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ABSTRACT
Over the past 10+ years, online companies large and small
have adopted widespread A/B testing as a robust data-based
method for evaluating potential product improvements. In
online experimentation, it is straightforward to measure the
short-term effect, i.e., the impact observed during the ex-
periment. However, the short-term effect is not always pre-
dictive of the long-term effect, i.e., the final impact once the
product has fully launched and users have changed their be-
havior in response. Thus, the challenge is how to determine
the long-term user impact while still being able to make de-
cisions in a timely manner.

We tackle that challenge in this paper by first develop-
ing experiment methodology for quantifying long-term user
learning. We then apply this methodology to ads shown
on Google search, more specifically, to determine and quan-
tify the drivers of ads blindness and sightedness, the phe-
nomenon of users changing their inherent propensity to click
on or interact with ads.

We use these results to create a model that uses metrics
measurable in the short-term to predict the long-term. We
learn that user satisfaction is paramount: ads blindness and
sightedness are driven by the quality of previously viewed
or clicked ads, as measured by both ad relevance and land-
ing page quality. Focusing on user satisfaction both ensures
happier users but also makes business sense, as our results
illustrate. We describe two major applications of our find-
ings: a conceptual change to our search ads auction that
further increased the importance of ads quality, and a 50%
reduction of the ad load on Google’s mobile search interface.

The results presented in this paper are generalizable in two
major ways. First, the methodology may be used to quantify
user learning effects and to evaluate online experiments in
contexts other than ads. Second, the ads blindness/sighted-
ness results indicate that a focus on user satisfaction could
help to reduce the ad load on the internet at large with
long-term neutral, or even positive, business impact.
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1. INTRODUCTION
Over the past few years, online experimentation has be-

come a hot topic, with numerous publications and workshops
focused on the area and contributions from major internet
companies, including Microsoft [12], Amazon [11], eBay [17],
Google [18]. There has been a corresponding explosion in
online experiments: Microsoft cites running 200+ concur-
rent experiments [15], Google is running 1000+ concurrent
experiments on any day, and start-ups like Optimizely and
Sitespect focus on helping smaller companies run and ana-
lyze online experiments.

A major discussion in several of those papers has been
about developing an OEC (overall evaluation criterion) [12]
for online experiments. It has been suggested that OECs
should include metrics that reflect an improvement in the
long-term (years) rather than metrics that merely optimize
for the short-term (days or weeks). In [14], Kohavi et al.
show that optimizing for short-term gains may actually be
detrimental in the long-term.

We encountered this problem at Google when experiment-
ing with changes to the systems and algorithms that deter-
mine which ads show when users search. Optimizing which
ads show based on short-term revenue is the obvious and
easy thing to do, but may be detrimental in the long-term
if user experience is negatively impacted. Since we did not
have methods to measure the long-term user impact, we used
short-term user satisfaction metrics as a proxy for the long-
term impact. When using those user satisfaction metrics,
we did not know what trade-off to use between revenue and
user satisfaction, so we tended to be conservative, opting for
launch variants with strong user experience. The qualitative
nature of this approach was unsatisfying: we did not know if
we were being too conservative or not conservative enough.

What we needed were metrics to measure the long-term
impact of a potential change. However:

• Many of the obvious metrics, such as changes in how
often users search, take too long to measure.
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• When there are many launches over a short period of
time, it can be difficult to attribute long-term metric
changes to a particular experiment or launch.

• Attaining sufficient power is a challenge. For both our
short- and long-term metrics, we generally care about
small changes: even a 0.1% change can be substantive.

It may be due to these and other issues that despite the need
for long-term metrics for online experimentation, there has
been little published work around how to find or evaluate
such long-term metrics.

In this paper, we present an experiment methodology to
quantify long-term user learning effects. We show the effi-
cacy of our methods by quantifying both ads blindness and
ads sightedness, i.e., how users’ inherent propensity to click
on ads changes based on the quality of the ads and the user
experience. In addition, we introduce models that predict
the long-term effect of an experiment using short-term user
satisfaction metrics. This allows us to create a principled
OEC that combines revenue and user satisfaction metrics.

We have applied our learnings to numerous launches for
search ads on Google. We discuss two examples where, by
prioritizing user satisfaction as measured by ads blindness
or sightedness, we have changed the auction ranking func-
tion [10] and drastically reduced the ad load on the mobile
interface. Reducing the mobile ad load strongly improved
the user experience but was a substantially short-term rev-
enue negative change; with our work, the long-term revenue
impact was shown to be neutral. Thus, with the user satis-
faction improvement, this change was a net positive for both
business and users.

2. BACKGROUND & RELATED WORK
At Google, and in Google Search Ads in particular, most

changes are evaluated via online experiments prior to launch.
We have long recognized that optimizing for short-term rev-
enue may be detrimental in the long-term if users learn to
ignore the ads, or, even worse, stop using Google. Thus,
we have always prioritized ads quality, including measure-
ments of both ad relevance and the landing page experience.
Our auction ranking algorithm has always been a combina-
tion of the advertiser’s willingness to pay for a click (bid)
and algorithmically-determined quality signals, and our mea-
sures of ads quality also help determine if an ad is qualified
to appear at all [6]. In fact, we do not show ads on most
queries, despite having ads targeted to them, because their
measures of quality are too low [7].

In the context of serving ads, there are two main situations
where trade-offs between ads quality and short-term revenue
are made. The first situation occurs when deciding, for a
particular query, both whether to show ads at all and what
set of ads to show. Broder et al. propose training a clas-
sifier that predicts editorial judgments or thresholded click-
through-rates and can be used to determine whether to show
ads [3]. The second situation occurs when a macro-level de-
cision must be made about whether to launch a change,
ranging from how ads are matched to queries to changes
in algorithmically-determined quality signals to UI changes.
This paper focuses primarily on how to make better deci-
sions in this second situation.

