
How Low Can You Go? Detecting Style in Extremely Low
Resolution Images

Rachel A. Searston
The University of Adelaide

Matthew B. Thompson
Murdoch University

John R. Vokey
University of Lethbridge

Luke A. French and Jason M. Tangen
The University of Queensland

Humans can see through the complexity of scenes, faces, and objects by quickly extracting their

redundant low-spatial and low-dimensional global properties, or their style. It remains unclear, however,

whether semantic coding is necessary, or whether visual stylistic information is sufficient, for people to

recognize and discriminate complex images and categories. In two experiments, we systematically reduce

the resolution of hundreds of unique paintings, birds, and faces, and test people’s ability to discriminate

and recognize them. We show that the stylistic information retained at extremely low image resolutions

is sufficient for visual recognition of images and visual discrimination of categories. Averaging over the

3 domains, people were able to reliably recognize images reduced down to a single pixel, with large

differences from chance discriminability across 8 different image resolutions. People were also able to

discriminate categories substantially above chance with an image resolution as low as 2 � 2 pixels. We

situate our findings in the context of contemporary computational accounts of visual recognition and

contend that explicit encoding of the local features in the image, or knowledge of the semantic category,

is not necessary for recognizing and distinguishing complex visual stimuli.

Public Significance Statement

Accurate recognition and discrimination of complex visual stimuli is critical to human decision

making in medicine, forensic science, aviation, security, and defense. This study highlights the

sufficiency of redundant low-spatial and low-dimensional information for visual recognition and

visual discrimination of 3 large-scale natural image sets.
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For me, music and life are all about style.

—Miles Davis

Humans have a remarkable ability to pick up on redundant

visual stylistic information in impoverished images and under

noisy conditions. Radiologists, for example, can detect abnormal

mammograms when given a half-second glimpse (Evans,

Georgian-Smith, Tambouret, Birdwell, & Wolfe, 2013; Evans,

Haygood, Cooper, Culpan, & Wolfe, 2016). Fingerprint experts

can identify prints that belong to the same finger at a glance and

filtered with artificial noise (Thompson & Tangen, 2014). They

can even detect pairs of prints left by different fingers of the same

person (Searston & Tangen, 2017c) and can search an array of

fingerprints for a target more rapidly and accurately than a novice

(Searston & Tangen, 2017a, 2017b). Looking to more conven-

tional perceptual domains, earlier demonstrations in face recogni-

tion revealed that “coarse quantized” or reduced resolution ver-

sions of a familiar face image (e.g., the Mona Lisa) remained

recognizable at just 16 � 16 pixels (Harmon & Julesz, 1973;

Morrone, Burr, & Ross, 1983). Torralba (2009) revived this res-

olution reduction approach and showed that people can identify the

semantic category in a variety of indoor (e.g., kitchen, office) and

outdoor (e.g., forest, beach) scenes with 81.8% accuracy when

each of the images were 32 � 32 color pixels. This same resolution

seems to be sufficient for a similar level of image recognition

performance (Wolfe & Kuzmova, 2011). We extend on this body

of empirical work here to explore how we accomplish these

perceptual feats with so little information at hand.

Prior work that has pushed the limits of human visual recogni-

tion with natural images seems to suggest that global properties are

sufficient for classification and recognition. Indeed, contemporary

computational accounts of visual recognition consistently empha-

size the importance of the ensemble, the gist, and the spatial

envelope for interpreting the contents of natural images, referenc-

ing “spatially distributive,” “non-spatially localized,” or “low fre-

quency” global properties (Brady, Shafer-Skelton, & Alvarez,

2017; Greene & Oliva, 2009; Oliva & Torralba, 2001). A rapid and

automatic process of extracting coarse-grained global information

(e.g., color blobs) is thought to constrain subsequent selective

attention and analysis of finer-grained local image properties (e.g.,

the subtle dimpling that bookends Mona Lisa’s smile; Oliva &

Torralba, 2006; Schyns & Oliva, 1994). In scene recognition

terms, Torralba (2009) describes gist as a summary of the semantic

content of the scene (i.e., its category label), its spatial layout, and

a few objects that compose the scene. In face recognition terms,

holistic or configural information refers to the spatial relationships

between face features (Richler, Mack, Gauthier, & Palmeri, 2009).

Although these descriptions are homing in on the same concept,

we think there is inconsistency in the literature about whether

references to such global properties are attempting to describe

information that is distributed within a particular image, or infor-

mation that is distributed across images, or a mixture of both.

These two different kinds of global information, and their relative

necessity for visual recognition, appear to be conflated or unspec-

ified in current theorizing.

We use visual style here to describe the residual redundant

information distributed within and across extremely low resolution

image sets. A complete exposition of the concept is beyond the

reach of this article; however, we conceive of visual stylistic

information as representing the earliest principle components of a

given pixel space. Visual style embodies the covariant structure,

and not simply the average, of such global properties as low spatial

frequency information, configural information, and low-level di-

mensions like hue, luminance, orientation, and texture. Style can

be distinguished from other terms used to describe global infor-

mation because it does not embody any semantic properties (e.g.,

category labels), or local features (e.g., high-level spatial informa-

tion), and can include both spatial (e.g., configuration) and dimen-

sional (e.g., color) information.

The resolution reduction method first applied by Harmon and

Julesz (1973) and Morrone et al. (1983) provides a simple but

powerful means of testing the sufficiency of global information for

performing a range of perceptual tasks. Reducing the resolution of

an image or downsampling effectively eliminates the noisiest, least

frequent pixels. To the extent that one image shares a pixel-space

with other images in a set, reducing their image resolution also has

the effect of reducing high-dimensional noise across the entire

set—leaving behind the most redundant, low-dimensional cate-

gory information. The remaining redundant information might be

described as a distributed configuration of global features, like hue

and luminance, that covary across images. Indeed, Morrone et al.

point out that high spatial frequency information is minimal com-

pared with low spatial frequency information in extremely low

“blocked” resolution images (like those produced using a simple

nearest neighbor resampling procedure). By reducing local image

features so drastically, and retaining the visual structure across the

image set, we can examine the sufficiency of this information for

a range of fundamental perceptual tasks: visual object recognition,

visual categorization, and, as we focus on here, visual discrimina-

tion.

