TUGboat, Volume 17 (1996), No. 4

355

CSTUG, Charles University,
Prague, March 1996
Questions and Answers with
Prof. Donald E. Knuth

Karel Horak:
[Introductory remarks in Czech, then English.]

I’m very glad to have such a happy occasion to
introduce you, Professor Knuth, to our audience,
who are mostly members of CSTUG, the Czech/
Slovak TEX User Group, but also some academicians
from Prague because this session is organized by
CSTUG and the Mathematics Faculty of Charles
University. We are very happy to have you here, and
I would be happy, on behalf of Charles University,
to give you a special medal. [wide applause]

DEK: [surprised] Thank you very much.

Prof. Ivan Netulka: Professor Knuth, dear col-
leagues, dear friends, ladies and gentlemen. I feel
really very much honored having the opportunity to
greet Professor Donald Knuth, as well as most of
you here sitting in this guildhall, on behalf of the
Dean of the Faculty of Mathematics and Physics of
Charles University, Professor S.G. Sedwa.

As far as T know, Professor Knuth has come
to Prague for the first time. Despite this fact, he
has been known here, not only among all mathe-
maticians, all computer scientists, but also many
physicists, and even to people having nothing to
do with our subjects. People here are fully aware
of the significance of Donald Knuth’s [...] trea-
tise, The Art of Computer Programming. Many
of us have had the opportunity to be pleased by
reading the charming booklet devoted to Surreal
Numbers. We know —and here I am going to fall
[stumbled] —that Donald Knuth’s favorite way to

356

describe computer science is to say that it is the
study of algorithms. We share his opinion that the
study of algorithms has opened up a fertile vein of
interesting new mathematical problems and that it
provides a stimulus for many areas of mathematics
which have been suffering from a lack of new ideas.

My personal experience—the personal expe-
rience of a mathematician—says that, for every
mathematician, there exists a personality who [has]
brought an extraordinarily great service to his field.
Here we have a rare case where, in that statement,
the order of the quantifiers may be reversed, maybe:
There exists a personality who [has] brought a great
service, an extraordinarily great service, to every
mathematician. Here is my one-line proof: Donald
Knuth — TgX.

Professor Knuth, in acknowledgement of your
achievements in computer science, in mathemat-
ics, as well as in computerized typography, which
has given the whole of the community an excellent
tool for presenting scientific results, the Faculty of
Mathematics and Physics of Charles University [has]
decided that you be awarded the Faculty’s Memorial
Medal. T am happy to make that presentation now.
[wide prolonged applause]

Figure 1: The Seal of Charles University

DEK: Well, this is a quite beautiful medal; I hope
you can come and look at it. “Universitas Carolina
Pragensis” —so we all speak Latin; maybe I should
speak Latin today. [laughter]

TUGboat, Volume 17 (1996), No. 4

I don’t know much about the Czech language,
but I’ve tried to learn some of it. On many doors this
week I see the word “Sem”. [laughter] And then as I
came up to this lecture hall today, there were many
other signs that said “TEX”. [laughter]| So I thought
we could have an especially powerful version of TEX
[writes ‘SemTEX’ on the blackboard; more laughter]
but perhaps it’s dangerous; I don’t know....

This morning I have no prepared lecture, but I
want to say just what you want to hear, so I want
to answer your questions. This is a tradition that
I maintained in California: The very last session of
every class that I taught at Stanford was devoted
to questions and answers. I told the students they
didn’t have to come to that class if they didn’t want
to, but if they came I would answer any question
that they hoped to have answered when they signed
up for the class. I actually borrowed this tradition
from Professor [Richard] Feynmann at Caltech. And
I decided I would do it in my classes, too; it’s a
wonderful idea that I recommend to all professors—
to have open-ended question and answer sessions.

I’ve recently made some home pages on the
World Wide Web that you can get via
http://www-cs-faculty.stanford.edu/ knuth
and there on those pages I have the answers to all
frequently asked questions. But today, you can ask
me the unfrequently asked questions. [laughter] By
the way, I’ll tell you one more joke and then we’ll
get started. Do you know what the home page is
of OJ—O0.J. Simpson—in the United States? It’s
“http colon slash slash slash backslash slash escape”.
[laughter]

Now, please ask me questions. [pause]

Well, if there are no further questions, ... [laugh-
ter]. You may ask in Czech, and then someone will
translate.

?7: Maybe a question to start [with]. I learned TEX
carefully, and I had a problem when someone asked
me to take the integral with tilde accent. I found
that maybe there isn’t one with TEX because you
can’t specify an italic correction to boxes.

DEK: The italic correction is ... With each char-
acter there’s a limited amount of information that
goes in the data structure for each character, and
so we have [drawing on blackboard] the height, the
depth, the width, and the italic correction. But
those are the only numbers that are allowed, and
in mathematics mode, the italic correction is used
in a different way from outside of mathematics. In
mathematics mode, the italic correction is actually
used for subscripts; it’s the amount by which you

TUGboat, Volume 17 (1996), No. 4

would bring the subscript to the left —otherwise, it
would typeset “P sub n” (P,) like this: P,.

The italic correction on the integral sign might
even be another case because the large operators use
the italic correction to cover the spacing between the
lower limit and the upper limit. Anyway, there’s
only one number in there. If you want a special
construction that demands many more numbers, the
only way I know is to make a special macro for
that. I would carry the information somewhere up
in the TEX level, not in the inside, not with the
character. You would have to build a structure that
has this information in it. I don’t know how general
a solution you need, but certainly if you said the

. I can’t even remember the name now ... my
goodness, how do you get the ... like the same
mechanism by which someone would take an equal
sign and then put something over it, like this. It’s
defined in plain TEX by a macro ...

?7: It’s something like \mathord and upper limits
... [he means \buildrel]

DEK: I would build it up out of the primitives,
but if you had different integral signs, you would
probably have to allow the person who specified the
font to ...

?7: I have a solution, but it is not a TEX solution:
I used METAFONT to produce special characters,
which have the [...]

