
| 15780240

AT&T Bell Laboratories Document Cover Sheet
for Technical Memorandum

Titles Crabs: the bitmap terror

Author Location Ext. Dept.

Luca Cardelli MH 20-458 5707 11271

Document No. Filing Case No. Work Project No.

11271-850701-10TMS 39199-11 311403-0101

Abstract

Crabs is a graphic demo which violates most of the assumptions underlying well-structured
window systems. It illustrates both the raw power of bitmap graphics and the restrictions which are
usually imposed on its usage.

Pages of Text 23 Other Pages 2 Total 25
No. Figs. O No. Tables 0 No. Refs. 2 hoe are h ba

AT&T B) — PROPRIETARY
. U vant : .

MCSL. (11/05/84)

Initial Distribution Specifications 11271-880701-10TMS (page ii of ii)

Complete Copy Cover Sheet Only

Executive Directors 112 A. A. Penzias

Directors 112 1127 MTS

Department Heads 1127 R. B. Ardis

MTS 11271

Cl-ll Review
This document does not contain any of the types of information listed below and, in accordance with Ci-l!, may be

furnished to AT&T-IS.

Netwerk information « Unpublished Information related io the existing operation of or committed changes to Intercertler connection or the connection andior opere-

tion of customer premises equipment with ATAT Communications network(s) by meens of which requiefed carrier services are Lumnished.

Proprietary information of Telecommunications Customers - Unpublished information acquired from biling or message cetel records that Is related to telecommunt
cations service provided by AT&T Communications to specifically identified customers and that finds e principe! use in marketing (9.9. information describing the

kinds and quantities of lelecommunications service provided to an identified customer or information describing treffic end usage patterns of an identified customer).

Nongeneric Software for Customer Premises Equipment (CPE) or Enhanced Services + Any software that le of use by Systema in CPE products or

enhanced services and that la not generic sofware. k

A. G. Fraser Director

Author Signature.

beg Co ef AAS

Luca Cardelli

For Use by Recipient of Cover Sheet: |

Computing network users may order copies vie the sbrary command; . intemal Technical Document Service
for information, type “men library” after logon. .
Otherwies: . () AK 2N-62 () 4 7K-101

() ALC 18-1028 () MV 10-40
1 Enter PAN W AT&T-BL (or SS¢ ff non-ATET-BL). () C8 1-338 () AD 200-218
2 Fold thie eheet in hail with this side oul. {} HO 4F112 () WH 3E-204
3 Check the address of your local Intemal Technical Document Service
eee ee ee or cman comy ws deenea. Please send a complete O microfiche O paper copy of thie docurent to

Indicate whether microfiche or paper copy is desired. the eddress shown on the other side.

me ee 82 i ee en ee i ee cs ge eS em +e 0: -~': nea

___ _ ei . 2

=
SS AT aT satories

AT&T BELL LABORATORIES — PROPRIETARY
Use oursuant to G.E.!. 2.2

Subject: Crabs: the bitmap terror date: July 1, 1985
Work Program-~ 311403-0101 -- File- 39199-11

from: Luca Cardelli

T™: 11271-850701-10TMS

TECHNICAL MEMORANDUM

Laws and violations
A bitmap screen is a graphic universe where windows, cursors and icons live in harmony,

cooperating with each other to achieve functionality and esthetics. A lot of effort goes into making
this universe consistent, the basic law being that every window is a self contained, protected world.
In particular: (1) A window shall not be affected by the internal activities of another window. (2) A
window shall not be affected by activities of the window system not concerning it directly, 1.e (2.1)
it shall not notice being obscured (partially or totally) by other windows or obscuring (partially or
totally) other windows, (2.2) it shall not see the image of the cursor sliding on its surface (it can
only ask for its position). |

. Of course it is difficult to resist the temptation to break these rules. Violations can be
.> destructive or non-destructive, useful or pointless. Useful non-destructive violations include

programs printing out an image of the screen, or magnifying part of the screen in a /ens window.
Useful destructive violations are represented by the pen program, which allows one to scribble on
the screen. Pointless non-destructive violations include a magnet program, where a moving picture
of a magnet attracts the cursor, so that one has to continuously pull away from it to keep working.
The first pointless, destructive program we wrote was crabs.

History
The history of crabs is presented here with dates, times and people. Not that we kept notes, of

course. The dates and times were reconstructed months later by looking at the creation date of files,
and by what we could remember.

Prologue: Peek

Crabs was written by Mark Manasse and me in November 1982, and evolved in about two
days to its present form. The basic principles of law-violation were investigated a few months .
earlier (August 5, 1982) when Bart Locanthi brought in a Smailtalk videotape. It featured, among

other things, a peek demo. This is a program which looks at a rectangular portion of the screen

(controlled by moving the cursor around) and replicates it in its own screen space in real time.
Beautiful self-referential effects are obtained when this window peeks at itself, or part of itself.

This is a digital version of a video-camera looking at its own tv screen.

