approximate efficiency): Take ε > 0, and say that allocating the

object to agent i is “optimal” if and only if vi ≥ v−i − ε. Minimally informative

messages verifying that allocation to agent 2 is optimal are described by the

geometric rectangles with one corner on the line v2 = v1 − ε and another in

the top-right corner of the state space (see Figure 6.2). Such messages can be

interpreted as price equilibria in which the agents face different prices p1, p2

7 A set of states with the property that no two elements of the set can share a message is called

a “fooling set” in computer science, and “a set with the uniqueness property” in the economic

literature on communication. The size of such a set bounds below the size of the message space.

The novelty here is that the fooling set (in our example, the diagonal) is not chosen ad hoc but

characterized as the set of states with a unique supporting price. This characterization can be

extended to a large class of social choice problems.
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Figure 6.2.

for the object such that p2 = p1 − ε. This observation can again be used

to bound below the communication cost. Note that two diagonal states with

coordinates further apart than ε cannot share a price equilibrium (regardless of

which allocation it supports). With continuous valuations in [0,1], we can find

1/ε such distinct diagonal points, hence we need to use at least 1/ε distinct

messages, and the communication cost is at least log2 (1/ε) bits. This lower

bound is almost achieved by letting agent 1 announce his valuation rounded off

to a multiple of ε, and agent 2 then report an optimal allocation.8

Note also that there exist social goals that cannot be verified with a price

equilibrium:

Example 2 (Minimize efficiency): An allocation is “optimal” if it allocates

the object to the agent with the lower valuation. No price equilibrium with

prices p1, p2 supporting allocation of the object to agent 2 can verify that the

allocation is optimal: If it is ever an equilibrium, it will remain an equilibrium

in state (v1, v2) = (0, 3), in which the object must go to agent 1.

Example 3 (Egalitarian efficiency): In addition to allocating the object effi-
ciently, we must also determine a payment between the agents to equalize their

utilities – i.e., if agent i is “wins” the object, he must pay vi/2 to the “loser.”

This payment cannot be verified with a price equilibrium: Any price equilibrium

would remain an equilibrium when the winner’s value goes up, but egalitarian

efficiency requires that the winner’s payment to the loser must increase.

The examples suggest that price equilibria can only be used to verify social

goals that are somehow “congruent” with private preferences (such as efficiency

or approximate efficiency), but not those opposing or orthogonal to private

preferences (such as minimization of efficiency or equalization of utilities).

Finally, note the difference between whether (a) price equilibria can be used

to verify a social goal, and (b) the minimally informative messages verifying

8 Compare this to the earlier finding that exact efficiency with continuous valuations would require

one-dimensional continuous communication. The relationship between continuous communica-

tion and discrete approximation is discussed in more detail in Subsection 5.1 below.
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the social goal are price equilibria. (a) means that in any state, for any optimal

allocation x in the state there exists a price equilibrium that verifies the op-

timality of x . E.g. the efficiency of an allocation in state (v1, v2) can always

be verified with a price equilibrium, say, setting price p = (v1 + v2) /2. This

is similar to the traditional Fundamental Welfare Theorems (although the ex-

ample fails the usual convexity assumptions of the theorem). In the previous

subsection, we have also shown that (b) holds for the goal of efficiency. Yet,

for social goals other than efficiency, (a) does not imply (b):

Example 4: Suppose there are three possible allocations and a single agent. (We

could add a second agent with a constant utility over the allocations.) A state

is described by the agent’s valuations (v1, v2, v3) for the three allocations. An

allocation is defined as “optimal” if the agent’s utility from it is at least as high

as from at least one of the other two allocations. Any optimal allocation in any

state can be verified with a price equilibrium, e.g., with prices (p1, p2, p3) =

(v1, v2, v3) for the three allocations. However, consider a message in which

the agent verifies that allocation 1 is optimal. This is a minimally informative

message verifying allocation 1, but it is not equivalent to a price equilibrium: It

does not reveal any prices at which the agent prefers allocation 1 to allocation 2

or to allocation 3, since it does not bound above either v2 − v1 or v3 − v1 (it only

reveals that one of the differences is nonpositive, but does not reveal which one).

3 GENERAL SOCIAL CHOICE PROBLEMS

3.1 Setup

We now extend the observations made in Section 2 to general social choice

problems. Let N be a finite set of agents, and X be a set of social alternatives.

(With a slight abuse of notation, the same letter will denote a set and its cardi-

nality when this causes no confusion.) Let P denote the set of all preference

relations over set X that are rational (i.e., complete and transitive). Each agent

i’s preference relation is assumed to be his privately observed type, and the

set of his possible types is denoted by Ri ⊂ P . A state is a preference profile

R = (R1, . . . , RN ) ∈ R1 × . . . × RN ≡ R, where R is the state space, also

known as preference domain. The goal of communication is to implement a

choice rule, which is a correspondence F : R ։ X . For every state R ∈ R, the

set F (R) ⊂ X describes the optimal alternatives in this state.

We focus on the verification problem described in Section 2: An omniscient

oracle knows the agents’ valuations and consequently the optimal allocation(s),

but he needs to prove to an ignorant outsider that an allocation x is indeed

optimal. He does this by publicly announcing a message m ∈ M . Each agent i

either accepts or rejects the message, doing this on the basis of his own type.

The acceptance of message m by all agents must verify to the outsider that

allocation x is optimal.

Core terms of use, available at https:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139052269.008
Downloaded from https:/www.cambridge.org/core. The Librarian-Seeley Historical Library, on 08 Jan 2017 at 08:39:50, subject to the Cambridge



234 Ilya Segal

Figure 6.3.

We can define two notions of verification:

Definition 3 A verification protocol verifies choice rule F if ∀R ∈ R ∃x

∈ F (R) ∃m ∈ M that is acceptable in state R and verifies x. The protocol

fully verifies choice rule F if ∀R ∀x ∈ F (R) ∃m ∈ M that is acceptable in

state R and verifies x.

Thus, simple verification requires only one optimal alternative to be verifi-

able in each state, while full verification requires all optimal alternatives to be

verifiable. We are ultimately interested in simple verification (communication

is not required to find more than one optimal alternative), but full verification

will prove a useful intermediate concept.

3.2 Verification with Budget Equilibria

We extend the notion of a “price equilibrium” to this general social choice

setting, in which we may not even have any divisible goods in which prices

could be measured. Thus, we consider abstract budget sets, which are general

subsets of the space of alternatives (and which may or may not be delineated

by prices). A budget equilibrium message consists of a proposed alternative

x ∈ X and a budget set Bi ⊂ X for each agent i . Each agent i ∈ N accepts

message (B1, . . . , BN , x) if and only if there is no alternative in his budget set

Bi that he strictly prefers to the proposed alternative x . (B1, . . . , BN , x) is a

budget equilibrium in state R ∈ R if it is accepted by all agents in this state.9

It is convenient to define L (x, R) = {y ∈ X : x Ry} – the lower contour set of

preference relation Ri at alternative x . Then the budget equilibrium condition

can be written as Bi ⊂ L (x, Ri ) for all agents i .

To represent a budget equilibrium message graphically, it is convenient to

“order” the agents’ preferences by the ranking of alternative x , i.e., by the

set inclusion order on L (x, Ri ) (see Figure 6.3). Since in general this is not a

9 A number of related concepts have been suggested, including “social equilibrium” (Debreu

1952), “social situations” (Greenberg 1990), “effectivity functions” (Moulin and Peleg 1982),

“effectivity forms” (Miyagawa 2002), “opportunity equilibrium” (Ju 2001), and “interactive

choice sets” (Serrano and Volij 2000). However, all these papers have motivated the concept by

incentives, rather than deriving it from communication among sincere agents.
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complete order, a one-dimensional axis can only represent a “slice” of an agent’s

type space. (The setting studied in Section 2 was a special case in which each

agent’s type in fact was one-dimensional – ordered by his willingness to pay

for the object.) Yet, however imprecise, Figure 6.3 allows us to develop some

useful intuitions. A budget equilibrium message (B1, B2, x) is the set of states

in which Bi ⊂ L (x, Ri ) for i = 1, 2, and in the figure it is represented with a

geometric rectangle with one corner at (B1, B2) and another in the right-hand

corner of the state space (where L (x, R1) = L (x, R2) = X ).

Figure 6.3 also makes it clear that increasing budget sets makes a budget

equilibrium more informative: Budget equilibrium
(

B ′, x
)

is more informative

than budget equilibrium (B, x) whenever Bi ⊂ B ′
i for all agents i . Graphically,

the rectangle corresponding to
(

B ′, x
)

is then included in the rectangle corre-

sponding to
(

B ′, x
)

.

We can now define a budget protocol as a verification protocol in which

the oracle’s message space M is a collection of budget equilibria, such that

each equilibrium (B1, . . . , BN , x) from M verifies the equilibrium alternative

x . Which choice rules can be verified with a budget protocol? Traditional Funda-

mental Welfare Theorems say that in a convex exchange economy, an allocation

is Pareto efficient if and only if it can be verified with a Walrasian equilibrium

(which is a kind of budget equilibrium). The theorems have been extended to

some “non-classical” social choice problems, for which different kinds of bud-

get equilibria have been proposed.10 We extend these results to general social

choice rules, by characterizing choice rules F that are fully verified with a

budget protocol.

According to the definition of full verification, we want to check that for

any alternative x ∈ X , in each state R ∈ R in which x is optimal there exists

a budget equilibrium (B, x) verifying x . To check this, it suffices to check

the largest budget sets supporting x in state R, i.e., B ′
i = L (x, Ri ) for each

i (see Figure 6.3). That this budget equilibrium
(

B ′, x
)

verifies x means that

x must remain optimal in any state R′ “above” R, i.e., in which L (x, Ri ) =

B ′
i ⊂ L

(

x, R′
i

)

for each i . This property of choice rule is formally known as

follows:

Definition 4 (Maskin (1999)) Choice rule F is monotonic if ∀R ∈ R,

∀x ∈ F (R), and ∀R′ ∈ R such that L (x, Ri ) ⊂ L
(

x, R′
i

)

∀i ∈ N, we have

x ∈ F
(

R′
)

.

Theorem 1 A choice rule F is fully verified by a budget protocol if and only

if it is monotonic.11

10 Including the Pareto rule in public-good economies (Milleron 1972) and general economies with

numeraire (Mas-Colell 1980; Bikhchandani and Mamer 1997; Bikhchandani and Ostroy 2002),

and stable many-to-one matching problems with and without transfers (Kelso and Crawford

1982; Hatfield and Milgrom 2005).
11 This implies that F is verified by a budget protocol if and only if has a nonempty-valued

monotonic subcorrespondence.
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Figure 6.4.

