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Working memory (WM) training has been proposed as a promising intervention to enhance cognitive
abilities, but convincing evidence for transfer to untrained abilities is lacking. Prevalent limitations of
WM training studies include the narrow assessment of both WM and cognitive abilities, the analysis of
manifest variables subject to measurement error, and training dosages too low to likely cause changes in
the cognitive system. To address these limitations, we conducted a 2-year longitudinal study to investi-
gate the effects of working memory training on latent factors of working memory capacity, fluid intelli-
gence and crystallized intelligence. One hundred twelve students initially attending 9th grade practiced
a heterogenous set of validated WM tasks on a biweekly basis. A control group of 113 students initially
attending 9th grade participated in the pretest and posttest. Broad and prototypical measures of fluid and
crystallized intelligence served as measures of nearer and farer transfer. We found substantial and reli-
able training effects on the practiced WM tasks, as well as on a latent WM factor constituted by them.
However, no transfer of training effects to fluid or crystallized intelligence were observed. These results
add to the literature questioning the utility and validity of WM training as means of improving cognitive
abilities.
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Given the paramount importance of cognitive ability in everyday
life, even small reliable improvements in the construct would be
worth substantial effort and lead to improvements in related abilities,
higher intellectual performance in everyday life, and meaningful
delay of cognitive decline. Accordingly, researchers have extensively

investigated the utility of cognitive interventions and commercial
providers confidently advertise various types of brain trainings,
neuro enhancements and the like. However, early cognitive trainings
did not live up to their expectations (see Carroll, 1993, p. 669ff for a
review), and the relative hopelessness of this endeavor has caused
significant scientific and political controversy (e.g., Cronbach, 1969;
Jensen, 1969). Renewed enthusiasm arose from studies reporting
positive effects of working memory (WM) training on cognitive abil-
ities (Au et al., 2015; Jaeggi et al., 2008; Klingberg et al., 2002), and
it has quickly become the most prevalent type of cognitive interven-
tion. Unfortunately, the enthusiasm created by these studies has
largely again led to disappointment, after several systematic reviews
and meta-analyses of available evidence failed to provide unequivo-
cal evidence for the generalizability of training effects to untrained
abilities (Redick, 2019; Sala, Aksayli, Tatlidil, Tatsumi, et al., 2019;
Shipstead et al., 2012). The lack of effects has been attributed to a se-
ries of shortcomings commonly encountered in cognitive intervention
studies, leaving the key question of whether cognitive abilities are
malleable through tailored interventions still unanswered. In the fol-
lowing, we will first discuss the relation of WMwith established cog-
nitive abilities. We will then elaborate on a number of key issues in
WM training research and specify how the present article contributes
to the ongoing debate on the effectiveness of WM training.

Working Memory and Cognitive Abilities

Competing models of WM (Engle, 2002; Oberauer, 2009; Uns-
worth & Engle, 2007) agree that WM is a system for storage and
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processing of a limited amount of information. In our view, it is a
system that allows to flexibly build, maintain, and update bindings
(Oberauer et al., 2008; Wilhelm et al., 2013). WM allows to con-
sciously keep chunks of information needed for ongoing cognitive
processes available for direct access by placing and maintaining
this information in a cognitive coordinate system. Chunks in the
coordinate system can be accessed and subjected to cognitive
operations, such as building new relations between them. Crit-
ically, people differ in the amount of information they can simulta-
neously use in their WM. This individual differences construct is
termed working memory capacity (WMC) and is positively related
to a large number of real-world outcomes, like the acquisition of
mathematics (Peng et al., 2016), second language acquisition
(Linck et al., 2014), or reading skills in children (Peng et al.,
2018). Impairments in WMC, in turn, have been observed in a va-
riety of disorders, such as attention deficit hyperactivity disorder
(ADHD; Alderson et al., 2013), autism spectrum disorder (Wang
et al., 2017), and learning disabilities (Alloway, 2009).
Importantly, WMC is highly correlated with psychometric intel-

ligence (Oberauer et al., 2005) and has been discussed as the ex-
planatory construct for intellectual abilities for almost 40 years
(Fogarty & Stankov, 1982; Johnson-Laird, 1983). This claim is
supported both theoretically and empirically. Reasoning items are
not good measures of fluid intelligence by virtue of some surface
characteristic, by imposing unbearable loads of some logic calcu-
lus on participants, or by asking subjects to solve somewhat novel
tasks—the core of effortful cognitive processing as required in rea-
soning tasks is to detect regularities and to draw valid, useful, non-
obvious inferences (Wilhelm, 2005). It is the core cognitive
processes of building, maintaining, and updating relations between
new chunks of information that are the foundation for engaging in
and solving tasks that are good indicators of fluid intelligence
(Oberauer et al., 2008). Fluid intelligence, in turn, has been
reported to correlate perfectly with general cognitive ability (e.g.,
Gustafsson, 1984) and is widely accepted as the key ingredient in
human cognitive abilities as it is central to all cognitive abilities
and an essential determinant of learning of knowledge and skills
(Carroll, 1993; Flanagan & Harrison, 2012).
Empirically, individual differences research has repeatedly and

successfully shown that individual differences in WMC are the
key limiting factor of reasoning and are the best predictor of fluid
intelligence (Kyllonen & Christal, 1990; Oberauer et al., 2005,
2008). Disattenuated correlations of broad measurements of WMC
and cognitive ability are estimated at around q = .85 (Kyllonen &
Christal, 1990; Oberauer et al., 2005; Süß et al., 2002), indicating
that WMC shares over 70% common variance with psychometric
intelligence. Although this correlation does not and cannot equal
unity owing to differences in conception, measurement, and factor
structure (see Oberauer et al., 2005, for a discussion), models of
WM are the best theoretical cognitive basis to date to explain indi-
vidual differences in fluid intelligence and relevant lower-order
cognitive processes. It is therefore instrumental to consider estab-
lished theories of WM to better understand what limits, or con-
versely, what might improve, cognitive ability.
From a pragmatic view, focusing on WMC has some key advan-

tages over fluid intelligence when it comes to cognitive interven-
tions. Training material is easier and more efficient to construct.
Item difficulty is easier to predict, variation of item difficulty is
easier to achieve, and the effects of item attributes can be

explained more reliably based on the vast corpus of research from
cognitive psychology that is as of yet not paralleled in individual
differences research about fluid intelligence (Oberauer et al.,
2018). Importantly, from an epistemic point of view, training WM
supposedly addresses the underlying mechanism whereas training
fluid intelligence is indirectly focusing on its application.

Working Memory Training

The aim of cognitive interventions, as opposed to simple test
practice or coaching (e.g., SAT practice; The Princeton Review,
2020), is not to ameliorate performance on the practiced task(s)
alone but to improve the overarching ability that is assumed to be
causal for observed performance. Training-induced changes must
therefore not be limited to improved performance on the trained
tasks but transcend to improved performance on sufficiently dis-
similar untrained measures of the targeted construct. Applied to
WM, improvements must not be restricted to the practiced WM
task but transfer to untrained WM tasks or further, given the postu-
lated causal relation with fluid intelligence, improvements should
positively transfer to measures of reasoning ability and eventually
real-life variables such as educational achievement or job success.