Copying data from another window, as peek does, can already be considered a violation of the

rules. But what peek does is even worse because, for a given window, peek will only copy that

part of the window which is visible on the screen (i.e. not obscured by other windows). This

cannot be done by asking a window to access its data: a window is not aware of what parts are
visible. This is stealing data directly from the screen. A well-structured graphics interface will not

allow this, and one has to use low-level routines which are not meant to be used by normal

people. Needless to say, Bart and Mark rushed to implement it.

1

Step 1: QIX

November 16, 1982, dinner time. Mark wanted to implement the QIX video game for our Blit
terminals [AT&T 85] (knowledge of QIX is assumed here). A QIX screen can get very
complicated, and there are complex rules about how things are allowed to move. Mark started
figuring out clever data structures and algorithms to compute fast line operations. After a while I
said, "Wait a second. Atari is selling arcade QIX machines and there is no way they can have
enough memory to run those algorithms. How are they doing it?" After some thinking: "I bet they
don't keep line segments in data structures, but they draw lines on a bitmap and (gosh!) they just
look at what is in the bitmap to determine line intersections. Gee, this is awful." Although this was
repulsive to our trained algorithmic minds, that was the germ of the crabs collision-detection trick.
We never implemented QIX.

Step 2: Measles
November 16, later. After a while Mark was convinced and we started implementing. We

decided to start with a single QIX (i.e. a single line with two bouncing dots at the ends) for
simplicity, and to use window boundaries to test the line intersection trick. Mark started dictating
code and I typed it down. This was still a bit too hard, so we simplified it further: forget the QIX,
let's just have little balls floating in the grey area between windows and bouncing against window
borders. We would look at the raw screen bits to determine where a window border was (is there
grey there?). Mark kept dictating, and after a while it was working. It was just about one page of
code. Mark called this measles; we had a lot of measles bouncing around the screen. They were
also bouncing off each other for free because they would see non-grey and change direction. This
was very cheap and convenient: normally one would have to test the position of every measle
against the position of every other measle to determine whether there 1s a collision.

Step 3: Angry Measles
November 17, very early. Now a problem came up. We.have all these measles bouncing

around, and you create a new window and slap it on top of them. Suddenly those poor trapped
measles have nowhere to go, no grey area to run to. They are frozen, paralyzed with terror, and
buried underneath a window. Mark didn't like that at all, and came up with the concept of angry
measles. When a measle gets buried underneath a window, it starts flashing so that it is visible
through the window, as if saying "Hey, get that window off me”. It turns out that little flashing
things are very annoying to the human eye, and you would take the window away just to shut them
up: At this point, tired and satisfied, we went to sleep.

Step 4: Hungry Measles —
November 17, late morning. I slept a lot less then Mark did. When I came in, | started showing

measles to people. They thought it was cute stuff. Some objected to the flashing measles solution.
We had considered many alternatives the night before, and I wasn't totally satisfied with that
solution either. Dave MacQueen said something like "they should eat their way out." I thought that
was a possibility, only sillier than most. After he left, however, that idea kept coming back. I went
to look at the code (as I said, Mark did the dictating because he was more familiar with Blits then I
was), and discovered that I could implement Dave's suggestion by changing a single line of code.
That seemed to be easy enough, so I did it. When a measle was confronted with a non-gray area, it
would change a little bit of that area to grey. Trapped measles could then build up grey regions and
eventually escape. :

The new version, hungry measles, had quite a different character. It wasn't cute, it was

awesome. Those little balls would eat away your windows. If trapped, they would escape, leaving

you wounded. There was no protection against them. You could set up barricades of windows to

protect a part of the screen you wanted to work in, and they would erode them. They would

infiltrate along the borders of the screen, where you are not allowed to put windows. You couldn't

keep them all under control: they were too many, too quick. You couldn't get distracted.

Step 5: Crabs
November 17, afternoon. I went up to the unix room and started the program on a terminal.

People gathered, and several expressions of disgust were heard. Jim Weythman said "they look
like crabs!”.

Everybody knew instantly that that was the right name for it. I went back to my room and
designed the basic crab icon. Mark came back. With his help, we prepared the crab icon so that it
would look nice on a grey background. We made it so that crabs would move sidewise, and would
turn around according to their prevalent direction. Crab legs would appear to move, because of an
unexpected optical interaction with the grey background. We made the crabs window self-destruct
so that there was no way of stopping crabs, short of rebooting the terminal. Finally, we allowed the

crabs to see the image of the cursor on the screen, so that you could use the cursor to poke them
(they would bite it, but the cursor regenerates). We showed it to Rob Pike again. He said "That's
it, don't touch it any more”.

Impact
In the next few days, unaware people were exposed to crabs in the comfort of their own

terminal ("Let me show you something..."). The question would always come up: "How do you
stop them?" "You can't" "Yes, but how do you stop them?" Crabs could be downloaded remotely,
on somebody else's terminal, while he was working. They could be left dormant (Rob's idea)
during the lunch hour, to suddenly come up in the middle of the afternoon. They could be timed to
start in the middle of an important demonstration. Once, Rob got them to eat (irrecoverably) part of
a picture an artist was drawing on a Blit. The artist was offended, not by the damage picture, but by
such inexplicable violation of what she considered to be laws of nature. Very soon, nobody could
pass by Bell Labs without being exposed to crabs.