We will not cover the basics (definitions and terminology)
of online controlled experimentation, a.k.a. A/B testing, nor
the systems to run such experiments. These are adequately

covered with ample references elsewhere [12][13][18]. How-
ever, we will now define the most relevant terminology and
concepts that we use throughout this paper.

Experimental unit is the entity that is randomly as-
signed to the experiment or the control and presumed to be
independent. In this paper, we use a cookie, an anonymous
id specific to a user’s particular browser and computer com-
bination, as our experimental unit. A cookie is an imperfect
proxy for a user identifier, and issues that arise from using
cookies are discussed in Section 3.3.

We call the set of randomized cookies that we follow over
a period of time a cohort, which we denote with capital
letters, such as E for experiment and C for control. The
treatment that a cohort receives is denoted in lower case
letters, such as e for the experimental treatment and c for
the control treatment; a cohort could be exposed to different
treatments at different times, e.g. E might be in treatment
e from time 0 to T and then in treatment c.

We use relative changes throughout when comparing a
metric M in the experiment and control cohorts and define

∆M = ∆M(E,C) =
M(E)−M(C)

M(C)
(1)

If a measurement is taken at a specific time t we will some-
times make this explicit by writing ∆M(E,C, t). Note that
all measurements made in this paper are aggregate measure-
ments over a cohort and not on an individual user or cookie.
Even when we measure user learning or user satisfaction,
those measurements are done over the entire cohort.

An A/A test, or uniformity trial, is an experiment where
instead of comparing an experimental treatment to a control,
two cohorts are exposed to the exact same treatment in order
to compare them or their behavior.

User learning was first proposed as Thorndike’s Law
of Effect [19] and roughly states that positive outcomes re-
inforce the behavior that caused them and negative out-
comes diminish the behavior that caused them. Model-
ing user learning with statistical models dates back to the
1950’s [4][5]. Studies of online behavior associated with user
learning have primarily focused on novelty or primacy effects
(users being presented with something new and either want-
ing to explore or needing time to adjust) or change aversion
(users simply not liking change).

User learning is rarely studied at scale on large popula-
tions, with the exception of [14] that cautions against opti-
mism in online experimentation when seeing novelty / pri-
macy effects by claiming that they rarely, if ever, result in
the outcome changing directionality.1 Kohavi et al. also note
that experiments can result in carryover effects, where the
treatment from an experiment on a cohort can impact the
results from a follow-on experiment on the same cohort. We
have independently observed such carryover effects in our
systems and our methodology (Section 3) leverages them to
study user learning at scale.

In this paper, we focus on a specific user learning ef-
fect: ads blindness and sightedness, which is when users
change how likely they are to click on or interact with ads
based on their prior experience with ads. Ads blindness and
sightedness have been discussed since banner ads appeared
on the web in the late 1990s. In [2], it was shown that users
ignore text embedded in rectangular web banners, with lo-
cation as a primary trigger. Subsequently, increased use of

1
This is at odds with results we describe in Section 5.
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E:

MT(C)
time

M0(E) M1(E) MT(E)MT(E)M1(E)

short-term impact = ΔM(E,C,1)
long-term impact = ΔM(E,C,T)

A. Naive Setup

E:

C: timeM1(C) MT(C)

...

... C: M1(C)M0(C) ...
pre-period = ΔM(E,C,0)

short-term impact = ΔM(E,C,1)
learned impact = ŨCTR = ΔM(E,C,T)

B. Post-Period (PP) Method

...
c: Control 
Treatment

e: Exp’t 
Treatment

M1(E)   M2(E)   M3(E)    …     MD(E)

short-term impact = ΔM(E,E1,1)
learned impact on day D = ΔM(E,ED,D)

              C. Cookie-Cookie-Day (CCD)

E:

time
M1(E1)  M2(E2) M3(E3)   …    MD(ED)

Mt(Y) = metric of 
interest in time period 
t on cohort Y

Figure 1: Graphical depiction of the Naive Setup, Post-Period, and Cookie-Cooke-Day methods.

animation was meant to draw user’s attention to ads and in-
crease user’s rate of ad recognition [1]. A more recent study
showed that text ads blindness also occurs, with users skip-
ping sections that were clearly text ads (although sometimes
returning later)[16].

All references describe small qualitative studies. Our work,
to our knowledge, is the first to quantify, at scale, over mil-
lions of users and months of elapsed time, the effect of both
ads blindness and sightedness, and apply those results to
a large running system, namely Google search, which re-
ceives billions of searches per day from hundreds of millions
of cookies in 200+ countries across multiple platforms (mo-
bile, tablet, desktop, etc.).

Short-term impact is the measured difference between
an experiment and control during the experiment period,
typically days or weeks. The long-term impact is what
would happen if the experiment launched and users received
the experiment treatment in perpetuity – in other words, it
is the impact in the limit t → ∞. In the context of ads,
differences between short- and long-term impact can mainly
be attributed to user learning and advertiser response. Here,
we focus on measuring and estimating the impact from user
learning (the learned impact), specifically ads blindness
and sightedness. We then approximate the long-term impact
as the combination of the short-term and the learned impact.

Long-term revenue is a sensible OEC with an obvious
focus on the long-term health of a business. Note that we
can decompose revenue into component metrics as follows:

Revenue = Users·Tasks

User
·Queries

Task
· Ads

Query
·Clicks

Ad
· Cost

Click
(2)

This decomposition is useful, since it shows us that revenue,
measured in the long-term, reflects user satisfaction since
users could be:

• So unhappy that users abandon the product altogether
(decreased number of users, term 1)

• Unhappy enough to decrease their usage of the product
(fewer tasks per user, term 2)

• Sufficiently unhappy that they decrease how often they
click on the ads (term 5), as well as which ads they click
on (term 6)

The short-term interpretation of (2) suggests that increasing
the ad load, i.e., the number of ads per query (term 4), would
also increase revenue. One of our main results is that such
gains may not persist in the long-term! To see this, first
note that in an ad system that aims to show the highest
quality ads to users, an increase in ad load usually leads to
a decrease in the click-through rate (CTR = Clicks/Ad,
term 5), even in the short-term. User learning may cause
additional decreases in terms 1, 2, and 5 that may more than
offset the increase in ad load, leading to reduced revenue in

the long-term. In other words, increasing the ad load may
increase short-term revenue but decrease long-term revenue
since decreased user satisfaction causes ads blindness.