DEK: Yes, using METAFONT would be the ideal
way to get the correct artistic effect, but then ev-
eryone else has to get your METAFONT code and
compile your font. Just by a combination of boxes
and glue, you should be able to position the char-
acters that you have. You could just make a \vbox
[drawing on blackboard] or a \vcenter of something
or other, and then you build the \hbox of ... with
a kern and then a tilde or so on. Otherwise, I don’t
know any simple way of doing exactly that balancing
because it’s complicated by the visual proportions
of the spacing with integral signs—it gets really
complicated to handle all cases.

My general philosophy with TEX was to try to
have a system that covers 99% of all cases easily
[laughter]; and I knew there would always be a
residual number. But I felt that this residual would
only be needed by the people who really care about
their papers, and then if they’re only spending 1% of
the time on this, then they would enjoy feeling that
they had contributed something special by adding
their little signature, their special character to it.
So, I didn’t try to do everything automatically. I
still believe that it’s worthwhile thinking about how

357

to do more automatically, but I don’t believe you
ever get all the way there.

Karel Horak: I would be very interested in your
way of thinking— when you started thinking about
making TEX and the typesetting system — when
you realized that you also needed to produce some
letters, to have not only TEX but also METAFONT.
Because—1I don’t know too much about all types
[typefaces]| of digital typography — but I think there
weren’t very many types which you could use with
TEX, so probably you started thinking about META-
FONT, about something like that, from the first?

DEK: Exactly.

I have to erase this beautiful calligraphy [laugh-
ter]. It’s too late now; well, whoever did it can
do it again later, but I need the board. It’s gor-
geous, although this should really be a different “A”.
[laughter]

Let’s go back to April 1977. [writes on board] I
sat down at a computer terminal and started writing
a memorandum to myself about what I thought
would be a good language for typesetting. And
in May 1977, I began working on fonts. This was
going to be my sabbatical year, where I would do no
teaching through the end of 1977, and the beginning
of 1978. I thought that I would write a typesetting
system just for myself and my secretary. [laughter]
I had no idea that I would ever be seeing TEX on,
for example, the tram signs in Brno [laughter]| or by
the churches of the city, and so on. It was just for
my own purposes, and I had one year to do it. And
I thought it would be easy. So, in May of 1977, I
went to Xerox PARC, the place where the ideas of
mouses and windows and interfaces and so on were
being worked on, and I knew that they were playing
with splines for letterforms. I saw Butler Lampson
at a computer terminal, and he was adjusting splines
around the edges of letters that he had magnified; so
I thought, “good, I’ll make an arrangement to work
at Xerox PARC during my sabbatical year, and use
their cameras and make the type.”

I knew from the beginning that I wanted the
type to be captured in a purely mathematical form;
I wanted to have something that would adapt to
technology as it kept changing, so that I would have
a permanent mathematical description of the letters.
Unfortunately, Xerox said, “Yes, you're welcome to
use our equipment, but then we will own the designs,
they will be the property of Xerox.” I didn’t want
any of this work to be proprietary; I didn’t want
people to have to pay to use it. ... A mathematical
formula is just numbers — why shouldn’t everybody
own these numbers?

358

So instead, I worked only at Stanford, at the Ar-
tificial Intelligence Laboratory, with the very prim-
itive equipment there. We did have television cam-
eras, and my publisher, Addison-Wesley, was very
helpful —they sent me the original press-printed
proofs of my book, from which The Art of Com-
puter Programming had been made. The process in
the 60s that I wanted to emulate was interesting:
They would first print with metal type, Monotype,
onto good paper, one copy. They made one copy
with the metal, then they photographed that copy
and printed from the photograph. They gave me
that original copy from which they had made the
original photographs. So I could try putting the TV
camera on that, and go from the TV camera to a
computer screen to copy the letters. At that time,
we could connect our display terminals to television
and movies on television; people were looking at the
titles of movies, and capturing the frames from the
movies and then making type. They would keep
waiting for more episodes of Star Trek or something
so that we would have the whole alphabet; eventu-
ally we would get a title with the letter “x” in it.
That’s how we were trying to get type by means of
television at the time.

I thought it would be easy, but immediately I
noticed that if I turned the brightness control a very
little bit, the letters would get much thicker. There
was a tremendous variation, so that what I would
see on my TV screen had absolutely no consistency
between a letter that I did on Monday and a letter
that I did on Tuesday, the following day. One letter
would be fat and one letter would be thin, but it
would be the same letter because the brightness
sensitivity was extremely crude. This is still true
now: If you look at a scanner and you change the
threshold between black and white, a small change
in the threshold changes the character of the letter
drastically. So I couldn’t use TV.

For the next attempt, my wife made photo-
graphs of the pages and then we took our projector
at home and projected them down a long hallway.
On the wall I would try to copy what the letters
were. But at that point I realized that the people
who had designed these typefaces actually had ideas
in their mind when they were doing the design.
There was some logic behind the letters. For ex-
ample, you have the letter ‘m’, you have the letter
‘n’, you have an ‘i’ and an ‘1’, and I noticed that the
‘m’ was 15 units, the ‘n’ was 10 units, and the ‘i’
was 5 units. Aha! A pattern! The ‘I’ was 5 units,
the ‘f” was 5 units, the ‘fi’ ligature was 10 units. So,
if you cut off the tops of these letters, you would see
an exact rhythm of 5 units between stems. Great—

TUGboat, Volume 17 (1996), No. 4

there were regularities in the design! That’s when
it occurred to me that maybe I shouldn’t just try
to copy the letterforms, but I should somehow try
to capture the intelligence, the logic, behind those
letterforms. And then I could do my bold font with
the same logic as the regular font.

The truth therefore is that in May 1977 I didn’t
know what to do about fonts; June 1977 is when I
started to have the idea of METAFONT.

I spent the summer of 1977 in China, and I left
my students in California; I told them to implement
TEX while I was gone. [laughter] I thought it would
be very easy; I would come home and they would
have TEX working, and then I could do the fonts.
But when I got back, I realized that I had given
them an impossible task. They actually had gotten
enough of TEX running to typeset one character on
one page, and it was a heroic achievement, because
my specifications were very vague. I thought the
specifications were precise, but nobody understands
how imprecise a specification is until they try to
explain it to a computer. And write the program.