Programs were written to fight crabs on their own grounds. The idea was to run a program
which would neutralize the crabs and allow you to keep working, without rebooting the terminal.
Those program were either unsuccessful, or partially neutralized the crabs but made the Blit
practically unusable. One day we got a program in the mail, called squishcrabs. It would poke the
process table looking for a process which looked like crabs, and kill it. On top of that it would
squish every crab on the screen to a black blob. That was cheating, but it worked. However,
squishcrabs was too dependent on the process and program structure, and stopped working in later
versions of the system.

In the following months Mark and I wrote many crab-like programs. Although interesting in
their own way, none came close to the appeal crabs have. The best use we have for them is to make
them fight overnight against crabs for screen territory, and watch the result in the morning. Crabs
are still undefeated; they either wipe out the opposition, or come to a stable situation with crabs in
one region of the screen and opponents in the other.

Crab Rules
1. Crabs live on grey screen areas.

2. On grey areas they move around randomly, but smoothly. The orientation of the crab icon
is determined by its direction of movement, so that they always appears to move sidewise.

3, When they bump into non-grey areas (including other crabs) they bite them by changing a
little non-grey region into a grey region. After that they bounce off in a new random direction.

The crab-like (or insect-like) random motion on grey areas is obtained as follows. Every crab
step is, in first approximation, determined by the current velocity. Every step has a probability (e.g.
one in seven) of being subject to a deviation. If the deviation takes place, it is a small random
perturbation (e.g. -1, 0 or +1) of the current velocity, independently chosen for the x and y
components. There is a maximum speed (e.g. 7 pixels per step).

Every crab does the following: |
0. Draws itself in the initial position. Starts with a random direction and velocity.
1. Removes itself from the old position (by drawing itself in XOR mode).
2. Determines its new position, based on its current direction and velocity.
3. Looks to determine whether it is about to move on a grey area:

Yes:
3.1. Moves there. Goes to 4.

No:
3.2. Makes the new position grey by drawing a 4x4 grey pattern.
3.3. Does not move. Picks a new random velocity, independent of the current velocity.

Continues at 4.
4. Draws itself Gin XOR mode) in the new position, as determined in 3.1 or 3.3.
5. Adds a random deviation to its velocity, as described above.
6. Back to 1.

Crab icons must be drawn in XOR mode, to be able to restore the background when the crab
moves away. Unfortunately, if one draws a crab icon in KOR mode on a gray background, the
crab itself gets greyed.To avoid that, crab icons are prepared so that they will look nght when
greyed. This is done by greying them beforehand (two XOR greying operations cancel) in ail
possible relative positions of the crab and the grey background. For the grey pattern we use, which
repeats every two pixels vertically and every four pixels horizontally, there are 8 possible relative
positions.

Some of the black pixels of the background immediately adjacent to a crab icon stick to it,
visually. Depending on the speed of movement, this produces an optical illusion so that the crab
legs appear to move.

15:22 Q.25 +0.01

Thirty crabs start at the top, threatening the window with pictures of me and mark.

Center: magnified crabs on grey, in all possible displacements w.r.t. the background.

5

macguts

machines

macwr ite

il mai

ile malloc

etter

icence

/pPads.

tw

/mbin

/mbin/pads.m

tty@?
1

id
e Ss

ufos
f

unixl
fie

upenn
guest . prof

- ican

jerq

Alloc_mod2
player@
idJor dan Dav

o a = ~ u =
™~

“0

8 s
S
E
P
P

S
C

P
R
E
S
T
R

T
E
R
A

R
E
P
R
E

.