Results equivalent to Theorem 1 are stated in Williams (1986, Theorem 2),

Miyagawa’s (2002, Theorem 1), Ju (2001), and Greenberg (1990, Theo-

rem 10.1.2). The present formulation and the idea of the proof are from Segal

(2005).

The deficiency of Theorem 1 is that, just like the traditional Fundamental

Welfare Theorems, it does not rule out that choice rule F could be verified

with a non-budget protocol that might reveal less information and have lower

communication costs than any budget protocol verifying F . To rule this out, we

would like to require the following stronger property:

Definition 5 Choice rule F satisfies the Budget Equilibrium Revelation Prop-

erty (BERP) if for any message verifying the optimality of an alternative x ∈ X

there exists a less informative budget equilibrium (B, x) that verifies the opti-

mality of x.

BERP is illustrated in Figure 6.4. When applied to a message m that fully

reveals a state R (i.e., corresponds to a single point {R} in Figure 6.4), BERP

says that for any x ∈ F (R) we can construct a budget equilibrium (B, x) in

state R that verifies x . Thus, BERP implies that F is fully verified with a

budget protocol, and so by Theorem 1 that F is monotonic. However, BERP

is stronger, since it requires a budget equilibrium verifying x to be constructed

without knowing the exact state, upon observing any message verifying x .

Note that BERP ensures that any minimally informative message verifying an

alternative in F must be equivalent to a budget equilibrium message.

Contrary to the impression created by Figure 6.4, not all monotonic choice

rules satisfy BERP. Figure 6.4 is misleading when feasible contour sets L (x, Ri )

cannot be ordered, in which case there do exist monotonic choice rules that do

not satisfy BERP (see Example 4 in Section 2). Yet, the figure can be still used to

develop intuition for which rules do satisfy BERP. To check whether a message

m = m1 × m2 verifies some budget equilibrium (B1, B2, x) that verifies x , it

again suffices to check the largest budget sets that support x in all states from

m, which are B ′
i = ∩Ri ∈mi

L (x, Ri ) for each i (see Figure 6.4). Thus, it suffices

to check that this equilibrium verifies x , i.e., that x is optimal in any state

R′ in which B ′
i ⊂ L

(

x, R′
i

)

∀i ∈ N . Formally, this property can be defined as

follows
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Definition 6 Choice rule F is Intersection-Monotonic (IM) if ∀m =

m1 × . . . × m N ⊂ R, ∀x ∈ ∩R∈m F (R), and ∀R′ ∈ R such that

∩R∈m L (x, Ri ) ⊂ L
(

x, R′
i

)

∀i ∈ N, we have x ∈ F
(

R′
)

.

Theorem 2 Choice rule F satisfies the Budget Equilibrium Revelation Prop-

erty if and only if it is Intersection-Monotonic.

Intersection monotonicity is fairly easy to verify: just as with monotonicity,

it suffices to check changes in one agent i’s preferences holding all other agents’

preferences fixed (i.e., letting m j =
{

R′
j

}

for j �= i) – the full property would

then follow by iterating over agents. Thus, Theorem 2 offers a simple way to

check whether a given choice rule satisfies BERP, i.e., whether its verification

requires revelation of supporting budget sets.

3.3 Examples of Intersection-Monotonic Rules

Segal (2005) shows that a number of important choice rules are intersection-

monotonic on the universal preference domainPN (and therefore on any smaller

domain), including:

• Weak Pareto efficiency.12

• A notion of approximate Pareto efficiency (e.g., with quasilinear util-

ities, approximating the maximal achievable total surplus within ε).

• The weak core.

• Stable matching.

• The envy-free rule (requiring that no agent envies another agent’s

allocation).

More generally, the class of IM rules includes any rule from the following

class:

Definition 7 Choice rule F is a Coalitionally Unblocked (CU) choice rule if

for some blocking correspondence β : X × 2N
։ X,

F (R) = {x ∈ X : β (x, S) ⊂ ∪i∈S L (x, Ri ) ∀S ⊂ N } ∀R ∈ R.

In words, for each coalition S ⊂ N and each candidate alternative x ∈ X , the

blocking correspondence defines a “blocking set” β (x, S) ⊂ X . An alternative

x ∈ X is optimal in state R if and only if no coalition S ⊂ N can find a strict

Pareto improvement over x in its blocking set β (x, S).13 It is easy to see that

12 The strong Pareto rule is not even monotonic, let alone IM. Note, however, that the weak and

strong Pareto criteria coincide for preferences that are strictly monotonic and nonsatiated in

some divisible economic good.
13 CU choice rules have also been known as “respecting group rights,” with y ∈ β (x, S) interpreted

as the “one-way right” of coalition S to block alternative x with alternative y (Hammond 1997,

Section 5). The “rights” literature, initiated by Sen (1970), is concerned with the problem that
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Figure 6.5.

all the above examples of choice rules are CU rules, for different specifications

of the blocking correspondence. Segal (2005) shows that any CU choice rule

is IM. There do exist IM rules that are not CU, but their economic significance

is unclear. A Venn diagram for choice rules summarizing the above results is

drawn in Figure 6.5.

3.4 The Budget-Shrinking Algorithm

Now we look for minimally informative messages verifying a given choice rule,

which under BERP must be equivalent to budget equilibria. We propose an algo-

rithm to construct such budget equilibria for any given IM choice rule. Thus, for

any given social choice problem, the algorithm constructs and characterizes the

budget equilibria that verify the problem with minimal revelation of informa-

tion. For simplicity, we restrict attention to IM choice rules that are extendable

to the universal preference domain R = PN. (In particular, note that any CU

choice rule is extendable to PN using the same blocking correspondence.)

The proposed algorithm obtains a minimally informative message verifying

a given alternative x by starting with any message verifying x and stretching the

corresponding rectangle sequentially agent-by-agent.14 For an IM choice rule,

we can focus on budget equilibrium messages, and their stretching corresponds

to shrinking the agents’ budget sets. As illustrated in Figure 6.6, we can start

individual and group rights may be incompatible with each other on the universal preference

domain, i.e., that “group rights-respecting” choice rules may be empty-valued. In the applications

considered in Section 4 below, the preference domains and coalitional rights will be defined to

ensure nonempty-valuedness.
14 The algorithm is independently proposed by Segal (2005) and Hurwicz and Reiter (2006, who

call it the “rectangle method”). However, Segal’s (2005) application of the algorithm to the

special case of intersection-monotonic choice rules allows us to focus on budget equilibrium

messages, and stretch them by shrinking the agents’ budget sets.
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Figure 6.6.

with a budget equilibrium (B1, B2, x) verifying alternative x , and “stretch” the

rectangle in the direction of agent 1 as much as possible, while still verifying x .

This stretching, illustrated with the horizontal arrow, corresponds to “shrinking”

agent 1’s budget set from B1 to B ′
1. Next, “stretch” the rectangle described

by budget equilibrium
(

B ′
1, B2, x

)

in the direction of agent 2. This stretching,

represented with the vertical arrow, corresponds to “shrinking” agent 2’s budget

set from B2 to B ′
2. This yields a budget equilibrium message

(

B ′
1, B ′

2, x
)

that can

no longer be stretched, i.e., corresponds to a minimally informative verifying

message. (The same procedure works with any number of agents: sequential

agent-by-agent stretching yields a minimally informative verifying message.)

Note that the resulting equilibrium
(

B ′
1, B ′

2, x
)

can be described by the

“boundary” state R ∈ PN in which the agents’ lower contour sets at x co-

incide with B ′
1, B ′

2, and x is on the verge of becoming non-optimal. Formally,

the boundary states R for alternative x and the corresponding minimally infor-

mative budget equilibria are characterized by the condition

Bi = L (x, Ri ) =
⋂

R′
i ∈Ri : x∈F(R′

i ,R−i )

L
(

x, R′
i

)

∀i ∈ N . (*)

In words, each agent i’s budget set is his smallest lower contour set for which

x is still optimal, holding other agents’ preferences fixed.

When the preference domainR is a strict subset ofPN , we face the following

complications:

• There typically exist many budget equilibria that are equally informa-

tive to (*) but have even smaller budget sets. For example, in exchange

economies in which preferences are known to be monotone in con-

sumption, a Walrasian budget equilibrium, in which the budget sets

are half-spaces, is equivalent to the budget equilibrium in which the

half-spaces are replaced with their boundary hyperplanes (i.e., waste

is not allowed). The budget equilibria characterized by (*) have the

largest budget sets among those that are equally informative, and it

proves convenient to focus on them (if only because they are guaran-

teed to exist). Thus, in shrinking agent i’s budget set, we only shrink

it to the intersection of the feasible lower contour sets in Ri for which

x is still optimal, and not any further, even when such shrinking might

yield an equally informative message.
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• Since not all subsets of X may serve as lower contour sets, the “bound-

ary states” characterized by (*) are not guaranteed to be inR. However,

it is still true that (*) with R ∈ PN characterizes (up to equivalence)

the minimally informative verifying budget equilibria.

If a boundary state R satisfying (*) does fall in the preference domain R,

then we can see that (L (x, R1) , . . . , L (x, RN ) , x) is a unique (up to equiva-

lence) budget equilibrium verifying x in state R. Such an equilibrium cannot be

discarded if we want to verify alternative x in state R with a budget protocol.

This observation will prove useful for bounding below the size of the message

space, and thus the communication cost. (A simple example of this occurred in

Section 2, in which the boundary states were those on the diagonal.) A com-

plication arises when there are many optimal alternatives in state R: since we

do not require full verification, we do not have to verify any given x ∈ F (R).

In such situations, we resort to additional application-specific tricks to bound

below the number of budget equilibria needed for verification.

4 SOME APPLICATIONS

4.1 Pareto Efficiency in Convex Economies

In a smooth convex exchange economy, the alternatives represent the consump-

tion of L divisible goods by the N agents, hence X = R
N L
+ . Each agent i’s

preference domain consists of convex preferences described by differentiable

utility functions of his own consumption xi ∈ R
L
+ with a nonnegative nonzero

gradient everywhere. The feasible set consists of allocations of a given positive

aggregate endowment x̄ ∈ R
L
++: X̄ =

{

x ∈ X :
∑

i xi = x̄
}

.15 The goal is to

verify an allocation that is Pareto efficient within X̄ .