Torralba (2009) presented 28 participants with 240 images of

indoor and outdoor scenes that were all the same physical size (i.e.,

all upsampled to 256 � 256 pixels) but varied in the number of

pixels, ranging from 4 � 4 to 128 � 128. They used a 12-

alternative forced choice task in which participants were asked to

classify each image as a member of one of 12 semantic categories

(six indoor and six outdoor scenes). Chance level in their experi-

ment was 8.3% and, as a colored image lower bound, 4 � 4 pixels

was enough to produce a correct categorization rate of 18.4%.

Wolfe and Kuzmova (2011) built on this finding by using a

two-alternative forced choice image recognition memory task

(with an average lag of 32 trials) instead of the categorization task.

When accounting for the different chance levels, they found a

similar pattern of performance as Torralba across image resolu-

tions ranging from 8 � 8 pixels up to 256 � 256 (but did not go

any lower than 8 � 8 pixels). The fact that people can categorize

complex scenes with a resolution as low as 4 � 4 pixels, and

recognize them with 8 � 8 pixels, suggests that they are remark-

ably sensitive to global features within and distributed across

images. Less clear is the basis for this sensitivity: Is semantic

coding of the image category (the conceptual back end) necessary

for above-chance sensitivity at extremely low resolutions? Is the

global information retained in the low-resolution images (the per-

ceptual front-end) sufficient in the absence of such semantic cod-

ing of the category or any local image features?

We address these questions by probing people’s sensitivity to

global image (Experiment 1) and category (Experiment 2) infor-

mation using a resolution reduction methodology similar to prior
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scene recognition work. However, we add some additional image

resolutions and use an adapted experimental design to test just how

low people can go without any cues to the semantic category or

content of an image. First, in Experiment 1, we extend the work of

Wolfe and Kuzmova (2011). Here, we test people’s image recog-

nition memory performance using eight image resolution condi-

tions, reducing the images down from 128 � 128 to a single pixel.

We also use three large sets of images from a variety of different

domains (i.e., paintings, birds, and faces) to test the general lower

bounds of human visual recognition with extreme image reduction.

Wolfe and Kuzmova suggest that correctly encoding the semantic

category—the conceptual back end—aids picture memory, result-

ing in better performance with higher resolutions; that is “knowing

what you are seeing helps you remember it.” We test how well

people can recognize natural images without necessarily knowing

what they are seeing by reducing the image resolution down to a

single pixel and counterbalancing the categories across old and

new images. With this design, even if people can recognize an

“owl,” a “Cubist” painting, or a “female” face from a single

colored pixel, or configurations of four, eight, and even 16 pixels,

the category label would not be diagnostic of whether they had

seen that particular patch of pixels before or not, and thus cannot

be relied on for recognition.

In Experiment 2, we extend the work of Torralba (2009). Iden-

tifying the semantic category of an image below 4 � 4 pixels poses

quite a challenge. It may be possible, however, to detect the

remaining global properties distributed across images at extremely

low resolutions using a two-alternative category discrimination

task—in which participants do not necessarily need to know the

semantic categories in order to distinguish their perceptual fea-

tures. Our guiding hypothesis across the two experiments is that

global image features, distributed within and across images, are

sufficient for above-chance detection of natural images and cate-

gories, even when the semantic content is no longer diagnostic or

interpretable. Our preregistered predictions for both experiments

are available on the Open Science Framework, along with our

experiment code, deidentified data, and analysis script (https://osf

.io/thk2a).

Experiment 1: Recognizing Natural Images at

Extremely Low Resolutions

In Experiment 1, we test whether people can recognize natural

images based on their most redundant visual features by gradually

reducing their resolution down to 1 pixel. As noted by Wolfe and

Kuzmova (2011), reducing the resolution of images appears to

limit people’s capacity to rely on conceptual understanding to aid

image recognition. But even simple biological systems whose

cognitive architecture is not likely to support the construction and

use of abstract concepts—ants, bees, wasps, pigeons, and fish—

can learn to recognize previously traveled routes (Wehner, Boyer,

Loertscher, Sommer, & Menzi, 2006), specific artistic styles (Wa-

tanabe, 2001; Watanabe, Sakamoto, & Wakita, 1995; Wu,

Moreno, Tangen, & Reinhard, 2013), photographs that contain

people and photographs that do not (Aust & Huber, 2001; Herrn-

stein & Loveland, 1964), faces of conspecifics (Sheehan & Tib-

betts, 2011; Siebeck, Parker, Sprenger, Mäthger, & Wallis, 2010),

abnormal mammograms (Levenson, Krupinski, Navarro, & Was-

serman, 2015), and four-letter words (Scarf et al., 2016; Scarf,

Corballis, Güntürkün, & Colombo, 2017; see Vokey, Jamieson,

Tangen, Searston, & Allen, 2018, for a familiarity-based account

of these findings). As such, it seems plausible that people, too, may

be able to recognize images above chance under extremely low

resolution conditions without knowledge of the original image

category or its content.

In this experiment, participants viewed 24 blocks (8 image

resolutions � 3 domains) of 24 trials. Within each block of trials,

the first 12 consisted of a sequence of 12 images presented on a

computer screen one after the other, and participants were asked to

remember them. The second 12 consisted of another 12 images

displayed one after the other, and participants were asked to

identify whether each image was presented in the original se-

quence of 12 or not. We examined participants’ average discrim-

inability (A), response bias (b), and rate correct (RCS), collapsing

across domains (i.e., paintings, birds, faces). Using a metric of

discriminability, in which .5 is chance and 1 is perfect perfor-

mance, we based our preregistered predictions on the results ob-

tained by Wolfe and Kuzmova (2011), whose task and stimuli are

most similar to this experiment. We predicted that participants’

discriminability of old and new items would come close to .51 for

the 1 pixel images, to .56 for the 2 � 2 pixel images, and .60 for

the 4 � 4 pixel images, with a further discrimination improvement

as the number of pixels in the images increased.

Method

We compiled three large sets of images for the two experiments,

which we refer to as domains. Each domain consisted of two

subcategories: birds (hawks and owls), faces (males and females),

and paintings (cubist and impressionist). Figure 1 provides a

sample of images from each domain and subcategory. To keep the

size of the images constant while varying image resolution, all of

Figure 1. The images to the left of the dotted line are sample “same”

category image pairs from the three domains at 128 � 128 pixels. The

images to the right depict the corresponding “different” category samples.