S
h
a
e
n
b
a
d

S
E
C
C

C
C
R
C
E

T
E
B
E

E
S

a
e
n
b
o
g
a
n
r

S
E
S
R

P
S
C
C

e

E
B

a
e

S
R
C
S
E
E
R

E
E
R
E

A
S

c
a
e
a
s
c
u
r
a
s
c
u
e
e
c
c
n
e
n
e
e
h
e
n

“
o
n
e
a
s
e
n
e
e
s
e
n
a
u
n
s
e
n
s
e
n
a
s

P
R
S
R
E
C
E
S
E
R
R
E
P
E
R
R
A

D
R
E
S
S

R
E
S
T

E
T
E

S
E
E

S
e
e
e

w
e
p
r
e
s
e
r
e
e

B
e
t
e

E
A
T
S

R
E
E

t
t
t

ati
h
a
a
t
i

t
a
a
l

h
i
a

e
l
e

e
p
a
c
v
e
c
g
e
n
e

o
f

o
n

a
p
p
a
e
e
e
e
a
n

S
e

S
P
R
E
E

C
R
E

e
e
e

a
s
c

r
e
a
n

s
c
e

n
n
s

c
e
e

a
e
c
a
e
n
 SUPERB

F
P

T
E
E
P
E

e
S

p
e
s
e
c
e
e
r
s

S
u
p
b
e
e
a
n
s

e
e

g
e
e
n
e
n

S
R
R

RATER
R
E
P
R
E

v
e
r
e
s
a
n
s
s
t
e
c
a
z
e
c
t
r
e
n
c
e
r
s
u
e
s
e
e
n
e
n
e
®

S
P
S
T

R
R
T
T
S
E
C

E
E
R
E

T
S
R

in/32ld /usr/

erq/bin/spi
S
E
S
a
e
n
n
E

S
E
E
S

R
E
P
R
E
S
S

E
R
C
P

e
n
e
e
E
r

a
S
P
R

P
S
E

T
C
S

R
A
T
E

B
e

S
E
R
P
S

S
R
T
P
T
F
E
R
P
E
T

PRESSE
S
E
R
R
E

RB
S
E
P
E
R

R
O
R

E
R

R
F
E

E
e
e

o
s

e
e
n

e
n
e

R
e
o
n

e
e
n
p
e
a
e

a
a

p
e
e
s

a
c
n
a
s
a
c
e
a
c
n

a
d
n

a
s

t
a
u

s
s
e
u
s
s

s
e
e
n

s
e

g
e
e

r
a
n
s

c
a
u
s

p
o
e

e
e
r
a
n
e
g
u
n
s

P
S
S
T

E
S
E

E
T
S

e
E
e
e

a

F
E
a
r
e
r
e

*
s
v
e
t
s
o
t
s
e
s
e
r
s
s

S
U
S

S
E
S
C
G
E
E
D

e
u
s
e
e
u
g
p
e
a
d

e
e
e

o
o
o

w
e
t
p
e
d
e
t
b
e
a
d
n
a
p
e
e
a
t

a
a
a

e
b
e
r
e
e
e
n
a
a
e

S
h
e
r
e
e

t
a
t
r
e
e
t
a
e
n

/b

fusr /jerq/b

Jerq

J

F
A
R

G OHG
S
s
s
s
s
s
s
R
r

D
O
A
Q
M
D
O
S
D
O
O
O
O
S
L
 »

'
S
e
g
F

E
C
C

B
E
G
E
T

S
r
e
a
d
e
e
e
e
a
a
n

s
b

G
A

e
t
e

H
E
R
E

.
A
y

S
R
R
C
B
P
E
G
B
S
S
E
G
E
R
C
E
S
E

b
a
é
s
e
c
b
a
d
e
t
r
o
s

S
t
t
i
t
t
e
s
e
t
r
s
a
e

S
P
P

R
E
E

R
E
E
C
E

T
R
E

T
E
R

W
O
T

C
R
O

R
T

E
R

D
O
T
U
O
T
E
C
H
E
N
D
T
E
G
U
O
S
D
E
R
T
E
S
O
A
S
S

RES
E
R
P
A
C
S
E
E
R

T
E
P
E
R

E
A
E

E
E

o
n
a
a
n

.
P
E
C
R
T

C
R
S
P

T
E

T
E
E
R
A
E
R

R
A
P
E
R

SSE
E
S
E

R
S
T

fusr /jera/bin/vismon —-1

/
=-—

fusr/

S
t
e
a
g
a
s
e
a
t
a

B
C
C

R
E
C
S

R
S
C
E
R

P
P
E

C
R
C

E
SE

e
e
r
b
r
a
a
a

SER
C
E
C
F
S
C
P

E
S
S
E
R

E
S

E
E

T
A
R
E
E

e
a
a
e
b
u
e
a

e
a
g
u
n
e
e

B
E
P
E
R
R
E
E
P
E
R
E
T
S
E
R
S
T
R

E
E
T

E
e
o
n
n
a
r

P
R
P
C

ERERE
TES

S
E
S
R
S
T
E
S
E
C
C
R

E
R
E
C
T
O
R

E
R
E

E
e
e
e
e
e
e
s
e
t
c
a
n
e
e
r
s
e
t
t
e
u
c
e
r
s
u
r
s
a
n
e
r
v
e
c
s
r
s

S
E
R
R
A
T
E

C P
R
E
E
C
E

P
R
E

*
P
e
c
e
e
e
r
e
c
e
e
e
v
e
C
R
e
c
E
n
S
e
C
r
E
a
c
e
n
t
u
s
u
h
e
e
h
e
n
m
n
a
n

S
E
R
P
S

E
E
R
E

R
E
A
P
E
R

R
E
E
C
E

R
R
R

E
E
R
E

PSC
R
C
C
E

T
E
E
S
E

T
S

S
E
T
S

T
E
R
R
E

P
P
P

E
S
E
T

C
R
E
E
P
E
R

R
E
F
E
R

E
T
R
E

T
E
T

E
E
R

R
E
E

E
R

P
S
S
T

C
R
E
S
S

E
T
E
R
S

E
E
T

P
e
e

S
t

b
e
n
e
e
e
a
t
e
t
e
n

S
R
E

R
E
R
E
E

R
F
R

R
A
R
E
R

E
P
R

R
R
R

E
R
R

R
E

c
u
u
b
e
c
v
e
e
s

S
E
P

CHP
P
E

C
R
E
E
K
S

E
E
R
S
E
C
E

E
S
S

S
a
e
p
t
h
a
b
e
s
r
e
e
e
e

c
e
c
e
v
o
e
s
e
n
e
a
n
c
o
u
s
r
s
e
a
s
n
a

.