We use the budget-shrinking algorithm described in Subsection 3.4 to de-

rive minimally informative messages verifying the Pareto efficiency of an al-

location x ∈ X̄ with x ≫ 0.16 The derivation can be illustrated in the stan-

dard Edgeworth box depicted in Figure 6.7. Start with a state R in which x is

Pareto efficient, which means that agent 1’s indifference curve passing through

x is below agent 2’s indifference curve passing through x . Note that given

smoothness, the two curves must be tangent at x ; let p denote the agents’ com-

mon marginal rate of substitution at x . Now we shrink agent 1’s lower contour

set as much as possible, while preserving the Pareto efficiency of x and keeping

agent 1’s preferences convex. This shrinking is illustrated with the left-down

arrows in the figure. The furthest we can shrink agent 1’s lower contour set

is to that of linear preferences – a hyperspace with gradient p. This yields a

Walrasian budget set for agent 1 described by the commodity price vector p.

15 We consider a space X of alternatives that is larger than the feasible set X̄ , to allow budget sets

to include infeasible allocations, as the Walrasian budget sets do.
16 We restrict attention to x ≫ 0 to avoid the problem of non-existence of supporting Walrasian

prices (see, e.g., Mas-Colell et al. (1995, Figure 16.D.2)).
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Figure 6.7.

Next, we shrink agent 2’s lower contour set as illustrated with the right-up ar-

rows, yielding for him a Walrasian budget set with the same commodity price

vector p. Thus the budget-shrinking algorithm yields a Walrasian equilibrium.

Furthermore, any Walrasian equilibrium is invariant to budget shrinking – i.e.,

satisfies (*). A formalization of this argument yields

Proposition 1 A message is a minimally informative message verifying the

Pareto efficiency of allocation x ∈ X̄ with x ≫ 0 in a smooth convex exchange

economy17 if and only if it is equivalent to a Walrasian equilibrium supporting

x, i.e., a budget equilibrium (B, x) with

Bi = {y ∈ X : p · yi ≤ p · xi } ∀i ∈ N (1)

for some commodity price vector p ∈ R
L
+ such that ‖p‖ = 1. Any such equi-

librium is a unique Walrasian equilibrium supporting allocation x in any state

in which it is an equilibrium.

The proposition implies that the minimal message space required for verify-

ing any interior Pareto efficient allocation in any convex economy is the space

of Walrasian equilibria. We now discuss the implications of this finding for the

verification cost measured as the dimension of the message space. (We keep

the arguments informal; see Subsection 5.1 for how the dimension could be

formally defined.) Informally, since a feasible allocation x ∈ X̄ is described

with (N − 1) L real variables, and a normalized price vector p is described

with L − 1 real variables, the space of Walrasian equilibria has dimension

(L − 1) + (N − 1) L = N L − 1. This compares favorably to full revelation of

agents’ utility functions, which would require an infinite-dimensional message

space.

If we don’t want full verification, and only need to verify one efficient

allocation in each state, we can further reduce the dimension of the state

space. In fact, it is possible to verify Pareto efficiency without any commu-

nication – e.g., by always giving all the endowment to agent 1. We rule out

17 If non-smooth preferences are allowed, Walrasian equilibria remain minimally informative mes-

sages verifying Pareto efficiency, but other such messages emerge – see Segal (2005) for details.
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such corner allocations, focusing on “non-dictatorial” Pareto efficiency. Note

that the nondictatorial Pareto rule can be verified by fixing an “endowment

allocation” ω ∈ X̄ with ω ≫ 0 and announcing a Walrasian equilibrium (B, x)

such that ω ∈ Bi for all i , which exists in any convex economy (Mas-Colell et

al. 1995, Section 17.BB). Since such equilibria satisfy the additional “budget

constraints”
∑

l plωil =
∑

l pi xil for all i , they can be communicated using

(L − 1) + (N − 1) (L − 1) = N (L − 1) real numbers.

In fact, it is impossible to verify nondictatorial Pareto efficiency using fewer

than N (L − 1) real numbers. This can be shown using a “fooling set” consisting

of the Cobb-Douglas economies, in which each agent i’s utility function takes

the form ui (xi ) =
∏

l x
αil

il with a positive parameter vector α ∈ R
L
++, with the

normalization
∑

l αil = 1. Note that all nondictatorial Pareto efficient alloca-

tions in a Cobb-Douglas economy are interior, and the first-order equilibrium

conditions imply that no two distinct Cobb-Douglas economies share an interior

Walrasian equilibrium. Therefore, verification requires using a subspace of Wal-

rasian equilibria whose dimension is at least that of Cobb-Douglas economies,

which is N (L − 1):

Corollary 1 The verification cost of nondictatorial Pareto efficiency in the

convex exchange economy is exactly N (L − 1) real numbers, and it is achieved

by the Walrasian equilibrium protocol with a fixed endowment.

Corollary 1 was first established in the “informational efficiency” litera-

ture (Hurwicz 1977; Mount and Reiter 1974) for verification protocols satis-

fying a continuity property. Here it has been derived in a different way – from

the purely set-theoretic characterization of minimally informative messages as

Walrasian equilibria (Proposition 1). Unlike the old approach, the set-theoretic

approach does not require any topological restrictions on communication or any

scalar measure of the communication cost, and easily extends to other social

choice problems, including those considered in the “market design” literature.18

4.2 Efficiency in Quasilinear Economies

In economies with numeraire, the space of alternatives take the form X = K ×

R
N , where K is a finite set of (non-monetary) allocations, and R

N describes the

transfers of numeraire (money) to the agents. The feasible set takes the form

X̄ =
{

(k, t) ∈ X :
∑

i ti = 0
}

, i.e., requires a balanced budget.

For simplicity, we let each agent i’s preference domain Ri consist of prefer-

ences Ri over (k, t) ∈ X that are quasilinear in his consumption of numeraire,

18 The analysis also extends to convex economies with public goods. For such economies, the

budget-shrinking algorithm yields Lindahl equilibria, i.e., budget equilibria described by linear

anonymous prices for the private goods and linear personalized “Lindahl” prices for the public

goods. This can in turn be used to derive the dimensionality of the message space needed to

verify Pareto efficiency (which was first obtained by Sato (1981)).
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Figure 6.8.

i.e., described by a utility function of the form ui (k) + ti .
19 Pareto efficiency

is then equivalent to requiring that the non-monetary allocation k ∈ K maxi-

mize the total surplus
∑

i ui (k), regardless of the allocation of numeraire. (The

example in Section 2 was a special case with two non-monetary allocations,

in which surplus-maximization required giving the object to the agent with the

higher valuation.)

We use the budget-shrinking algorithm of Subsection 3.4 to derive minimally

informative messages verifying Pareto efficiency. We illustrate this algorithm in

an Edgeworth box depicted in Figure 6.8, in which the vertical dimension repre-

sents allocations of numeraire between the agents, and the horizontal dimension

represents the non-monetary allocations k ∈ K (arranged in no particular or-

der). Start with a state R in which x is Pareto efficient, which means that the

indifference curve of agent 1 passing through x is above the indifference curve

of agent 2 passing through x . Shrink the lower contour set of agent 1 as much

as possible, while preserving the Pareto efficiency of x (as illustrated with the

downward arrows in the figure). The furthest we can shrink it is until agent

2’s indifference curve (unlike in the previous subsection, there is no convexity

restriction to hold us back). Once this shrinking is completed, agent 2’s lower

contour set cannot be shrunk without violating the Pareto efficiency of x . The

obtained budget sets for the two agents can be delineated by general nonlinear

and personalized prices pi (k) (i = 1, 2, k ∈ K ), specifying the cost of allo-

cation k to agent i in terms of numeraire. The fact that the two budget sets’

boundaries coincide means that the sum of the prices, p1 (k) + p2 (k), must be

the same for all allocations k ∈ K . The budget equilibria described in this way

are the only budget equilibria that are invariant to the budget-shrinking proce-

dure, i.e., satisfy (*). The argument extends to any number of agents, yielding

the following result:

Proposition 2 A message is a minimally informative message verifying the

Pareto efficiency of allocation (k, t) ∈ X̄ in a quasilinear economy if and only

19 In fact, the analysis of this subsection holds on the larger preference domain where each agent i’s

preferences are (i) independent of other agents’ transfers t−i , (ii) continuous and nondecreasing

in his own transfer ti , and (iii) allow compensation (i.e., for any x ∈ X and any k ∈ K there

exists t ∈ R such that (k, t) Ri x). This follows from the observation that any lower contour

set of a preference relation satisfying (i)–(iii) is also a lower contour set of some quasilinear

preference relation.
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if it is equivalent to a valuation equilibrium supporting (k, t), i.e., a budget

equilibrium (B, (k, t)) in which

Bi =
{(

k ′, t ′
)

∈ X : pi

(

k ′
)

+ t ′
i ≤ pi (k) + ti

}

∀i ∈ N (2)

for some price vector p ∈ R
N K satisfying

∑

i

pi

(

k ′
)

=
∑

i

pi (k) for all k ′ ∈ K . (3)

Any such equilibrium is a unique valuation equilibrium supporting alloca-

tion (k, t) in the state given by the agents’ utility functions ui = pi for

each i .

Valuation equilibria were introduced by Mas-Colell (1980) and studied by

Bikhchandani and Mamer (1997) and Bikhchandani and Ostroy (2002). These

papers have extended classical welfare theorems to such equilibria: An alloca-

tion is Pareto efficient if and only if it is supported by a valuation equilibrium.

The contribution of Proposition 2 lies in showing that valuation equilibria con-

stitute minimally informative verification of Pareto efficiency in an economy

with numeraire.

Proposition 2 implies that the minimal message space required for verifying

any efficient allocation in an economy with numeraire is the space of valuation

equilibria. Normalizing the prices (e.g., so that
∑

k pi (k) = 0 for each agent

i) we can describe a price vector satisfying (3) using (N − 1) (K − 1) real

numbers.

If we don’t require full verification, we only need to verify one efficient

allocation in each state, and so need not use all valuation equilibria. How-

ever, it turns out that all the possible normalized valuation prices p ∈ R
N K

satisfying (3) still must be used. Indeed, while in the “boundary” state given

by utility functions (u1, . . . , uN ) =
(

p1, . . . , pN

)

all allocations are efficient

by (3), by the second part of Proposition 2, the agents’ budget sets must be

described by the same prices p no matter which allocation the equilib-

rium supports. Therefore, verifying Pareto efficiency with quasilinear pref-

erences requires the announcement of an (N − 1) (K − 1)–dimensional price

vector.