For Google search ads experiments, we have not measured
a statistically significant learned effect on terms 1 and 2.2

Thus, we focus primarily on CTR, i.e., Clicks/Ad.
This discussion motivates the following definition. Con-

sider any system change (‘treatment’) we may want to launch.
We call the relative change in CTR due to user learning
caused by launching the treatment Learned CTR, and we
denote it by UCTR. Some remarks:

• This definition does not give UCTR in a computable
form. Rather, we imagine the change compared to a
counterfactual setting, where no user learning occurs.
We explain some of the reasons why UCTR cannot be
measured directly in Section 3.3.

• We develop experimental methodology that enables us
to measure approximations ŨCTR of UCTR, e.g., as a
percentage change in CTR in an experiment-control
setting. We work with relative rather than absolute
differences in order to control for the impact of season-
ality as well as any system changes that launch during
our experiment period.

• It may take months after a launch for the full effect
UCTR to develop. We estimate the time it takes for
user learning to occur in Section 3.2.1.

• UCTR tells us how users’ inherent propensity to click
on ads (measured at a population-level) changes due
to the treatment. Guided by Thorndike’s Law of Ef-
fect, we therefore consider UCTR a user-centric quality
metric (users’ response to the treatment reflects their
experience). Positive UCTR corresponds to ads sight-
edness, and negative UCTR to ads blindness.

In addition to describing how to estimate UCTR robustly, we
create models that predict UCTR from short-term metrics so
that we can predict long-term revenue as our OEC.

3. MEASURING USER LEARNING
Our first goal was to directly measure ads blindness and

sightedness. This required new experiment designs and sev-
eral months to run the experiments. The methodology de-
scribed in this section is generally applicable for measuring
user learning effects, but here we focus on measuring ads
blindness and sightedness. We first describe the experimen-
tal designs and then lay out our basic ads blindness results.
Finally, we discuss why our methodology understates the
user learning effects in actual launches.
2
We suspect the lack of effect is due to our focus on quality and user

experience. Experiments on other sites indicate that there can indeed
be user learning affecting overall site usage.
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3.1 Experiment Design & Methodology
For the experiment methodology, we start with a naive

setup before describing two methods, the Post-Period (PP)
and the Cookie-Cookie-Day (CCD), that we developed.

3.1.1 Naive Setup
The obvious experiment design is to consider two cookie

cohorts, E and C, where E receives some experimental treat-
ment e and C receives a control treatment c, and track their
metrics over time. The difference in metrics between E and
C at the beginning of the experiment, t = 1, is the short-
term impact of e, and the difference in metrics between E
and C at the end of the experiment, t = T , is the long-term
impact, including user learning (see Figure 1A). The exper-
iment period will need to last for however long it takes for
users to learn, which can be weeks, months, or more.

Unfortunately, even though time is taken to allow for users
to learn, this naive setup does not yield reliable user learn-
ing measurements. The measured long-term effect at the
end of the experiment period may change for many reasons
unrelated to user learning: system effects, seasonality, inter-
actions with subsequent launches, etc. Disentangling these
effects to measure long-term learning within cohort E over
time is, in our experience, very difficult if not impossible.

3.1.2 Post-Period Learning Measurements (PP)
The key insight, in part stemming from observing carry-

over effects from prior experiments, is that to measure user
learning, we need to compare the two cohorts, E and C,
while they receive the same treatment.

To achieve this, we sandwich the treatment period be-
tween two A/A test periods: a pre-period, where we ensure
that there are no statistically significant differences between
the cohorts when the study starts3, and a post-period (PP),
where any behavioral differences due to user learning are
measured. For the purposes of quantifying user learning,
the behavior of E while receiving treatment e is not of in-
terest – only the post-period measurement matters (see Fig-
ure 1B). Since E and C receive the same treatment in the
post-period, differences between the metrics of the two co-
horts in the PP can be ascribed to user behavior changes,
i.e., to learning that occurred during the treatment period.

In this way, we obtain PP user learning measurements
ŨPPCTR = ∆CTR(E,C, T ). We give examples in Section 3.2.1.
Post-periods have proven to give reliable and reproducible
user learning measurements at Google. Nevertheless, there
are some caveats and limitations we want to point out.
Ensuring valid measurements. In practice, it may

happen that despite receiving the same treatment, E and
C do not experience identical serving in the PP due to per-
sonalization or other long-term features.4 In order to ensure
a valid learning measurement, one needs to confirm that
metrics that should be unaffected by user behavior changes,
such as ads per query or the average predicted ad CTR, are
consistent across E and C.

Also note that the measurement environment c of the

3
Running a pre-period is good practice for all experiments and not

just for measuring user learning.
4
The problem is typically that the treatments c and e change the

distribution of cookie-level long-term features in C and E. These dif-
ferences may cause C and E to receive systematically different serving
even under the same treatment c. Examples of such long-term fea-
tures are remarketing lists or mute-this-ad data. Care should be taken
to minimize such feedback if the goal is to measure user learning.

post-period may affect the magnitude or nature of the learn-
ing effects observed. As a basic example, if e adds a great
new UI feature that users learn to interact with more over
time, we will not be able to observe this in a post-period
serving c where the feature is absent.

Unlearning. Since both E and C receive the same treat-
ment in the PP, their behavior will become more similar over
time, that is, unlearning will occur. Thus, our measurement
would ideally be taken in a brief period right at the begin-
ning of the PP. However, for a given experiment size, we can
increase statistical power by taking the measurement over a
longer period of time. The price to pay is measurement bias
introduced by unlearning. This bias can be corrected based
on (un)learning rates, see Section 3.2.1.

