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This paper establishes that the competitive allocation process is the only infor- 
mationally decentralized mechanism for exchange environments which (i) achieves 
Pareto optimal allocations; (ii) gives each consumer an allocation which is, 
according to his preferences, at least as good as his endowment; (iii) satisfies 
certain regularity conditions; and (iv) has a message space of the smallest 
dimension necessary to satisfy (i-iii). Journal of Economic Literature Classification 
Numbers 021, 022, 024, 025, 026. 

1. INTRODUCTION 

Following the path-breaking work of Hurwicz [2] and Mount and Reiter 
[8], the competitive allocation process has been proved to be informationally 
efficient in the sense that any informationally decentralized allocation 
mechanism for exchange environments which achieves Pareto optimal 
allocations must use a message space which is dimensionally at least as large 
as the competitive message space (see Osana [9] and, in a stochastic context, 
Jordan [3]). For brevity, this result will be referred to as the Efficiency 
Theorem. The purpose of this paper is to establish that on& the competitive 
process is informationally efficient. This result will be called the Uniqueness 
Theorem. 

Intuitively, the Uniqueness Theorem is straightforward. The Second 
Fundamental Theorem of Welfare Economics states that every Pareto 
optimal allocation can be attained as a competitive allocation after a suitable 
redistribution of wealth. This implies that any process which achieves Pareto 
optimal allocations can be represented as the competitive process preceeded 
by a process which redistributes wealth. Since the redistribution of wealth 
presumably requires additional information, the Uniqueness Theorem should 
follow. Unfortunately this approach is inapplicable because the redistribution 
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of wealth can be combined with the choice of allocation in such a way that 
no additional information is required. An example is given in 4.6 below. 
Although this method of proof cannot be salvaged, such counterexamples 
can be excluded by restricting attention to allocation processes which are 
“noncoercive” in that no trader’s allocation is less preferred than his initial 
endowment. This restriction is not necessary for the Efficiency Theorem. 

Another restriction which is necessary for the Uniqueness Theorem but 
not the Efficiency Theorem is topological in nature. Since informational 
efficiency is viewed here as a dimensional minimality property of message 
spaces, allocation processes must be subject to some regularity conditions. 
For the Efficiency Theorem, the relation between environments and 
equilibrium messages on the space of Cobb-Douglas environments must be 
similar to that of the competitive process in that on a neighborhood of each 
environment there exists a continuous function from environments to 
equilibrium messages. For the Uniqueness Theorem, it is necessary to 
strengthen this to the requirement that the relation between Cobb-Douglas 
environments and equilibrium messages be single-valued and continuous. 
Section 5 below presents an example to show that this restriction is essential, 
and contains a more thorough comparison of the two theorems. 

Since this assumption is only imposed for Cobb-Douglas environments, it 
is not sufficient to yield the Uniqueness Theorem on any larger class. The 
single-valuedness requirement cannot be extended much beyond the 
Cobb-Douglas class without conflicting with the multiplicity of competitive 
equilibria. In order to extend the Uniqueness Theorem to more general 
classes of exhange environments, we will impose the additional regularity 
assumptions that the message space is connected and that the set of messages 
associated with Cobb-Douglas environments is a closed subset of the 
message space. The need for these assumptions is illustrated by examples in 
Section 5. 

The model of allocation processes, which is essentially taken from [8], is 
defined in Section 2, and the analysis is motivated in Section 3 by an 
example of a social welfare maximizing allocation process of the type 
excluded by the Uniqueness Theorem. 

It may be worthwhile to mention that the proof of the Uniqueness 
Theorem, specifically the proof of Lemma 4.3 below, relies on the local 
homology of manifolds. However, no knowledge of algebraic topology is 
required to read the statement of the Theorem or the statements of any of the 
supporting lemmas. 
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2. ALLOCATION MECHANISMS 

We will begin by studying allocation mechanisms for Cobb-Douglas 
exchange environments. More general classes of exhange evironments need 
not be introduced until 4.10 below, after most of the analysis is finished. 

2.1. Cobb--Douglas Environments. There are K agents, indexed by the 
superscript i, and I, commodities, indexed by the subscript j. Each agent’s 
consumption set is RL, .’ For each i, let Vi denote the set of utility functions 
ui: R’; -+ R such that there is some cc’ E R: + with ui(xi) = nt=, (xj) Q: for 
each xi E R: . The space U’ is topologized as R: + , and a generic element of 
U’ will be denoted either ui or ai. The ith agent also has an endowment 
UJ’ERL,+. For each i, let E’ = R: + x U’, and let E = ni E’. A generic 
element of E is denoted e = (e’,..., e”) = (w’, u’)~. 

2.2. Allocation Mechanisms. A message process is a pair (u, M) where M 
is a set of abstract messages and ,U is a (nonempty-valued) correspondence 
on E to M. Let Y={y=(yl,...,yK)ERLX:Ciyi=O}. An allocation 
mechanism is a triple (,u,M, g), where (,u, M) is a message process and 
g: M -+ Y. The function g is called the outcome function. 

An allocation mechanism (u, M, g) is nonwastejiul if for each 
e = (oi9 u’)~ E E and each y E g],Qe)] 

(i) rui + y’ E Rk for each i; and 

(ii) there is no y’ E Y such that for each i, wi + y” E R: and 
ui(ui + yri) > ui(oi + y’), with strict inequality holding for some i. 