Evidence regarding the effects of WM training, however, is dis-
appointing. A plethora of primary studies, several meta-analyses
(e.g., Melby-Lervåg et al., 2016; Melby-Lervåg & Hulme, 2013;
Sala, Aksayli, Tatlidil, Gondo, et al., 2019; Schwaighofer et al.,
2015), a second-order meta-analysis (Sala, Aksayli, Tatlidil, Tat-
sumi, et al., 2019), and several literature reviews (e.g., Redick,
2019; Shipstead et al., 2010, 2012) have investigated and dis-
cussed the effects of WM trainings of different kinds (see Table 1
for an incomplete overview of meta-analytical results of the last 5
years).

In summary, the observed effects of WM training seem to be a
function of the distance between the trained and the targeted task:
Meta-analyses report medium to large performance improvements
in the trained tasks, small to medium improvements in different
tasks tapping the same underlying ability (i.e., WM-tasks), and lit-
tle to no improvements in untrained but still proximal cognitive
tasks tapping distinct but closely related abilities (e.g., fluid intelli-
gence; Aksayli et al., 2019; Melby-Lervåg et al., 2016; Nguyen et
al., 2019; Sala, Aksayli, Tatlidil, Gondo, et al., 2019; Sala,
Aksayli, Tatlidil, Tatsumi, et al., 2019; Teixeira-Santos et al.,
2019; see Table 1). The small transfer effects to cognitive abilities
reported in some meta-analyses (e.g., Au et al., 2015; Karbach &
Verhaeghen, 2014) have been attributed to different levels of moti-
vation in experimental designs with passive control groups, inad-
equate control for baseline differences between experimental
groups, or the selection and coding of studies (e.g., Melby-Lervåg
et al., 2016; see Shipstead et al., 2010, 2012, for a general discus-
sion of prevalent shortcomings in WM training studies). Studies
that do report transfer from single task WM training to a single far
transfer task (e.g., matrices; Jaeggi et al., 2008) should be inter-
preted with caution and skepticism. Although it is possible that
training effects occurred at the latent ability level, it is more plau-
sible and parsimonious to attribute the observed effects to one or
more alternative explanations (such as shared task characteristics
between trained and targeted tasks) rather than a true and persist-
ing change in underlying abilities.
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The gradual decrease of training effects with increasing dissimi-
larity between trained and transfer tasks indicates that interven-
tions do not seem to affect fundamental cognitive processes and
functions that WM and other cognitive tasks share. Instead, task-
specific skills and strategies are improved, which is in line with
the distinction of “elements of skill” or “behavioral flexibility”
versus “abilities” (Lövdén et al., 2010; Thorndike, 1906). Put sim-
ply, participants get better at specific WM tasks, but this has no
impact on their general cognitive functioning whatsoever.

These results are sobering but there is reason to believe that
they can be considered inconclusive. Theoretical and methodologi-
cal critique has been put forward that most WM training studies
suffer from a number of shortcomings that hinder them from pro-
ducing substantial transfer effects and from subsequently detecting
or for testing them, should they occur (Noack et al., 2014; Schmie-
dek et al., 2019; Shipstead et al., 2012). In the following, we
review the ones we deem the most essential at the current point in
research, which are dosage of intervention, multivariate assess-
ment of constructs, and latent variable analysis.

Requirements for WMTraining Studies

To cause profound and lasting changes, a cognitive intervention
must be sufficiently long and intense (Lövdén et al., 2010; Ship-
stead et al., 2012). Day in and day out, we rely on and practice our
WM and our fluid intelligence. Our societies devote enormous
resources to practicing and rewarding cognitive achievements.
Given the ubiquitous importance of both constructs in everyday
life, it is unrealistic to expect substantial changes therein after a
short and low-dosage intervention. Training dosage has been
investigated in primary studies and meta-analyses as a potential
moderator of the training outcome and has received mixed results
(Jaeggi et al., 2008; Redick et al., 2013; Sala, Aksayli, Tatlidil,
Gondo, et al., 2019; Teixeira-Santos et al., 2019). However, in
their review of WM training studies Noack et al. (2014) reported a
median training duration of only 8 hr which conforms with our
review of training dosages reported in meta-analyses of the last
five years (see Table 1). Training durations go as low as a single
hour of intervention and rarely exceed 20 hours. We therefore
argue that most training studies are not even close to providing a
sufficient dosage to elicit substantial and lasting changes in a cog-
nitive system that is and has already been under constant strain for
years (e.g., students) or decades (e.g., older people).

WM and transfer constructs are latent ability constructs and
should be measured as such. A single task, as implemented in
many studies, cannot be equated with its underlying ability. WM
cannot directly be measured but must be inferred from perform-
ance on tasks that allegedly measure WM in different kinds and
extents. Conceptually, single measurements always contain true
variance related to the ability of interest, task-specific variance,
and measurement error. For example, Soveri et al. (2017) showed
that large parts of observed n-back training effects are task spe-
cific, that is, they only transfer to other n-back tasks but barely to
other WM tasks or intelligence. In turn, if training and transfer
task share specific task characteristics, transfer effects are overesti-
mated. To overcome task-specificity and obtain a valid measure-
ment of the latent construct of WM it is thus necessary to
administer multiple validated tasks, which in turn should vary in
content and paradigm, and use structural equation modeling toT
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decompose the different sources of variance (Bollen, 1989). If a
number of WM tasks that vary in content and paradigm are used,
latent variables allow to abstract away from specificities of tasks,
and training induced change can be studied at the level of latent
factors (Könen & Karbach, 2021; McArdle & Nesselroade, 1994).
Modeling latent variables instead of manifest tasks further allows
to test for measurement invariance, which addresses the question
if the meaning of the latent factors stayed the same before and af-
ter the intervention. Measurement invariance is implicitly assumed
when analyzing composite scores, but it is rarely tested in the
training literature. Testing measurement invariance is important as
training might alter not only the means of indicators and latent fac-
tors but also the measurement properties of targeted tasks. A lack
of invariance can lead to misleading interpretations of the
observed change (Noack et al., 2014).
Opting for a latent variable approach further comes with the

advantage that one can evaluate transfer effects on hierarchical
levels of consensual models of cognitive abilities (e.g., Carroll,
1993) instead of arbitrary categories of near and far distance
between specific tasks (Noack et al., 2009). Rather than defining
the transfer distance based on superficial task characteristics that
might be difficult to generalize and agree on, the nature of transfer
can be described by the level of the hierarchy at which it occurs.
Transfer that occurs at the level of observed variables is likely
task-specific, but transfer occurring at higher levels in the hierar-
chy is increasingly likely to indicate veritable change in abilities.
Several other points concerning the design and analysis of cog-

nitive training studies have been put forward to strengthen the va-
lidity of observed effects, such as the implementation of active
control groups (Au et al., 2020; Shipstead et al., 2010), tests for
the specificity of transfer effects (Noack et al., 2014), or the for-
mulation of a priori hypotheses about the size of transfer effects
(McArdle & Prindle, 2008). Given the current status of WM train-
ing research, where strong evidence for far transfer at the level of
latent abilities is scarce (see Schmiedek et al., 2010 for an excep-
tion), we argue that the training dosage (i.e., high), the measure-
ment (i.e., multivariate) and the method of analysis (i.e., latent) are
the pivotal features to produce and detect the intended training
effects.

The Present Research

Following the above line of reasoning, we use latent variable
modeling to investigate whether two years of biweekly WM train-
ing leads to reliable positive effects on WM and cognitive abilities.
In a large sample of students, we implement a pretest–posttest con-
trol group design with a diverse set of training and transfer tasks
and ample opportunity for training. Thus, the current study sur-
passes the broad majority of WM training studies with respect to
sample size, training dosage, breadth of measurement, and statisti-
cal analysis (Noack et al., 2014).
In line with established results, we expect medium to large per-

formance gains on trained WM tasks in the training group. These
gains will be larger than gains in the untrained control group. We
expect all WM tasks to load on a common latent WM factor.
Building on the expected manifest training effects, we test for a
significant gain of nontrivial magnitude in a latent WM factor in
the training group that are higher than the gains in the control
group.