When I was not in China—in June, the first
part of July, and September, October, November —
I spent most of my time making fonts. And I had
to, because there was no existing way to get a font
that would be the same on different equipment.
Plenty of good fonts existed, but they were designed
specifically for each manufacturer’s device. There
was no font that would go to two devices. And the
people at Xerox PARC — primarily John Warnock —
were still developing their ideas; they eventually
founded Adobe Systems about 1980 or so. Now,
with the help of many great designers, they have
many beautiful fonts. But that came later, about
two or three years after I had an urgent need for
device-independent type.

My lecture to the American Math Society was
scheduled for January 1978. The transcript of the
lecture that I gave, the Gibbs Lecture to the Society,
shows the work that I did with fonts in 1977. It was
a much longer task than I ever believed possible. I
thought it would be simple to make something that
looked good —it was maybe six years before I had
anything that I really was satisfied with.

So, the first big ideas were to get fonts that
would be machine independent and work on many
different computers, including future ones that had
not been invented, by having everything defined
in mathematics. The second idea was to try to
record the intelligence of the design. I was not
simply copying a shape, I also would specify that if
part of the shape changes, the other should change
in a logical way. My goal was to understand the

TUGboat, Volume 17 (1996), No. 4

designer’s intention, and not just copy the outcome
of the intention.

Well, T didn’t have TEX running until May
of 1978 —1 didn’t have TEX—I drew the fonts
first. For the article, “Mathematical Typography”,
my talk to the American Math Society,! I made
individual letters about 4cm high and I pasted each
one on a big sheet of paper and took a photograph
of that.

That’s a long answer. I hope I answered the
question.

Karel Horak: I have another question about this
system; it is, when you started to learn typography,
you had some knowledge before, or you started in
the process, learning more and more? Because my
experience with The TEXbook, and [that of] others
also, is that there is very much about typography.
You can learn a lot about typography, much more
than some people who are doing typesetting on
the professional level, using those windows mouse
systems. They never can learn from the books which
are supplied with those systems.

DEK: Thank you. So, what was my background
before 19777 When I was in secondary school —
like gymnasium —1I had a part-time job setting type
(so-called) on what was known as a mimeograph
machine. I’'m not sure what would be the equivalent
here. On a mimeograph you had a sort of blue
gelatinous material. The typewriter typed into it
and it made a hole. I would also use a light table,
and special pens, and try to make music or designs
on the mimeograph stencil. I had a summer job
where I would type, and then I would use my stylus
to inscribe pictures on the gel. So I knew a little
bit about typography. This was not fine printing, of
course; it was very amateurish, but at least it gave
me some idea that there was a process of printing
that I could understand. After making the stencils,
I would run the machine, and cut the paper, and so
on. I was doing this as a student.

Later, my father had a printing press in the
basement of our house, and he did work for the
schools of Milwaukee; this was to save money from
going to the professional places. He would work
for some architects that were friends of ours, to
make their specification documents. Also in the
schools, there would be a program for a concert, or
graduation ceremony, something like that, printing
tickets for football games ... he would do this in our
basement. He started with a mimeograph machine,

L Bull. (N.S.) Amer. Math. Soc. 1 (1979), pages 337-
372; republished in TgX and METAFONT: New Directions
in Typesetting, Bedford, MA: Digital Press, 1979.

359

then he upgraded to something called a VariTyper,
which was marvelous, because it had proportional
spacing —some letters were wider than others; the
fonts were terrible, but we had this machine, and I
learned how to use it.

Still later, I started writing books, The Art of
Computer Programming. So, by 1977, I had been
proofreading thousands of pages of galley proofs. I
certainly was looking at type. And you might say I
was getting ink in my blood.

But I also knew that engineers often make the
mistake of not looking at the traditions of the past.
They think that they’ll start everything over from
scratch, and I knew that that was terrible. So
actually, right during April and May of 1977, when
I was thinking about starting my sabbatical year of
typesetting, I took a trip with the Stanford Library
Associates, a group of book lovers from Stanford.
We visited places in Sacramento, California, where
people had special printing presses. We stopped at
a typographic museum, which had a page from a
Gutenberg Bible, and so on. Everywhere we went
on this tour, I looked intently at all the letters that
I saw. And I saw people’s collections of what they
felt was the finest printing.

At Stanford Library there is a wonderful col-
lection of typographic materials donated by a man
named Gunst, who spent a lifetime collecting fine
printing. As soon as I got back from the library
trip, I knew about the Gunst collection, so I spent
May and June reading the works of Goudy and Zapf
and everything I could find, back through history.
First of all, it was fascinating, it was wonderful, but
I also wanted to make sure that I could capture as
well as possible the knowledge of past generations in
computer form.

The general idea I had at that time was the
following. At the beginning, when I was young, we
had computers that could deal only with numbers.
Then we had computers that knew about numbers
and capital letters, uppercase letters. So this greatly
increased our ability to express ourselves. Even in
Volume 1 of The Art of Computer Programming
when I designed my MIX computer, I never expected
that computers could do lowercase letters. [laughter]
The Pascal language was developed approximately
1968, 1969; Pascal originally used only uppercase
letters, and parentheses, commas, digits, altogether
64 characters.

Next, in the early 1970s, we had lowercase let-
ters as well, and computers could make documents
that looked almost like a typewriter. And then along
came software like the egn system of UNIX, which
would make documents that approached printing.

360

You probably know that troff and the eqn system
for mathematics were developed at Bell Labs. This
was an extension of a program that began at MIT in
1959 or 1960, and it developed through a sequence
of about five levels of improvement, finally to egn in
1975.