An allocation mechanism (IL, M, g) is noncoercive if for each e = (w’, u’)~ 
and each y E g[p(e)], ui(oi + yi) > ui(wi) for each i.2 

A message process (a, M) is privacy-preserving if there exists a correspon- 
dence ,u’: E’ --H M for each i such that for each e E E, n(e) = ny= I p’(e). 
For each i and each e, e’ E E, the environment (e’,..., e’- I, e”, eii’ ,..., e”) is 
denoted e’ 0’ e. An allocation process (u, M, g) is informationally decen- 
tralized if (u, M) is privacy-preserving. The following characterization of the 
privacy property is due to Mount and Reiter [8, Lemma 5, p. 17 11. 

2.3. LEMMA. A message process f‘p, M) is privacy preserving if and only 

17 

(0) ,u(e)n,u(e’) =p(e’ 0’ e) np(e 0’ e’) 

for each i and each e, e’ E E. 

’ R’+ = (xER’-:xj>O for eachj) and R’;, = (XC R’:x, >0 for each j\. 
2 The term “individually rational” is more frequently used for this property (e.g., Lute and 

Raiffa (5. p. 193 I. The term noncoercive is taken from Miller 17 I. 
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2.4. The Competitive Mechanism. Let A = ( p E RL, + : C;=, pi = I} and 
let iI4, = {(p, y) E A x Y: pyi = 0 for each i}. For each i, define the 
correspondence ,u;: Ei++Mc by pf(o’, u’) = {(p, y): d(d + y’) > 
ui(wi+y”) for all y” with py” GO}, and define the correspondence 
,ur: E -++ M, by ,u,(e) = or=, puf(e’). Then (u,, M,) is the competitive message 
process. The competitive allocation mechanism is @, , M,, g,), where 
g, : (p, y) -+ y is the projection. 

Using the conditions xi yi = 0 and py’ = 0 for each i, and the zero degree 
homogeneity of demand, the function (p, y) + (q,a E Rt;’ X R’L-‘“KP I), 
where (4, ,..., qLel) = (P, /PL ,..., P, _ I /PJ and 7 = ( yi ,..., yip _ ,) for each 
1 ,< i <K - 1 is a C? diffeomorphism. Thus M, is an (15 - l)K-dimensional 
smooth manifold and, since preferences are Cobb-Douglas, ,u, is a smooth 
function. 

2.5. Remarks. The competitive mechanism is of course nonwasteful and 
noncoercive. The competitive message process is privacy preseving by 
definition. 

We have used utility functions rather than preference relations in defining 
individual characteristics in order to permit allocation mechanisms to be 
sensitive to intensities of preference. This makes the class of allocation 
mechanisms larger, and the Uniqueness Theorem stronger, than would 
otherwise be the case. 

3. A SOCIAL WELFARE MAXIMIZING MECHANISM 

This section motivates the Uniqueness Theorem by describing a noncom- 
petitive allocation mechanism which requires a larger message space. 

3.1. DEFINITIONS. Define the choice function h: E-t Y by letting 
h((w’, ai)~=,] maximize xi In[u’(w’ + y’)] = Ci [Cj a; In(oj + ~$1 subject 
to ui(oi + y’) > ui(oi) for each i. The smoothness and strict concavity of the 
functions ln(u’) for each i imply that for each environment e, there is a 
Lagrange multiplier ,X(e) E RI; + such that ŷ  = h(e) if and only if for each i. 
ln[u’(o’ +y ‘̂)J -A(e > In[u’(w’ + y’)] -,I(e)y’ for all y’E R’- with 
ui(wi + y’) > u’(w’). Therefore, let M, = R: + x Y, and let g,: MS --t Y be the 
projection. For each i, define the correspondece pi: E’ -++ M, by yi(oi. u’) = 
((2, y): yi maximizes ln[u’(w’ +y”)] - Jy” subject to ui(oi + y”) > ui(oi)} 
and define ,uS: E -++ MS by p,(e) = OF=, &e’). Then g, . pu, = h. 

3.2. Remarks. Unfortunately ,uS is not a function because when h(e) = 0 
(i.e.. when (c~j)~ is Pareto optimal) the Lagrange multiplier n(e) is not 
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uniquely defined, so the multiplier component of pu,(e) is an interval.” 
However. if we define the continuous function 

$ M, -+ M, by f(k Y> = (2, Y) if II yll > L 

= (IIIYII + (1 -llYloll4-‘l~~Y) if llyll < 1; 

define p; = f, y, then p; is a continuous function, g, * PUN = h, and 01:~ M,) is 
privacy preserving by Lemma 2.3. 

3.3. DEFINITION. A topological space M is an n-dimensional manifold if 
it is locally homeomorphic to R”. 

3.4. PROPOSITION. Suppose that (a, M, g) is an allocation mechanism 
with g(,u(e)] = {h(e)\ fir each e E E, satisfying: 

(i) (a, M) is privacy preserving; 

(ii) M is an n-dimensional manifold; and 

(iii) ~1 is a continuous function. 

Then n>KL=dimM,. 