Cookie churn. Cookie churn occurs when users reset or
clear their cookies, leading to random movement between
experiments. Including new cookies in the experiment and
control dilutes the user learning effect measured. This issue
can be addressed by restricting the measurement to cookies
that were created before the start of the experiment. Note
that restricting to old cookies may introduce bias.

Experiment sizing. To ensure that our studies are ade-
quately powered, we use the best practices enshrined in the
experiment sizing tool described in [18]. As noted there,
using cookies as the experimental unit requires larger sizes
than experiments that divert on individual query events,
since one has to account for the non-independence of queries
coming from the same cookies over time.

Unlearning and cookie churn also affect the statistical
power of the experiments. We studied the cookie age distri-
bution to allow us to estimate the number of cookies that
would be lost from the post-period comparison because of
cookie churn and to scale up the size of E and C as needed.

Intermediate measurements and lagged-starts. One
serious disadvantage of the PP method is that the learning
measurement is taken after the treatment period, i.e., the
measurement requires ending the treatment period. No pre-
liminary measurements of learning are obtained along the
way. This can be problematic since the required length of
the treatment period can depend on the treatment studied
and may not be known in advance.5

One way of obtaining a preliminary measurement is by
adding an extra lagged-start cohort E1. We keep E1 in
the control treatment c while E already receives the ex-
perimental treatment e until we want to take a learning
measurement, say at time T1. At T1 we switch E1 from
c to e. We can now obtain a user learning measurement
ŨLSCTR = ∆CTR(E,E1, T1) by comparing E, which was ex-
posed to e, to E1, which was previously exposed to c.

The important point here is that, as in the PP method,
the learning measurement is taken when the two cohorts re-
ceive the same treatment (here the experiment treatment e).
Note that taking this lagged-start measurement does not re-
quire ending the treatment period of E. We can take several
lagged-start measurements during the treatment period, but
each additional measurement will require its own lagged-
start cohort E1, E2, etc.

3.1.3 The Cookie–Cookie-Day Method (CCD)
This method is derived from the idea of continuously tak-

5
In Section 3.2.1, we will describe an approach to determine appro-

priate treatment period durations, but such prior information is not
always available.
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Figure 2: ŨCCDCTR (d) for a grid of 10 different system pa-
rameter changes for mobile devices. The dashed lines give a
simple exponential learning model, see Equation (4).

ing lagged-start measurements in order to track user learning
while it happens. In fact, we construct daily measurements
by essentially using a different lagged-start cohort for every
treatment day.

Cookie-day experiments. We obtain such cohorts by
using an experimental unit that is a combination of the
cookie and the date, so that cookies are re-randomized into
experiments daily. Experiments based on such experimental
units are called cookie-day experiments.

In practice, we start with a large pool of cookies, and on
each day we randomly assign a fraction of these cookies to
the experiment. If the cookie pool is sufficiently large, each
cookie will only be assigned to the experiment on very few
days so that, in essence, we treat a different cookie cohort
on any given day. In particular, each cookie will not receive
consistent enough exposure to the experiment treatment to
accumulate any learned effect.

The Cookie–Cookie-Day comparison. In the Cookie–
Cookie-Day (CCD) method, we compare cookie and cookie-
day experiments receiving the same treatment e.6 In the
cookie experiment, cohort E receives the treatment e ev-
ery day and experiences user learning. In parallel, we run
a cookie-day experiment where a different cohort Ed is ex-
posed to e on any given day d. On all other days, Ed receives
the control treatment c.7 As in the lagged-start setting, user
learning can be measured on day d by comparing the metrics
of E to Ed: this is the CCD comparison (see Figure 1C).

The main advantage of CCD is that learning can be tracked
continuously while it is happening: the daily measurements
ŨCCDCTR (d) = ∆CTR(E,Ed, d) fit together to yield a time
series describing learning over time. This can help inform
the length of the study: if learning is still going strong, one
might want to extend the experiments, whereas if no effect

6
Within a single layer, for those familiar with the Overlapping Ex-

periments framework [18].
7
In our actual implementation, in order to manage experiment traffic

more efficiently, the cookie-day cohorts Ed may not receive c on every
day d′ 6= d. Rather, they see a mix of treatments that, on average,
is very similar to c and so the learning effects are approximately the
same. We usually also run a cookie-day version of the control (on day
d cohort Cd will get the the control treatment); by comparing Cd to
a control cookie cohort C we can check that cookies in the cookie-day
space do not accumulate a learned effect.

User Learning Measured in the Post Period

Days In Post Period

e: fewer ads
e: more ads

0%

2%

-2%

Ũ
P
P

C
TR
(t)

Figure 3: Two Post-Period comparisons to the control.

is visible after two months, chances may be slim to observe
anything even when running longer. The time series of learn-
ing measurement can also be useful in estimating learning
rates and detecting issues in the experiment set-up.

Another upside of CCD is that learning can be measured
over a longer period of time than in the PP method since
unlearning is not a concern. Such extended measurement
periods can significantly reduce noise. The main disadvan-
tages of CCD are the increased infrastructure complexity
and the need for a large cookie pool that provides traffic for
the cookie-day experiment.

To illustrate the efficacy of the CCD method, Figure 2
shows a time series of learned changes in CTR, i.e. ŨCCDCTR (d),
for a grid of ten settings of a system parameter over six
months, along with exponential trends fit to the data.

As a best practice, we recommend combining both meth-
ods: run a CCD setup and also take a PP measurement on
the cookie cohort E after the treatment period is over. We
have generally found the measurements ŨPPCTR, ŨLSCTR, and
ŨCCDCTR to produce consistent results.