S
S
P
E

E
R
A
S
E

R
E
F

C
P
B

E
E
R
S

B
a
r
e
 r
e
t
t
e

R
e
t
e
s
t

s
a
e
e
e
e
e

o
o
n

e
t
a

t
e
e
s

v
e

e
a

e
s

*
e
e
v
e
s
e
n
v
n
c
e
r
e
v
e
u
r
t
o
u
s
e
s
e
n

F
E
R
C

TC
E
S
T
E
R
S

T
E
S
S

e
e
p
e
a
a
c
a
n
e

S
R
S
B
E
G
T
S
R
O
E
E
S

a
s
s

PER
R
S
P
R

TERRE
L
E
R

TEL
E
E
L

e
e
b
e
u
b
s
e
e
r
e
a
e
e

B
E
S
S

P
S
S
T

E
S
S
E
R

T
E
S
S

s
e

p
e
a
s
n
p
o
n
e
a
r
a
t
e
c
b
e
t
e
t
e
s
a
a
e
r
a
c
t
r
e
e
r
t
t
?

S
E
C
E
D
E

R
E
B
O
R
T

E
S
T
E
E

E
S
E

S
h
U
G
C
E
E
S
a
b
s
 e
s
s
e

t
b
a
r
s
e
t
e
e
a
e

R
E
C
T

E
S
P
E
T

E
P
E
C

R
S
E

E
e
e

c
e
n
a

s
e
e
s

s
e
e

7
a

S
C
R

R
E
P

E
E
T

E
T
E
R
S

E
R
S

O
R

T
E

e
r
e

a
a

e
e
n

p
a
c
e
b
e
r
e
e
o
u
u
b
e
e

S
S
S
R

E
R
T

P
P
R
R

F
S
R

T
P
F

S
p
e
s
e
e
n
e
r
e
D
e
T
e
e
a
e
r
e
e
u
n
e

S
S
C
P

S
S
P
S
E
C
E
R
B
E
C
C
P
E
R

R
E
E
C
E

S
S

S
S
P
E

R
P
A
T
I
C
C
P
E

C
P
T

e
e
e

P
E
R
C
E

E
R

S
E
R

E
E

b
a
t
e

a
p
e
n
s

a
t

e
a
e

F
e
e

e
e
v
e
e

b
r
a
s

P
@
Q
R

E
E
S

R
C
R
A

E
R
A
S

BARE
S
P
E
C

P
E
R
C
E
P
T

E
E
R
E

R
R
R

SERRE

S
e
v
n
a
u
r
e

e
b
h
a
d
e
n

s
e
n
n
e
e
t
e
a
u
n
a

w
o
c
e
s

s
e
s

M
h

e
e

n
e

e
r
t
e
e
e

S
e
a
n
e
a
n
e

Le
v
e
n

M
E
P

D
E
T
U
C
U
N
E
P
U
C
D
D
E
D
O
N
E
S
O
O
R
V
E
D
O
E
O
O
D
O
M
T
O
U
N
E
T
A
E
D

PID TTY STA
1606S ptit I

mail tac
congratulations for the beautiful 3pi feature of shifting the scree
n around.
How did you think of that?

19066 ptit I
1006? ptit I

dow. in eating the top w
On the bottom left there is a "lens'' window magnifying an area at the top of the screen.
Crabs start ea

in /b

Jerq 98 /usr/

780 sh
PID TTY STAT ine COMMAND

Q
16965 pti¢ I
19066 ptit I

in/pads

/mbin/pads jerq

£ “~~ or

a = “~ L.
vi ~
™

me]
re
W

(Y)
m
r
.

S /b
/3p

0 sh -c /usr/jerq

in/3Zld /usr/

in/vismon -l

fb jerq GFEGEE
AF

S
8
8
8
5
8
5
5
8
8

fusr /

SS /usr/jerq/b
1? mux

8

@
8
8
8
9
9
9
9
9
9
5

1906? ptit I

19068 ptit S
19661 ptiZ I
19055 pti9 I
1@6S8 ptié I

ions for the beautiful 3pi:- feature of shifting the scree
mail tac

congratulat
n around.
How did you think of that?