Concerning transfer effects to intelligence, we test for signifi-
cant gains of nontrivial magnitude that are expected to be smaller
both at the manifest and latent ability level. Consistent with theo-
ries on the relation of WMC and fluid intelligence (Oberauer et al.,
2008), as well as investment theories of cognitive abilities (Cattell,
1987), we expect larger transfer effects of WM training to fluid
intelligence than to crystallized intelligence.

Method

The training study was conducted as part of a large multivariate
longitudinal study on the development of student achievement.
The present data have partly been used in a number of earlier
articles to investigate different research questions. Hülür, Wil-
helm, and Robitzsch (2011) investigated the longitudinal relation
between student achievement and school grades. Hülür, Wilhelm,
and Schipolowski (2011) investigated overclaiming in the nomo-
logical net of cognitive abilities using data of the fluid and crystal-
lized intelligence tests. Gasimova, Robitzsch, Wilhelm, Boker, et
al. (2014) investigated fluctuations in memory updating using dy-
namical systems analysis. Gasimova, Robitzsch, Wilhelm, and
Hülür (2014) presented an overview of methods for modeling
interindividual and intraindividual variability in longitudinal data
based on data of the memory updating task. Hülür et al. (2017)
reported longitudinal trajectories of German language and mathe-
matics achievement. Finally, Hülür et al. (2018) investigated the
role of intellectual engagement in the change of fluid intelligence,
crystallized intelligence, and student achievement.

Participants

One hundred ninety-six students were recruited for the training
group, and 137 students were recruited for the control group.
Given the extent and duration of the intervention, a random alloca-
tion of participants to experimental groups was not feasible. As is
to be expected in intensive longitudinal studies, a number of par-
ticipants dropped out along the study period and attrition was
related to experimental group membership (experimental vs. con-
trol) and sociodemographic variables. The final analysis sample
consisted of N = 112 participants from the training group (57.1%
of the pretest sample) and N = 113 participants in the control group
for whom complete pre- and posttest data was available (82.5% of
the pretest sample). Participants in the training group completed
M = 39.2 (SD = 1.05) of 40 training sessions. All participants gave
informed consent prior to inclusion in the study.

Undergraduate and graduate students conducted the testing/
training sessions and ensured that participants felt comfortable at
all times and made them feel that they were making an important
contribution to research through their participation. Participants in
the training group received 420e (distributed over time), partici-
pants in the control group received 50e.

The mean age of the training group was 14.7 years (SD = .72)
and 72 students (64%) were female. Students attended different
German school tracks, with 76 students (68%) coming from Gym-

nasium (usually preparing for university), 23 students (21%) from
Realschule (usually preparing for vocational education), and 13
students (12%) from Gesamtschule (comprehensive school). The
no-training control group was investigated to differentiate training
effects from test-retest effects and effects of normal cognitive
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development across the 2-year span. It only participated in the pre-
and posttest. The mean age was 14.2 (SD = .71) and 65 students
(58%) were female. Ninety-two students (81%) attended Gymna-

sium and 21 students (19%) attended Gesamtschule.

Procedure

Students in the training group participated in testing sessions
once every 2 weeks over a period of 2 school years to engage with
the tasks on a regular basis without imposing too much temporal
constraints on them. Importantly, we chose to implement such a
long and regular training period to provide enough time for effects
to unfold and to provide enough dosage to allow transfer of WM
training to cognitive ability. At each measurement time point, a
group of up to 12 students completed two measurements of WM
comprising three parallel tests each (Alpha Span, Memory Updat-
ing, N-Back), achievement tests in German and in mathematics, a
questionnaire on school related behavior and varying personality
questionnaires (see https://osf.io/2mpwx/ for a complete list of
measures). Parallel versions of the WM tasks were generated
based on task parameters and randomly assigned to measurement
time points. The order of WM tasks, as well as the order of trials,
was fixed within time points and subjects. Each task lasted approx-
imately 10 minutes, resulting in a total of 1 hour of training per
measurement time point or 40 hr of training over the course of the
entire training phase. Thus, the training dosage surpassed the vast
majority of WM training studies considered in Table 1.
The pre- and posttest were conducted in two separate sessions

each and comprised a sociodemographic questionnaire, measures
of fluid and crystallized intelligence, three parallel test versions of
the WM tasks used in the training phase, and achievement tests in
German and mathematics. Two parallel versions of each measure
in the pre- and posttest were constructed. Participants were ran-
domly assigned to one version in the pretest and worked on the
other version in the posttest. Participants in the control group did
not undergo any testing between the pretest and the posttest. In the
following, we describe the tasks investigated in the current study.

Working Memory Tasks

The WM tasks were similar to those employed in the COGITO
study (Schmiedek et al., 2010). In all tasks, items were presented
in ascending difficulty and in each training session, each subject
was presented with items of all difficulty levels. Although adaptive
task difficulty is often considered a superior approach in WM
training, the empirical evidence for this claim is questionable (e.g.,
Karbach & Verhaeghen, 2014; Weicker et al., 2016). Instead, ex-
perimental studies suggest that different training procedures (e.g.,
adaptive, self-selected, random) are equally effective as long as
subjects are exposed to varying levels of task difficulty (von Bas-
tian & Eschen, 2016).

Alpha Span

In the Alpha Span task, participants were presented with a series
of single letters on a screen for a short period of time. Each letter
was presented together with a number. For each letter, participants
had to determine at which position of the alphabetical sequence of
already presented letters it stood. They should then decide whether
or not this position matched the number presented with the letter.

Each measurement consisted of eight alpha span items with eight
letters (trials) each. Presentation times for the letters were 2,000
ms in half of the trials and 1,500 ms for the other half. The intersti-
mulus interval was always 500 ms.

Memory Updating

In the memory updating task, participants saw two lines of X
horizontally arranged squares. First, positive single-digit num-
bers ranging from 1–9 were presented in the above squares.
Next, a succession of Z arithmetic operations was presented in
horizontally arranged squares below. These operations, either an
addition or a subtraction, had to be applied to the numbers of the
squares above. The result always remained in the range between
1 and 9. After the operations, a retrieval request was presented in
the squares and participants had to enter the final numbers for
each square. Each measurement consisted of 8 items. Two items
consisted of three numbers and six operations (six trials), four
items consisted of four numbers and eight operations (16 trials),
and two items consisted of five numbers and 10 operations (10
trials). The initial presentation time for the numbers was 4,000
ms, followed by an interstimulus interval of 500 ms. Afterward,
the presentation time for the arithmetic operators was 2,000 ms
for one half of the trials and 1,500 ms for the other half of the tri-
als. Participants had no time limit to enter the results.

N-Back

In the spatial N-Back task, participants were presented with a
grid of 4 3 4 cells. A stimulus was successively presented at dif-
ferent positions and participants had to decide whether the current
position i is identical to the position of the stimulus i � n. Each
measurement consisted of six items: Two items with 38 2-back tri-
als, four items with 39 3-back trials, and one item with 40 4-back
trials. The presentation time of the stimulus was 500 ms, and the
interstimulus interval 1,000 ms in one half of the trials and 1,500
ms in the other half of the trials.