So I knew that it was possible, all of a sudden,
to get better and better documents from computers,
looking almost like real books. When contemplating
TEX I said, “Oh! Now it’s time to go all the way.
Let’s not try to approach the best books, let’s march
all the way to the end —let’s do it!” So my goal was
to have a system that would make the best books
that had ever been made, except, of course, when
handmade additions of gold leaf and such things are
added. [laughter] Why not? It was time to seek
the standard for the solution to all the problems, to
obtain the very best, and not just to approach better
and better the real thing. That’s why I read all the
other works that I could, so that I would not miss
any of the ideas. While reading every book I could
find in the Gunst collection, to see what they could
tell me about typesetting and about letterforms,
I tried to say, “Well, how does that apply, how
could I teach that to a computer?” Of course, I
didn’t succeed in everything, but I tried to find the
powerful primitives that would support most of the
ideas that have grown up over hundreds of years.

Now, of course, we have many more years of
experience, so we can see how it is possible to go
through even many more subtle refinements that I
couldn’t possibly have foreseen in 1980. Well, my
project took more than one year, and I had more
than one user at the end. The subsequent evolution
is described in my paper called “The errors of TEX”,
and the complete story after 1978 is told in that
paper.?

In 1980, I was fortunate to meet many of the
world leaders in typography. They could teach me,
could fill in many of the gaps in my knowledge.
Artisans and craftsmen usually don’t write down
what they know. They just do it. And so you
can’t find everything in books; I had to learn from a
different kind of people. And with respect to type,
the interesting thing is that there were two levels:
There was the type designer, who would draw, and
then there was the punchcutter, who would cut the
punches. And the type designer would sometimes
write a book, but the punchcutter would not write
a book. I learned about optical illusions— what our

% Software — Practice and Ezperience 19 (1989), pages
607—681. Reprinted with additional material in Literate
Programming (CSLI Publications, Stanford, 1992, and Cam-
bridge University Press), pages 243-339.

TUGboat, Volume 17 (1996), No. 4

eye thinks is there is not what’s really on the page.
And so the punchcutter would not actually follow
the drawings perfectly, but the punchcutter would
distort the drawings in such a way that after the
printing process was done and after you looked at
the letter at the right size, what you saw was what
the designer drew. But the punchcutter knew the
tricks of making the right distortions.

Some of these tricks are not necessary any more
on our laser printers. Some of them were only for the
old kind of type. But other tricks were important,
to avoid blots of ink on the page and things like
that. After I had done my first work on METAFONT,
I brought Richard Southall to Stanford; he had
been working at Reading University with the people
who essentially are the punchcutters. He gave me
the extra knowledge that I needed to know. For
example, when stems are supposed to look exactly
the same, some of them are a little bit thinner, like
the inside of a ‘p’—you don’t want it to be quite as
thick, you want it to be a little thinner; then, after
you have the rest of the letter there, the lightened
stem will look like it was correct. Richard taught
me that kind of requirement. I learned similar
things from Matthew Carter, Hermann Zapf, Chuck
Bigelow, Gerard Unger, and others.

But we had very primitive equipment in those
days, so that the fonts that we could actually gener-
ate at low resolution did not look professional. They
were just cheap approximations of the fine type.
Stanford could not afford an expensive typesetting
machine that would realize our designs at the time.
Now I'm so happy that we have machines like the
LaserJet 4, which make my type look the way I
always wanted it to look, on an inexpensive machine.

?7: Now that PostScript is becoming so widely used,
do you think it is a good replacement for META-
FONT —I mean, good enough? Right now, we can
use TEX and PostScript ...

DEK: The question is, is PostScript a good enough
replacement for METAFONT?

I believe that the available PostScript fonts are
quite excellent quality, even though they don’t use
all of the refinements in METAFONT. They capture
the artwork of top-quality designs. The multiple
master fonts have only two or three parameters,
while Computer Modern has more than sixty pa-
rameters; even with only two or three it’s still quite
good. The Myriad and Minion fonts are excellent.

I'm working now with people at Adobe, so
that we can more easily substitute their multiple
master fonts for the fonts of public-domain TEX
documents. The goal is to make the PDF files

TUGboat, Volume 17 (1996), No. 4

smaller. The Acrobat system has PDF files which
are much larger —they’re ten times as big as dvi
files, but if you didn’t have to download the fonts,
they would only be three times as large as the dvi
files. PDF formats allow us search commands and
quite good electronic documents. So I'm trying to
make it easier to substitute the multiple master
fonts. They still aren’t quite general enough. I
certainly like the quality there.

Adobe’s font artists, like Carol Twombly and
Robert Slimbach, are great; I was just an amateur.
My designs as they now appear are good enough for
me to use in my own books without embarrassment,
but I wouldn’t mind using the other ones. Yes, I like
very much the fonts that other designers are doing.

Asking an artist to become enough of a math-
ematician to understand how to write a font with
60 parameters is too much. Computer scientists un-
derstand parameters, the rest of the world doesn’t.
Most people didn’t even know the word ‘param-
eters’ until five years ago—it’s still a mysterious
word. To a computer person, the most natural thing
when you’re automating something is to try to show
how you would change your program according to
different specifications. But this is not a natural
concept to most people. Most people like to work
from a given set of specifications and then answer
that design problem. They don’t want to give an
answer to all possible design specifications that they
might be given and explain how they would vary
their solution to each specification. To a computer
scientist, on the other hand, it’s easy to understand
this kind of correspondence between variation of
parameters and variation of programs.

In the back?

Lida Lhotka: I have a problem for you. [question
about structured programming]

DEK: I was talking with Tony Hoare, who was
editor of a series of books for Oxford University
Press. I had a discussion with him in approximately
. 1980; I'm trying to remember the exact time,
maybe 1979, yes, 1979, perhaps when I visited
Newcastle? I don’t recall exactly the date now. He
said to me that I should publish my program for
TgX.?
As I was writing TEX I was using for the second
time in my life ideas called “structured program-
ming”, which were revolutionizing the way computer

3 “T looked up the record when I returned home and
found that my memory was gravely flawed. Hoare had heard
rumors about my work and he wrote to Stanford suggesting
that I keep publication in mind. I replied to his letter on
16 November 1977 —much earlier than I remembered.” -
D. Knuth

361

programming was done in the middle 70s. I was
teaching classes and I was aware that people were
using structured programming, but I hadn’t written
a large computer program since 1971. In 1976 I
wrote my first structured program; it was fairly
good sized —maybe, I don’t know, 50,000 lines of
code, something like that. (That’s another story I
can tell you about sometime.) This gave me some
experience with writing a program that was fairly
easy to read. Then when I started writing TEX in
this period (I began the implementation of TEX in
October of 1977, and I finished it in May 78), it
was consciously done with structured programming
ideas.