See the online article for the color version of this figure.
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the images were first downsampled to eight different resolutions

(128 � 128, 64 � 64, 32 � 32, 16 � 16, 8 � 8, 4 � 4, 2 � 2, and

1 � 1) and then upsampled to 256 � 256. Figures 2 and 3 provide

an example image from each domain and image resolution.

Paintings. The paintings were from a larger art collection

created for a previous project. The full collection contains 5,184

paintings, made up of 18 different paintings by 72 different artists

in each of four different artistic styles (cubism, impressionism,

realism, and renaissance; 288 artists in total). We only used the

1,296 cubist and 1,296 impressionist paintings here to equate the

number of subcategories within the three image sets (2,592 paint-

ing in total). The paintings were collected manually from a variety

of websites. We cross referenced the paintings to avoid duplicates

and only downloaded images that were larger than 500 � 500

pixels. All of the paintings in the art collection were cropped to the

center of the shortest dimension using a 1:1 (square) aspect ratio

and resized (using nearest neighbor scaling) to 256 � 256 pixels.

Any signatures on the paintings were also removed using the

“Content Aware” fill tool in Photoshop.

Birds. The bird images were a subset of 1,502 images ex-

tracted from the Cornell Lab of Ornithology’s NABirds V1

collection (downloaded from http://dl.allaboutbirds.org/nabirds).

Seven hundred fifty-one images, or half of the subset, were

natural photographs of birds from the Accipitridae family (e.g.,

hawks, eagles, kites, harriers, Old World vultures), and the

other half were natural photographs of birds from the Strigidae

family (owls). The subset contained 16 different species, with

eight species in each family. The species were randomly se-

lected to match the number of images between the two families,

so both sets of eight species contained 120, 103, 103, 99, 73, 72,

95, and 86 images per species, respectively. We resized each of

the images to 256 � 256 pixels using a nearest-neighbor scaling

algorithm and removed any species labels using the “Content

Aware” fill tool in Photoshop.

Faces. The faces are a collection of 1,772 faces images (886

female and 886 male) extracted from the 10k US Adult Faces

Database (Bainbridge, Isola, & Oliva, 2013). The entire database

contains 10,168 natural face photographs, and we obtained a

Figure 2. Panels A, B, and C depict participants’ mean discriminability (A), response bias (b), and rate correct

scores (in seconds) recognition memory task as a function of image resolution (x-axes), along with their

polynomial trend over pixels at the top of the three panels. All plots represent the 50 participants’ responses,

collapsing over the three domains: paintings, birds, and faces. Panel D shows the receiver operating characteristic

curves for the eight image resolutions, overlaid with the “best-fitting” curve assuming binormal distributions (the

dotted line indicates chance performance). Finally, the raincloud plots in Panel E depict a half violin plot of

participants’ mean proportion correct scores across the eight image resolutions overlaid with jittered data points

from each individual participant, the mean proportion correct per resolution (the black dot), and standard error

of the mean per resolution. See the online article for the color version of this figure.
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reduced set of 2,222 images from the database creators along with

attribute data (e.g., memorability, attractiveness, happiness, friend-

liness). We then removed the famous faces from this subset,

further reducing it to 2,063 faces (886 female, 1,177 male), and

extracted the height and width dimensions of the remaining im-

ages. All of the images were 256 pixels tall, except one, which we

scaled down to match the height of the others. The width of the

images ranged from 153 to 157 pixels, and we resized them to

256 � 256 pixels. We deleted one image in the male domain that

did not match these dimensions. Finally, we randomly sampled

886 male faces from the remaining 1,176, creating an equal num-

ber of male and female images.

Image resolution. We generated eight different versions of

every image in our three sets, at 1 pixel, 2 � 2, 4 � 4, 8 � 8, 16 �

16, 32 � 32, 64 � 64, and 128 � 128 pixels, using a nearest-

neighbor resampling procedure in MATLAB (see Figures 2 and 3

for an example image from each domain at each of the eight image

resolutions). All images were then upsampled to 256 � 256 pixels.

Although upsampling a set of images using nearest-neighbor in-

terpolation produces the blocky-looking images illustrated in Fig-

ures 1 and 2, the number of pixels in each condition is clear. One

intuition about this technique is that the pixel edges or “blocked”

appearance of the images introduced at the lower resolutions may

serve as high spatial frequency noise masking the lower spatial

dimensions. However, Morrone et al. (1983) showed that high

spatial frequency information is minimal at extremely low resolu-

tions, and that adding high spatial frequency noise can even help

unmask low-dimensional information—similar to squinting, blur-

ring, shrinking, or looking from a distance.

Participants. A sample of 50 undergraduate psychology stu-

dents (33 female, 17 male) from The University of Queensland

participated for course credit. Participants’ mean age was 20.46

years (SD � 4.73). Ethics approval was received from The

University of Queensland Behavioral and Social Sciences Eth-

ical Review Committee (2014001677). Effect sizes were not

reported in previous resolution reduction studies, making it

Figure 3. Panels A, B, and C depict participants’ mean discriminability (A), response bias (b), and rate correct

scores (in seconds) discrimination task as a function of image resolution (x-axes), along with their polynomial

trend over pixels overhead. All plots represent the 50 participants’ responses, collapsing over the three domains:

paintings, birds, and faces. Panel D shows the receiver operating characteristic curves for the eight image

resolutions, overlaid with the “best-fitting” curve assuming binormal distributions (the dotted line indicates

chance performance). As in Experiment 1, the raincloud plots in Panel E depict a half violin plot of participants’

mean proportion correct scores across the eight image resolutions, overlaid with jittered individual data points,

the mean proportion correct per resolution (the black dot), and standard error of the mean per resolution. See the

online article for the color version of this figure.
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difficult to precisely predict magnitude of effects in our exper-

iment ahead of time. Torralba (2009) tested 28 participants who

were distributed equally across two groups (grayscale and color

images). Wolfe and Kuzmova (2011) tested 73 subjects who

were distributed across 11 groups (24 participants were tested

in multiple conditions to make 10 participants per group).

Considering our use of a within-subjects design and multiple

image sets, we anticipated that our relatively large prespecified

sample of 50 subjects would provide sufficient sensitivity to

detect any meaningful differences. Indeed, a sensitivity analysis

based on this sample suggested that the smallest effect size we

can detect, with 80% power for our within-subjects analyses of

variance (ANOVA), accounting for the 576 trials, was f � .04

(�2
� 0.002 or a “small” effect). For the one-sample analyses

comparing with chance (i.e., A � .5), the smallest effect size we

can detect with 80% power was estimated to be d � .40 or a

“small” to “medium” effect.