Transfer Tasks

Fluid and crystallized intelligence were measured with the Ber-
lin test of Fluid and Crystallized Intelligence (BEFKI; Wilhelm et
al., 2014). Fluid intelligence was measured with three subtests of
verbal (relational reasoning), numerical (algebra word problems)
and figural-spatial (figural sequences) content with 16 items each.
Crystallized intelligence was measured with a declarative knowl-
edge test comprising 64 items from the content domains of sci-
ence, humanities and social sciences. Students were randomly
assigned to one of two parallel versions of both tests at pre- and
posttest to avoid retest effects. Parallel test versions were equated
in difficulty using a linear equating procedure (Kolen & Brennan,
1995).

Statistical Analysis

Total scores were computed as percent correct score for all
tasks. Total scores below guessing probability were set to missing
in the intelligence tasks (1.9% of all cases). Effect sizes for indi-
vidual tasks were computed as the difference between mean pre-
and posttest scores divided by pretest SD. Net effect sizes were
computed by subtracting the effect size in the control group from
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the effect sizes in the training group. Mixed models testing the
interaction of time point (pre vs. post) and group (training vs. con-
trol) were used to investigate if the manifest net effects were statis-
tically significant.
Parcels were used as indicators in the latent factor models.

Latent training and transfer effects were estimated with latent
change score models (McArdle & Nesselroade, 1994; McArdle &
Prindle, 2008). Three parcels for each WM task were computed as
percent correct score of a sequential series of items. For fluid intel-
ligence, three parcels based on the subtests were computed as per-
cent correct. For crystallized intelligence, three parcels were
computed as percent correct based on the three knowledge
domains. All models were estimated with the maximum likelihood
(ML) estimator. Latent factors were identified and scaled with the
effects-coding method (Little et al., 2006). Missing data was
handled with full information maximum likelihood (FIML; Scha-
fer & Graham, 2002).
Equality constraints for strict measurement invariance across

groups (training/control) and time points (pre/post) were
imposed on model parameters to make the factor metric inter-
pretable. The tenability of these constraints was tested with step-
wise model tests (Little et al., 2007; Meredith, 1993). Following
Hu and Bentler (1999), model fit was considered good with a
comparative fit index (CFI) . .95 and root mean square error of
approximation (RMSEA) . .06. A stronger emphasis was put on
the CFI for the evaluation of model fit, as the RMSEA has been
shown to be too conservative in models with few degrees of free-
dom, such as in the change models estimated in this study
(Kenny et al., 2015). Deterioration in model fit caused by invari-
ance constraints were investigated via differences in CFI. A
DCFI . .01 was considered a substantial deterioration in fit
(Cheung & Rensvold, 2002).

All statistical analyses were performed in R 4.0 (R Core
Team, 2020). Latent models were estimated using the package
lavaan (Version .6-6; Rosseel, 2012), and mixed models were
estimated using the package rstatix (Version .6.0; Kassambara,
2020). We provide annotated syntax for the main analyses in a
repository of the Open Science Framework: https://osf.io/
x8znf/.

Results

Descriptive statistics of pre- and posttest performance across all
tasks are reported in Table 2 (see Appendix A for descriptive sta-
tistics of the performance in WM task across training sessions). A
comprehensive correlation matrix is provided in Appendix B.

Working Memory Capacity

Task-Wise Analysis

A substantial manifest net training effect of d = .83 (p , .01)
was observed for the Alpha Span task. To investigate the training
effect at the latent level, we estimated a LCSM with three indica-
tors per time point and constraints for strict measurement invari-
ance across time points and groups (see Appendix C and D for
tests of measurement invariance). A comprehensive output of all
estimated models and results is provided in the online supplement.
The LCSM for the Alpha Span task had an acceptable fit with
v2(37) = 55.1, p = .03; CFI = .95; RMSEA = .07. Because the
effects-coding method was used for scaling, the latent means and
variances can be interpreted on the observed metric of the indica-
tors. The control group improved by .03, whereas the training
group improved by .13, resulting in a latent training effect of d =
1.07. A comparison of the estimated model with a model where

Table 2

Descriptive Statistics of the Working Memory, Fluid Intelligence and Crystallized Intelligence Subtests by Experimental Group and

Time Point, as Well as Effect Sizes Within Time Points

Training Control

Task Time Point n M SD Skew Kurt. dpre/post n M SD Skew Kurt. dpre/post dtrain/control

Training
WMC Alpha Span pre 112 .47 .12 �.77 .09 113 .49 .10 �.33 .38 �.24

post 110 .60 .13 .19 �.16 1.10 113 .52 .11 �.20 .12 .26 .65
WMC Memory Updating pre 111 .25 .16 1.49 2.67 113 .27 .11 .37 �.56 �.12

post 111 .59 .23 �.09 �.88 2.07 113 .39 .15 .28 .63 1.13 1.02
WMC N-Back pre 112 .50 .17 �.45 �.51 113 .56 .13 �.51 �.14 �.36

post 111 .77 .18 �.76 �.39 1.57 113 .62 .13 �.82 .60 .46 .99
Transfer
Gf verbal pre 107 .56 .16 .28 �.68 113 .61 .14 .29 �.32 �.30

post 112 .64 .18 �.19 �.53 .50 113 .70 .15 �.54 .14 .62 �.33
Gf numerical pre 110 .53 .16 .08 �.82 111 .58 .15 .22 �.60 �.30

post 109 .61 .17 �.35 �.35 .46 112 .63 .16 �.21 �.44 .35 �.15
Gf figural pre 108 .56 .17 �.23 �.58 112 .60 .16 �.13 �.35 �.23

post 112 .62 .20 �.13 �.61 .34 112 .65 .19 �.24 �.42 .33 �.18
Gc science pre 111 .56 .15 �.14 �.77 112 .59 .14 �.17 �.41 �.21

post 112 .62 .15 �.45 �.48 .42 112 .67 .15 �.88 .56 .61 �.33
Gc humanities pre 108 .48 .13 �.05 �.56 111 .51 .14 .10 �.17 �.25

post 109 .51 .14 .15 �.56 .25 111 .59 .16 .08 �.71 .58 �.52
Gc social sciences pre 102 .48 .13 �.01 �.67 111 .53 .13 .15 �.62 �.37

post 108 .57 .16 �.36 �.68 .73 111 .60 .18 �.18 �.69 .52 �.16

Note. WMC = working memory capacity; Gf = fluid intelligence; Gc = crystallized intelligence; n = sample size; M = mean; SD = standard deviation;
Kurt. = Kurtosis; d = Cohen’s d. Unequal ns result from case-wise deletions during the data cleaning procedure reported in the methods section.
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the means of the latent change factor were constrained to equality
across groups indicated that the latent mean difference was signifi-
cant, v2(1) = 27.6, p, .01.
In the Memory Updating task we observed a manifest training

effect of d = .93 (p , .01). The LCSM that was set up just like for
Alpha Span fit the data well, with v2(37) = 35.1, p = .65; CFI =
1.00; RMSEA = .00. From pretest to posttest, participants in the
control group improved by .125 while participants in the training
group improved by .33. The resulting large latent training effect of
d = 1.80 was significant, v2(1) = 53.4, p, .01.
As for the previous tasks, a large manifest training effect was

observed for the N-Back task, with d = 1.12 (p , .01). The LCSM
that was set up just like the models for the two other WM tasks
had an acceptable fit of v2(37) = 111.8, p , .01; CFI = .96;
RMSEA = .13. At the latent level, participants in the control group
improved by .06 and participants in the training group improved
by .27. As for the previous tasks, the resulting latent training effect
of d = 1.38 was significantly different to zero, v2(1) = 78.6, p ,

.01.