Professor Hoare was looking for examples of
fairly good-sized programs that people could read.
Well, this was frightening. This was a very scary
thing, for a professor of computer science to show
someone a large program. At best, a professor
might publish very small routines as examples of
how to write a program. And we could polish
those until ... well, every example in the literature
about such programs had bugs in it. Tony Hoare
was a great pioneer for proving the correctness of
programs. But if you looked at the details ... I
discovered from reading some of the articles, you
know, I could find three bugs in a program that
was proved correct. [laughter] These were small
programs. Now, he says, take my large program
and reveal it to the world, with all its compromises.
Of course, I developed TEX so that it would try to
continue a history of hundreds of years of different
ideas. There had to be compromises. So I was
frightened with the idea that I would actually be
expected to show someone my program. But then I
also realized how much need there was for examples
of good-sized programs, that could be considered as
reasonable models, not just small programs.

I had learned from a Belgian man (I had met
him a few years earlier, someone from Liége), and he
had a system —it’s explained in my paper on literate
programming.? He sent me a report, which was 150
pages long, about his system —it was inspired by
“The spirit in the machine”. His 150-page report
was very philosophical for the first 99 pages, and
on page 100 he started with an example. That
example was the key to me for this idea of thinking
of a program as hypertext, as we would now say
it. He proposed a way of taking a complicated
program and breaking it into small parts. Then,
to understand the complicated whole, what you

4 Pierre Arnoul de Marneffe, Holon Programming. Univ.
de Ligge, Service d’Informatique (December, 1973).

362

needed is just to understand the small parts, and
to understand the relationship between those parts
and their neighbors.

In February of 1979, I developed a system called
DOC and UNDOC ... something like the WEB system
that came later. DOC was like WEAVE and UNDOC
was like TANGLE, essentially. I played with DOC
and UNDOC and did a mock-up with a small part of
TEX. I didn’t use DOC for my own implementation
but I took the inner part called getchar, which is a
fairly complicated part of TEX’s input routine, and
I converted it to DOC. This gave me a little 20-page
program that would show the getchar part of TEX
written in DOC. And I showed that to Tony Hoare
and to several other people, especially Luis Trabb
Pardo, and got some feedback from them on the
ideas and the format.

Then we had a student at Stanford whose name
was Zabala—actually he’s from Spain and he has
two names— but we call him Inaki; Ignacio is his
name. He took the entire TEX that I’d written
in a language called SAIL (Stanford Artificial In-
telligence Language), and he converted it to Pascal
in this DOC format. TEX-in-Pascal was distributed
around the world by 1981, I think. Then in 1982 or
1981, when I was writing TEX82, I was able to use his
experience and all the feedback he had from users,
and I made the system that became WEB. There was
a period of two weeks when we were trying different
names for DOC and UNDOC, and the winners were
TANGLE and WEAVE. At that time, we had about 25
people in our group that would meet every Friday.
And we would play around with a whole bunch of
ideas and this was the reason for most of the success
of TEX and METAFONT.

Another program I wrote at this time was called
Blaise, because it was a preprocessor to Pascal.
[laughter]

Petr Olsak: I have two questions.

What is your opinion of ATEX, as an extension
of TEX at the macro level? I think that TEX was
made for the plain TEX philosophy, which means
that the user has read the The TEXbook ... [laugh-
ter] while I*TEX is done with macros, and takes plain
TEX as its base. And the second question: Why is
TEX not widely implemented and used in commer-
cial places. They use only mouse and WYSIWYG-
oriented programs.

DEK: The first question was, what do I think about
ITEX?

I always wanted to have many different macro
packages oriented to different classes of users, and
IATEX is certainly the finest example of these macro

TUGboat, Volume 17 (1996), No. 4

packages. There were many others in the early days.
But Leslie Lamport had the greatest vision as to
how to do this. There’s also ApMS-TEX, and the
mathematicians used Max Diaz’s macros—1I think
it might have been called MaxTEX or something—
in the early days before we had I*TEX. Mike Spivak
and Leslie Lamport provided very important feed-
back to me on how I could improve TEX to support
such packages. Ididn’t want to ... Ilike the idea of a
macro system that can adapt to special applications.
I myself don’t use *'TEX because I don’t have time to
read the manual. [laughter] P TEX has more features
than I need myself, in the way I do things. Also, of
course, I understand TEX well enough that it’s easier
for me not to use high-level constructions beyond my
control.

But for many people it’s a simpler system, and
it automates many of the things that people feel
naturally ought to be automated. For me, the things
that it automates are largely things that I consider
are a small percentage of my total work. It doesn’t
bother me that I hand tune my bibliography, but it
bothers other people a lot. I can understand why a
lot of people prefer their way of working.

Also, when you’re writing in a system like IWTEX
you can more easily follow a discipline that makes it
possible for other programs to find the structure of
your document. If you work in plain TEX, you can
be completely unstructured in your approach and
you can defeat any possible process that would try
to automatically extract bibliographic entries and
such things from your document. If you restrict
yourself to some kind of a basic structure, then other
processes become possible. So that’s quite valuable.
It allows translation into other structures, languages
and so on.

But I use TEX for so many different purposes
where it would be much harder to provide canned
routines. IATEX is at a higher level; it’s not easy to
bend it to brand-new applications. Very often I find
that, for the kind of things that I want to do, I wake
up in the morning and I think of a project ... or
my wife comes to me and says, “Don, can you make
the following for me?” So I create ten lines of TEX
macros and all of a sudden I have a new language
specifically for that kind of a document. A lot of my
electronic documents don’t look like they have any
markup whatsoever.