Macsguts
d tw

emacs

tty@?
dead. letter

I

S
C
T

S
P
E
R

E
E
S

*
S
t
e
s

tan
P
R
O
C
E
S

E
O
C
O
E

.

p
e
d
a
a
p
p
a
c
e
c
s
c
v
a
s
e
s
e
s
n
e
s

a

A
"

S
t
e
t

a
s
a
b
i
e
e
e

w
e
n
e
s
t
u
r
e
s

S
e
a
t
e
r

e
e
e

e
e

e
a
e

e
n
n
a

hes
S
C
P
E

E
S
T
E
R
S

C
R
E
T
E

e
e
l

e
a
t
r
t
a
h
i
a
n

'
‘
i

S
e
b
e
d
s
e
t
i
o
n

e
a
n

S
e
t
t
e
e

e
t
e
r

vgs

B
e
b
e
e
n
a

w
e
n
v
u
r
a
r
e
b
e
a
s
s
t
t
e
v
t
e
e
e
s
e
:

S
C
P
E

R
P
E
R
C
E

EB
G
O
R

s
e
e
r
c
e
s

t
e

S
E
R
R
E

C
S
C
E
R
E
E
S
E
G
E

S
S
G

T
E
S

P
P

C
C
E
S
C
E

A
C
R
E
S

R
A
S
S

B
O
C
E
S

T
O
R

E
E
R
E

e
e

m4
s
e
e
n
e
e
t
e
n
t
e
s
a
e

a
B
h
e
a
a
a
a
e
a
n

o
e

s
e
c
c
e
r
e
c
c
e
e
c
e
s
n
e
s
:

.
h
o
e

S
E
R
P
R
B
S
E
E
P
R
E
R
S
E
E
R

E
S

T
p
e
c
u
u
u
s
e
s

machines
ufos

faces

ile
peter

-prof

Alloc macwr ite

ail m

ile mallac

icence 1

upenn
-prof

unix
ie

guest
valis

icon
vaxwr ite

f
- !con

mod2z

idJordan
ix

player @

referee
ToGr egHager

regexp

Dav

Ma

ss
s
w
e
e

re
o
a
n
s

s
u
a
s

s
e
m
a
n

e
n
e
r

s
s
e
a
s

s
e
a
a
s
s

h
a
a

ss
P
E
P

e
e
e

e
e
e

b
e
e

+
e
r
p

e
e
e

e
e
e
e
e
a
r

t
h
e
e

D
e

M
E
E

T
E
S
T
E
S

T
S
U
L
C
F
E
N
E
F
O
R
E
C
H
O
D
E
L
E
R
E
D
O
R
E
E
T
E
R
O
E
T
S

S
P
T

e
e
e
r
e
a
e
e

*
a
n
n

S
E
P
H
O
R
A

E
R
S
T
E

S
e
e

E
h
R
e
t
h
h
e
e
e
e
e
e
e
e

c
c
e
e
c
r
e
e
t
t
i
n
e
n
u
n
e
r
r
a
b
e

a
4

e
R

b
e
e
t

e
a

e
a
e

*
.

e
n
e

s
s
n
a
g
u
s
n
a
v
e
n
o
e
s
c
r
e
g
e
r
t
e
r
t
s
a
s
t
s
s
a
e
e
a
s
e
n
s
n
e
e
s
e
®

S
e

P
R
R
T
R
E
R

°
S
E
P
e
e
a
e
r

e
n

e
e
e

s
e
u
g
a
u
a
g
e
e
n
e
n
s
s

e
v
e
s
p
e
c
e
e
s
p
e
c
c
u
u
s
e
u
s
:

7
.

o
n
n
a
e

a
n
e

p
e
e
s

aon
s
e
e
n
n
a

c
c
e
e
u
e
e
e
n
e
e
n
o
e
u
e
r
e
e
e
s

y
a
a

e
s
n
e
c
t
e
e
n
s
e
u
e
s
c
e
r
e
s
e
s

m
e
e

oon
A
r

a

d
a
v
e
c
e
a
n
e
g
s
e
n
e
e
c
s

e
a
a
b
e
c
c
e
n
e
e
r
e
r
e
s
e
s
s
s

P
E
F
R

R
S
E
P
E
R
E
R
P

E
E
R
E

S
E
R
R
P
E
S
S
E
S
R
E
R
T
E
R
E
E
E
e
R

s
e
c
e
b
a
c
n
e
n
u
u
v
e
c
e
e
s

a
a
n

B
O
S
P
E
S
C
S
R
E
P
E
R
H
A
E
L
E
G
H
R
S
E
E
R
R

C
E
E
S

P
e

P
o
P

H
e
e

c
e
e
v
e
n
c
c
t
a
u
e
r
u
a
a
u
u
e
e
v
e
h
a
a
t
e

B
S
C
C
E
R
R
E

E
F
S

SPECT
P
E
T
E
R

P
E
R
E

P
R

a
s
e
n
e
u
e
e

S
E
S

S
e
e

e
s
e

e
e
e

F
E
R
R
E
R

P
E
E
R

C
R

R
R

S
O
R
E

T
e
e

a
n
e

a
n
e
s

s
v
a
e
s

s
n
e
s

e
n
u
e
m
w
e
c
e
n

w
a
v
e
e
s
e
r

s
e
r
e

p
e
e

T
R
E
N

P
S
U
U
R
U
D
E
S
S
U
R
E
S
I
U
E
T
S

S
R
P
T
e
a
r
e
a
e
e
e
c
a
e

S
e
t
s

E
e
R
T

E
e
e

A
T
E

S
e
a
P
e
e
e

r
e
g
e

S
E
S

S
E
R
R
E

E
S
R

R
E
E
R
E

e
a
e
e

r
e
a
s

s
a
a
n

e
l

?