Higher-Order Model

So far, manifest and latent analyses consistently indicated sub-
stantial training effects at the individual task level. However, task-
level improvements are necessary but not sufficient evidence for
improvements at the level of the common latent factor underlying
the performance in all tasks. We therefore fitted a higher-order
model of WMC to decompose task-specific variance and com-
mon-factor variance. Thereto, we estimated a LCSM where the
previously reported task-level models were integrated under a
common WMC factor, as illustrated in Figure 1. Residual correla-
tions between first-order factors were allowed to accommodate
variance not captured by the common WMC factor.

The higher-order LCSM of WMC had a reasonable fit, with
v2(325) = 505.6, p , .01; CFI = .94; RMSEA = .07. Substantial
differences in the intercepts of the latent change factor between
the experimental groups confirmed the effects observed at the
task-level. While participants in the control group only improved
by .07 in the percent correct metric over the two-year period, par-
ticipants in the training group improved by .24, that is, about three

Figure 1

Higher-Order Latent Change Score Model for Modeling Training-Inducted Changes in the Latent WMC Factor

Note. Loadings, intercepts, and residual variances are constrained to equality across time points and groups. Parameters omitted
for clarity are available in the online supplement (OS1). Estimates of the control group are reported first. Standardized estimates
are reported in parentheses. a = not significant. [0] = Pretest, [1] = Posttest, AS = Alpha Span, MU = Memory Updating, NB = N-
Back, WMC = working memory capacity. rAS[0], AS[1] = .00/�.00 (.45/�.06), rMU[0], MU[1] = .00/.00 (.16/.19), rNB[0], NB[1] = .01/
.00 (.46/.05).
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times more. This resulted in a large net latent training effect of d =
2.37, which was significant, v2(1) = 97.9, p , .01. However, inter-
cept differences from pre- to posttest in both groups (see Appendix
C) indicate that the observed change in the mean structure cannot
solely be attributed to changes in the latent WMC factor but might
be attributed to task specific improvements that are not mirrored
by improvements in the latent factor. Further, the standardized
auto-regressive path between the pretest and posttest factor of
WMC was lower in the training group (b = .61) then in the control
group (b = 1.291), indicating larger changes in the rank order of
participants following training. Larger changes in the training
group are plausible to assume as not all participants benefit from
the training equally.

Cognitive Abilities

Fluid Intelligence

The manifest training effects on individual fluid intelligence
tasks were d = �.12 (p = .83; verbal), d = .11 (p = .38; numerical),
and d = .00 (p = .83; figural). A LCSM of fluid intelligence fit the
data well, v2(31) = 30.9, p = .47; CFI = 1.00; RMSEA = .00 (Fig-
ure 2A) and confirmed the lack of transfer effects at the latent
level. The latent training effect was d = .08 and not significantly
different from zero, v2(1) = .40, p = .52. Bivariate LCSMs, where
change models of WMC and Gf are estimated simultaneously,
allow to directly test the covariance between latent change factors.
Given the lack of significant variance in the latent change factors
of gf, and the absence of mean effects between both groups, such
computations would be futile. Inspection of the latent change fac-
tor means of gf puts the observed effect into perspective: with an
improvement of .073 in the percent correct metric, the training
group was 8% (or one eighth of an item per subtest) better than the
control group which improved by .065. Therefore, no generaliza-
tion of training effects to fluid intelligence were present.

Crystallized Intelligence

For crystallized intelligence tasks, manifest net training effects
were d = �.18 (p = .31; Science), d = �.33 (p = .01; Humanities),
and d = .21 (p = .14; Social Sciences), respectively. Whereas the
larger improvement in the domain of humanities for the control
group was significant at the task level, no significant training effect
was observed at the latent level. The LCSM of crystallized intelli-
gence fit the data reasonably, v2(31) = 61.8, p = .01; CFI = .95;
RMSEA = .09 (Figure 2B) and indicated a latent training effect of
d = �.10, which was not significant, v2(1) = .76, p = .38.

Discussion

The purpose of this study was to contribute to the ongoing
debate on the validity of WM training by examining whether WM
training leads to improvements in latent factors of WM and cogni-
tive ability. The training group underwent two years of training,
with the goal to induce lasting changes in the cognitive system. A
multivariate measurement of both WM and transfer tasks ensured
that the abilities of interest were measured in adequate breadth and
allowed to investigate if training effects generalized to latent
abilities.

Training Effects onWorking Memory Capacity and

Transfer to Intelligence

Substantial and reliable training effects on all three practiced
WM tasks ensured that a basic presupposition of training interven-
tions was met: Performance on practiced tasks improved and the
training group significantly outperformed the control group at
posttest. An overarching latent change score model of WM con-
firmed that improvements were not restricted to individual tasks
but were present at the level of a common latent WM factor and
the magnitude of the net latent training effect was very large.
Importantly, the presence of training effects at the latent level indi-
cates a substantial degree of general improvement across the prac-
ticed tasks, that is, improvements in task-specific strategies and
familiarity with the testing materials cannot fully account for the
observed improvements. To our knowledge, a training effect at the
factor level has only been reported once (Schmiedek et al., 2010).

The observed improvements at the task level were in line with
meta-analytical effect sizes (e.g., Melby-Lervåg et al., 2016; see
also Table 1) and comparable with the ones reported in a similarly
powered study by Schmiedek et al. (2010). This suggests that our
results are credible, but it also reveals that the length and dosage
of the current intervention did not result in substantially larger
training effects than are reported elsewhere. To the contrary, some
short low-dosage interventions have been reported where net train-
ing effects exceeded g = 3 (e.g., see Figure 2 in Weicker et al.,
2016). Although such effects are theoretically possible, we would
caution to interpret effect sizes that are so far of the ordinary in the
educational sciences (e.g., Hülür, Wilhelm, & Robitzsch, 2011)
without convincing evidence for the measurement invariance of
the pre- and postintervention measurement.

Despite the striking improvements in WM, we did not observe
transfer to intelligence. Participants did improve in fluid and crys-
tallized intelligence over the two-year period of this study, as is
expected at this age and given some effect of familiarization with
the testing material, but the group that underwent WM training did
not improve more than the control group. Thus, the training-
induced improvements in WM were not accompanied by signifi-
cant improvements in either of two prominent factors of
intelligence.

Can Transfer Effects Be Expected?

In the current study, we implemented a substantial training dos-
age to increase the probability of an overarching change in WM
(Lövdén et al., 2010) and fluid intelligence as a closely related
ability that is deemed a key ingredient of human cognitive abilities
(Carroll, 1993). We chose a substantial dosage of WM training
because both WM and fluid intelligence are essential in real life
cognitive functioning and under constant strain throughout our
lives. To provide reliable estimates for the training effect at the
latent ability level, we investigated the performance of compara-
tively large experimental groups (Bogg & Lasecki, 2014) on broad