Proof. The proof will parallel a proof of an analogous theorem for the 
competitive mechanism by Mount and Reiter [8, Theorem 35, p. 1901. Let 
t: Ry + x Y-+ E be any continuous function such that for each (A, y) E 
R: + x Y, if (wi, CZ’)~ = t(A, y) then for each i, j, a:(~: + yj)-’ = ;lj. Let 
y” E Y with yoi = (l,..., 1, -(L - 1)) for each i < K and let 1’ = (l,..., 1). Let 
,o zzc @pi, u”~)~ = t(,l”, y”). Then y” is the competitive equilibrium trade for 
e”, so uoi(woi + yoi) > uoi(woi) for each i. Since t is continuous there is a 
neighborhood A of (A’, y”) in M, such that t(A) is contained in a 
neighborhood niBi of e” in E with the property that for each e E niBi, if 
y = h(e) then u’(o’ + y’) > ui(oi) for each i, It follows that pcls b t is the 
identity on A. We will use assumption (i) to prove that lu . t is l-l on A. 
Suppose by way of contradiction that there exist distinct points (A, y) and 
(A’, y’) in A with ,u(t(k, y)] =,a[@‘, y’)]. Since gC,a[t(& y)]) = y and 
gCul@‘, Y’>l> = Y’, we must have y = y’, so A # A’. Let e = t(h, y) and 
e’ = t(A’, y). By (i) and Lemma 2.3, h(e’ 0’ e) = g@(e)) = g@(e’)) = y. 
However, (aj”(ojl’ + y~))‘)~=, = A’ f ,J = (af(of + yj’))i”,, , so h(e’ 0’ e) 
+y, This contradiction proves that ,D . t is l-l on A. It follows from 
[ 1, Exercise 18.11, p. 821 that n > KL. 

3.5. Remarks. Thus the non-Walrasian choice function h requires more 
information, in this sense, than the Walrasian choice function which requires 
only a K(L - I) dimensional message space. 

’ I would like to thank Kevin Cotter for this observation. 
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It may be noted that because of the constraint ui(oi + y’) > ui(oi) for all 
i, the range of p, is a proper subset of MS, although of course it contains an 
open subset of MS. It is easily seen that pu,(E) = {(A, y) E MS: for each i and 
each j, if yj < 0 then there is some j’ with yj( > 0). If h and pu, are redefined 
by dropping this constraint, we obtain a new allocation mechanism 
(,u;,M,,g,) with h’=g, .&‘, which is no longer noncoercive. Then 
p;(E) = MS. This example illustrates that since noncoerciveness is a property 
which can be checked for each agent independently, it will not necessarily 
increase the information requirement. 

4. THE UNIQUENESS THEOREM 

We will first obtain the Uniqueness Theorem for allocation mechanisms 
on the space of Cobb-Doublas environments E. If an allocation mechanism 
is nonwasteful, each allocation has an associated shadow price. If the 
mechanism is noncoercive, each agent’s final consumption will be in R’; + so 
the shadow price will equal the normalized derivative of each agent’s utility 
function evaluated at his final consumption. The first step is to show, as in 
the proof of the Efficiency Theorem, that informational decentralization 
requires that the equilibrium message reveal the shadow price. 

LEMMA 4.1. Suppose that (,a, M,g) is an allocation mechanism which is 

(i) nonwasteful; 

(ii) noncoercive; and 

(iii) informationally decentralized. 

Then there is a function h: ,u(E) + A X Y defined by h(m) = ( p, y) where 
y = g(m) and p is proportional to Du’(o’ + y’)for each i and each (CO’, u’)~ 
with m ~,a[(o’, u’)~]. 

Proof: Let e = (wi, ui)i E E, let m E p(e), and let y =g(m). By 
assumption (ii), oi + yi E Rt + for each i, so assumption (i) implies the 
existence of p Ed with Du’(w’ + y’) proportional to p for each i. Let 
e’ = (w’~, u’~) E E be any other environment with m E,u(e’). Since (LI, M) is 
privacy preserving, Lemma 2.3 implies that m Ep(e’ @‘e) for each i. 
Therefore y E g[p(e’ 0’ e)] for each i, so Du’~(oI” + y’) is proportional to p 
for each i. Thus h is well defined, which completes the proof. 

4.2. Remarks. The next step is to show that if the message space M has 
minimal dimension and p is a continuous function, then h is l-l. In order 
words, the equilibrium message cannot reveal any more than the allocation 
and the shadow price. Since we have characterized individual agents in terms 
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of utilities rather than preferences, it may be worthwhile to remark that the 
map from parameters to Cobb-Douglas preferences is continuous in the 
topology of closed convergence of preference relations [6]. Thus if agents 
were characterized by their preferences, the continuity of ,U could be stated in 
terms of this topology on preferences. 

4.3. LEMMA. Suppose that @I, M,g) is an allocation mechanism which is 

(i) nonwasteful; 

(ii) noncoercive; 

(iii) informationally decentralized; and 

(iv) M is a K(L - 1) dimensional manifold; and 

(v) ,a is a continuous function. 

Let e” E E and let (p’, y”) = h[p(e”)], where h is defined in Lemma 4.1. If 
(U*i, u*i)i is any environment such that Wan + yoi 4 0 and Du*‘(w*’ fy”) 
is proportional to p” for each i, then ,u(e*) = p(e’). In particular, h is l-l. 

ProoJ Let e” = (o”, a”‘)i E E and define the set E” = ( (wi, ai)i E E: 
wi = 0” and C,ctj = CjaTi for each i). Note that for each (w”, u’)~ and 
(COOi, u’i), in E”, if for some y E Y, Du’(w” + y’) is proportional to 
Du”(woi + y’) for each i then ui = uli for each i. Thus by Lemma 4.1, h . ,u 
is l-l on E” so ,u is l-l on E”. 