Procedure. Participants completed the experiment (pro-

grammed in LiveCode 8.0.0) on a MacBook Air laptop, with a

screen resolution of 1440 � 900 pixels at 72 dpi. Participants

first read an information sheet about the experiment, and then

watched an instructional video on the nature of the materials,

the image recognition task, and the response scale. Each par-

ticipant then viewed a series of images, presented one after the

other on a solid gray background (R: 209, G: 209, B: 209) to

provide contrast and ensure that each image would not blend

into the background (i.e., none of the 5,678 images across the

three matched that particular shade of gray at 1 pixel). Partic-

ipants completed 576 trials in total, broken into 3 (image set:

birds, paintings, and faces) � 8 (image resolution: 1, 2 � 2, 4 �

4, 8 � 8, 16 � 16, 32 � 32, 64 � 64, and 128 � 128 pixels)

blocks of 24. Each 24-trial block was a “memory” block divided

into a learning phase and a test phase. In each learning phase,

participants viewed 12 images appearing on screen for 4 s at a

time, separated by a 500-ms interval. In each test phase, par-

ticipants also viewed 12 images with an old–new response scale

appearing on screen. Six of the test images were new and had

not been shown previously in the experiment, whereas the other

six were old and had been displayed at some point during the

previous learning phase. On a given test trial, participants saw

a single image on the screen and rated the extent to which they

thought they had seen the image before or not. The image

remained on screen until a response was made, but a “speed-up”

prompt was delivered if the response time was slower than 4 s.

Their responses were recorded by pressing one of 12 buttons on

a forced-choice scale, with “old” responses ranging from 1

(sure old) to 6 (unsure old) and “new” responses ranging from

7 (unsure new) to 12 (sure new). The images were sampled equally

from the two subcategories in each image set and presented in a

different random order within the learning and test phases of the

experiment. Participants were not provided with the category labels

for any of the image sets, either in the instructional video or during the

course of the experiment.

Results

Of primary interest was the effect of resolution on participants’

image recognition memory performance when averaging over the

three image sets or “domains” (birds, faces, and paintings). We

therefore report analyses of the effect of image resolution on

participants’ aggregated discriminability (A; see Zhang & Mueller,

2005, on the correct computation of A instead of A=), the associated

nonparametric measure of response bias (b), and rate correct (RCS;

see Vandierendonck, 2018, for an overview of RCS and other

speed-accuracy metrics). Our R code and output for all plots, and

primary and subsidiary analyses performed for both experiments,

have been compiled into a single R Markdown HTML document,

stored publicly on the Open Science Framework (https://osf.io/

thk2a). Separate exploratory analyses of participants’ performance

with paintings, birds, and faces, in each of the experiments, have

also been included in the R Markdown document as supplemental

to the main preregistered analyses reported on here.

Discriminability. In our preregistered analysis plan, we spec-

ified that we would compute nonparametric discriminability (A=)

because it is intuitive to interpret (e.g., 1 is perfect performance

and .5 is chance) and does not assume normally distributed data.

We use a corrected formula for A= here that was introduced by

Zhang and Mueller (2005) and is denoted as A. The new formula

can be correctly interpreted as the average of the maximum area

and minimum area under the proper receiver operating character-

istic curve constrained by the hits and false alarms. We first

converted participants’ confidence ratings into hits and false

alarms, and then computed their average discriminability (A) col-

lapsing across domain, for all eight image resolutions. We also

computed participants’ empirical area under the curve (AUC; see

Figure 2) to explore whether the pattern of results would change

when we accounted for their full range of confidence ratings.

Because these additional exploratory analyses yielded the same

pattern of results (see the supplemental R Markdown document

available on the Open Science Framework for a breakdown of the

results and plots of the AUC data across image resolutions: https://

osf.io/thk2a), we only report our planned analyses of discrim-

inability using A here.

As shown in Figure 2A and Figure 2D, participants’ discrim-

inability of old and new images tended to increase with increasing

image resolution: 1 pixel (A � .66, SD � .12), 2 � 2 (A � .69,

SD � .13), 4 � 4 (A � .70, SD � .15), 8 � 8 (A � .70, SD � .14),

16 � 16 (A � .75, SD � .14), 32 � 32 (A � .80, SD � .16), 64 �

64 (A � .84, SD � .11), and 128 � 128 pixels (A � .89, SD �

.09). As planned, a one-way within-subjects ANOVA using par-

ticipants’ A scores revealed a significant main effect of image

resolution, F(7, 343) � 32.19, p � .001, �
2G � .26 (for a

breakdown on using generalized eta-squared as the preferred effect

size in an ANOVA context, see Bakeman, 2005). Given that the

data distributions for some image resolutions appeared to be

skewed, we also conducted a permutation test, permuting partici-

pants’ A scores 1,000 times, to determine whether a more precise

sampling distribution would produce the same result, and it did

(p � .001). Polynomial contrasts further revealed a significant

linear (p � .001) and quadratic (p � .001) trend to participants’

discriminability (A) over image resolutions. This trend was ob-

served even when we accounted for the quadratic increases in the

number of pixels across conditions: discriminability (A) increased

as the pixel levels went up as integer powers of two (i.e., 20, 21, 22,

23, 24, 25, 26, and 27), with larger increases observed at the higher

resolutions (marked by the slight concavity seen in Figure 2A; see

the supplemental R Markdown document available on the Open
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Science Framework for a full description of all seven orthogonal

contrasts: https://osf.io/thk2a).