This lower bound on the communication cost is in fact achieved by the

communication protocol in which the first N − 1 agents announce their nor-

malized utility functions, and then the last agent chooses a surplus-maximizing

allocation. To summarize:

Corollary 2 The continuous verification cost Pareto efficiency in a quasi-

linear economy is (N − 1) (K − 1) real numbers, and it is achieved with a

communication protocol.

A large number of problems with more restricted quasilinear preferences

has been considered, and we describe two of them below.
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4.2.1 Combinatorial Allocation

In this problem, a set L of objects is to be allocated among the agents, and so

the allocation set can be written as K = N L . The preference domain consists

of those quasilinear preferences in which each agent i’s utility depends only

on his own consumption bundle k−1 (i) and is nondecreasing in this bundle (in

the set inclusion order). For the particular case of N = 2, the budget-shrinking

algorithm yields valuation equilibria in which each agent i’s price pi (k) is non-

decreasing in his bundle k−1 (i), and we can normalize prices so that pi (k) = 0

when k−1 (i) = ∅.20 In the state (u1, u2) = (p1, p2), all allocations are effi-

cient by (3), but the normalized price vector in any valuation equilibrium must

coincide with p. Thus, the communication cost is bounded below by the di-

mensionality of this price space, which is 2L − 1. This lower bound is achieved

with a communication protocol in which agent 1 announces his utility function

and agent 2 chooses an efficient allocation. To summarize:

Corollary 3 The continuous verification cost of efficient combinatorial allo-

cation of L objects between two agents is 2L − 1, and it is achieved with a

communication protocol.

Corollary 3 was obtained by Nisan and Segal (2004). A number of other

results have been obtained on the potential communication savings in combi-

natorial allocation problems when agents’ utility functions are a priori restricted

to lie in certain classes, such as those complement-free utilities, submodular

utilities, utilities with substitute objects, utilities with homogeneous objects,

etc. For some of these results, see Nisan and Segal (2004), Dobzinski et al.

(2005), and Babaioff and Blumrosen (2005).

4.2.2 Binary Utilities

Suppose that agents’ utilities are known to be ui (k) ∈ {0, 1} for all k ∈ K . Then

the budget-shrinking algorithm yields valuation equilibria described by prices

pi (k) ∈ {0, 1} for all i, k, and we can normalize prices so that pi �= (1, . . . , 1)

for each agent i (since this price would be equivalent to pi = (0, . . . , 0)). In

the state (u1, . . . , uN ) =
(

p1, . . . , pN

)

, all allocations are efficient by (3), but

the normalized price vector in any valuation equilibrium must coincide with

p. Thus, the communication cost measured in bits is bounded below by the

binary logarithm of size of this price space. The number of possible price

vectors in {0, 1} satisfying
∑

i pi (k) = r for a given integer r is
(

N
r

)K
, since for

each allocation we allocate r “1’s” among N agents’ utilities. For simplicity

taking r = N/2 (with N even) and using Stirling’s formula yields the lower

bound.

20 Application of the budget-shrinking algorithm to the case of N > 2 agents appears more com-

plicated, and we have not attempted it.
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Corollary 4 The communication cost of efficiency with binary utilities is

asymptotically at least N K bits as N → ∞.

Thus, as the number of agents grows, the cost is asymptotically the same as

that for full revelation of utilities.

This setting can be interpreted as “approval voting,” interpreting ui (k) = 1

as agent i’s “approval” of allocation k, with the goal being to find an allocation

approved by most agents. Conitzer and Sandholm (2005) derive the above result

with a different proof.21

4.3 Approximate Efficiency in Quasilinear Economies

When finding an exactly efficient allocation is prohibitively costly, we may

want to allow approximate efficiency. Consider again quasilinear economies,

fix ε > 0, and say that an allocation is ε-efficient if it maximizes the total surplus

within ε (regardless of the transfers).22 Note that the goal of ε-efficiency can

be described as a CU choice rule (see Subsection 3.3), by requiring the grand

coalition to pay a tax ε in numeraire for blocking a candidate allocation (and

not allowing any smaller coalition to block). Then an allocation is unblocked if

and only if it is ε-efficient. Thus, the defined choice rule is IM, and therefore

satisfies the Budget Equilibrium Revelation Property.

To characterize the minimally informative budget equilibria verifying ε-

efficiency, we again use the budget-shrinking algorithm. Note that in the Edge-

worth box depicted in Figure 6.8, an allocation x is ε-efficient if and only if

agent 1’s indifference curve passing through x does not fall below agent 2’s

indifference curve passing through x by more than ε. Shrinking agent 1’s lower

contour set yields a “budget line” that is ε below agent 2’s indifference curve at

all off-equilibrium allocations. After that, agent 2’s lower contour set cannot be

shrunk. Thus, the sum of the prices delineating the agent’s budget sets must be

higher by ε for any off-equilibrium allocation than for the equilibrium alloca-

tion. (Intuitively, agents should be “penalized” for deviations to off-equilibrium

allocations.) Formally, we have:

Proposition 3 A message is a minimally informative message verifying ε-

efficiency of allocation x = (k, t) ∈ X̄ in a quasilinear economy if and only

if it is equivalent to an ε-valuation equilibrium supporting x, i.e., a budget

equilibrium (B, x) with budget sets described by (2) for some price vector

21 Conitzer and Sandholm (2005) also characterize the communication costs of several other com-

mon voting rules. Some of these rules, such as approval voting and the majority rule, are

interesection-monotonic, and so their results can be alternatively derived by characterizing sup-

porting budget sets. Others are not even monotonic, and the results are proven using different

“fooling sets.”
22 This is a “worst-case” notion of approximation. Average-case approximation is discussed in

Subsection 6.3 below.
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p ∈ R
N K satisfying

∑

i

pi

(

k ′
)

=
∑

i

pi (k) + ε for all k ′ ∈ K\ {k} . (4)

Any such equilibrium is a unique ε-valuation equilibrium in the state given by

the agents’ utility functions ui = pi for all i .

Observe that if agents’ utility functions are bounded, then any approximation

ε > 0 can be achieved with finite communication in which agents announce their

utilities rounded off to multiples of ε/N . Thus, arbitrarily close approximation

can be achieved with discrete communication, and so the communication cost

of approximation should be measured in bits. In Subsection 5.1 below we

discuss how this cost relates to the cost of exact efficiency measured in real

numbers.

Now we focus on the setting of “binary utilities” described in the previous

subsection. In this setting, the agents’ utilities are in {0, 1}, and the budget-

shrinking algorithm yields prices in {0, 1}. Note that approximation within

ε = N − 1 can be achieved with a “dictatorial” protocol in which one agent

announces an allocation that maximizes his utility. Approximation within ε <

N − 1 requires finding an allocation that gives utility 1 to at least two agents.

The communication complexity of this can be bounded below by counting how

many “diagonal” states, i.e., states with total surplus 1 for all allocations, can

be “covered” with a given ε-valuation equilibrium, and dividing by the total

number of diagonal states. This gives a lower bound on the number of price

equilibria that need to be used, yielding (see Segal 2005):

Corollary 5 With binary utilities, the communication cost of achieving a better

approximation of efficiency than letting one agent choose an allocation is at

least (K − 1) log2 (1 + 1/ (N − 1)) bits.

Interpreting the problem as “approval voting,” this means that the cost of

finding even an alternative that is approved by more than one voter is pro-

portional to the number of alternatives. The result can also be applied to the

combinatorial allocation problem, by constructing a “large” subset K of alloca-

tions such that the agents can have arbitrary utilities for allocations from K , and

that all allocations that are better than dictatorial allocations lie in K . Nisan and

Segal (2004) construct such a set K whose size is exponential in the number of

objects. Corollary 5 then implies that any improvement upon giving all objects

to one agent requires exponential communication.

4.4 Stable Many-to-One Matching

Now we consider the problem of stable many-to-one matching, which is stud-

ied in Roth and Sotomayor (1990), henceforth RS. In the problem, the set N

of agents is partitioned into the set F of firms and the set W of workers. A
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x

F

W

Figure 6.9.

matching between firms and workers is a binary relation x ⊂ F × W . With

a slight abuse of notation, we let x (i) denote the set of agent i’s matching

partners in matching x . We restrict the space of alternatives to include only

many-to-one matchings, in which a worker cannot match with more than one

firm: X = {x ⊂ F × W : |x (w)| ≤ 1 ∀w ∈ W }. We examine matching prob-

lems without externalities, i.e., those in which each agent i’s preferences depend

only on the set x (i) of his matching partners.

A coalition S can deviate from a candidate match x ∈ X by (i) breaking

any matches and (ii) creating new matches between its members; formally, it

can deviate to any match y ∈ X such that y\ (S × S) ⊂ x\ (S × S).23 This de-

scribes a CU choice rule as defined in Subsection 3.3 above, which is therefore

intersection-monotonic, hence satisfying the Budget Equilibrium Revelation

Property. We proceed to characterize the minimally informative budget equi-

libria verifying stability.

Intuitively, since a worker’s preferences depend only on his employer, his

budget set can be described in terms of the available employers. On the other

hand, a firm has preferences over groups of workers, and so its budget sets can

be described in terms of such available groups. Describing such a combinatorial

budget set for a firm would require exponential communication (2W bits).

Fortunately, it turns out that minimally informative budget equilibria veri-

fying stability don’t use combinatorial budget sets for firms. To see this, note

that a budget equilibrium verifies stability if and only if each firm f ’s budget

set includes any group consisting of some workers who do not have f in their

budget sets and some of those currently employed by f . Indeed, this ensures

that no deviation can make firm f and all of its new hires strictly better off. In

the minimally informative budget equilibria, characterized by (*), firms must

have minimal budget sets necessary for verification, which means that each

firm f ’s budget set must include exactly the groups consisting of some of f ’s

current employees and some of those workers who do not have f in their budget

set. Thus, the firms’ budget sets are implied by the workers’ budget sets, and

they can be described by listing individual workers that are available to the

firm. In such an equilibrium, each potential off-equilibrium match is allocated

to either the firm’s or the worker’s budget set but not both. (Such an equilibrium

is illustrated in Figure 6.9, in which the equilibrium matching is described with

23 We might also ban a coalition from breaking matches between outsiders, but this is irrelevant

when externalities in preferences are ruled out.
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dashed vertical lines, firm’s budget sets are described with downward arrows

and workers’ budget sets are described with upward arrows.) Formally, the

argument yields:

Proposition 4 A message is a minimally informative message verifying

the stability of a many-to-one matching x if and only if it is equivalent

to a match-partitional equilibrium supporting x, i.e., a budget equilibrium

(B, x) satisfying

B f = {y ∈ X : y ( f ) ⊂ ω ( f )} ∀ f ∈ F,

Bw = {y ∈ X : y (w) ⊂ φ (w)} ∀w ∈ W,

for some φ, ω ⊂ F × W such that φ ∩ ω = x and φ ∪ ω = F × W . Further-

more, any such equilibrium is a unique match-partitional equilibrium support-

ing matching x in any state R ∈ R in which L (x, Ri ) = Bi for all i ∈ N.