The function (ooi, CX~)~ --t (ai, /a; ,..., ai L _ I /ai)i is a homeomorphism on E” 
to RK,‘L,-‘), so we will consider E” as an open subset of RKCLp*). Let U be an 
open ball in E” containing e” and let m” =p(e”). Since M is a K(L - 1) 
dimensional manifold, cl(U) is an open neighborhood of m” and ,u is a 
homeomorphism on U to ,u(U) by [ 1, Exercise 18.10, p. 82). Let 
n = K(L - I), and let H,(M, M - m”) denotes the nth singular homology 
module of M relative to M - m”,4 with integral coefftcients. Then 
H,(M, M - m”) = Z and, letting V =,u(U), the homomorphism i,: 
H,(V, V - m”) + H,(M, M - me) induced by the inclusion i: (V, V - m”) G 
(M, M - m”) is an isomorphism [ 1, p. 1111. By the hypothesis, for each 
i Dlnlu*‘(w*’ +yO’)] is proportional to Dln[uoi(woi +yoi)] so there is some 
,I*’ > 0 such that aj*i/(w,?i + yj”) = A*i[aj)‘/(wj” + y,;‘)] for each j. Define 
the function G: U X (0, l] + E by G((w”, ai)i, t) = (a~‘~, a’i)i, where w’~ = 
to*‘+ (1 -t)o” and for eachj, 

aji = (tay’ + (1 -t) aj][(w,l’ + yJi)/(w9i + yg’)][tk*’ + (1 -t)]. 

Then G(.,O) is the inclusion map and G(., 1) is the constant map on U to 
e*. Let t E [O. 11, (go”, ai)j E U with (ooi, a’), # e”, and (0’ i, a’i)i = 

’ M - m” denotes the set {m E M: m # m0 ). 
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G((o”, CX’)~, t). Then for each i, [a;‘/(~; i + J$‘~)$=, is proportional to 
[(tcq + (1 - t) cX;,/<Cu;; + yi”‘))]j”= , . The environment (woi, taoi + 
(1 - t) a’), E E”, so by the argument in the first paragraph, for each t < 1, 
,u[G(e, t)] = m” only if e = e”. 

Suppose by way of contradiction that p(e*) # m”. Then for each t, 
p]G(e, t)] f m” whenever e f e”. Now define G’: (V, V- m”) x 10, 1 ] + 
(M, M - m”) by G’(m, t) =,u(G[p- ‘l(m), t]). Then G’ is a homotopy between 
the inclusion i: (V, V-m”)< (M,M-m”) and the constant map 
j: (V, V - m”) + (m *, M - m’), where m* = p(e*). Hence i, = j, so i* is 
the zero homomorphism, which completes the proof. 

4.4. Remarks. So far we have used the noncoerciveness assumption only 
to ensure that allocations are interior so that shadow prices are normalized 
utility gradients. We will now use the full force of noncoerciveness to prove 
that h is a homeomorphism on p(E) to M, which identifies (,u, M, g) with the 
competitive mechanism. 

4.5. PROPOSITION. Suppose that (u, M,g) is an allocation mechanism 
which is 

(i) nonwasteful; 

(ii) noncoercive; 

(iii) informationally decentralized; and 

(iv) M is a K(L - 1) dimensional manifald; and 

(v) p is a continuous function. 

Then there is a homeomorphism h on ,u(E) to M, such that 

(a) pC=h.,uu; and 

(b) gc.h=g- 

The conclusion of the Proposition is summarized in the following 
commutative diagram: 

(L(E) 4 >Y 

ProoJ Let h: M + A x Y be the function defined in Lemma 4.1. Suppose 
by way of contradiction that for some e” E E, h[,u(e”)] #,uu,(eo). Let 
(p’, y”) = h [,u(e”)]. Then y” is not the competitive trade for e”, so for some i, 
say i = 1, p”yol < 0. Let x0 = w”’ + y”, where (woi, uoi)fZ, = e”. Exploiting 
the Iinear homogeneity of preferences represented by u”, we can find some 
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,I > 1 such that u~‘(,Ix~) ( u”‘@xo -yol). Let w*’ = Ix0 - y”’ and 
e* = (LO*‘, 2.4”; wo2, uo2; . . . . aoK, u°K). Then since @, M, g) is noncoercive, 
p(e*) #p(e”). However, y” is a Pareto optimal trade for e* and 
Du’(w*’ + y”) is proportional to p” so Lemma 4.3 implies that 
p(e*) =,u(e’). This contradiction proves that h . y = ,u,, and since g,. is the 
projection (p, y) --f y, it follows that g, . h = g. 

By Lemma 4.3, h is l-1; and since h s ,u = ,uc, the range of h is M,. Hence 
it only remains to show that h and h -’ are continuous. To show that h -’ is 
continuous, let (m~}~==, be a sequence in M, converging to some rn: EM,. It 
is straightforward to construct a sequence { e”)F= I in E converging to some 
e” E E with rn: = ,uJe”) for each II and rnz =p,(e”). Since h-’ . ,u, =,u, 
h-‘(mz) = ,u(e”) for each II and h-‘(mz) =,u(e”). Since ,u is continuous, l(e”) 
converges to p(e”), so h-’ is continuous. Since M, and M are manifolds of 
the same dimension, h-I is a homeomorphism on MC to h-‘(M,) =p(E) [ 1, 
Exercise 18.10, p. 821, which completes the proof. 