We conducted a further finer-grained analysis comparing par-

ticipants’ mean discriminability with each image resolution to

chance performance (A � .5) and applied corrections to all p

values to control the family-wise error rate (Holm, 1979). This

analysis revealed that participants performed significantly greater

than chance for all image resolution conditions, including the 1

pixel images, t(49) � 9.36, p � .001, d � 1.32. We report d as

defined by Cohen’s (1988) original formula (i.e., the difference

between our sample mean and chance performance, divided by our

sample standard deviation as a substitute for �) because it delib-

erately ignores information about the study design and thus allows

other researchers to meaningfully compare our effects with differ-

ent studies. Effect sizes remained large across the image resolution

conditions: 2 � 2 pixel images, t(49) � 10.32, p � .001, d � 1.46;

4 � 4 pixel images, t(49) � 9.76, p � .001, d � 1.38; 8 � 8 pixel

images, t(49) � 9.70, p � .001, d � 1.37; 16 � 16 pixel images,

t(49) � 12.58, p � .001, d � 1.78; 32 � 32 pixel images, t(49) �

13.10, p � .001, d � 1.85; 64 � 64 pixel images, t(49) � 21.60,

p � .001, d � 3.05; and 128 � 128 pixel images, t(49) � 29.76,

p � .001, d � 4.21. Equivalent nonparametric one-sample tests

(e.g., Wilcoxon signed-ranks test) produced the same significant

results (p � .001, applying the Holm correction) across image

resolutions (see the supplemental R Markdown file for data ana-

lytic code and output: https://osf.io/thk2a).1

Response bias. We computed participants’ average response

bias (b) for each image resolution condition from their hits and

false alarms, once again averaging over domains (see Figure 2B).

A b score of 1 indicates no response bias, with scores greater than

1 indicating a tendency to say “old” more, and scores less than 1

indicating a tendency to say “new” more. Participants in our

experiment tended to say “old” more than “new” (b � 1.15, SD �

.37). This response bias was strongest for the 1 pixel images (see

Figure 2B): 1 pixel (b � 1.32, SD � .39), 2 � 2 (b � 1.13, SD �

.35), 4 � 4 (b � 1.15, SD � .36), 8 � 8 (b � 1.20, SD � .35),

16 � 16 (b � 1.18, SD � .39), 32 � 32 (b � 1.12, SD � .53),

64 � 64 (b � 1.09, SD � .28), and 128 � 128 pixels (b � 1.01,

SD � .22). A one-way within-subjects ANOVA using partici-

pants’ b scores revealed a significant main effect of image reso-

lution on response bias, F(7, 343) � 3.18 p � .003, �
2G � .05.

Polynomial contrasts further revealed a significant linear (p �

.001) trend to participants’ response bias (b) scores over image

resolutions. Response bias (b) decreased as the pixel levels went

up (see Figure 2B).

We conducted further analyses comparing participants’ mean b

scores with each image resolution to that expected with no bias

(b � 1.00). This analysis revealed that participants’ response bias

toward saying “old” was significantly greater than no bias for all

image resolution conditions (correction applied to all p values).

The largest effect was observed with the 1 pixel images, t(49) �

5.72, p � .001, d � .81. Smaller effect sizes were observed for the

other seven image resolutions: 2 � 2 pixel images, t(49) � 2.62

p � .012, d � .37; 4 � 4 pixel images, t(49) � 2.96, p � .005, d �

.42; 8 � 8 pixel images, t(49) � 4.00, p � .001, d � .57; 16 � 16

pixel images, t(49) � 21.25, p � .001, d � .46; and 64 � 64 pixel

images, t(49) � 2.25, p � .029, d � .32. No significant response

bias was observed for the 32 � 32 pixel images, t(49) � 1.63, p �

.110, or 128 � 128 pixel images, t(49) � .43, p � .66.

Rate correct. Finally, we conducted exploratory analyses of

participants’ rate correct scores (RCSs; see Figure 2C). Unlike mean

response times, RCSs provide an indication of participants’ speed

relative to their accuracy. Compared with other speed-accuracy mea-

sures, RCS is also easy to interpret and can be described here as the

number of correct responses per second. Participants’ rate correct

remained stable over the lower resolutions, but increased from 32 �

32 and up (see Figure 2C): 1 pixel (RCS � .36, SD � .09), 2 � 2

(RCS � .34, SD � .07), 4 � 4 (RCS � .35, SD � .07), 8 � 8

(RCS � .35, SD � .09), 16 � 16 (RCS � .38, SD � .13), 32 �

32 (RCS � .45, SD � .13), 64 � 64 (RCS � .48, SD � .09), and

128 � 128 pixels (RCS � .52, SD � .11). A one-way within-subjects

ANOVA based on participants’ mean RCSs also revealed a signifi-

cant main effect of image resolution, F(7, 343) � 47.03, p � .001,

�
2G � .34. As with discriminability, polynomial contrasts of the

image resolution conditions showed a significant linear (p � .001),

quadratic (p � .001), and quartic (p � .011) trend over image

resolutions. Rate correct (RCS) increased as the pixel levels went up,

and this linear trend was marked by four bends or two step changes at

the higher resolutions (see Figure 2C).

Discussion

We found that people could reliably recognize images above

chance (with large effect sizes) at every image resolution, includ-

ing 1 pixel. As predicted, people’s discriminability of old and new

images tended to increase as image resolution increased. On av-

erage, participants were also more likely to say that they had seen

an image before (“old”) than not (“new”), and their rate correct

(i.e., correct responses per second) also increased with higher

resolutions.

Looking back in memory, the lower resolution images may

appear “older” as a whole because there are fewer distinguishing

features between the old and the new images in those conditions.

But how are participants remembering 1 � 1, 2 � 2, 4 � 4 pixel

images reliably? The old and new images were randomly and

equally sampled from both categories in all three domains for each

memory block. That is, we controlled for the categorical structure

of the image sets by counterbalancing the categories across the old

and the new images (e.g., in a given painting’s memory block, half

of the old paintings were randomly sampled from old cubist artists

and half were randomly sampled from old impressionist artists,

and likewise for the new paintings). Participants may have gleaned

the semantic category on any particular image in the experiment,

and they may have even noticed that the images tended to be of

particular kinds over the course of the experiment. But it was

impossible for participants to rely on what they knew about the

categorical structure of the image sets to recognize the images,

because the categories did not covary systematically with “old”

and “new” images. In other words, as a participant in this exper-

iment, knowing that half of the images in a given memory block

contained “owls” and half contained “hawks” was not a diagnostic

1 We report the results of parametric analyses throughout the main text
for ease of comparison across studies; however, because of the observed
skewness in our data (see the density plots in the supplemental R Mark-
down file: https://osf.io/thk2a), we repeated all follow-up one-sample t

tests in both experiments with a Wilcoxon’s signed-rank test, consistent
with our reporting of nonparametric signal detection statistics, and use
permutation tests as subsidiary analyses to the ANOVAs.
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cue as to whether they had seen that image before—because these

categories were uncorrelated with the categories “old” and “new.”