ollisions) product of crab c

ating their authors.
The top part of the screen is full of crab-dirt (a by-

ller crabs start e Ki

sh 68
PID TTY STAT Tine COMMAND

1666S ptit¢ I

Mf % a
“
~
~

= 2 ~ o a - ™ ui =
“~

a

pat

a ~~

= DO ~~

/bin : 08 fusr /jergq
-c f/usr/jerq

16066 pti4 I
10067 ptit I

f/bin/321d /usr/jerq/mbin/pads.m jerq sr /

od ™~

S
S
8
8
s
s
s
s
s
s
u
-

S
B
O
O
Q
O
V
O
V
O
o
o
d
o
o
d
l
i
 f/usr/jeraq/bin/vismon -1

x

GERGH
AGT

mail tac
congratulations for the beautiful 3pi feature of shifting the scree
n around.
How did you think of that?

macsuts -letter
tty@?

dead t -nhews

s
e
t
a
e

E
e

v
f
c
u
r
e
r
e
a
r
e
p
u
a
v
e
r
s

a
o
e

“
a
T

f
e
t
r
n
e
e

e
e

e
e
a
b
e
e
a
a
e

‘
p
e
e
w
e
e

S
e
e

C
R
R
E

T
E

a
h

R
R
3
6
8
2
0
8

.
B
e
r
e

e
t
e

e
e
e
e
e

Rae
o
n
e

.
e
b
u
e
t
r
e

e
r
e

S
S

M
B
C
A

E
E
R
E

T
e
t
e
n
u
r
e
t
s

(cence

id

ufos
faces. li

ie
upenn

£

tw
emacs

unix - icon

_modZ

dJordan
player @

Alloc

Dav

n
e
s
s

e
a
e

s
s

e
e

o
s
e

p
e
r
e
r
e
u
e
t
t
e
s

P
e
e
s

b
e
r
e
t

e
e
n
g

e
e
e
r
i
e
e
e

o
t

T
o
T

E
R
R

P
e
e

P
e
e
t
e

r
e
a
r

a
e
e
e
e
e
a

ile malloc

te

1

vaxwr i

prof
is

guest
va

icon ToGr egHager
regexp

8

on top of three crabs laced
ting the window from underneath.

is p A new window
The crabs start ea

ines mach

macwr ite

il ma

ile malloc

icence

te

iS

- letter
wid

ufos

unixl

prof

faces

vaxnr i

tty?

ie
upenn

val
icon

dead
t

emacs

guest

/mbin/pads.

m

ft

inf/32ld /usr/jerq/mbin/pads

congratulations for the beautiful 3pi feature of shifting the scree
n around.

-!con

jerq

time

ile
peter

_modZ
ayer®@

idJordan

.Nens
pen

-prof

Alloc
pl

Dav

referee
ToGr egHager

regexp

™
 he

Vi
~

™~ "
~
:

eo g Cc
S
A
C
P

P
E
T
A

C
R
E
E

TREC
e
e

a
p
e
e
e
s
s

rhe
P
R
e
R

C
R
P

w
T
e
p
e
r
a
e
s
s
e

e
P
e
r
t
s
n
e
e
s
a
d

e
r
e

w
e
e
n
y

o
n
n
e
g
n

on
e
e
e
a
s
t
r
e
a
t
e
k

s
c
e
h
e
e
e
c
e
n
e

e
a
e

e
a
m
e
e
e
a
d

wan
eee

a
e
e
n

P
P
R

P
o
e

e
t
e

a
-

ae
Pe

be
e
r
a
s
e
s

es
a
a
e
t
i
g
e
n

55 +0.22

in/3pi
A=) Jerq

8

eraq/b
/usr /

/b

J

jerq
enn

s
t
e
e
e
a
e
e
a
e
e
n
e

e
e
e

e
e
n
e

P
E
T
E
R

e
e
e

e
b
e
d
s

a
e

.
S
R
S
A

E
R
E

EER
R
C

R
o
w
e

hee

e
h
e
d
e
e
p
a
e

e
u
b
h
e
b
a
e
a
e
t

7
.

e
e
r
e
e
e

e
e

Q6 /usr/
96 sh -c

08 /usr/

IME COMMAND
@8 sh 8

8
9

8

"

C
U
P
E
R
e
a
g
e
e
e
s

P
e
e
t
a
n
e
e
e
e
n
n
g

a

a
r
a

o
r
p
e
n
a

*
r
e
e

a
5

e
t
a

e
e
n
s

R
r
e
a
E
R
T
E

a
g
a
a

a
n

a
a
n
g

I
I 10655 ptié

19658 ptig I

hed §
Sue

e
R
e

a
F

a
6

.
a
q

.