1
Obviously, standardized regression coefficients greater than 1 are not

plausible. We attribute this estimation problem to the constraints imposed
on the autoregression and the very high pre-post correlation. In a simple,
jointly estimated, correlated factor model the latter was q = .83 in the
control group and q = .69 in the training group.
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measurements of the investigated constructs with adequate statisti-
cal models (Noack et al., 2014). Thus, this setup addressed com-
mon theoretical and methodological shortcomings observed in the
training literature. In sum, however, this approach did not lead to
the effects proposed in parts of the training literature. To the con-
trary, our findings showed reliable evidence for the lack of transfer
from WM training to intelligence, if substantial but experimentally
still feasible interventions are implemented.
The lack of transfer is far from surprising and clearly in line

with results from several meta-analyses. Transfer effects are often
small or nil and question the utility of WM training for improving
intelligence (e.g., Melby-Lervåg & Hulme, 2013, Melby-Lervåg et
al., 2016; Sala, Aksayli, Tatlidil, Tatsumi, et al., 2019). Meta-anal-
yses that did report small significant transfer effects (e.g., Au et
al., 2015; Karbach & Verhaeghen, 2014) have been criticized on a
methodological basis and reanalyses have shown that significant
transfer effects of WM training to intelligence are biased by study
selection, type of control group, and methodological flaws
(Melby-Lervåg et al., 2016; see also Table 1). On an individual-
study level, several attempts to replicate seminal studies reporting
far transfer have repeatedly failed (Chooi & Thompson, 2012;
Redick et al., 2013; and see Redick, 2015, for a discussion of
issues in studies which supposedly found that WM training
improves cognitive abilities). In addition, transfer effects are only
a necessary, not sufficient, condition for inferring broad improve-
ments in the trained ability. Even if transfer were found, further
challenges for training effects would target the scope (i.e., process
specificity of improvements) and persistence (i.e., presence of
effects at catamnestic time points).
We therefore concur with Redick et al. (2013) observation that

“WM transfer effects to intelligence are actually not commonly
observed” (p. 373). Establishing transfer to intelligence would be
an important milestone in training research. Arguably, however,

the ultimate goal of all WM training efforts is to induce changes
that have a meaningful and measurable influence on real-life out-
comes, for example, educational achievement or job success.
Thus, if transfer to intelligence is ever established, the question
still remains how much change is needed to achieve meaningful
changes in these variables.

Improvement in WMCWithout Improvement in Gf

Given the meta-analytical evidence on the strong correlation
of WMC and fluid intelligence (Oberauer et al., 2005), as well as
theories stressing the causal relationship between WMC and
fluid intelligence (Oberauer et al., 2008), the lack of transfer to
fluid intelligence given the substantial latent training effect on
WMC is surprising. In our sample, WMC and gf were highly
correlated in both the control and training group at both pre- and
posttest. Although the correlations were substantial, they were
not perfect and training apparently has led to changes in task per-
formance that cannot be attributed to improvements in cognitive
processes shared by WM and fluid intelligence. Longitudinal
invariance tests indicated that the meaning of the WMC factor
itself did not change through the intervention (as indicated by
invariant factor loadings). Differences in intercepts between the
pre- and posttest, however, showed that parts of the observed
changes in the tasks could not be explained with changes in the
latent factor alone but led to a combination of factor-level and
task-level improvements.

Von Bastian and Oberauer (2014) described two general mecha-
nisms, from which improvements in performance following WM
training can result: improved WM capacity and improved WM ef-
ficiency. Improvements in capacity are arguably the aim of all
WM trainings—individuals with higher capacity can, for instance,
hold more chunks of information simultaneously in WM, which

Figure 2

Latent Change Score Models for Modeling Training-Inducted Changes in the Latent Factors of Fluid (A) and Crystallized (B)

Intelligence Factors

Note. Loadings, intercepts, and residual variances are constrained to equality across time points and groups. Variable intercepts, residual variances,
and covariances between repeated measurements are omitted for clarity. Estimates of the control group are reported first. Standardized estimates are
reported in parentheses. a = not significant. [0] = Pretest, [1] = Posttest, Gf = Fluid intelligence, Ver = Verbal, Num = Numerical, Fig = Figural, Gc =
crystallized intelligence, Sci = science, Hum = humanities, Soc = social sciences.
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benefits performance in a broad variety of cognitive tasks. It is the-
orized that change in capacity results from a prolonged mismatch
between the available and necessary requirements of the cognitive
system which leads to changes of neural structures (Lövdén et al.,
2010). As a result, cognitive abilities relying on the same neural
structures (e.g., fluid intelligence) should exhibit performance
increases, too.
Improvements in WM efficiency, in turn, relate to a better use

of the available (unaltered) WM capacity and can result from the
acquisition of task-specific skills and strategies. Contrary to
improvements in WM capacity, improvements in WM efficiency
are generally expected to remain specific to comparable materials
or tasks. Given the lack of transfer to fluid intelligence, it is more
parsimonious to interpret the current results as improvements in
WM efficiency rather than capacity. Interestingly, however, the
improvements in the distinct WM tasks that represent substantially
different paradigms to the measurement of WM (Wilhelm et al.,
2013) were sufficiently correlated to manifest at the level of the
common latent WM factor. Just like status, change was therefore
correlated across different paradigms. The improvement at the
latent factor level might therefore reflect improvements in specific
processes which benefit performance in more than one task. As
was illustrated repeatedly in the literature (Schmiedek et al., 2009;
Wilhelm et al., 2013), tasks of very different paradigms can be
equally good indicators of WM as long as they share the cognitive
mechanisms of building, maintaining and updating bindings. This
correlated change is a necessary, yet given our results obviously
not sufficient, condition for transfer effects of WM training to fluid
other constructs. Future studies will have to investigate the nature
of these correlated improvements more thoroughly to rule out al-
ternative explanations. For example, correlated change might also
appear from the causally independent co-occurrence of improve-
ments in independent skills and strategies.

Future Directions

Clearly, having participants do tests repeatedly is only one—
although prevalent—form of cognitive intervention. Evidently, it
did not deliver the transfer effects still suggested in many publica-
tions. Even if one was to take the optimistic position that WM
training can produce meaningful transfer effects, one would need
to acknowledge that they are small, that they vary interindividu-
ally, that they can only be identified reliably with latent variable
modeling and that they must persist after training to be meaning-
ful. From a purely statistical perspective, none of these points can
be addressed without substantial sample sizes, comprehensive
multivariate measurements, and seriously longitudinal designs
over long time frames. Because small individual studies have pro-
duced inconsistent and underpowered results in the past years, one
way forward might be to join forces in joint research collabora-
tions (e.g., The Psychological Science Accelerator; Moshontz et
al., 2018). A major task will be to identify determinants of cogni-
tive malleability as, right now, meta-analytical effect sizes not
only center around zero but the amount of true heterogeneity
between studies is small or null (e.g., Sala & Gobet, 2020).
On the other hand, nobody does WM training solely to improve

scores on a working memory test, but for the potential implications
increases in intelligence have on real-life outcomes. If WM train-
ing in its current form does not provide generalizable evidence for

beneficial effects on such outcomes, individuals might be better of
investing their time and energy to influence these outcomes
directly (e.g., through the choice of environments which fit their
abilities or interests). This is an important aspect to consider as
even free, well-intentioned cognitive trainings come at an opportu-
nity cost if they lack proof of effectiveness; even more so if we
acknowledge that we need to get away from the idea that we can
achieve meaningful and lasting effects with brief interventions.
From this perspective, any intervention that affects the outcome of
interest somehow competes with WM training. We would also
like to stress a point that seems to be neglected in the WM litera-
ture. Given WM is a critical resource for all mental activities that
reflect cognitive effort and given that we all use our WM intensely
everyday throughout our lives, is it really reasonable that even
high dosage studies such as the present intervention will cause a
lasting change in WM (presupposing WM can in principle be
trained)? We argue that the present results cast more doubt on this
perspective. Still, the sheer number of variables which are posi-
tively correlated with WM or intelligence will always make cogni-
tive interventions targeting these constructs attractive and worth
pursuing.