4.6. EXAMPLE. Before extending this result beyond the Cobb-Douglas 
case we will describe an example which illustrates the role of noncoer- 
civeness. Define the homeomorphism f i: R$ + x U’-+ RL, + X U’ by 
S’(o’; a’) = (w’; 2ai,ai ,..., a:) for each i, and define f: E-t E by 
f = (S’,...JK). First observe that an allocation y is Pareto optimal for an 
environment e if and only if it is Pareto optimal for f(e). This implies that 
the allocation mechanism 01, . f, M,, g,.) is nonwasteful. Also, (,u, .J M,) is 
privacy preserving with ~‘(w’, a’) =&[ f i(u?, a’)] for each i. This 
mechanism therefore satisfies all the hypotheses of the Proposition except 
noncoerciveness, and g, . ,U~ . f f g, . ,u~. In this mechanism, each agent 
independently modifies his own preferences and the competitive mechanism 
is then applied to the modified environment. This type of mechanism can of 
course be constructed for more general classes of exchange environments. 

We will now specify a more general class of utility functions. In order to 
ensure that prices are strictly positive, strict monotonicity will be required. 
However, this requirement will be stated in such a way that preferences, such 
as Cobb-Douglas preferences, which do not satisfy strict monotonicity on 
the boundary of RL, are permitted. 

4.7. DEFINITIONS. For each i, with each function ui on Ii: to 
R U {-co ) we associate a set C’ defined by 

i 

RL if the closure in RL, of the set 

C’ = (x: u’(x) > ui(oi)} is contained in R$ + 
for each wi E R: + ; and R: otherwise. 
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Let u#’ denote the set of utility functions ui on R’; to R U (-00) such that 

(i) ui is continuous and real-valued on C’; 

(ii) ui is strictly monotone on C’; that is, if x E C’ and X’ > x and 
x’ fx then u’(x’) > u’(x); and 

(iii) ui is quasi-concave on C’; that is, if x, x’ E C’ and u’(x) > ui(x’) 
then ui(kx + (1 - A) x’) > u’(x’) for all 0 < /z < 1. 

Let E#=ni(R;+ x Pi). Then E c E#. The definitions in sections 2.2 and 
2.4 extend to E# in the obvious way, as does Lemma 2.3. 

4.8. PROPOSITION. Suppose that (tt, M, g) is an allocation mechanism on 
E# which is 

(i) nonwastejiil; 

(ii) noncoercive; 

(iii) informationally decentralized; and 

(iv) M is a connected K(L - 1) dimensional manifold; 

(v) the restriction of p to E is a continuous function; and 

(vi) p(E) is closed in M. 

Then there is a homeomorphism h on M to M, such that 

(a) h[,tt’(o’, u’)] c,a~(w’, u’)for each (wi, u’) E R’; + x p; 

(b) h [p(e)] c ,uJe)for each e E E”; and 

(cl g, . h = g- 

Diagramatically: 

Rk+ X lJ#’ p’>>Mc 

ProoJ It was proved at the beginning of the second paragraph of the 
proof of Lemma 4.3 that p(E) is an open subset of M. Since M is connected 
and p(E) is closed in M, p(E) = M. Let h be the homeomorphism given by 
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Proposition 4.5, which satisfies (c). To prove (a), let (oi, ui) E R: + X U#i, 
let m E $(w’, ui), and let (p, y) = h(m). Since (p, v) E M,, py’ = 0. We 
have to show that y’ maximizes ui(wi + z) subject to pz < 0. By assumption 
(vi), there is some e” E E with m E p(e”). Then by Proposition 4.5, (p, y) = 
y,(e”). Since m ~p’(w’, ui), m Ep(e*), where e* = (CD”, uO’ ;...; ooi~‘uO’-‘; 
wi, ui; wOi+l, uOi+l;~~~, gOK, u°K), so y must be Pareto optimal for e* by 
assumption (i). This implies that yi maximizes ui(oi + z) subject to pz < 0. 
This proves (a), and (b) follows directly. 

4.9. Remarks. Unfortunately, it is not possible to conclude that PC(e) c 
Alp(e)] for all e. In particular, there exist allocation mechanisms satisfying 
the hypotheses of Proposition 4.8 such that for some environments, not all 
Walrasian allocations are achieved by the mechanism. For example, suppose 
that K = L = 2, and that agent 1 has the endowment w”’ = (3, 1) and the 
preferences depicted in Fig. 1. Figure 2 is the graph of the agent’s excess 
demand for commodity 1 as a function of its price, where p, +pz = 1. Let 
a” represent the preferences depicted in Fig. 1 and consider the allocation 
mechanism (DO, M,, g,), where ~‘[(u’, ni)f=,] =p”(o’, u’)~~~*((w*,~*), 
and PO* = pUf, and ,uol is defined by 

i 

pA(w’, u’) if (o’, u’) # (o”, u”); and 

IuO’(w*,u’)= ((p,y)E~~(wol,uol):y’=(-1, 1)if 

! p = (l/2, l/2)) if (m’, u’) = (a”, u”‘). 