The finding that combinatorial budget sets for firms need not be used brings

about an exponential reduction in the communication cost. Indeed, the work-

ers’ budget sets are described by a relation φ ⊂ F × W , which is commu-

nicated with at most FW bits, the equilibrium matching x is communicated

with W log2 (F + 1) bits, and the firms’ budget sets ω are implied by the con-

ditions φ ∩ ω = x and φ ∪ ω = F × W . Thus, the cost of verifying a stable

matching is O (FW ) as F, W → ∞. This is exponentially smaller than that of

full revelation of a firm’s preference rankings over subsets of workers, which

asymptotically takes log2

(

2W !
)

∼ W · 2W bits as W → ∞ (using Stirling’s

formula).

If we are not required to fully verify stability, we only need to verify one

stable matching in each state, and need not use all match-partitional equilib-

ria. However, we can show that “almost” all such equilibria need to be used.

This is true even if the preference domain is restricted to include only pref-

erences that are strict and one-to-one, i.e., each firm prefers being unmatched

to matching with more than one worker, and so we can restrict attention to

matchings x in which |x (i)| ≤ 1 for all i ∈ N . With such preferences, Segal

(2005, Lemma 5) shows that the uniqueness of a stable matching in state R

can be ensured by adding one matched firm-worker pair, and completing other

agents’ preferences in a way consistent with R. Therefore, using the second

part of Proposition 4, for any match-partitional budget equilibrium (B, x) on

the first F − 1 firms and W − 1 workers, we can construct a state R in which

the unique stable matching coincides with x and the unique supporting match-

partitional budget sets coincide with B for the first F − 1 firms and W − 1

workers. Thus, we can bound below the communication cost of stability by

that of describing a budget equilibrium with F − 1 firms and W − 1 work-

ers. Since any worker’s budget set may include any of the firms in addition to

its current employer (if in fact he is employed), we have the following lower

bound.
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Corollary 6 The verification cost of stable matching between W workers and

F firms with strict one-to-one preferences is at least (F − 2) (W − 1) bits.

The communication cost of finding a stable many-to-one matching between W

workers and F firms on any preference domain that includes strict one-to-one

preferences and guarantees the existence of a stable matching is asymptotically

at least FW as F, W → ∞.

Corollary 6 generalizes quadratic lower bounds obtained by Gusfield and

Irving (1989) for finding a stable one-to-one matching with F = W using par-

ticular querying languages. Specifically, they only allow queries of the form

“which partner has rank r in your preference ranking” (their Theorem 1.5.1)

or “what rank partner i has in your preference ranking” (their Theorem 1.5.2 ).

The corollary establishes that allowing general communication does not reduce

the communication cost.

The communication cost of actually of finding a stable matching may in

principle be substantially higher than that of verification. However, when firms’

preferences are restricted to be strict and substitutable (RS Definition 6.2), a

stable matching exists and can be found using only slightly more communica-

tion. This can be done with a Gale-Shapley “deferred acceptance algorithm”

(RS Theorems 6.7, 6.8), which takes at most 3FW steps, at each of which a

match is proposed, accepted, or rejected. Since a match is described with at most

log2 (FW ) bits, we have a deterministic protocol that communicates at most

3FW log2 (FW ) bits. This only slightly exceeds the verification cost, and is still

exponentially less than full revelation of firms’ preferences over combinations

of workers.24

5 DIFFERENT MEASURES OF
COMMUNICATION COST

5.1 Continuous versus Discrete Communication

Here we discuss in greater detail the definition of continuous communication

cost and its relation to the discrete communication cost measured in bits. In a

continuous communication protocol, agents should be able to send real-valued

elementary messages, but we also want to allow finite-valued messages (say,

to communicate discrete allocations), without counting the latter toward the

communication cost. Thus, the worst-case cost of continuous communication

is defined as the maximum number of real-valued elementary messages sent

in the course of the protocol. In a verification problem, we can identify the

24 Indeed, it would take log2

(

2W
)

! ∼ 2W · W bits to describe a strict preference rankings groups

of workers when W is large (using Stirling’s formula). Even if a firm’s preference relation is

known to be strict and substitutable, the number of bits needed to describe such a relation is still

exponential in W , as shown by Echenique (2005, Corollary 5).
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communication cost with the dimension of the oracle’s message space M , i.e.,

the number of real numbers needed to encode the oracle’s message. For this

purpose, we must have a topology on M .

A well-known problem in continuous communication is the possibility

of “smuggling” multidimensional information in a one-dimensional message

space with a one-to-one encoding. Traditionally, dimension smuggling has been

ruled out by imposing a continuity restriction on the communication protocol

(Abelson 1980; Luo and Tsitsiklis 1991; Mount and Reiter 1974; Walker 1977).

For example, Mount and Reiter (1974) and Walker (1977) require the “message

correspondence” from states into messages to have a continuous selection in

any neighborhood. This requirement rules out a priori some important commu-

nication protocols, e.g., those in which agents announce discrete allocations.25

A different way to rule out “smuggling” is proposed by Nisan and Segal

(2004). They note that when many dimensions are “smuggled” into a one-

dimensional message, a small error in the message would yield a huge error

in its “meaning,” i.e., the set of states it represents. Thus, smuggling can be

avoided by using a metric on messages that is not arbitrary but based on their

meaning. Specifically, the distance between messages m and m ′ can be defined

as the Hausdorff distance between the corresponding rectangles in the state

space R.26 The communication cost is then defined as a metric dimension of

the message space M .27 In contrast to the traditional approach, this approach

does not rule out any protocols, and in particular allows protocols that mix

continuous and discrete messages.

Another advantage of the Nisan-Segal definition is that it implies a relation

between continuous communication and discrete approximation:

Proposition 5 (Nisan-Segal 2004) A protocol verifying a certain social goal

with a message space whose box-counting dimension is d can be discretized into

a protocol verifying approximation of the goal within ε using asymptotically

d log ε−1 bits as ε → 0.

Intuitively, the oracle can communicate a message rounded-off within ε

using roughly d log ε−1 bits, and the round-off yields a small distortion in the

25 For example, consider the setting of Section 2 in which an object is allocated between two

agents with valuations in [0,1]. The protocol in which agent 1 announces his valuation with 1 real

number and then agent 2 reports an optimal allocation with 1 bit is discontinuous on the diagonal,

where the optimal allocation switches. Insisting on continuity would require a two-dimensional

message space (as in full revelation), which we believe overstates the communication cost in

that example.
26 This distance is based on an underlying metric on the state space R of preference relation

profiles. In turn, the latter can be derived from a given metric on X along the lines suggested by

Debreu (1983).
27 There are different notions of metric dimension – e.g., the Hausdorff dimension, the box-counting

dimension, and the packing index (Edgar 1990), but in all economic examples considered they

yield the same answers.
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meaning of the message. This means that the discretized protocol yields an

allocation that is optimal for some state that is not too far from the true state,

and therefore approximates an optimal allocation. Thus, metric dimension d of

the message space is indicative of the communication complexity of achieving

a “fast” approximation of efficiency, in which each additional bit reduces the

error by the same factor (e1/d ).28

On the other hand, it turns out a somewhat slower but still practical ap-

proximation is sometimes achieved with much less communication than that

implied by the continuous cost of exact optimality. A dramatic example of

this obtains in Calsamiglia’s (1997) model of allocating a homogeneous divis-

ible good between two agents in a quasilinear economy. In this model, exact

surplus-maximization requires infinite-dimensional communication (which can

be shown by adapting Corollary 2 to an infinite set of allocations K ), but Nisan

and Segal (2004) demonstrate a protocol that approximates the maximal sur-

plus within ε using O
(

ε−1
)

bits. This approximation is still considered “fast”

(polynomial) in computer science. In cases like this, the continuous measure

of communication cost used in the economic literature seriously overstates the

“hardness” of the problem.

5.2 Individual Communication Cost and Distributed
Communication

We can reduce the communication costs of individual agents by not having them

observe all the communication, i.e., by creating non-trivial information sets in

the communication protocol. Also, the allocation need not be broadcast to all

agents: instead, we could require that each agent i at the end of communication

announce the component xi of the alternative that he is concerned about. (For-

mally, we write the space of alternatives as X = X1 × . . . . × X N , so that each

agent i’s preferences depend only on component xi of x = (x1, . . . , xN ) ∈ X .)29

The individual communication cost of an agent can be defined as the number

of elementary messages (bits or real numbers) that he must observe and send.

This model of “distributed communication” better captures Hayek’s idea of

decentralization.30 When the number of agents is large, distributed communi-

cation could allow a substantial savings in agents’ individual communication

costs.

Similarly to the aggregate communication cost, individual communica-

tion costs can be bounded below by considering a distributed version of the

28 Related observations are made by Hurwicz and Marschak (2003a,b).
29 Instead of requiring that agent i announce xi we could require that he only learn xi : If describing

xi is relatively “cheap,” as it is in most applications, then requiring that agent i announce xi

would not increase his communication burden substantially.
30 An intermediate model, in which publicly broadcast messages are followed by agents privately

choosing their allocations, has been considered in economics under the name “parametric com-

munication” (Calsamiglia 1987).
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verification problem: The oracle has a message space Mi for each agent i , and

he announces a “distributed message” (m1, . . . , m N ) ∈ M ⊂ M1 × . . . × MN ,

where M is interpreted as the set of “legal” messages. Each agent i observes only

his own message mi , and accepts or rejects it based on his own type. Each agent

i also has a function h : Mi → X i that gives his allocation as a function of his

message. Message (m1, . . . , m N ) ∈ M verifies the choice rule if whenever each

agent i accepts his message mi , the resulting alternative (h1 (m1) , . . . , h (m N ))

is optimal. The oracle should be able to verify an optimal alternative in each

state. The communication cost of agent i is identified with the size of his message

space Mi . Note that any distributed communication protocol can be converted

into this distributed verification by letting Mi consist of agent i’s information

sets over the terminal nodes of the communication protocol. Thus, distributed

verification offers a lower bound on distributed communication.