What information contained within the particular images, then,

are participants relying on to recognize them? At the higher

resolutions, knowing that an image contains a snowy owl in flight,

with flecks of black plumage, on a backdrop of clear blue sky, may

help to recognize it as “old” or “new” by virtue of having multiple

possible commonalities with the image represented in memory. At

the lower resolutions (1 pixel, 2 � 2 pixels, etc.), however, it

seems unlikely that participants know there is a feathered, carniv-

orous bird in the image, and it is therefore unlikely that they are

relying on such semantically meaningful content to recognize the

image. We propose, instead, that participants are relying on the

global configural and low-dimensional properties distributed

across the image at extremely low resolutions. That is, participants

are probably recognizing the “blocky” patterns present at ex-

tremely low resolutions without knowing the semantic category

and without recognizing any meaningful local content in the im-

ages. If this explanation holds, the low-resolution results provide

evidence that we do not need to know what we are seeing in order

to remember it (Wolfe & Kuzmova, 2011). The fact that people

can remember images that have been downsampled to a single

pixel, even 2 � 2 or 4 � 4 pixels, reliably above chance, suggests

that global features distributed across the image can be sufficient

for recognition.

Experiment 2: Discriminating Natural Images at

Extremely Low Resolutions

In Experiment 2, we move from an image recognition task to a

discrimination task to probe the sufficiency of global features

distributed across images for discriminating categories rather than

images. Here, we showed people two images on screen, side-by-

side. Their task was to decide whether the two images were from

the same category or two different categories. We tested how well

50 undergraduate psychology students could discriminate catego-

ries across the same three domains (paintings, birds, and faces) and

eight image resolutions (128 � 128, 64 � 64, 32 � 32, 16 � 16,

8 � 8, 4 � 4, 2 � 2, and 1 pixel) introduced in Experiment 1.

Again, we examined participants’ discriminability (A), response

bias, and rate correct, collapsing over domain. Using a metric of

discriminability, in which .5 is chance and 1 is perfect perfor-

mance, we based our preregistered predictions on the results ob-

tained by Torralba (2009), whose task and stimuli were most

similar to this experiment. We predicted a discriminability of .54

for the 1 pixel images, .60 for the 2 � 2 pixel images, and .65 for

the 4 � 4 pixel images, with a further discrimination improvement

as the number of pixels in the images increased.

Method

Participants. A separate, prespecified sample of 50 under-

graduate psychology students (34 female, 16 male) from The

University of Queensland participated for course credit. Partici-

pants’ mean age was 19.86 years (SD � 3.51). A sensitivity

analysis based on this sample suggested that the smallest effect

size we can detect with 80% power, accounting for the 768 trials

and within-subjects design, was f � .037 (�2
� 0.001 or a “small”

effect). Sensitivity for the one-sample analyses was identical to

Experiment 1.

Procedure. The stimuli and procedure were identical to Ex-

periment 1, with the exception of the task. Participants were asked

to rate the extent to which they thought the two images on each

trial were from the same category or from two different categories.

They indicated their response on a 12-point, forced-choice rating

scale, with buttons ranging from 1 (sure different) to 6 (unsure

different) for the “different” responses and buttons ranging from 7

(unsure same) to 12 (sure same) for the “same” responses. After

they pressed one of these 12 buttons, the two images disappeared

and were replaced 500 ms later with two new images to be rated.

The two images remained on screen until a response was made, but

a “speed-up” prompt was delivered if they took longer than 4 s to

respond.

Each participant continued this process for 768 trials, consisting

of 256 pairs of bird images, 256 pairs of paintings, and 256 face

pairs, presented as three consecutive blocks in a different random

order for each participant. Each 256-trial domain block included

eight smaller blocks of 32 image pairs at each of the eight image

resolutions. Each 32-trial resolution block was also presented in a

different random order within each domain and to each participant.

The 32 trial blocks were further subdivided into half matching and

half mismatching image pairs. For example, the correct response

on a trial displaying two different impressionist paintings would be

“same.” But the correct response on a trial displaying an impres-

sionist and cubist painting would be “different.” Matching and

mismatching trials are presented in a different random order within

each block of 32, and the images were sampled equally from both

subcategories in each domain across all conditions (e.g., cubist and

impressionist, hawk and owl, male and female). As in Experiment

1, participants were not provided with the category labels for any

of the image sets at any point in order to minimize reliance on

higher level semantic knowledge. We opted for the label-free

visual discrimination task, as we were interested in capturing

participants’ perceptual sensitivity, in its purest form, to the sim-

ilarities and differences in the image sets at reduced resolutions.

For clarity of instruction, participants were asked to judge whether

the two images were from the same category or two different

categories, but they could theoretically perform the task without

knowing the names of the categories they were discriminating.

Results

As in Experiment 1, we report analyses of the effect of image

resolution on participants’ aggregated nonparametric discrim-

inability (A), the associated nonparametric measure of response

bias (b), and RCSs (number of correct response per second).

Again, exploratory analyses of participants’ AUC data are not

reported, as they revealed the same pattern of results as our

primary planned analyses of nonparametric discriminability (A).

Discriminability. As illustrated in Figure 3A (see also Figure

3D), participants’ discriminability tended to increase with increas-

ing image resolution in a similar fashion to the predicted pattern:

1 pixel (A � .53, SD � .09), 2 � 2 (A � .56, SD � .07), 4 � 4

(A � .56, SD � .08), 8 � 8 (A � .57, SD � .07), 16 � 16 (A �

.62, SD � .07), 32 � 32 (A � .67, SD � .08), 64 � 64 (A � .73,

SD � .10), and 128 � 128 pixels (A � .73, SD � .10). A one-way

within-subjects ANOVA using participants’ A scores also revealed

a significant main effect of image resolution, F(7, 343) � 49.84,

p � .001, �
2G � .44. Polynomial contrasts of the image resolution
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conditions revealed a significant linear (p � .001) and quadratic

(p � .001) increase in discriminability (A) with increases in the

number of pixels. Discriminability (A) increased as the pixel levels

went up, and this trend is further characterized by larger increases

at higher resolutions (see Figure 3A).