3.2 Ads Blindness Studies
Since 2007, we have run hundreds of experiments to quan-

tify ads blindness and sightedness. The main output from
this work is an OEC that depends only on short-term met-
rics but predicts the long-term impact (see Section 4). Using
this OEC to make launch decisions has improved the ads we
show to users. Here we summarize some of the major steps
in collecting the data necessary to build these models.

3.2.1 Initial Experiments
The goal of our initial user learning experiments was to

explore the magnitude of treatments needed to induce mea-
surable learning effects and to see how long learning takes.
These experiments were run before we developed the CCD
method, so we used a combination of the PP and lagged-
start methods to obtain user learning measurements.

We used two different experimental treatments. One treat-
ment increased the ad load, and the other reduced it. Since
we are always trying to show the best ads to our users, any
additional ads will have slightly lower quality so that the
average quality of ads decreases as the ad load increases.
In particular, these treatments conflate ads quality and ad
load, something we tried to disentangle in later experiments.

Ads blindness can be measured. This basic result
can be seen in Figure 3, which shows the relative change
in CTR of the cohorts exposed to the two treatments rela-
tive to the control cohort in the post-period. Showing fewer
but higher quality ads resulted in ads sightedness (positive
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ŨPPCTR); showing more but lower quality ads resulted in ads

blindness (negative ŨPPCTR).
User learning takes a long time. A more subtle

goal of the initial experiments was to quantify the time
period needed for user learning to occur, i.e., determining
when the user learning impact on CTR (the change in users’
click propensity) would plateau. We used repeated lagged-
start measurements to verify that the learned effects still
increased, even after many weeks of treatment. In other
words, user learning takes a long time to converge.

A simple learning model. As mentioned in the dis-
cussion in Section 3.1.2, PP measurements are, in practice,
taken over an extended period of time. This yields a time
series ŨPPCTR(t) = ∆CTR(E,C, t) for t ≥ T as in Figure 3.

In order to obtain a quantitative result on the pace of user
learning, we fit a simple exponential curve to model ŨPPCTR(t)
(effectively modeling unlearning rather than learning)8:

ŨPPCTR(t) = α · e−β·(t−T ) for t ≥ T (3)

Here α estimates the magnitude of learning at the beginning
of the post-period T , and β is the (un)learning rate. We as-
sumed a constant learning rate β across different treatments
but α was assumed to be treatment dependent (and is the
focus of the modeling discussed in Section 4).

The half-life of learning ln(2)/β was approximately 60
days (see Figure 3), or β ≈ 0.012 per day. This learning
rate was later validated in a CCD study, where we modeled

ŨCCDCTR (t) = α′ · (1− e−β·t) for t ≥ 0 (4)

with α′ estimating the magnitude of learning we would mea-
sure in a very long study (t→∞).9

In this section, we have considered learning rates as a func-
tion of time. We explored alternatives, such as considering
them as a function of the number of user interactions (e.g.,
searches issued or ads viewed). However, we use time for
convenience as it allows us to aggregate all users’ activities
across a day and do all analysis in this aggregated space.

Standard ads blindness studies. Based on the learn-
ing rate estimate β ≈ 0.012, we now typically run long-term
desktop experiments for 90 days, which gives a reasonable
trade-off between study run-times and captured learning ef-
fects. According to (4), the learning observed after 90 days
is approximately 1−e−0.012·90 = 65% of the learning effect
we would see in a very long experiment.10

In the following sections, we denote by ŨCTR ads blind-
ness or sightedness measurements taken in ‘standard studies’
lasting about 3 months. These may be PP, lagged-start, or
CCD measurements.

Note that we can also apply the model (3) to understand
the bias in PP measurements due to unlearning. Assume
we take the measurement in the first two weeks of the post-
period and that each day contains the same amount of data.
Then unlearning reduces the effect observed over the 14 days
of the measurement to 1

14

∑14
j=1 exp(−0.012 · j) = 92%.

Hence ŨCTR measured in the first 14 days of a post-period
in a standard learning study is 65% ·92% ≈ 60% of the effect
observed in a very long running study (on desktop).

8
We also used learning data from lagged-start measurements to fit

these models, but do not discuss this here for simplicity.
9
The exponential trends for the mobile study in Figure 2 were ob-

tained in the same way.
10

The learning rate may depend on the treatment, e.g., the trigger-
ing rate of a feature, but we have found these results to hold for a
reasonable variety of system changes.

3.2.2 The Dropping Study
While the initial study verified the existence and quanti-

fied the rate of user learning for ads blindness and sighted-
ness, we were dissatisfied with the conflation of ads quality
and ad load. To address this issue, we devised our next
set of experiments, in 2010, to explicitly control the qual-
ity of the shown ads. Specifically, we divided the ads into
tiers by their ads quality scores. We then ran PP method
experiments with the following treatments:

• e: Increase the ad load, with the same conflation of
ads quality and ad load as above.

• e1, ..., en: We want these treatments to have the same
ad load as c but different ads quality. We achieve this
through a series of system manipulations. We first
increase the ad load and then reduce it back to the level
of c by dropping ads from a specific quality tier i =
1, ..., n. The ads quality of ei decreases as i increases.

• e′: Same as for ei, in that we increase the ad load to
the same level as e, but we then drop ads uniformly
across all quality tiers to achieve the same ad load as
c but with an average ads quality comparable to e.

Bringing the corresponding cookie cohorts E, E1, ... , En,
E′ to post-period, we could determine if quantity was the
driver (in which case ŨCTR(E,C) would be more negative

than ŨCTR(E′, C)), or if quality was the driver (the effect
of E1, where we dropped the highest quality ads, would be
more negative than that of E2, which would be more than
E3, etc., and E′ would be somewhere in the middle).

Our results showed that cohorts that experienced higher
ad quality than the control during the treatment had pos-
itive ŨPPCTR (ads sightedness) and that cohorts exposed to

lower quality had negative ŨPPCTR (ads blindness). We did
not measure a significant learning effect in the post-period
comparison of E and E′, ŨCTR(E′, E). Therefore we con-
cluded that ads quality is the main driver of user learning.