We say that choice rule F satisfies the Distributed Budget Equilibrium

Revelation Property (DBERP) if for any distributed protocol verifying the

choice rule there exists a function bi : Mi → 2X i such that for any dis-

tributed message (m1, . . . , m N ) ∈ M , each agent i can construct his bud-

get set bi (mi ) ⊂ X i on the basis of his own message mi so that budget

equilibrium (b1 (m1) , . . . , bN (m N ) , h1 (m1) , . . . , hN (m N )) verifies allocation

(h1 (m1) , . . . , hN (m N )). The difference from BERP is that each agent should

be able to construct his budget set on the basis of the communication he ob-

serves. Still, the same argument as that behind Theorem 2 shows that DBERP

holds for any intersection-monotonic choice rule: Letting mi represent the set of

agent i’s types for which he accepts the message, he can construct his budget set

bi (mi ) = ∩Ri ∈mi
L (hi (mi ) , Ri ), and by intersection monotonicity the resulting

budget equilibrium (b1 (m1) , . . . , bN (m N ) , h1 (m1) , . . . , hN (m N )) verifies al-

location (h1 (m1) , . . . , hN (m N )). Thus, for IM choice rules, any distributed

communication must reveal to each agent his own budget set, in addition to his

own allocation. The necessity of observing one’s own budget set can be used to

bound below the size of the agent’s message space, and therefore his individual

communication cost. The “hard” cases for distributed communication are the

ones in which individual communication cost grows with the number of agents,

e.g., as it does in the matching problem.

The distributed communication model outlined above still requires a “cen-

ter” to maintain the consistency of communication observed by different agents.

In a verification protocol, the “center” must verify that (m1, . . . , mM ) ∈ M . In

a communication protocol, the “center” could be interpreted as a “communica-

tion device,” which receives private input messages from many agents and sends

private output messages to many agents. We could rule out such “communica-

tion devices” and consider a more restricted model of pairwise communication,

in which only private messages between two agents are allowed. A verifica-

tion version of such pairwise communication is considered by Marschak and

Reichelstein (1998), who find that a certain number of agents must then be-

come “coordinators”: in addition to observing their own prices (as they must

under DBERP), they also get involved in relaying prices between other agents.
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Thus, the restriction to pairwise communication creates some “communication

overhead.”

Note that with pairwise communication it may sometimes make sense to

employ agents who possess no private information themselves, but can serve

as “communication devices” by aggregating and/or disaggregating messages.

While this could only increase the aggregate communication cost, it would now

be spread among more agents, possibly reducing individual communication

costs. For a survey of the literature on organizations with an endogenous number

of agents, see van Zandt (1998).

An even more restricted model is that of network communication, which

allows only pairwise communication between agents who share an edge in a

fixed network. For example, the network could be given by existing Internet

links or organizational structure. Marschak and Reichelstein (1998, Section 4)

and Feigenbaum et al. (2003) consider a special case in which the communica-

tion network is a tree.31 A simple lower bound on communication along a given

edge in a tree can be obtained by letting each agent sharing the edge have all

the information on his “side” of the tree (i.e., the subtree obtained by cutting

the edge). Feigenbaum et al. (2003) use this approach to show that implemen-

tation of some budget-balanced incentive-compatible allocation rules in trees

requires the communication cost of a large number of agents to grow propor-

tionately to the total number of agents. For modern internet multicast trans-

missions involving millions of users, such communication would certainly be

impractical.

5.3 Evaluation Costs

Even when the communication cost measured in bits or real numbers is low, it

may be costly for agents to evaluate their preferences to send the required mes-

sages. The costs of preference evaluation was noted in the computer science

literature (Parkes 2000), and was modeled in economics as a cost of “infor-

mation acquisition.”32 While these costs have recently gained attention in the

mechanism design literature (see Bergemann and Valimaki 2005), here we focus

on identifying the evaluation costs of a given choice rule under the maintained

assumption that agents are sincere.

Just as with the communication cost, we can bound below the evaluation cost

of finding an optimal alternative by that of verifying that a given alternative is op-

timal, and obtain the latter by using minimally informative verifying messages.

31 The restriction to communication on trees may be justified by a large “fixed cost” of communi-

cation links. This argument was used by Arrow (1974) to explain the prevalence of hierarchies

in firms.
32 Note that such “evaluation costs” depend not just on how many bits are sent, but on which

information agents are asked to report with these bits. E.g., in the example in Section 2, it may

be easier for an agent to answer the question “Is your valuation above or below 1.5?” than “Is

your valuation an even or odd number?” even though each answer would require 1 bit.
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Intuitively, the less informative a message is, the lower is each agent’s cost of

confirming that his preferences are consistent with the message. Thus, BERP

and our characterization of minimally informative budget equilibria again prove

useful.

For an illustration, consider the many-to-one matching problem described in

Subsection 4.4. Suppose that each agent has a cost of “evaluating” a potential

matching partner; without incurring costs, he does not know his preferences re-

garding matchings with this partner. According to Proposition 4, minimally

informative messages verifying a stable matching are equivalent to match-

partitional equilibria. To verify such an equilibrium, each potential match has

to be evaluated by at least one of the partners, hence verification of stability

requires at least FW evaluations. (Note that this this cost must be expended in

any state, and not just in the worst case.)

We could also allow different agents to have different evaluation costs. To

take a simple example, suppose now it is costly for firms to evaluate workers,

while workers do not have any evaluation costs. To verify stability with minimal

evaluation costs for firms, we need to use a match-partitional equilibrium in

which firms’ budget sets are minimal. In fact, when firms have substitutable

preferences, all the firms’ budget sets can be minimized at once, by choosing

the stable match that is Pareto worst for the firms (which exists by Roth and

Sotomayor (1990, Theorem 6.8)), and letting each firm’s budget set include

only the workers who strictly prefer it to their current employer, along with the

firm’s current workers.

This verification procedure gives a lower bound on the firms’ evaluation

costs, but this lower bound is in fact achieved by the Gale-Shapley deferred

acceptance algorithm in which workers propose (Roth and Sotomayor 1990,

Theorem 6.8).33 In this algorithm, each firm evaluates the minimal number

of workers needed to find a stable match. This achieves a tangible evaluation

savings over full revelation: e.g., in the one-to-one matching problem in which

firms’ and workers’ preferences are uniformly and independently drawn, it can

be calculated that in the worker-proposing deferred acceptance algorithm, a firm

in expectation evaluates 1/3 of all workers. It follows from our verification-

based lower bound that this is the minimal expected number of evaluations by

each firm that is needed to find a stable match.

5.4 Privacy

One reason to avoid full revelation is to prevent agents from learning about each

other’s private information – a goal known as privacy. In the economic literature,

privacy is often needed to prevent self-interested agents from deviating in ways

that exploit the revealed information (see, e.g., Myerson (1991, Section 6)).

The computer science literature studies privacy as a goal in itself.

33 If we wanted to minimize workers’ evaluation costs, we would achieve this with the deferred

acceptance algorithm in which firms make proposals.
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Observe that privacy would be maximized if agents could reveal their infor-

mation privately to a trusted “mediator” (“communication device”) who would

then announce an optimal outcome. Then agents would learn nothing about

other agents’ private information beyond the implemented outcome – a situa-

tion known as full privacy. In reality, however, trusted mediators may not be

available, and the question is how much privacy could still be maintained.

Without a trusted mediator, privacy could be enhanced using private pair-

wise communication between agents. In fact, with sufficiently many agents,

private pairwise communication can usually achieve full privacy. This fact has

been exploited in a number of papers that implement correlated equilibrium and

communication equilibrium without a trusted mediator, by designing a com-

munication protocol that reveals to each agent only his own prescribed action

but nothing else, to prevent him from deviating (e.g., Forges 1990).

Suppose now that all communication is public. (Equivalently, we may as-

sume that each agent is concerned that the other N − 1 agents would collude to

share all their observed private messages to infer information about the agent’s

type.) Privacy that can be achieved in in such setting is known as “unconditional

privacy.”34

To bound below unconditional privacy, we can again consider verification

with minimally informative messages. To have an example, consider the many-

to-one matching model described in Subsection 4.4, and suppose that we want

to minimize revelation of information about firms’ preferences over workers.

This is done using a match-partitional budget equilibrium in which the firms’

budget sets are minimal. Recall from Subsection 5.3 that when firms have

substitutable preferences, all of their budget sets can be minimized at once using

the Gale-Shapley deferred acceptance algorithm in which workers propose. The

algorithm reveals nothing about firms’ preferences except their minimal budget

sets, and so it maximizes the firms’ privacy. More generally, our results imply

that public communication usually cannot achieve “full privacy” since it must

reveal supporting budget sets in addition to the outcome to be implemented.35

34 We assume that agents are not computationally constrained. If they are, then privacy can be

achieved even with public communication using “public-key cryptography.” The idea is that a

publicly communicated key from agent 1 to agent 2 can be used by agent 2 to encrypt information

with a one-to-one function that is simple to compute but very hard to invert without a matching

key for inversion, which only agent 1 has. This is the method currently used to implement secure

Internet transactions.
35 Brandt and Sandholm (2005) show that with public communication and unrestricted preference

domains, full privacy is not achievable for a large class of choice functions. However, with a

restricted preference domain, full privacy may be achievable. For example, a Pareto efficient

allocation x in a smooth convex economy can be verified by announcing a supporting Walrasian

equilibrium. The supporting prices only reveal other agents’ marginal rates of substitution at x ,

which each agent would have learned from the allocation x itself by calculating his own marginal

rates of substitution at x . Another question is whether “full privacy” is a relevant goal when we

are implementing a choice rule that is a correspondence rather than a function. In this setting,

the revelation of information depends on which alternative x is implemented as a function of

the state, and not just on what is revealed in addition to x .

Core terms of use, available at https:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139052269.008
Downloaded from https:/www.cambridge.org/core. The Librarian-Seeley Historical Library, on 08 Jan 2017 at 08:39:50, subject to the Cambridge



Communication in Economic Mechanisms 257

6 FURTHER ISSUES

6.1 Communication versus Verification

We have used the verification cost as a lower bound on the communication cost.