If WM training in its current form delivers disappointing results,
are there other interventions that do the trick of improving intellec-
tual abilities? Basically, all other brief cognitive interventions
have been criticized and called into question on similar grounds
than WM training (see Moreau, 2021, for a discussion). Education,
on the other hand, has been described as the “most consistent, ro-
bust, and durable method . . . for raising intelligence” (Ritchie &
Tucker-Drob, 2018, p. 1358). In many ways, education fulfills
requirements that have been raised for cognitive interventions,
way beyond anything that can realistically be achieved in conven-
tional intervention studies: A dosage of several hours per day over
the period of many years (at least in most industrialized countries)
coupled with heterogeneous “tasks” in the form of different sub-
jects. For normally developing children, it might therefore be
more instrumental to focus on early assistance and continued tutor-
ing to ensure they can fully benefit from the school environment,
than to conduct specific cognitive interventions with questionable
utility.

Limitations

Some limitations of the current study need to be acknowledged.
For temporal and financial reasons, our study did not include a ran-
dom allocation of participants to experimental groups, as well as
an active control group. Although the overall pattern of results did
not indicate problems attributable to pretest differences, the lack
of blinding might have led to different levels of motivation and
thereby task performance across the experimental groups. Yet,
given the lack of group differences in the intelligence posttests
(i.e., transfer effects), we do not consider this an acute threat to the
validity of our results.

Even though the participants were well remunerated, many par-
ticipants from the training group dropped out during the study,
presumably due to the substantial time demand of the training.
Also, the average performance in and intercorrelation of the work-
ing memory tasks was comparatively low. Thus, our data comprise
problems commonly encountered in demanding longitudinal stud-
ies and low-stakes ability testing of adolescents. Still, we did not
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observe either floor or ceiling effects and psychometric properties
of all tasks were adequate. Regarding selective attrition, we argue
that this would likely inflate the probability of false-positive train-
ing effects, which we did not observe on the key outcome (i.e.,
transfer).
Although we did observe improvement in a latent factor of

WM, it is important to bear in mind that this factor was constituted
of parallel versions of the practiced tasks. Thus, this effect is better
interpreted as correlated improvement in different WM tasks. To
test for near transfer to WM, a set of distinct tasks would have
been necessary. Also, the observed difference in indicator inter-
cepts partly limits the interpretability of the mean structure of the
latent change score models. This underlines the necessity to imple-
ment latent factor analyses in future WM training studies to sub-
stantiate commonly performed mean comparisons.
Finally, although a consensus or scientific justification for what

constitutes a “typical cognitive training study” is lacking, we
acknowledge that the training regimen implemented in this study
differs from the majority of prior work in some regards, for exam-
ple, tasks were not adaptive and while the overall dosage (total
hours trained and length of the training period) was larger, the fre-
quency of training sessions (every two weeks) was lower. Given
that most cognitive interventions fail to produce an effect, we
believe that to move forward it is essential to vary such key param-
eters of the intervention in a theoretically sound manner and to
examine their effects. Our study contributes to this goal, albeit at
the price of a reduced comparability with other studies.

Conclusion

In conclusion, our study lines up with and adds to the compre-
hensive research questioning the validity of WM training as a
method to improve intelligence. In a large sample of students,
forty training sessions across 2 years on a set of heterogeneous
WM tasks led to substantial improvements both at the level of
individual tasks as well as a common latent ability factor. How-
ever, these improvements did not transfer to fluid or crystallized
intelligence. The pattern of results suggests that the observed man-
ifest improvements cannot be attributed to improvements in the
latent construct of WMC. Thus, given our results and the available
meta-analytic evidence, we do not think that WM training in its
current form allows to improve cognitive abilities. Because the
consequences of successful interventions would be far-reaching,
research into (alternative) cognitive interventions will persist.
However, we are convinced that real progress will only be made if
the comprehensive theoretical and methodological requirements
outlined in the extant literature are considered.
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Appendix A

Descriptive Statistics of the Performance in WM Task Across Training Sessions

Task

Alpha Span Memory Updating N-Back

Time point N M SD Min Max N M SD Min Max N M SD Min Max

1 111 .52 .11 .05 .71 112 .33 .16 .05 .67 112 .59 .16 .08 .93
2 107 .54 .11 .30 .75 112 .40 .17 .08 .80 109 .60 .17 .19 .95
3 100 .52 .13 .10 .76 111 .40 .19 .03 .81 100 .62 .17 .27 .96
4 90 .53 .14 .10 .77 108 .44 .18 .05 .83 90 .60 .19 .12 .98
5 105 .53 .13 .17 .80 112 .46 .20 .00 .86 105 .62 .17 .21 .97
6 109 .54 .11 .20 .75 109 .43 .20 .08 .86 109 .63 .17 .05 .97
7 105 .54 .13 .12 .77 112 .44 .21 .05 .84 105 .62 .18 .18 .97
8 105 .55 .13 .20 .79 111 .45 .21 .00 .83 107 .64 .20 .12 .98
9 112 .55 .13 .12 .78 112 .49 .21 .06 .88 112 .68 .18 .19 .97

10 110 .57 .11 .23 .85 112 .53 .19 .03 .92 110 .71 .17 .21 .98
11 109 .56 .12 .27 .81 112 .53 .19 .02 .89 108 .71 .18 .25 .99
12 108 .57 .11 .30 .80 111 .53 .19 .11 .91 111 .71 .17 .26 .98
13 110 .57 .12 .20 .88 112 .53 .21 .05 .88 112 .71 .19 .10 .97
14 110 .58 .12 .20 .81 112 .54 .21 .05 .88 112 .73 .18 .05 .99
15 111 .58 .11 .27 .83 111 .53 .21 .06 .94 111 .72 .18 .15 .99
16 108 .58 .12 .27 .90 110 .54 .20 .06 .89 109 .72 .18 .21 .98
17 110 .57 .13 .12 .84 111 .53 .20 .06 .89 109 .71 .18 .15 .98
18 110 .58 .12 .22 .83 112 .56 .19 .05 .89 112 .73 .18 .07 .98
19 111 .58 .11 .24 .84 112 .55 .20 .05 .95 112 .73 .17 .25 .97
20 112 .58 .12 .21 .84 111 .56 .20 .08 .91 112 .73 .18 .23 .99
21 111 .58 .11 .21 .80 110 .54 .20 .09 .93 111 .73 .18 .08 .98
22 111 .59 .12 .24 .84 110 .55 .21 .05 .91 112 .72 .18 .24 .99
23 111 .58 .13 .21 .84 111 .55 .21 .05 .89 110 .73 .18 .22 .98
24 109 .59 .11 .36 .83 111 .56 .21 .06 .94 110 .75 .16 .24 .99
25 112 .58 .11 .24 .81 111 .54 .21 .03 .91 112 .74 .17 .21 .98
26 110 .57 .13 .14 .91 111 .56 .21 .02 .92 111 .73 .19 .18 .98
27 109 .59 .13 .24 .84 111 .56 .22 .05 .89 109 .73 .18 .17 .97
28 104 .58 .13 .26 .86 107 .53 .21 .03 .89 107 .72 .19 .18 .98
29 112 .58 .11 .33 .82 112 .54 .22 .06 .94 112 .73 .19 .19 .98
30 110 .57 .14 .10 .84 112 .54 .23 .03 .91 110 .73 .19 .22 .98
31 111 .58 .12 .21 .88 112 .53 .22 .02 .89 112 .73 .19 .20 .98
32 110 .58 .13 .27 .92 110 .54 .21 .07 .92 109 .72 .20 .20 .99
33 111 .59 .12 .23 .82 112 .54 .23 .06 .94 110 .73 .19 .22 .98
34 112 .59 .12 .22 .84 111 .54 .22 .07 .89 111 .74 .18 .18 .98
35 111 .57 .13 .16 .90 112 .55 .23 .06 .97 112 .73 .19 .18 .98
36 111 .59 .13 .23 .89 111 .56 .24 .06 .95 111 .73 .19 .17 .99
37 110 .59 .13 .00 .94 112 .56 .23 .05 .92 112 .74 .19 .18 .98
38 111 .59 .12 .29 .84 111 .56 .22 .03 .94 111 .74 .17 .32 .99
39 108 .60 .12 .32 .90 110 .55 .24 .06 .98 111 .73 .17 .27 .98
40 110 .59 .11 .33 .93 110 .54 .25 .03 .95 111 .74 .17 .27 .99
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Appendix B