Note, however, that in practice ad load does matter since
it is correlated with ads quality in systems that strive to
show the best possible ads to users.

3.2.3 Subsequent Experiments
The initial experiments and the dropping study provided

our first models for understanding ads blindness and sighted-
ness: the rate of learning, the magnitude of the long-term ef-
fects relative to the short-term impact, and the main drivers
behind the effect. Over the last eight years, we have run hun-
dreds of long-term experiments to increase our understand-
ing, especially regarding the drivers of user learning. We
designed learning studies to address specific questions, such
as: Does the type of task matter? How does ad relevance
differ from landing page quality in driving the magnitude of
the effect? How do UI changes impact user learning?

These studies allowed us to improve the algorithms that
select the best ads to show to users. In Section 4, we use
data from these experiments to predict the magnitude of ads
blindness or sightedness from short-term metrics.

3.3 Underestimation of Results
In this section, we discuss why the PP and CCD methods

both yield systematic underestimates of true long-term user
learning effect UCTR. By this, we mean that if we launched
a treatment to all users, the user learning effect would be
larger than the effect ŨCTR we measure in our experiments.
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How severely our measurements underestimate user learning
is difficult to estimate since learning is not just a function
of time, but also a function of the number, frequency, and
consistency of exposure to the treatment.

Number and frequency of exposure. Intensity of ex-
posure to the treatment affects the learning rate. For ex-
ample, the β derived in Section 3.2.1 depends on how often
users search on Google and on how often ads show on their
queries. Measuring learning for features that show on more
queries than ads can be done using shorter treatment periods
(for changes that impact every search results page, we esti-
mate that half the learning has happened after 14-21 days).
Conversely, learning on features that show less often than
ads may take a lot longer, to the point of being impossible
to measure.

Even for ad-centric studies, the learning rates may vary.
For example, learning induced by an ad format with low
triggering rate or a subtle UI change might take a long
time to materialize. Due to this uncertainty, using the CCD
methodology to measure learning in real-time is helpful.

Treatment inconsistency. The bigger issue is that cook-
ies are a poor proxy for users. A cookie is simply an anony-
mous id attached to a browser and a device. Users can clear
their cookies whenever they want, and they frequently use
multiple devices and multiple browsers. Thus, any learning
measured from a cookie-based experiment is diluted since
a user is likely seeing non-experiment treatments on other
browsers: there is less consistency in an experiment than
there is when the change is launched. Using a signed-in id
may seem to mitigate this issue, but users can have multiple
sign-ins and many searches are conducted while signed-out.

Accounting for underestimation. In the discussion of
OECs in Section 4.4 below, we want to be explicit about
the distinction between user learning when a treatment is
launched (UCTR) and the potentially weaker learning effect

ŨCTR we observe in standard PP or CCD measurements.
To this end, we introduce a ‘fudge factor’ Q defined by

UCTR = Q · ŨCTR. (5)

Since the user learning measurement methods we presented
here underestimate learning, we have Q ≥ 1. Both number
and frequency of exposures and consistency issues contribute
to Q. As a result, Q depends on our decision to run long
term experiments for 90 days and, since treatment consis-
tency differs by platform, it also differs by device type.

How large is Q? Generally, this is a difficult question to
answer. The exponential learning model from Section 3.2.1
implies that in a 90-day study we would only measure about
65% of the long-term effect simply due to the limited study
duration, not even accounting for lack of treatment consis-
tency. Hence we have Q ≥ 1/0.65 = 1.54 for a standard
learning measurement in a desktop study. In practice, we
often use values of Q between 2 and 3 for desktop and laptop
devices in order to also compensate for treatment inconsis-
tency. This range, though only a rough estimate, has been
supported by a study considering learning effects of cohorts
of cookies with very high treatment exposure.

Our exponential models for mobile (not discussed here,
but observable in Figure 2) suggest that learning is faster
on smartphones, and we also believe the consistency issue
to be less severe. As a result, we think Q is closer to 1 for
mobile and have, in fact, often assumed the minimal possible
value Q = 1 in this case.

Other sources of user behavior changes. In this sec-
tion, we have been concerned with underestimates of learn-
ing arising from low treatment dose and an imperfect re-
lationship between cookies and users. However, there are
factors affecting long-term user behavior on Google search
that cannot be captured in experiments at all. For example,
perception of poor ads quality may be amplified by word-of-
mouth or negative press reports.

4. PREDICTING ADS BLINDNESS
Thus far, we have discussed how to measure user learning

in long-term experiments. Now we tackle the issue of pre-
dicting the ads blindness or sightedness effect rather than
waiting for months to measure it. The simple exponential
models we fit in Section 3.2.1 gave us the time that we would
have to wait, but not the magnitude of the effects. In order
to apply ads blindness to day-to-day decisions, we need to
be able to take the short-term measurements and use them
to predict the magnitude of the long-term effect.

We now present models doing precisely this. We call them
macro-models since they make predictions at the population
level. To create these models, we use the results from more
than 100 long-term ads blindness experiments, collected over
several years, that test a range of changes, from new predic-
tion algorithms to optimizing system parameters to changing
the keyword matching algorithms and more.

Since all data considered here is from PP or CCD stud-
ies, we use ŨCTR as the user learning metric our models
predict (response). The model covariates (predictors) are
short-term treatment metrics, i.e. the instantaneous metric
changes observed when the treatment is applied in a short-
term experiment. In the notation of Figure 1, covariates are
defined by ∆M = ∆M(E,C, 1), for suitable metrics M.

Thus, all metrics on the right-hand side of the models
below are short-term quantities that are easy to measure in a
standard A/B experiment setup, whereas the left-hand side
is the long-term user behavior change we are predicting. All
equations below are dimensionless as all metrics are relative
changes between experiment and control.