Now, your second question, why isn’t TEX used
more in commercial publication? In fact, I was quite
pleasantly surprised to see how many commercial
publishers in the Czech Republic are using TgX.
Thursday night, I saw three or four Czech-English
dictionaries that were done with TEX, and you know

TUGboat, Volume 17 (1996), No. 4

it’s being used for the new Czech encyclopedia. And
Petr Sojka showed me an avant garde novel that had
been typeset with TEX with some nice tricks of its
own very innovative page layout. In America, it’s
used heavily in legal publications, and behind the
scenes in lots of large projects.

I never intended to have a system that would be
universal and used by everybody. I always wanted to
write a system that would be used for just the finest
books. [laughter| Just the ones where the people had
a more difficult than ordinary task, or they wanted
to go the extra mile to have excellent typography. I
never expected that it would compete with systems
that are for the masses.

I’m not a competitive person, in fact. It made
me very happy to think that I was making a system
that would be primarily for mathematics. As far as I
knew, there wasn’t anybody in the world who would
feel offended if I made it easier to typeset mathemat-
ics. Printers considered this to be “penalty copy”,
and it was something that they did only grudgingly.
They charged a penalty for doing this extra horrible
work, to do mathematics. I never expected that
I would be replacing systems that are used in a
newspaper office or anything like that. It turned
out that after I got going, we found we could make
improvements ... in one experiment we re-typeset
two pages of Time magazine, to show how much
better it would be if they had a good line-breaking
algorithm. But I never expected when I began that
such magazines would ever use what I was doing
because, well, it was a billion-dollar industry and I
didn’t want to put anyone out of work or anything.

So it was very disturbing to me in the early 80s
when I found there was one man who was very un-
happy that I invented TEX, because he had worked
hard to develop a mathematical typesetting system
that he was selling to people, and he was losing
customers. So he wrote to the National Science
Foundation in America, saying, “I'm a taxpayer
and you’re using my tax money to put me out of
business.” This made me very unhappy. I thought
everything I was doing was for everybody’s good.
And here was a person I'd obviously hurt. But I
also thought that I still should make TEX available
to everyone, even though it had been developed with
some help from the government. I don’t think the
government should give money only to things that
are purely academic and not useful.

Yes?

?: T have a question about the usage of your ty-
pographic programs in commercial institutions like
DTP studios and so on. I’d like to ask about using

363

parts of the TEX source. You made clear that the
programmers were free to incorporate parts of the
TEX source into their own programs. There are some
remarkable examples of this, do you know.

DEK: That question came up also last summer
when I had a question and answer session at the
TUG meeting in Florida.® I thought it would be
fairly common to have special versions of TEX. I
designed TEX so that it has many hooks inside; you
can write extensions and then have a much more
powerful TEX system readily adapted.

I guess I was thinking that every publishing
house using TEX would have an in-house program-
mer who would develop a special version of TEX if
they wanted to do an edition of the Bible, if they
wanted to do an Arabic-to-Chinese dictionary or
something. If they were doing an encyclopedia, they
could have their own version of TEX that would be
used for this application.

A macro language is Turing-complete—it can
do anything—but it’s certainly silly to try to do
everything in a high-level language when it’s so easy
to do it at the lower level. Therefore I built in
hooks to TEX and I implemented parts of TEX as
demonstrations of these hooks, so that a person
who read the code could see how to extend TEX
to other things. We anticipated certain kinds of
things for chemistry or for making changebars that
would be done in the machine language for special
applications.

Certainly, if I were a publishing house, if I
were in the publishing business myself, I would have
probably had ten different versions of TEX by now
for ten different complicated projects that had come
in. They would all look almost the same as TEX,
but no one else would have this program —they
wouldn’t need it, they’re not doing exactly the book
that my publishing house was doing.

That was what I thought would occur. And
certainly, there was a point in the middle 80s when
there were more than a thousand people in the
world that knew the TEX program, that knew the
intricacies of the TEX program quite well. They had
read it, and they would have been able to make any
of these extensions if they wanted. Now I would say
that the number of people with a working knowledge
of TEX’s innards is probably less than a thousand,
more than a hundred. It hasn’t developed to the
extent that I expected.

One of the most extensive such revisions is
what I saw earlier this week in Brno—a student

5 TUGboat 17(1) (1996), pages 7-22.

364

whose name is Thanh,® I think, who has a system
almost done that outputs PDF format instead of
dvi format. If you specify a certain flag saying
\PDFon, then the output actually comes out as a
file that an Acrobat reader can immediately read.
I also expected that people would go directly to
PostScript; that hasn’t happened yet as far as I
know.

No one has done a special edition of the Bible
using TEX in the way I expected. There were some
extensions in Iceland; I don’t remember if they did
it at the higher level —1I think they did it mostly at
the macro level, or maybe entirely.

Anyway, I made it possible to do very compli-
cated things. When you have a special application, I
was always expecting that you would want to have a
specially tuned program there because that’s where
it’s easiest to do these powerful things.

?: I want to ask which features of TEX were in the
first version—for example, line-breaking, hyphen-
ation, and macro processing—if all these things
were in the first version?

DEK: The very first version was designed in April
1977. I did have macros and the algorithm for line-
breaking. It wasn’t as well developed; I didn’t have
all the bells and whistles like \parshape at that
time, but from the very beginning, from 1977 on,
I knew I would treat the paragraph as a whole, not
just line by line. The hyphenation algorithm I had
in those days was not the one that we use now;
it was based on removing prefixes and suffixes —it
was a very peculiar method, but it seemed to catch
about 80% of the hyphens. I worked on that just
by looking at the dictionary: I would say, the word
starts with “anti”, then put a hyphen after the “i”;
and similarly at the end of the word. Or if you have
a certain combination of letters in between, in the
middle, there were natural breaks. I liked this better
than the troff method, which had been published.
The hyphenation algorithm is described in the old
TEX manual, which you can find in libraries.”