Thus p”‘(oo’, uol) is obtained by deleting the “tail” on the excess demand 
correspondence in Fig. 2. The mechanism @‘, M,, g,) clearly satisfies all of 
the hypotheses of 4.8. 

Let (wo2, uo2) be characteristic for agent 2 which give rise to the excess 
demand correspondence in Fig. 3. Let e” = (w”, u”; wo2, ~4”‘). Then p”(eO) 
is the singleton (p*, y”) = (l/2, l/2; -1, 1; 1, -1) whereas p,(e”) is the set 

FIGURE 1 
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FIGURE 2 

{(p’; -A, 1; 1, --A): 1 ( A< 3). In this example, agent 1 modifies his true 
excess demand correspondence by taking a continuous single-valued selection 
from it. Since this modilication is independent of agent 2’s characteristics, 
the resulting reduction in the set of Walrasian allocations is consistent with 
the Proposition. Of course if preferences are strictly convex then excess 
demand is single-valued to begin with, so no such reduction is possible. 

Surprisingly, the desired result can also be obtained if preferences can be 
represented by a concave utility function. More specifically, if ui is either 
strictly quasi-concave or concave, for any (p, y) E yf(w’, u’) there exist 
endowments and utility functions for the other agents such that (p, y) is the 
unique competitive equilibrium of the resulting environment. This is stated in 
Proposition 4.11. 

4.10. DEFINITIONS. For each i, let U* i denote the set of utility functions 
ui in Vi satisfying either 

(i) ui is strictly quasi-concave on C’; that is, for each X, x’ E C’, if 
x # x’ and u’(x) > ui(x’) then u’(Ax + (1 -1) x’) > ui(x’) for all 0 < A < 1; 
or 

FIGURE 3 
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(ii) ui is concave on C’; that is, for each X, x’ E C’, u’(Rx t 
(1-l)x’)>Au’(x)+(l-I)u’(x’)foreachO<A<l. 

Let E* = JJi(R”,+ x U”‘). Then E c E” c E#. The definitions in 2.2 and 
2.4 extend to E* in the obvious way, as does Lemma 2.3. 

4.11. PROPOSITION. For any i, let (o*j, u*‘) E R’;, x U*’ and let 
Then for each i’ fi there exists (wi’, ui’) E 

that p,(o’, u’;...; wi-‘, ui-‘; Use, u*‘; wit’, u’+ I;...; 
wK, uK) is the singleton (p*, y*). 

Proof The proof will be symmetric in i so let (w*‘, u*‘) E RL, + X U*’ 
and let (p*, y*) E pi(w* ‘, u* ‘). First suppose that u*’ is strictly quasi- 
concave on C’. For each 1 < i < K, if any, let (wi, u’) E RL, + x U’ (that is, 
ui is Cobb-Douglas) with (p*, y*) E &( wi, ui). Define the utility function 
uK: R: -+ R by u”(x) = p*x, and choose uK large enough so that p* is the 
unique competitive equilibrium price for the environment (o* ‘, IL * ’ ; 
CL?, d;...; gK, uK). (Informally, if p #p* agent K’s excess demand is a 
corner solution which, if wK is large enough relative to w*’ + CT:z’ oi, 
floods the market). Since p* is the unique competitive equilibrium price, and 
u*’ and ui for each 1 < i < K are strictly quasi-concave, it follows that 
&.[(w*‘, u*‘; 02, d;...; UK, u”)] is the singleton (p*, y*). In the more 
difficult case in which u*’ is concave on C’, the result is given by 14, 
Corollary 3.21. 

4.12. THE UNIQUENESS THEOREM. Suppose that (,u, M, g) is an 
allocation mechanism on E* which is 

(U.i) nonwasteful; 

(U.ii) noncoercive; 

(U.iii) informational/y decentralized; and 

(U.iv) M is a connected K(L - 1) dimensional manifold, 

(U.v) the restriction of ,u to E is a continuous function; and 

(U.vi) p(E) is closed in M. 

Then there is a homeomorphism h on M to M, such that 

(a) h[,u’(o’, ui)] =,ui(wi, u’) for each i and each (w’, u’) E R: + X 
u*i. , 

(b) hip(e)] =,u,(e)for each e E E*; and 

Cc) g, . h = g. 
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Diagramatically: 

J. S. JORDAN 

I 

R$+ x Uli-%+ MC 

ProoJ As in the proof of 4.8, p(E) = M, so let h be the homeomorphism 
given by Proposition 4.5, which satisfies (c). For any i, let 
(u’,u’)ERL,+ x u *i One proves that h[,u’(w’, u’)] cp,!(w’, u’) exactly as . 
in the proof of 4.8(a). Let (p, y) E yL(w’, u’) and, using Proposition 4.11, let 
e= (o’, u’;...; wi-‘, u’-‘; cui, u’; wit r, u’+‘;...; mK, uK) E E* such that PC(e) 
is the singleton (p, y). Since p(e) c ~‘(w’, ui) and /z[p(e)] c,~,(e), it follows 
that (p, y) E h[fl’(t~‘,~~)]. This proves (a), and since h is l-l, (b) follows 
directly. 

4.13. Remarks. Statement (a) of the Uniqueness Theorem, which is 
summarized in the first diagram, states that I&M, g) is the competitive 
mechanism even at the individual agent level. 