Zero-Order Correlation Matrix of Tasks Within Experimental Groups

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1. as_pre — .26** .57** .21* .25** .35** .31** .31** .23* .40** .30** .26** .23* .20* .23* .33** .20* .19*
2. mu_pre .28** — .21* .22* .40** .39** .27** .24* .15 .19* .37** .25** .10 .05 .13 .13 .23* .20*
3. nb_pre .33** .34** — .38** .42** .48** .42** .38** .40** .53** .43** .49** .41** .23* .13 .39** .31** .36**
4. as_post .36** .16 .29** — .41** .52** .33** .36** .22* .25** .31** .30** .26** .15 .10 .27** .25** .25**
5. mu_post .09 .31** .28** .03 — .59** .36** .29** .24* .40** .41** .32** .25** .12 .16 .30** .29** .25**
6. nb_post .23* .06 .47** .42** .16 — .33** .42** .31** .49** .51** .41** .31** .24* .12 .39** .26** .24*
7. gfv_pre .22* .04 .06 .26** .07 .14 — .52** .43** .57** .51** .44** .53** .37** .23* .40** .35** .40**
8. gfn_pre .35** .12 .17 .17 .04 .11 .39** — .42** .52** .63** .44** .36** .32** .25* .38** .31** .38**
9. gff_pre .25** .19* .19* .12 .25** .18 .37** .43** — .44** .42** .60** .38** .24* .32** .47** .30** .36**
10. gfv_post .25** .18 .24* .39** .21* .29** .41** .18 .36** — .50** .46** .49** .43** .31** .54** .41** .50**
11. gfn_post .46** .29** .33** .18 .26** .14 .44** .47** .39** .39** — .50** .37** .20* .36** .45** .36** .46**
12. gff_post .34** .18 .34** .30** .17 .29** .41** .48** .62** .38** .45** — .40** .27** .20* .54** .39** .34**
13. sci_pre .20* �.00 .29** .11 .01 .20* .30** .33** .26** .33** .35** .35** — .56** .49** .65** .53** .49**
14. hum_pre .32** .06 .15 .21* .07 .16 .37** .28** .31** .22* .31** .37** .52** — .40** .42** .48** .44**
15. soc_pre .31** .07 .18 .09 .05 .17 .24* .35** .20* .20* .42** .29** .63** .43** — .42** .40** .50**
16. sci_post .29** .15 .21* .25** .10 .21* .30** .28** .25** .43** .45** .32** .58** .45** .57** — .49** .57**
17. hum_post .25** .01 .11 .12 .05 .20* .28** .17 .24* .20* .29** .26** .50** .60** .62** .66** — .51**
18. soc_post .32** .06 .26** .18 �.01 .22* .26** .44** .26** .23* .50** .35** .59** .49** .66** .57** .52** —

Note. Correlations of the control group are below the diagonal, correlations of the training group are above the diagonal.
* p , .05. ** p , .01.
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Appendix C

Measurement Invariance Across Groups at Pretest

Task v2 df p CFI RMSEA

Alpha Span
Configural 0 0 1 0
Weak 2.5 2 .29 .997 .045
Strong 4.3 4 .36 .998 .027
Strict 6.8 7 .45 1 0

Memory Updating
Configural 0 0 1 0
Weak 2.0 2 .37 1 0
Strong 3.6 4 .46 1 0
Strict 7.5 7 .38 .997 .025

N-Back
Configural 0 0 1 0
Weak .08 2 .96 1 0
Strong .94 4 .92 1 0
Strict 3.6 7 .82 1 0

WMC
Configural 65.6 48 .05 .985 .057
Weak 77.0 56 .03 .982 .058
Strong 84.4 64 .04 .983 .053
Strict 111.0 76 .01 .971 .064

Gf
Configural 0 0 1 0
Weak 1.4 2 .49 1 0
Strong 1.6 4 .81 1 0
Strict 1.7 7 .98 1 0

Gc
Configural 0 0 1 0
Weak 1.7 2 .42 1 0
Strong 6.0 4 .20 .988 .066
Strict 9.6 7 .21 .984 .057

Note. df = degrees of freedom; CFI = comparative fit index; RMSEA = root mean square error of approximation. Bolded values indicate a deterioration
of CFI . .01 compared with the previous model.
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Appendix D

Longitudinal Measurement Invariance

Control Training

Task v2 df p CFI RMSEA v2 df p CFI RMSEA

Alpha Span
Configural 14.3 8 .07 .952 .084 12.1 8 .14 .980 .075
Weak 16.7 10 .08 .950 .077 16.7 10 .08 .967 .085
Strong 19.1 12 .09 .946 .072 25.4 12 .01 .941 .104
Strict 20.1 15 .17 .961 .055 28.7 15 .02 .939 .095

Memory Updating
Configural 8.2 8 .42 .999 .013 4.1 8 .85 1 0
Weak 10.3 10 .41 .997 .017 4.7 10 .91 1 0
Strong 18.4 12 .10 .948 .069 5.4 12 .95 1 0
Strict 19.9 15 .18 .960 .054 7.5 15 .94 1 0

N-Back
Configural 9.7 8 .29 .998 .043 19.0 8 .01 .990 .111
Weak 11.1 10 .35 .998 .032 19.7 10 .03 .991 .093
Strong 18.0 12 .12 .992 .067 33.4 12 .00 .980 .126
Strict 21.9 15 .11 .990 .064 76.1 15 .00 .944 .191

WMC
Configural 156 125 .03 .970 .047 160 125 .02 .981 .050
Weak 165 133 .03 .970 .046 181 133 .00 .974 .057
Strong 198 141 .00 .945 .060 218 141 .00 .959 .070
Strict 219 153 .00 .936 .062 273 153 .00 .936 .084

Gf
Configural 9.3 5 .10 .977 .088 1.5 5 .91 1 0
Weak 11.8 7 .11 .974 .078 2.4 7 .94 1 0
Strong 18.1 9 .03 .951 .094 3.2 9 .95 1 0
Strict 20.5 12 .06 .955 .079 6.6 12 .88 1 0

Gc
Configural 20.5 5 .00 .954 .166 2.4 5 .80 1 0
Weak 23.2 7 .00 .952 .143 8.8 7 .27 .993 .048
Strong 24.5 9 .00 .954 .124 18.4 9 .03 .961 .096
Strict 33.5 12 .00 .936 .126 20.1 12 .06 .966 .078

Note. df = degrees of freedom; CFI = comparative fit index; RMSEA = root mean square error of approximation. Bolded values indicate a deterioration
of CFI . .01 compared with the previous model.
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