4.1 Ad-Load-based Models
The change in ad load is a good linear predictor for the

resulting change in user clickiness when the treatment is
just a simple ad load change, as in the initial experiments
described in Section 3.2.1 or similar follow-up studies. This
is expressed succinctly by the macro model

ŨCTR ≈ −k · ∆AdLoad (6)

with k > 0. This model states that showing more ads results
in ads blindness, i.e., a decrease in users’ propensity to click
on ads. We have observed the relationship (6) for ad load
changes of moderate magnitude in various settings (different
sites or device types) but with varying values of k.

However, (6) only applies to simple ad load changes where
ad load and ads quality are directly (negatively) correlated,
as in our original experiments. While the applicability of (6)
is thus restricted to a small set of treatments, it has never-
theless proven useful (e.g., the mobile example in Section 5).

4.2 Quality-based Models
As discovered in the experiments described in Section 3.2.2,

the main driver of ads blindness is the ads quality rather
than the ad load. Given those findings, our subsequent and
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Figure 4: Measured vs. predicted learning for the current
desktop macro-model.

more generally applicable macro-models used ads quality-
based metrics rather than ad load-based metrics.

Many of these models are of the form

ŨCTR ≈ k1 ·∆AdRelevance+k2 ·∆LandingPageQuality (7)

with k1, k2 > 0. The interpretation of (7) is intuitive: bet-
ter AdRelevance and/or LandingPageQuality increase user
engagement with ads. While the form of (7) has been con-
sistent over the last few years, our definitions of the AdRel-
evance and LandingPageQuality metrics used in the model
have evolved over time. The simplest example of an AdRele-
vance metric is CTR. LandingPageQuality metrics are gen-
erally more complex and consider the actual content and
experience of the landing site [8].

In our experience, good macro-models require both an ad
relevance and landing page quality term: we have not found
satisfactory single variable blindness models. In particular,
we have found that AdRelevance alone is insufficient to char-
acterize ads quality and that user satisfaction after a click
is also very important. This makes sense: if an ad looked
good but the user had a horrible experience after the click,
the user will remember the bad experience on the landing
page and the propensity of future ad clicks decreases.

We have found that ads-quality-based models such as (7)
capture ads blindness and sightedness reasonably well for
a wide variety of non-UI manipulations such as ad load,
ranking function, and prediction algorithm changes. This
can be seen in Figure 4, which plots predictions from our
current desktop macro-model against the actual measure-
ments ŨCTR for the 170 observations used to fit the model.
We have a similar model for the mobile interface of Google
search.

4.3 Remarks on Methodology
The macro-models given above are simple linear models,

with weights according to measurement precision. The main
reason to stick to such simple models is interpretability. We
considered using larger predictor sets and regularization, but
the gains in prediction accuracy were rather modest and

not worth giving up models with well-understood seman-
tics. Naturally, such simple linear models can only cover a
limited range of serving configurations, but we have found
their validity to be pretty broad in practice.

Our models were evaluated using cross-validation, with
cross-validation folds being manually chosen groups of sim-
ilar experiments. This was done to avoid overfitting, which
is a huge concern given the small sample size.

Another requirement imposed on more general models was
that prediction accuracy on simple experiments should not
be worse than that of very plain models, such as (6), known
to work well in certain cases. The most important criterion
for our models is, of course, their prediction accuracy on new
data, and we continually validate our models by comparing
predictions against measurements in new studies.

The models given here are specific to Google search. Nev-
ertheless, we expect the fundamental principle to apply in
other contexts: quality drives user interaction, and suitable
user experience signals can be used to predict changes in
user engagement (e.g., click-through or page visit rates).

4.4 Long-term Impact and OECs
4.4.1 Approximations of Learned RPM

The change of user engagement with ads, as captured by
the quality metric UCTR, alters the revenue impact of a sys-
tem change in the weeks and months after its launch. Anal-
ogous to the definition of UCTR, we define URPM to be the
relative change in RPM (revenue per 1000 queries) due to
user learning caused by the launched treatment.11

If a change in users’ propensity to click on ads is the only
user learning effect we observe, which is often the case on
Google search, then

URPM ≈ UCTR . (8)

This can be seen from the revenue decomposition (2). For
example, if CTR decreases by 1%, then so does revenue. The
right-hand side of (8) can be expressed as Q · ŨCTR via (5),
and computed using the models from Sections 4.1/4.2.

When revenue is generated from several segments of ads,
one needs to use

URPM ≈ Q ·
∑
i

wi · ŨCTR, i (9)

where we measure ŨCTR, i separately for different segments
i, and wi gives the revenue fraction in the segment. The dif-
ferent segments reflect differences in Learned CTR or major
differences in click costs. Cases where this segmentation is
particularly important include ad location on the page and
geography, where the bids can differ, either due to standards
of living, currency exchange, or the number of advertisers.

These approximations of URPM are needed since measur-
ing ŨRPM directly in a long-term study is often impossible
due to statistical noise.

4.4.2 Longterm RPM
We often combine the instantaneous revenue change of a

treatment, ∆RPM = ∆RPM(E,C, 1), and the RPM change
due to user learning URPM into a single long-term metric

LTRPM = ∆RPM + URPM . (10)

11
We can use RPM instead of revenue since we have not measured

changes in the first three terms of (2).
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LTRPM aims to approximate the long-term revenue impact
of a launch.12 The interpretation of (10) is straightforward:
the expected long-term RPM effect is given by the observed
instantaneous revenue change plus a correction term that
expresses how user behavior changes will alter RPM post-
launch. Note that (10) defines an OEC that focuses on long-
term business health, given that, for Google search, we did
not see changes in the first 3 terms of (2) in Section 2.

0

0 50 100 150 200
Treatment duration in days

R
P

M

Figure 5: Short-term (pink) and long-term (blue) ∆RPM
metrics for simple ad load changes on mobile Google search,
restricted to old cookies, 6/26/2013 – 1/9/2014.