Further one-sample analyses (applying the Holm correction to

all p values) revealed that participants’ discriminability was reli-

ably greater than chance for all image resolution conditions, except

the 1 pixel images, t(49) � 1.85, p � .070, d � .26. Effect sizes

were large and tended to increase across the remaining seven

image resolutions: 2 � 2 pixel images, t(49) � 5.98, p � .001, d �

.85; 4 � 4 pixel images, t(49) � 5.60, p � .001, d � .79; 8 � 8

pixel images, t(49) � 6.85, p � .001, d � .97; 16 � 16 pixel

images, t(49) � 12.49, p � .001, d � 1.77; 32 � 32 pixel images,

t(49) � 14.95, p � .001, d � 2.12; 64 � 64 pixel images, t(49) �

15.83, p � .001, d � 2.24; and 128 � 128 pixel images, t(49) �

15.60, p � .001, d � 2.21. Discriminability (A) was significantly

greater than chance (p � .001) for all image resolutions, including

the 1 pixel images (p � .033) using the Wilcoxon signed-ranks test

and Holm correction (see the supplemental R Markdown file for

all data analysis code and output: https://osf.io/thk2a).

Response bias. In Experiment 2, participants tended to say

“different” more than “same” (M � 1.28, SD � .38). This response

bias also increased as image resolution increased (opposite from

what we predicted): 1 pixel (Mb � 1.15, SD � .29), 2 � 2 (Mb �

1.15, SD � .32), 4 � 4 (Mb � 1.16, SD � .31), 8 � 8 (Mb � 1.27,

SD � .36), 16 � 16 (Mb � 1.28, SD � .42), 32 � 32 (Mb � 1.30,

SD � .37), 64 � 64 (Mb � 1.42, SD � .36), and 128 � 128 pixels

(Mb � 1.48, SD � .44). A one-way within-subjects ANOVA using

participants’ aggregated b scores revealed a significant main effect

of image resolution on their response bias, F(7, 343) � 6.66, p �

.001, �
2G � .09. Similar to participants’ discriminability, polyno-

mial contrasts showed a significant linear (p � .001) and quadratic

(p � .040) increase in participants’ response bias (b) with increas-

ing pixel levels.

Further analyses revealed that participants’ response bias toward

saying “different” was significantly greater than no bias for all

image resolution conditions, including the 1 pixel images, t(49) �

3.65, p � .001, d � .52. Effect sizes tended to increase across the

eight image resolutions: 2 � 2 pixel images, t(49) � 3.39, p �

.001, d � .48; 4 � 4 pixel images, t(49) � 3.67, p � .001, d � .52;

8 � 8 pixel images, t(49) � 5.19, p � .001, d � .73; 16 � 16 pixel

images, t(49) � 4.72, p � .001, d � .67; 32 � 32 pixel images,

t(49) � 5.80, p � .001, d � .82; 64 � 64 pixel images, t(49) �

8.19, p � .001, d � 1.16; and 128 � 128 pixel images, t(49) �

7.64, p � .001, d � 1.08.

Rate correct. Participants’ mean rate correct remained fairly

stable across image resolutions, unlike Experiment 1 (see Figure

3C): 1 pixel (RCS � .42, SD � .24), 2 � 2 (RCS � .40, SD �

.18), 4 � 4 (RCS � .40, SD � .18), 8 � 8 (RCS � .40, SD � .18),

16 � 16 (RCS � 39, SD � .16), 32 � 32 (RCS � 38, SD � .13),

64 � 64 (RCS � .40, SD � .16), and 128 � 128 pixels (RCS �

.39, SD � .12). A one-way within-subjects ANOVA using partic-

ipants’ mean RCSs showed no significant main effect of image

resolution, F(7, 343) � .99, p � .442, �
2G � .01, and no

significant linear (p � .473) or quadratic (p � .712) trend in rate

correct with quadratic increases in pixel level.

Discussion

We found that people could reliably discriminate image catego-

ries above chance at image resolutions down to 2 � 2 pixels and

less reliably with 1 pixel. As predicted, people’s discriminability

tended to increase as image resolution increased. Participants’

response bias also tended to increase as image resolution in-

creased, and they tended to say “different” more often than “same”

at all resolutions. There was no evidence for a difference in rate

correct across image resolution conditions.

The benefit of randomizing the resolution blocks was in negat-

ing the possibility that any observed increases in discriminability

with increasing image resolution was a result of participants learn-

ing from category exemplars presented earlier in the experiment.

Had we increased the resolution blocks incrementally over the

experiment, for instance, the observed increased performance

would be perfectly confounded with the number of prior category

exemplars participants had seen in the experiment. The drawback

of randomizing the resolution blocks is that some participants

viewed some higher resolution blocks before the lower resolution

blocks, purely based on a random generation process. And partic-

ipants’ exposure to high-resolution category exemplars early in the

experiment may have inflated their discriminability of the lower

resolutions.

If learning in the higher resolution blocks was leaking over into

the lower resolution blocks, we would expect to see correlated

discriminability across the different blocks. To test this possibility,

we correlated participants’ discriminability (A) scores in each

resolution block and with other resolution block. Participants’

discriminability was highly correlated among the three highest

resolution blocks: 32 � 32 and 64 � 64 (r � .638, p � .001), 32 �

32 and 128 � 128 (r � .515, p � .001), and 64 � 64 and 128 �

128 (r � .588, p � .001). We also found a moderate correlation

between the 2 � 2 pixel block and the 16 � 16 block (r � .364,

p � .009). But discriminability in the 1 � 1 pixel block was not

correlated at all with discriminability in any other block (relating

to the 2 � 2 pixel block and up: r � �.092, r � �.084, r � .051,

r � .013, r � �.023, r � �.060, and r � �.020, respectively).

Discriminability in the 2 � 2 pixel block was also not correlated

with any other block, except 16 � 16 pixels (correlations with the

4 � 4 pixel block and up: r � .094, r � .096, r � .364, r � �.049,

r � �.042, and r � .143, respectively). Nor was discriminability

in the 4 � 4 pixel block correlated with any other (correlations

with the 8 � 8 pixel block and up: r � .159, r � .131, r � .051,

r � �.010, and r � .115, respectively). And discriminability in the

8 � 8 pixel block (correlations with the 16 � 16 pixel block and

up: r � .113, r � .087, r � .126, and r � .252, respectively) was

not correlated with the 16 � 16 pixel block (correlations with the

32 � 32 pixel block and up: r � �.120, r � .018, r � .126, and

r � .081, respectively) or any of the higher resolutions.