Now, you said the line-breaking, hyphenation,
macros, ... I developed the macro language in
the following way. I took a look at Volume 2 of
The Art of Computer Programming and I chose
representative parts of it. I made a mock-up of
about five pages of that book, and said, “How would
I like that to look in a computer file?” And that was
the whole source of the design.

8 Han The Thanh; see Petr Sojka, Han The Thanh and
Jifi Zlatuska, “The Joy of TEX2PDF — Acrobatics with an
alternative to DVI format”, TUGboat 17(2) (1996).

7 TEX and METAFONT: New Directions in Typesetting
(cited in footnote 1).

TUGboat, Volume 17 (1996), No. 4

I stayed up late one night and created TEX.
I went through Volume 2 and fantasized about
natural-looking instructions— here I'll say “back-
slash algorithm”, and then I'll say “algorithmi”, and
then I'll say “algstep”, you know. This gave me a
little file that represented the way I wanted the input
to look for The Art of Computer Programming. The
file also included some mathematical formulas. It
was based on the idea of egn; the troff language
had shown me a way to represent mathematics that
secretaries could learn easily. And that was the
design. Then I had to implement a macro language
to support those features.

The macro language developed during 1978,
primarily with the influence of Terry Winograd.
Terry was writing a book on linguistics, a book on
English grammar. He wanted to push macros much
harder than I did, and so I added \xdef and fancier
parameters for him.

The hyphenation algorithm we have now was
Frank Liang’s Ph.D. research. He worked with
me on the original hyphenation method, and his
experience led him to discover a much better way,
which can adapt to all languages—1I mean, to all
western languages, which are the ones that use
hyphens.

As far as the spacing in mathematics is con-
cerned, I chose three standards of excellence of
mathematical typesetting. One was Addison-Wes-
ley books, in particular The Art of Computer Pro-
gramming. The people at Addison-Wesley, espe-
cially Hans Wolf, their main compositor, had de-
veloped a style that I had always liked best in my
textbooks in college. Secondly, I took Acta Mathe-
matica, from 1910 approximately; this was a journal
in Sweden ... Mittag-Lefller was the editor, and his
wife was very rich, and they had the highest budget
for making quality mathematics printing. So the ty-
pography was especially good in Acta Mathematica.
And the third source was a copy of Indagationes,
the Dutch journal. There’s a long fine tradition of
quality printing in the Netherlands, and I selected
an issue from 1950 or thereabouts, where again I
thought that the mathematics was particularly well
done.

I took these three sources of excellence and I
looked at all the mathematics formulas closely. I
measured them, using the TV cameras at Stanford,
to find out how far they dropped the subscripts
and raised the superscripts, what styles of type they
used, how they balanced fractions, and everything.
I made detailed measurements, and I asked myself,
“What is the smallest number of rules that I need
to do what they were doing?” I learned that I could

TUGboat, Volume 17 (1996), No. 4

boil it down into a recursive construction that uses
only seven types of objects in the formulas.

I’m glad to say that three years ago, Acta
Mathematica adopted TEX. And so the circle has
closed. Addison-Wesley has certainly adopted TEX,
and I’'m not sure about the Dutch yet —I'm going
to visit them next week. [laughter] But anyway, I
hope to continue the good old traditions of quality.

I have to call on people who haven’t spoken.
George. . .

Jifi Vesely: Ihave a question. You are asked every
time carefully regarding all suggestions and things
like that for improvements. Once I was asked about
the possibility to make a list of all hyphenated words
in the book. I was not able to find in your book
a way to do this. I would like to know something
about your philosophy what to include and what not
to include. What would be in that special package,
and what would be in TEX?

DEK: The question is, what is the philosophy that
I use to try to say what should be a basic part of
TEX and what should be harder to do or special,
or something like that. Of course, these decisions
are all arbitrary. I think it was important, though,
that the decisions were all made by one person, even
though I’'m not ... I certainly make a lot of mistakes.
I tried the best to get input from many sources,
but finally I take central responsibility to keep some
unity. Whenever you have a committee of people
designing a system, everyone in the committee has
to feel proud that they have contributed something
to the final language. But then you have a much
less unified result because it reflects certain things
that were there to please each person. I wanted to
please as many people as I could but keep unity. So
for many years we had a weekly meeting for about
two hours every Friday noon, and we had visitors
from all over the world who would drop in. We
would hear their comments and then we would try
to incorporate the ideas that we heard during that
time.

Now you ask specifically about why don’t we
have an easy way to list all the hyphenations that
were made in the document. It sounds like a very
nice suggestion, which I don’t recall anyone raising
during those weekly meetings. The words that
actually get hyphenated, the decision to do that is
made during the Apack routine, which is part of
the line-breaking algorithm. But the fact that a
hyphenation is performed by hpack doesn’t mean
that it’s going to appear in the final document,
because you could discard the box in which this
hyphenation was done.

365

It’s very easy in TEX to typeset something sev-
eral times and then choose only one of those for the
actual output. So, to get a definitive representative
of the hyphenation, you’d have to catch it in the out-
put routine, where the discretionary had appeared.
This would be easy to do now in a module specially
written for TEX. I would say that right now, in
fact, you could get almost exactly what you want
by writing a filter that says to TEX “Turn on all of
the tracing options that cause it to print, to give the
page contents.” Then a little filter program would
take the trace information through a UNIX pipe and
it would give you the hyphenated words. It would
take an afternoon to write this program, maybe two
afternoons ... and a morning. [laughter] You could
get that now, but it was not something that I can
recall I ever debated whether or not I should do at
the time we were having these weekly discussions on
TEX.
My paper on “The errors of TEX” has the
complete record of all the changes that were made
since 1979, with dates, and with references to the
code, exactly where each change appears. And so
you can see the way the evolution was taking place.
Often the changes would occur as I was writing
The TgXbook and realizing that some things were
very hard for me to explain. I would change the
language so it would be easier to explain how to use
it. This was when we were having our most extensive
meeting with users and other people in the group
as sources of ideas; the part of the language I was
writing about was the part that was changing at the
moment.