5. COMPARISON WITH THE EFFICIENCY THEOREM 

The section discusses the stronger assumptions of the Uniqueness Theorem 
in comparison with the Efficiency Theorem. There are several not quite 
equivalent statements of the Efficiency Theorem. The one stated and proved 
below is essentially due to Hurwicz [2] and Osana [9, Remark, p. 731. 

5.1. DEFINITIONS. Let @, M, g) be an allocation mechanism on E# and 
let e” E E. Then ,u is locally threaded at e” if there is a neighborhood U of e” 
in E and a continuous function f: U -+ M with f(e) E p(e) for each e E U. An 
allocation mechanism (p, M, g) is interior on E if for each (oi, CZ’)~ E E and 
each y E g@[(w’, CI’)~]), 0:: + yj > 0 for each i, j. 
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5.2. THE EFFICIENCY THEOREM. Suppose that (,a, M, g) is an allocation 
mechanism on E# which is 

(E.i) nonwasteful; 

(E.ii) interior on E; 

(E.iii) informationally decentralized; and 

(E.iv) M is a manifold; and 

(E.v) p is locally threaded at some e0 E E. 

Then dim M > dim M,. 

Proof. Let (o”, aoi)i = e” and define the set E” = {(u~~,a’)~E E: 
oi = goi and xi ai = Cj aj”i for each i}. Then one proves exactly as in the 
proof of Lemma 4.3 that for each e, e’ E E” and m, m’ E M with m E p(e) 
and m’ E p(e’) we must have m # m’. Using assumption (v), let U be an 
open neighborhood of e” in E and let fi U-, M be a continuous function 
with f(e) E p(e) for each e E U. Let U” = U n E” and let f” denote the 
restriction of f to U”. Then f” is l-l so dim M > dim U” =K(L - 1) = 
dim M, [ 1, Exercise 18.11, p. 821. 

5.3. Remarks. It is clear from the proof of the Efficiency Theorem that 
the conclusion would remain unchanged if E# were replaced by the smaller 
class E*. Since the hypothesis is strictly weaker than that of the Uniqueness 
Theorem, it follows that assumption (U.iv) of the Uniqueness Theorem could 
be replaced by 

(U.iv’) M is a connected manifold of dimension < K(L - 1). without 
affecting the conclusion. 

5.4. The Information Axioms. Assumption (E.v), like assumptions (U.v) 
and (U.vi), is used to ensure that the dimension of the message space 
adequately measures the amount of information used by the allocation 
mechanism. For the Efficiency Theorem it is only necessary to rule out 
message processes which compress a K(L - 1) dimensional manifold, such 
as E”, into a lower dimensional manifold in a l-l fashion. Since l-l 
dimension reducing functions are necessarily not continuous on any open set, 
(E.v) is all that is needed. For the Uniqueness Theorem, it is necessary to 
assume that M is connected (U.iv), that ,u is single-valued and continuous on 
E (U.v) and that ,u(E) is closed in M (U.vi). The need for these much 
stronger assumptions can be seen examining the informational requirements 
of lump-sum income transfers. 

For simplicity, suppose that K = L = 2. For any real number r, define 
M, = ((p, y) E A x Y: py’ = r}. Consider the allocation process obtained by 
associating with each environment the competitive equilibria subject to a 
transfer of r units of income from agent 2 to agent 1. Then M, is the message 

642/28/l-2 
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space for this process and dim M, = dim M, = 2. However, if r > 0 and 
agent 2’s endowment is sufficiently small, such allocations may fail to be 
noncoer’cive, and may even fail to exist. For this reason the transfer r will 
have to be adjusted in response to changes in agents’ characteristics. 
Intuitively, these adjustments require information not needed by the 
competitive mechanism, and the purpose of the additional assumptions is to 
ensure that his information is reflected in the dimension of the message 
space. 

To see that additional assumptions are needed, for each real number r, let 
pi:R:+ x U*‘++M, be defined by d(d u’)= {(P, Y> E Mr: Y’ 
maximizes u’(wl +z) subject to pz <r and u’(w’ +z)>/u’(w’)], and 
define ,uz: Ri + x V2 -+P M, by &w*, u’) = ((p, JJ) E M,: y* maximizes 
u’(o* + z) subject to pz < -r and u2(w2 + z) > a”(~‘)}. Let M = UreR M,., 
topologized as a disjoint union,’ and for each r E R, define y,.: E* -W M, 
by pu,(e) =p:(ui, u’)f7,a~(w2, u’). For each i, let pi = UlcRpL, and define 
~:E*++Mby,u(e)=U,,,,u,(e)=~‘(o’,u’)n.u2(w2,uZ). Letg:M+Ybe 
defined by g( p, u) = y for each (p, y) E M. Then 01, M, g) satisfies all of the 
assumptions of the Effkiency Theorem (to verify (E.v), note that flu, =p,, so 
p, is a continuous selection from p on E). Also, for each e E E*, g[p(e)] is 
the entire contract curve. Thus, under the hypothesis of the Effkiency 
Theorem, the adjustments of lump sum income transfers needed to preserve 
noncoerciveness require no increase in the dimension of the message space. 
This mechanism and the mechanism defined in 4.6 above are the two main 
“contrary cases.” We now show that slight modifications of the present 
example establish the need for each of the additional regularity assumptions 
of the Uniqueness Theorem. 