This raises the following questions:

• How tight is the verification bound?

There are cases in which the gap between the communication cost and the

verification cost of an allocation problem measured in bits can be exponential –

an example is given in Segal (2005, Example 3). (The gap is never more than

exponential, because starting with a b-bit verification protocol, which has at

most 2b messages, we can check all the messages sequentially until one is

found that is accepted by all agents, which would take at most N · 2b bits.)

• In which cases is the verification bound fairly tight?

The bound is trivially tight when even verification proves almost as hard

as full revelation (e.g., in the combinatorial allocation problem considered in

Subsection 4.2). More interestingly, there are some well-known social choice

problems in which the gap between verification and communication proves to

be small and both are much easier than that of full revelation. For example, in the

many-to-one matching problem considered in Subsection 4.4, in which firms

have strict substitutable preferences, the Gale-Shapley deferred acceptance al-

gorithm converges quickly to a “match-partitional” equilibrium, which verifies

stability using only slightly more bits than that needed for verification, and ex-

ponentially less than that needed for full revelation of preferences. Similarly, in

a convex economy with the “gross substitute” property, Walrasian tatonnement

converges quickly to a Walrasian equilibrium, which verifies Pareto efficiency

(Mas-Colell et al. (1995, Section 17.H)). Similar “tatonnement” mechanisms

have been proposed for combinatorial auction problems with indivisible goods

in which the objects are “substitutes” (e.g., Gul and Stachetti 2000, Nisan and

Segal 2004). In all these mechanisms, at each step, the designer offers budget

sets for the agents, and the agents report their optimal choices from their re-

spective budget sets. If the choices are inconsistent, the designer adjusts the

budget sets to be “closer” to being an equilibrium. A “substitutability” condi-

tion on the agents’ preferences allows us to construct an adjustment process

that is monotonic, and therefore converges quickly (enormously faster than full

revelation).

• What is the role of price queries in communication?

Many practical mechanisms, such as the ones mentioned in the above para-

graph, are “demand-query protocols”: they quote to the agents a price list for

the allocations (with prices sometimes allowed to be nonlinear and personal-

ized) and ask them to submit demands given the prices, adjusting the prices

according to some prespecified rules. Can we always restrict attention to such
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demand-query protocols without increasing the communication cost substan-

tially? Nisan and Segal (2005) show that the answer is “no,” by construct-

ing an allocation problem for which the restriction to demand-query protocols

brings about an exponential blowup in the communication cost of finding an

efficient allocation. Namely, for this class, an efficient mechanism exists that

uses a number of bits that is linear to the number of items, but any demand

query mechanism that achieves efficiency (or even any improvement upon the

“dictatorial” allocation of all the items to one agent) must use an exponen-

tial number of demand queries. Contrast this to the verification problem, in

which, according to Proposition 2, we can restrict attention to a demand-query

mechanism (valuation equilibrium) without any increase in the communication

cost.

To summarize, in several well-known cases the verification lower bound on

communication is fairly tight, and efficient communication can be achieved with

a demand-query mechanism. However, there are some problems in which these

properties fail. It would be interesting to characterize social choice problems

that satisfy both properties.

6.2 Incentives

So far we have ignored agents’ incentives to follow the strategies prescribed

by the protocol. If the agents behave in their self-interest, the designer faces

additional “incentive-compatibility” constraints requiring that no agent has an

incentive to deviate from his prescribed strategy – i.e., the strategies constitute

an equilibrium of the communication game. The number of bits by which these

constraints increase the communication cost may be called the “communication

cost of selfishness,” and it is examined in Fadel and Segal (2005, henceforth FS).

Note that the fact that the protocol must reveal supporting prices (by the

Budget Equilibrium Revelation Property) does not ensure that it is incentive-

compatible: agents may have the ability to manipulate the prices they face

to their advantage. For example, take the setting of Section 2, in which one

object is to be allocated between two agents, and consider Protocol 2, in which

agent 1 announces his valuation v1, and agent 2 then announces an efficient

allocation x . The protocol reveals a supporting price p = v1. However, if agent

1 is charged this price for winning the object, then he will have an incentive to

understate his valuation. In fact, as shown in FS, the protocol does not reveal

enough information to compute a price that would motivate agent 1 to be truthful

regardless of his beliefs about agent 2’s valuation v2. (Intuitively, when both

agents’ valuations are in [0,1], agent 1 can only be motivated to be truthful if

he is charged price v2, as in the Vickrey auction, but this price is not revealed

by the protocol.)

An agent’s incentive to deviate in a protocol depends on his information

about the other agents. FS consider two implementation concepts: Bayesian-

Nash Incentive Compatibility (BIC), which requires that each agent has no

incentive to deviate given his beliefs about other agents’ types, and Ex Post
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Incentive Compatibility (EPIC), which requires that each agent has no incentive

to deviate regardless of his beliefs about others’ types. Both implementation

concepts satisfy the Revelation Principle: If an allocation rule is implementable

in some protocol, it is implementable in a direct revelation protocol, in which

agents simultaneously announce their private information (but which may have

a high communication cost). Thus, FS consider the communication cost of

selfishness for those allocation rules that are implementable in a direct revelation

protocol.

In general, agents’ incentives in a protocol can be manipulated using two

instruments: (1) monetary transfers (the agents’ utilities are assumed to be

quasilinear in such transfers, as in Subsection 4.2), and (2) information sets

that hide information from the agents. For EPIC implementation, the protocol

need not hide any information from the agents, and the communication cost

of selfishness is entirely due to the need of computing motivating transfers in

addition to the nonmonetary allocation. In contrast, for BIC implementation,

the cost of selfishness is due to the need to hide information from the agents

to restrict their contingent deviations (while computation of transfers does not

entail any additional cost).

For both the EPIC and BIC case, FS provide an upper bound on the com-

munication cost of selfishness:

Incentive-Compatible Communication Complexity ≤ 2Communication Complexity.

Since this bound is very weak, FS proceed to ask whether it is ever achieved or

approached.36

For BIC implementation, FS do show that the bound is tight by providing

an example in which the communication cost of selfishness is exponential. The

example has two agents: An “expert” with private knowledge and a private utility

function, and a “manager” with a privately known goal that determines how

the expert’s knowledge should be used. The expert will reveal his knowledge

truthfully if he does not know the manager’s goal, but this revelation will take

exponential communication in the number of outcomes. Communication could

be reduced exponentially by having the manager first announce his goal and

then letting the expert say how to achieve it, but this communication is not

incentive-compatible – knowing the manager’s goal, the expert can manipulate

her report to achieve her preferred outcome. FS show that any communication

that satisfies the expert’s BIC constraints must be almost as long as full revelation

of the expert’s knowledge.

For the EPIC case, it is not known whether the exponential upper bound is

ever achieved or approached. In many studied cases, the communication cost of

selfishness for EPIC proves to be low. For example, this is the case if we want to

36 If the communication cost is measured as the average-case number of bits sent, as defined in

footnote 3, FS show that the communication cost of selfishness can be unbounded, both for

EPIC and for BIC.
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implement an efficient (surplus-maximizing) allocation.37 Indeed, suppose that

we have a communication protocol that finds an efficient allocation. After run-

ning the protocol, ask each agent to report his payoff π i = ui (k) at the resulting

allocation k, and pay each agent i a transfer ti =
∑

j �=i π j .
38 Under this transfer

scheme (first proposed by Reichelstein (1984)), each agent’s total payoff equals

the total surplus, and so the communication game becomes one of common in-

terest (in the terminology of Marschak and Radner (1972), the agents become

a “team”). Since the protocol is efficient, the resulting mechanism is EPIC: no

deviation by an agent can increase the total surplus.39

Another literature on incentive-compatible communication studies a “dual”

question: instead of asking how much communication is needed to achieve

a given goal, it asks how to maximize a given objective function subject to

a fixed communication constraint. Typically the objective is to maximize the

profits of one of the agents subject to other agents’ participation constraints.

See, e.g., Green and Laffont (1987), Melumad et al. (1992), and a recent survey

by Mookherjee (2006).

6.3 Average-Case Goals: Prices versus Authority and Coercion

We have examined the problem of achieving a given social goal with certainty.

However, given a probability distribution over states, we could allow proba-

bilistic goals – e.g., require approximating the probability of finding an efficient

outcome, or expected surplus.40 Is it still necessary or desirable to find support-

ing prices to achieve such approximation? We show that the answer is “no,” by

giving two examples in which (a) an efficient outcome can be found with a high

probability with little or no communication, while (b) verifying efficiency of the

outcome by describing supporting prices would require enormously more com-

37 This argument extends to allocation rules that maximize nonnegative affine combinatons of

agents’ utilities, since they can be interpreted as efficient rules upon rescaling the agents’ utilities

and adding a fictitious agent. Lavi et al. (2003) show that in some important settings, any

dominant-strategy implementable allocation rule must take this form.
38 Technically, this requires agents to communicate real numbers. If agents can only communicate

bits but have real-valued utilities, they can report their rounded-off utilities, in which case the

proposed transfer scheme would make the protocol approximately incentive-compatible.
39 Even if the protocol is not exactly efficient but maximizes expected surplus given some common-

knowledge subject to a constraint on communication costs, the proposed strategy profile will

satisfy BIC, since no agent would be able to increase expected surplus by deviating. Furthermore,

if agents are also made to internalize the communication costs through ex post transfers, then

they need not be given any protocol at all – the protocol that maximizes the expected surplus net

of communication costs will emerge as a Bayesian-Nash equilibrium of the “free-form” game

in which agents can send any messages and implement an allocation. To be sure, this argument

relies heavily on the agents’ rationality – both individual (being able to calculate an optimal

protocol) and collective (having a common prior and being able to coordinate on a protocol).

But if agents are not fully rational, it is not clear how to model their incentives in the first place.
40 In contrast, for example, to approximating the maximum surplus within ε across all states, which

was considered in Subsection 4.3.
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munication.41 In one example, the low-communication approximately efficient

mechanism can be interpreted as coercion, and in the other, as authority.