During 1978, I myself was typesetting Vol-
ume 2, and this led naturally to improvements as
I was doing the keyboarding. In fact, improvements
occurred almost at a steady rate for about 500 pages:
Every four pages I would get another idea how to
make TEX a little better. But the number of ways
to improve any complicated system is endless, and
it’s axiomatic that you never have a system that
cannot be improved. So finally, I knew that the
best thing I could do would be to make no more
improvements — this would be better than a system
that was improving all the time.

In fact, let me explain. As I was first developing
TEX at the Stanford Artificial Intelligence Labora-
tory, we had an operating system called WAITS,
which I think is the best that the world has ever
seen. Four system programmers were working full
time making improvements to this operating system.
And every day that operating system was getting
better and better. And every day it was breaking
down and unusable.

366

In fact I wrote the first draft of The TEXbook
entirely during downtime. I would take my tablet
of paper to the Artificial Intelligence Laboratory in
the morning and I would compute as long as I could.
Then the machine would crash, and I would write
another chapter. Then the machine would come up
and I could type a little bit and get a little more
done. Then, another hang up; time to write another
chapter. Our operating system was always getting
better, but I couldn’t get much computing done.

Then the money ran out; three of the program-
mers went to Lawrence Livermore Laboratory and
worked on a new operating system there. We had
only one man left to maintain the system, not to
make any more improvements. And it was won-
derful! [laughter] That year, I could be about as
productive as anyone in the world.

So I knew that eventually I would have to get
to the point where TEX would not anymore improve.
It would be steady and reliable, and people would
understand the warts it had ... the things that it
doesn’t do.

I still believe it’s best to have a system that
is not a moving target. After a certain point, we
need something that is stable, not changing at all.
Of course, if there’s some catastrophic scenario that
we don’t want ever to happen, I still change TEX
to avoid potential disasters. But I don’t put in nice
ideas any more.

Of course, there are other people working on
extensions to TEX that will be useful for another
generation. And they will also be well advised at
a certain point to say “Now we will stop, and not
change our system any more.” Then there will be a
chance for another group later.

Karel Horak: I'd like to ask about the idea of
the italic font in mathematics. I never saw other
textbooks that use different fonts for italics in text
and in mathematics, so I’'m asking if it’s your own
idea or if it comes also from these three sources?

DEK: That’s right. I didn’t find in any of the other
books the idea of having a text italic and a math
italic. I wanted the math italic to look as beautiful
as possible, and I started with that. But then I
found that the text italic was not as good, so I had
METAFONT and it was easy to get text italic that
would look better. If I made the text italic good,
then the math would not position the subscripts and
the superscripts as well.

It’s partly because of what I explained before —
TEX has only four numbers to go with every char-
acter. Printers, in fact, in the old days, had only
three numbers; they didn’t have the italic correction.

TUGboat, Volume 17 (1996), No. 4

So they couldn’t do even that much automatically;
the better printers adjusted mathematical spacing
by hand. But italic now, the italic fonts of today
by all the font designers are much better than they
used to be. We’ve seen a great improvement in italic
typography during the last ten, fifteen years. In fact,
if you read older books you’ll sometimes say, “How
could anybody read this italic?”, or “Why did they
accept such peculiar spacing?”, but it was based
on the constraints of metal type. The whole idea
of italic correction was not in any other book, but
it was necessary for me to get the spacing that I
wanted.

When I showed type designers mathematical
formulas, they could never understand why math-
ematicians want italic type in their formulas. It
seems you’re combining a roman 2 with an italic
z. And they said, “Wouldn’t the positioning be
so much simpler if you had a regular, non-sloped
font in mathematics?” And I think it was Jan van
Krimpen, who worked with a Nobel Prize physi-
cist in the Netherlands, in Haarlem — what was his
name?® I think he was the second person to receive
the Nobel Prize in physics; he died in the 20s—
anyway he and van Krimpen were going to develop a
new font for mathematics in the Netherlands, and it
wasn’t going to have italics for mathematics. It was
going to be unified between the Greek letters and
other symbols that mathematicians wanted. But
the project stopped because the physicist died; van
Krimpen finished only the Greek, which became
fairly well used.

Several other font designers have visited Stan-
ford. When they looked at mathematics, they
said, “Well, why don’t you use a non-sloping font?”
Hermann Zapf made a proposal to the American
Mathematical Society that we would create a new
typeface for mathematics which would include the
Fraktur alphabet, and Greek, and script, and special
characters, as well as ordinary letters. One key idea
was that it would not have sloped characters, so that
x would be somehow straight up and down. Then it
should be easier to do the positioning, the balancing.
Hermann created a series of designs, and we had
a large committee of mathematicians studying the
designs and commenting on them and tuning them.

This font, however, proved to be too radical a
change for mathematicians. I’ve seen mathemati-
cians actually writing their documents where they
will write an z slanted twice as much —I mean, they
make it look very italic; it looks like a mathematical

8 It was H.A. Lorentz. See John Dreyfus, The Work of
Jan van Krimpen (London: Sylvan Press, Museum House,
1952), page 28.

TUGboat, Volume 17 (1996), No. 4

letter to them. So after 300 years of seeing italic
math in print, it’s something that we feel is right.
There are maybe two dozen books printed, well,
maybe more, maybe a hundred, printed with the
AMS Euler font, but most mathematicians think it’s
too different.

I find now that the Euler Fraktur font is used by
almost everyone. In Brno, I saw Euler Roman used
as a text font for a beautiful book, a translation
of Durer’s Apocalyse in Czech. I also saw it a few
days ago in some class notes. Once, when I was in
Norway, I noticed that everyone’s workstation was
labeled with the workstation’s name in AMS Euler,
because people liked it. It’s a beautiful font, but it
hasn’t been used as the typeface for mathematics in
a large number of books.

Karel Horak: If there are no other questions, I
would thank Professor Knuth very much for this
session. [wide prolonged applause]

DEK: Thank you all for excellent questions.

Karel Hordk: [Closing comments in Czech.]

367