5.5. The Connectedness of M. The allocation mechanism (u, M, g) 
violates the connectedness of M (U.iv) and the single-valuedness of P on E 
(U.v). If y is redefined by 

p’i(wi, ui) = &)(wi, u’) if u’EU’ 

=pi(Qji, u’) otherwise, 

for each i, and p’(e) =p”(w’, u’)n~‘*(o*, a*) for each e E E*, then P’ 
restricted to E is equal to pc, so (U.v) is satisfied, and (U.vi) is also satisfied. 
However, g[p’(e)] is the contract curve unless u’ or u2 is Cobb-Douglas. All 
hypotheses of the Uniqueness Theorem are satisfied except the connectedness 
of M. 

5 Definition 3.3 does not require manifolds to be second countable. If this property is added 
to the definition, an example in the same spirit is obtained by confining r to the integers. 
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5.6. The Single-Valuedness of p on E. Suppose we require M to be 
connected and ,u(E) to be closed in M but drop the single-valuedness of p on 
E.ThenletM={(p,,y:)E(O,l)XR~;define~’(o’,u’)=((p,,y:)EM: 
if pI E (0, l/2), then y: maximizes u’[o’ + (z, -2p,z/(l - 2p,))] for z e R, 
and if p, E [l/2, l), y: maximizes u’[w’ + (z, -[(p,z - l)/(l -p,)])]) for 
each (w’, u’) E R:, x U*‘; and define y2(02,u2)={(p,,y~)EM: if 
p, E (0, l/2), then y: maximizes u2(02 - (z, -2p,z/(l - 2p,)] for z E R, and 
ifp, E [I/2, l), y: maximizes u’(o* - (z, -[(plz - I)/(1 -p,)])] subject to 
this utility level being not less than u’(w’)} for each (02, u’) E R: + x IFJ*~. 
Define ~1: E*-w M by fi(e)=fl’(w’, u’)np*(o*,u’). Let g: M+ Y be 
defined by 

g(hY:)=(Y:9--2P, Y:l(l-2P,);-Y:,2P,Y:l(l-2P,)) 

if p1 E (0, l/2); 

= (YL -(PI Y: - l)/(l --PA -Yh (A Y: - l)/(l -A)> 

if p1 E [l/2, 1). 

Then 01, M, g) satisfies all the hypotheses of the Uniqueness Theorem except 
(U.v), and gMe)l contains a nonwalrasian allocation for many 
environments in E. 

5.7. The Closedness ofp(E) in M. Suppose we require (U.v) but drop 
(U.vi). Note that the functionf: M, + M defined by f( p, y) = (p,/2, y:) is a 
homeomorphism on M, to ((pl, y:) EM: p, E (0, l/2)). Then modify the 
definition of ,u in 5.6 by 

p’Q.+, ui) = f. p#Ji, ui) if ui E U’; and 

=pi(&+, ui) otherwise; 

and p’(e) =,u“(w’, u’) n~‘2(~2, u’). Then the restriction of p’ to E is equal 
to f. pr, so (U-v) is satisfied, but b’(E) =f(M,) is not closed in M. All other 
hypotheses of the Uniqueness Theorem are satisfied, but g[,u(e)] contains 
nonwalrasian equilibria for many non-Cobb-Douglas environments. 

5.8. The Continuity of ,u on E. Finally, suppose we require that M be 
connected, that p(E) be closed in M, that p be single-valued on E, but drop 
the requirement that P is continuous on E. Let Ei = {(o*, u’) E Rt + X U”‘: 
there is some p, E [l/2, 1) such that there is no z E R with u2(02 - 
(5;2-(~~z - Q/(1 --PAI Z u’(w’)b G iven ,u’ and ,u2 as defined in 5.6, define 
P :Rt,, x U*‘-HM by 

P”2(~2, u’) = {(P,, Y,) Ep2(02, u’): P, f (0, I/2)} if (w*, u’) E Ei; 

= {(A, Y,) a2(W23U2): PI E l1/2,1>) otherwise; 
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and define 111”: E* -++M by ~“(e)=~‘(W’, ~‘)f3~“~(0~, u’). Then ,u” is 
single-valued but not continuous on E, and satisfies all other hypotheses of 
the Uniqueness Theorem, but g. p”(e) is non-Walrasian for many 
environments in E. 

5.9. Concepts of Informational Size. Much of the literature on the 
Efftciency Theorem has been devoted to extending the comparison of infor- 
mational size to topological spaces which are not manifolds. The following 
comparison was introduced by Walker [lo]. Given topological spaces M and 
MO, we will say that M > $I0 (M is Frechet as large as MO) if M” can be 
embedded in M. Since the proof of the Uniqueness Theorem only requires 
that M be (homeomorphic to) a subset of K(L - 1) dimensional manifold, 
assumption (U.iv) can be replaced by “M is connected and M, > @” 
without affecting the proof. For the Efficiency Theorem, if assumption (E.iv) 
is replaced by “M is a Hausdorff space,” the conclusion can be replaced by 
the statement “M > FMC.” The last step of the proof is replaced by a 
straightforward argument based on the fact that a continuous 1-l function 
on a compact set to a Hausdorff space is an embedding. A more general 
comparison, which also generalizes that of Mount and Reiter [H, 
Definition 9, p. 1741, is introduced by Osana [9, pp. 71-721. We will not 
discuss the Mount and Reiter or Osana definitions here, since they cannot be 
applied to either theorem without considerable modification of the infor- 
mation axioms. 
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