Using the approximation (8), we obtain:

LTRPM = ∆RPM + Q · ŨCTR (11)

Recall that our macro-models allow us to express ŨCTR in
terms of short-term metrics. Thus (11), together with our
macro-models, solves the problem of defining an OEC with
emphasis on the long-term that can be readily computed
from short-term metric measurements, which was our origi-
nal goal.13 The two summands in the OEC (11) express that
long-term business health depends both on creating revenue
and providing a good user experience. An obvious aspect
missing in (11) is advertiser value, which we currently verify
through separate metrics. Building an OEC that reflects the
launch impact on Google, users, and advertisers is an active
area of research at Google.

5. APPLICATIONS OF ADS BLINDNESS
Ultimately, the success of our work is measured by whether

we improved user satisfaction and affected decision-making
for search ads on Google. The answer is unequivocally yes!
Understanding ads blindness (Section 3) has changed the
nature of the discussions around evaluating changes. We
have used the models discussed in Section 4 to predict the
long-term impact of experimental treatments to support or
reject potential changes. Here are two specific examples.

Ranking function change. In October 2011, our ads
blindness work drove a change in the quality score used in
the auction ranking function that emphasizes the landing
page experience more [10]. We ran numerous studies to

12
The ‘long-term revenue impact of a launch’ is the relative difference

in revenue (a sufficiently long time period after the launch), compared
to the counterfactual scenario where the launch did not happen.

13
For treatments where our macro-models do not work, we often fall

back to measuring ŨCTR directly in a blindness study. This is cum-
bersome but sometimes necessary.

�CTR (in percent)

Figure 6: ∆CTR time series for different user cohorts in
the launch. (The launch was staggered by weekly cohort.)

understand the long-term impact of the proposed (and ul-
timately launched) change as well as to validate our prior
learnings. While we had taken the identified metrics from
Section 4 into account for our OEC prior to this launch, this
launch was when we really moved to using what we learned
about ads blindness to impact per-query decisions.

Mobile ad load. In another example, our experiments
were used to determine the appropriate ad load for searches
on Google from mobile devices.

In 2013 we ran experiments that changed the ad load on
mobile devices, similar to the experiments described in Sec-
tion 3. Figure 5 shows results for an experiment that in-
creased the ad load. The dashed lines give weekly RPM mea-
surements for the cookie-day (pink, includes no user learn-
ing) and the cookie (blue, reflects learning) experiments of
the study. The thinner horizontal pink line gives the cookie-
day average: this is the short-term RPM change ∆RPM.
The solid blue line gives ∆RPM + ŨCTR(d), which approxi-
mates LTRPM (with Q = 1) as d gets large. It hugs a smooth
curve based on a simple exponential learning model as de-
scribed in Section 3.2.1. Since the blue curves settle near
0 as the study runs longer, the long-term revenue estimate
LTRPM for this treatment is essentially zero – in stark con-
trast to the significant short-term RPM gains – even under
the idealized assumption of complete treatment consistency
(Q = 1). In reality, the increased ads load is likely long-term
negative at the state of the system during the study.

This and similar ads blindness studies led to a sequence
of launches that decreased the search ad load on Google’s
mobile traffic by 50%, resulting in dramatic gains in user
experience metrics. We estimated that the positive user re-
sponse would be so great that the long-term revenue change
would be a net positive. One of these launches was rolled
out over ten weeks to 10% cohorts of traffic per week. Fig-
ure 6 shows the relative change in CTR for different cohorts
relative to a holdback. Each curve starts at one point, rep-
resenting the instantaneous quality gains, and climbs higher
post-launch due to user sightedness. Differences between the
cohorts represent positive user learning, i.e., ads sightedness.

6. CONCLUSIONS & FUTURE WORK
In this paper, we have presented experimental method-

ology for quantifying long-term user learning and modeling
methodology that uses the experimental results to identify
which short-term metrics best predict the long-term user-
learning impact.

We have applied these methodologies to a concrete use
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case, ads blindness and sightedness, and shown that users
do in fact change their interaction rate with ads based on
the quality of the ads they see and click on. These studies
have been highly impactful:

• We created a frequently used OEC that accounts for
both short-term and long-term impact.

• They were fundamental to a major conceptual change
to our search ads auction that emphasizes landing page
experience more.

• Launches that reduced the ad load on the Google search
mobile interface by 50% were driven by our results.

Work beyond the scope of this paper includes the applica-
tion of this methodology to sites other than Google search
pages – both search pages on other sites as well as non-
search-based interfaces (e.g., YouTube, display ads). One
challenge is how to handle the increased heterogeneity of
the sites in the modeling. That said, some initial results
on other search sites with substantially higher ad load and
lower quality are quite promising, with results even stronger
than those discussed in Section 5, including impact to query
volume and other terms in (2). We have communicated the
results of these experiments to several partners, who have
reduced their ad load and increased the quality, leading to
positive long-term results for users and their business.

We have also applied this methodology to user learning
beyond ads, specifically for experiments on bolding and la-
beling changes on the search results page, as well as other
features such as Google Shopping.

We continue to work on better estimates for the correc-
tion factor Q. Also, our current models are based solely on
(and applicable to) non-UI changes. The key challenge with
integrating UI changes is that we have not identified metrics
that appropriately capture the impact of UI changes on user
experience and could serve as predictors in our model.

Finally, the models we describe in Section 4 predict a
population-level learned ads blindness response that can be
used at a macro-level, e.g., for launch decisions or validating
quality metrics. We are working on “nano-models” that aim
to predict the blindness cost of individual ad impressions,
i.e., the future revenue loss (or gain) caused by showing an
ad to the user. However, these models are substantially more
difficult than the macro-models we have presented due to the
sparse data available at the impression level and because this
problem requires inference from observational data, lacking
the clean randomization of an experiment-control setup.
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