Example 5 (Coercion): We need to decide whether to provide an indivisi-

ble public good to N agents whose valuations ui for the good are drawn i.i.d.

from {0, 1}, with Pr {ui = 1} = ρ ∈ (0, 1). Let the cost of provision be be-

tween k − 1 and k, hence efficiency requires providing the good if and only

if
∑

i ui ≥ k. Observe that when N is large and k/N < ρ − α for some fixed

α > 0, by the Law of Large Numbers, providing the good without any com-

munication is efficient with a high probability. On the other hand, to verify

that provision is efficient, by Proposition 2 we need to describe a support-

ing valuation (“Lindahl”) equilibrium, i.e., describe k agents willing to pay

price 1 for the good. The probability that any such valuation equilibrium is

indeed an equilibrium is ρk . Therefore, to find supporting prices with prob-

ability ε > 0 we need to use at least ε/ρk different equilibria, which re-

quires sending at least log2

(

ε/ρk
)

= k log2 ρ−1 + log2 ε. Thus, as N , k → ∞

so that k/N < ρ − α, finding a supporting price equilibrium to verify effi-

ciency with any fixed probability ε requires unbounded communication, while

providing the good without any communication is efficient with probability

approaching 1.

Example 6 (Authority): Two agents have utilities in {0, 1} for allocations from

set K . The probability distribution is as follows: Each agent for each allocation

draws utility 1 with probability ρK and 0 with probability 1 − ρK , and the

draws are independent across allocations and between the agents. Assume that

as K → ∞, (i) ρK K → ∞, and (ii) ρ2
K K → 0. By (i), the asymptotic probabil-

ity that there is no surplus-1 allocation for an agent is
(

1 − ρK

)K
∼ e−ρK K → 0.

By (ii), the asymptotic probability that there is no surplus-2 allocation is
(

1 − ρ2
K

)K
∼ e−ρ2

K K → 1. Thus, the “authority protocol” in which one agent

names the best allocation for him achieves efficiency with probability approach-

ing 1, communicating only log2 K bits. On the other hand, to verify that there

is no allocation with a higher surplus by Proposition 2, we need to announce a

supporting valuation equilibrium. The probability that a given valuation equi-

librium is an equilibrium conditional on the random state having maximal

surplus 1 (which asymptotically occurs with probability 1) can be bounded

above by
(

1 − ρK

)K
∼ e−ρK K .42 Thus, any protocol announcing a supporting

41 While for simplicity we show this for worst-case number of bits, the same results extend to the

expected number of bits using Shannon’s (1948) entropy lower bound.
42 To see this, recall first that in the binary-utility setting we could use the valuation equilibria

(p1, p2, k) with prices p1, p2 ∈ {0, 1}K , normalized so that p1, p2 �= (1, . . . , 1), and p1

(

k′
)

+

p2

(

k′
)

= 1 for all k′ ∈ K . For such (p1, p2, k) to be an equilibrium, the agents’ equilibrium

utilities ui (k) − pi (k) must be nonnegative, and therefore, in a surplus-1 state, both agents’

equilibrium utilities must be zero. This can only be an equilibrium in states (u1, u2) in which

for all k′ with p1(k′) = 0, u1(k′) = 0, and for all other k′, u2(k′) = p2(k′) = 0. This implies the

upper bound.
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price equilibrium with a fixed probability ε > 0 must asymptotically use at

least εeρK K distinct messages, and so communicate log2

(

εeρK K
)

∼ ρK K log2 e

bits. This communication cost could be exponentially higher than the log2 K

bits used by authority (e.g., when ρK = K −α with α ∈ (1/2, 1), which satisfies

(i),(ii)).43

Example 5 may be interpreted as justifying government provision of public

goods when the provision is likely to be efficient, but the communication cost

of using Lindahl markets with a large number of agents would be prohibitive.

Example 6 may be interpreted as formalizing the view of Coase (1937) and

Simon (1951) of firms as “islands of conscious power” in which the price

mechanism is superseded by decision-making by authority. In the example,

as suggested by Coase, the cost of “discovering what the relevant prices are”

proves to be prohibitively high, while the benefit is vanishingly small.

The recent work on understanding the allocation of authority in firms (e.g.,

Aghion and Tirole 1997, Dessein 2002) has arbitrarily restricted attention mech-

anisms that allocate formal authority, accompanied by more extensive informal

communication. If incentives were the only concern, then it would be optimal

to use an extensive formal mechanism. Example 6 offers a potential explana-

tion for the use of formal authority: If the costs of formal communication are

higher than that of informal, it could be optimal to use only extremely simple

formal communication such as authority, supplemented with extensive informal

communication.

6.4 Interdependent Values

We have assumed that each agent knows his own preferences, which are not

affected by other agents’ private information except through the implemented

allocation. A more general formulation would allow interdependent values,

i.e., direct dependence of one agent’s preferences on other agents’ private in-

formation. One example is when other agents have private information about

the quality of the goods allocated to the agent. Another example is when an

agent is acquiring assets for future resale, and other agents have relevant private

information for predicting the future resale price of the assets.

43 In the same setting, Nisan and Segal (forth., Proposition 14) show that there exists a probability

distribution over the two agents’ binary utilities for which a surplus-2 allocation is guaranteed

to exist, but finding it requires exponential communication in K , and so authority is opti-

mal among subexponential mechanisms. Nisan and Segal (forth.) apply this result to showing

the uselessness of practical combinatorial auctions, where “authority” allocation is achievable

by giving all the objects to one agent. A shortcoming of this example is that the probability

distribution over utilities needed for it to hold may not be a “natural” one. Segal (1995) ob-

tained the same result for the probability distribution over utilities described as in the example,

but under the restriction that communication cannot use a common “language” (labeling of

allocations).
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The performance of price mechanisms in such interdependent-value settings

has been extensively studied. The most widely used price equilibrium concept

for such settings is Rational Expectations Equilibrium (REE), in which agents

infer information through the announced prices, and make choices from their

budget sets to maximize their expected utilities given the inferred information

(see, e.g., Mas-Colell et al. 1995 Section 19.H, Radner 1979, Grossman 1981).

Can we offer a normative foundation for rational expectations price equilibria

in the interdependent-value setting akin to the Budget Equilibrium Revelation

Property for the private-value setting?

Note that in the interdependent-value setting, social goals such as Pareto effi-

ciency may be achieved without revealing supporting REE prices. The simplest

example is allocating an object among agents who have a “pure common value”

for it, which depends on the agents’ private signals. In this example, any allo-

cation would be efficient and could be achieved without any communication,

but the REE would typically depend on private information.

One may argue that a statistically efficient aggregation of private informa-

tion may be desirable for reasons other than allocational efficiency (e.g., to

guide investment decisions). Thus, many papers have examined the validity of

the (strong form) of the “Efficient Market Hypothesis,” which says that REE

prices form a sufficient statistic for the value of a security given all the private

information. Contrary to the hypothesis, there exist cases in which an REE re-

veals no information about the value of a security, even though pooling agents’

private information would reveal the value fully:

• Example 7 (Feigenbaum et al. (2005)): There are two risk-neutral agents,

each of whom privately observes a fair coin toss. The agent can trade a security

whose value is 1 if the two agents’ coins fall on the same side and 0 otherwise.44

There exists an REE with price 1/2 that does not depend on the agents’ private

information. Since the price is uninformative, each agent continues to believe the

security has value 1 with probability 1/2, and so is willing to trade any amount

at price 1/2. On the other hand, pooling both agents’ information would reveal

the exact value of the security.

One might argue that when agents’ type spaces are finite, a continuous price

would “generically” be fully revealing. However, when agents’ type spaces are

continuous, “generically,” prices cannot be a sufficient statistic for private sig-

nals if the total dimension of the signals exceeds the dimension of the price space

(which is realistic when agents observe complex signals or when the number of

44 This construction is known in game theory as a “jointly controlled lottery.” For an economic

example, let agent 1 be the marketing manager of an auto company, who knows which car body

will be in high demand next year, and let agent 2 be the company’s manufacturing manager,

who knows which car body will be cheap to produce next year. The security is contingent on

the company’s profits.
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agents is large). Formally, we are facing a communication (verification) prob-

lem, whose solution may require a larger message space than the available price

space (a formal point along these lines is made by Jordan (1983)).

These arguments bring into question the recent popularity of “prediction

markets” as means of aggregating dispersed private information to forecast

various events, from sales at Hewlett Packard to election outcomes to terrorist

attacks (see, e.g., Wolfers and Zitzewitz 2004). While some special communi-

cation problems may be solved efficiently with a prediction market, the general

applicability of price mechanisms for aggregating common-value information

is unclear. In particular, the recent proposals to use prediction markets to replace

the managerial task of information aggregation and decision making45 do not

have a theoretical foundation.

7 CONCLUSION

In the past 30 years, economists have focused on the issue of incentives.46

However, consider a thought experiment in which everybody is honest, and

ask whether the fundamental economic institutions, such as markets and firms,

would still be recognizable in this hypothetical world. It is our conjecture that

the answer is “yes.” The primary function of these institutions is to process

information and make decisions, and their fundamental features are explained

by this function (even though incentives may be important for understanding

many of their aspects).

This chapter has focused on one kind of economic institutions – price-based

mechanisms. We have shown that, contrary to widespread belief, prices are

needed not in order to incentivize the agents, but in order to aggregate distributed

information about their preferences into a socially desirable decision. Thus, we

have provided a justification for and characterized the scope of the price-based

“market design” approach (as opposed to more general mechanism design),

and characterized the form of “prices” that must be discovered to solve a given

social choice problem.

Some of our extensions also offer promising avenues for understanding

non-price allocation mechanisms such as firms and governments. For example,

as noted by Coase (1937) and Simon (1951), communication in firms differs

fundamentally from that in markets: Decisions in firms are usually made by

the authority of managers, without “discovering what the relevant prices are.”

We indeed find an example where authority may emerge as an optimal com-

munication mechanism (Example 6 in Subsection 6.3): it finds an efficient

allocation with a high probability, while the communication cost of verifying

45 E.g., “With employees in the trading pits betting on the future, who needs the manager in the

corner office?” Times Magazine (2004).
46 For example, consider the statements “Most of economics can be summarized in four words:

‘People respond to incentives.’ The rest is commentary” (Landsburg 1993) and “Economics is,

at root, the study of incentives” (Levitt and Dubner 2005).
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this efficiency by describing prices for all possible allocations is exponentially

higher. Another notable aspect of communication in firms is that much of it

is done by professional managers who specialize in aggregating information

and making decisions. In Subsection 5.2 we noted how hiring such managers

may economize on individual communication costs. Thus, while “theories of

the firm” based on incentives or incomplete contracts take managerial tasks as

given, a theory based on communication may explain what it is that managers

actually do.47
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