These correlational data show that discriminability at the lower

resolutions is not predicted by discriminability at the other reso-

lutions. Apart from the three highest resolutions, discriminability

in each block is independent of the other blocks. That is, any

familiarity gained with the higher resolution exemplars does not

predict performance at the lower resolutions. Prior knowledge of

the category exemplars is, therefore, not an adequate explanation

for why participants can discriminate categories at extremely low

image resolutions. Participants’ RCSs also did not vary signifi-
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cantly across image resolutions in the discrimination task, indicat-

ing that the effect of image resolution on discriminability cannot

be accounted for by participants emphasizing accuracy over speed

to a greater extent given more information. One plausible expla-

nation for the lack of an effect on rate correct is that the increasing

discriminability with increasing image resolution was offset by

increasing complexity in the images—they were slower to respond

in the higher image resolution conditions even though they were

more accurate.

With image resolutions as low as 2 � 2 or 4 � 4 pixels, the

once-nameable local features within the images were no longer

present and thus cannot be used as the basis for discrimination. All

that remained was a few patches of color that represent the most

redundant information within and across the images in each of the

categories. The hawks and owls, for example, appeared as different

shades of green and brown, and the male and female faces as

shades of beige. Even as the image resolution increased, the local

features—a fine-brushed sailboat, a leafy branch, a flourishing pair

of eyebrows—remained obscure.

These findings suggest that people are sensitive to visual infor-

mation that is distributed across images as well as within images

even when local information is sparse. Although semantic coding

at extremely low image resolutions seems unlikely, we speculate

that the increase in discriminability at 16 � 16 pixels, as indicated

by the significant quadratic trend, may mark a point at which

participants start to take advantage of semantic coding in their

decision process. Similarly, the change in participants’ tendency to

say “different” more with the higher image resolutions might be

explained by an increase in the identification of distinguishing

objects and features that are local to the images. These post hoc

observations could be tested in future experiments by gauging the

point at which participants tend to recognize category labels and

objects in an image with gradually increasing image resolution. An

interesting prediction based on this interpretation of our results is

that semantic coding may influence the decision process at lower

and lower image resolutions with the accumulation of experience

in a domain as participants develop visual expertise with natural

categories (e.g., faces, birds, medical images, fingerprints; Mack-

enzie, Dodd, Tomarken, & Gauthier, 2018).

General Discussion

In two experiments, we illustrated that the global stylistic infor-

mation retained at extremely low image resolutions was sufficient

for recognizing images and discriminating categories with above-

chance accuracy across three domains—paintings, birds, and faces.

We averaged participants’ performance over the three large-scale

natural image sets and used a random image sampling procedure

for each participant and block of trials. We therefore expect our

findings to generalize well to other natural image sets that have

different categorical structures. We distinguish between the style

of an image (e.g., a single Monet painting) and the style of a

category (e.g., a set of impressionist paintings) here because their

relative importance appears to depend on the visual task at hand.

Experiment 1, for instance, points to the importance of stylistic

information distributed across an image for visual recognition.

People were able to reliably recognize natural images reduced

down to 4 � 4 pixels, 2 � 2 pixels, and even a single pixel without

any meaningful local objects in the image to rely on. The old and

new images were randomly sampled from each of the broader

categories in the set, such that their global structure could not be

used to aid image recognition. At extremely low resolutions, the

images also contained little to no conceptually meaningful local

features reminiscent of the original, full-sized images. With a

single colored pixel, 2 � 2 pixels, or 4 � 4 pixels, it seems

unlikely that participants are encoding any semantic properties of

the original image in order to correctly recognize it. Thus, although

an increased ability to perceive meaningful objects and categories

in images may help people to remember them (Wolfe & Kuzmova,

2011), our findings suggest that one need not know to remember.

Experiment 2, on the other hand, points to the importance of

stylistic information distributed across images for discriminating

between different visual categories. Participants were able to reli-

ably discriminate images with extremely low resolutions, such as

discriminating between a painting by Monet and a painting by

Picasso when given only four pixels to go on. Again, at these

extremely low resolutions, there were no original local features in

the image for people to rely on in order to make a discrimination.

As with Herrnstein and Loveland’s (1964) pigeons, people appear

to show sensitivity to the covariant structure that is distributed

across members of a category in the absence of knowing about

their semantic content.

Our notion of style in the image recognition memory task refers

to the distributed visual information within the image. No single

feature or visual cue (e.g., hue, luminance, orientation) embodies

the image’s style, but when you look across several features or

cues in the image, its style begins to take shape. Extending this

description to the discrimination task in Experiment 2, the style of

the categories being distinguished cannot be defined by any par-

ticular feature or visual cue, or even a set of features within a

particular image. Instead, performance on the task depends on a

series of features and visual cues that covary across images. An

image or category’s style is fuzzy, ill-defined, and not necessarily

tied to any semantic description of its features. Indeed, the style of

an image or visual category is analogous to Wittgenstein’s (1953/

2001) description of family resemblance when describing the

covariation of features among the varied instances of “games”—

board games and ball games have some commonalities, but also

many differences, and it is only when you look across several

instances that a resemblance emerges. How people perform on

similar tasks, with the within-image and across-image global prop-

erties of the stimuli pitted against one another, could be tested in

future studies and might help elicit a model of how different kinds

of global properties are used in visual cognition.

Previous work has shown that categorization and recognition of

scenes decreases as image resolution decreases, remaining above

chance at 8 � 8 pixels (Torralba, 2009; Wolfe & Kuzmova, 2011).

These findings are interpreted to suggest that the representation of

a scene used for recognition memory may be similar to the repre-

sentation used for categorization, and that images are better re-

membered when they are meaningful (Wolfe, Horowitz, &

Michod, 2007). These findings, and ours, are consistent with

computational vision accounts that propose a coarse-to-fine pro-

cess by which ensemble or gist-like “blobs” of information are

coded first and then used to guide subsequent analyses and recog-

nition of finer details (Oliva & Torralba, 2006; Schyns & Oliva,

1994; Torralba & Oliva, 2003). Unlike gist, however, which is

thought to embody a scene’s semantic description, spatial layout,
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and a few select objects that compose the scene (Torralba, 2009),

our data provide evidence that explicit encoding of the semantic

category or any local features in an image is not necessary for

recognizing natural images or distinguishing among natural cate-

gories. Visual recognition and discrimination under extremely low

resolutions appear to be more about style.
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