S
e
R
G
E
e
E
E
S

F
e
e
t

r
e
s
e
n
t
a
y
 a

e
e
u
e
e
e
b
b
e
a
n
e

.
t
e
g
e
n

e
b
k
e
a
n
e

pti¢ I

1 tac

*
P
e
e
t
e

eee
os.

SPUR
Ee
e
a
e

S
S
P
E

P
E
S

R
E
E
S
E

R
R
S
P

R
R
R

S
E
G
R
O
E

PERE

S
A
T
S

TSEC
E
P
S
R
C

e
e

a
a
n
e

=

o
n

e
n

a
e
H

S
e
e
s

RFaus
o
f

e
e
t

a
a
e
e
e

ID TTY STAT T P
1@@65 ptit I
16666

+
.

a
f

B
B
C
C
C
E
S
T
R

RFORP

S
E
E
 E

B
E
C
S
R
P
F
E
R
C
P
E
R
R
T
E
R

R
R

T

E
E
E

L
d

S
E
U
S
S

T
P
E
R

R
E
E

T
E
P
C

E
R
E

SE

S
P
e
b
e
a
s
e
R
e
e
a
e
e

B
e
a
t
e
r

e
a
s
e
n
e
a

e
n
o
n
e

e
e
E
t
e
n
T

1006? ptit I

16068 pti¢t S
19061 pti2

How did you think of that?

9

The three trapped crabs are now almost fully visible. This effect of eating from underneath is a
totally unexpected non-obvious consequence of the crabs drawing algorithm.

in/pads

in/pads

{mb in/s2ld /usr/jerq
i

/b
in

usr /jerq /

jerq

erq/b J

/imb jerq

~~,

bi =
~~

“a
=~

a ~.

= ma) sr/j fu

fbin/visaon —l jerq

O
F

£

v
m

Wi

S8SS558S

55 /usr/

ions for the beautiful 3pi feature of shifting the scree congratulat
mn around.
How did you think of that?

mach ines ile -prof

e
p
e
e

b
a
b
e
e
a
s
e
a
a
n

e
e
e

CH
B
E
e
B
a
S
s

f
a
e
t
e
e
e
e
s
a
a
e
e
e
e

S
S
S
A

R
P
C

B
E
G
E
T

E
D

.
Su

t
e
e
e
e

+
P
R
R

R
R
R

T
E
R
R
E

R
R
B

E
E

S
R
S

P
T
E

T
E
E
S
E

F
E
C
T
E

R
E

S
S

a
t

I
19666 ptit I

S
S
C
P

S
E
E

S
C
H
E
R
E
R

E
R
E

p
a
n
e

e
n
e
e
r
a
u
s
e

e
e
t
e
r
e
e
e

SCP
T
E
P

E
S
S
E

E
T
E

P
E
R
T

A
E
S

SPR
P
S

P
E
E
R

E
S
E
E

R
P
T

B
R

S
T
E
T
T
R
P

R
E
P
R
E

E
e
e

S
R
P

SSRETR
C
E
E

SESS
E
T
E
S
A

S
E
C
R
E
T
E

S
E
S

A
P
E
S

E
R

E
E
R
S
T
E

S
E

S
E
P
P

R
R
A
P
A
E

R
B
S

V
E
R
E

PCPS
e
e
e

n
i
e
s

n
e
n
e

e
e
e
e
e

a
a
a

“
S
e
e

R
P
R
U
D
D
O
O
T
U
E
E
D
E
S
E
D
E

p
a
e
e
s
e
a
e
u
e

e
a
e
e
a
a
r

r
e

n
e
a
e

b
e

S
e
C
C
E
R

R
A
R
E
R

Save
B
S

E
R

E
S

EE
e
a
e
t
a
g
e

P
R
R

e
e
e

e
e
e

—

.
n
e

“i

w
e
e
u
l
s

16665 ptit

emacs
ufos peter

Alloc

Dav

1666/7 ptit I ite

le malloc

icence

i

te

1

is
prof

unix

upenn

val
icon
Vax i

modZ faces
er@. icon

idJordan fie

guest

play

9795 pte I

16668 ptit S
19661 ptiZz I
16055 pti I
16658 ptiga I

a
e
e
e

e
e
e

e
e

n
e

O
D

E
O
U
D
A
H
E
N
L
C
H
R
E
S
T
R
A
T
E
S
O
R
S
R
D
D
E
R
E
E
!

e
o
r
r
e
e

e
r
r

S
E
R
G
E

B
B
G
E
E

s
u
e
u
r
o
a
n
r
b
s
s
u
e
n
a
s
c
e
e
o
e
e
g
n
n
e
c
n
e
s
e
n
a
u
r
e
s

B
a
n
e
s
e
t
s

s
e
a
s
o
n

.
S
e
e
c
u
v
o
n
e
n
e
s

.

e
e
e
e
b
e
o
n
e
s
e
n
s

S
O
C
R
A
T
E
S

R
E
T
E
S
T

E
E
E

R
E

E
S
O
P

P
E
E
P

e
e

ten away. ing ea The lens has been moved to show text be

10

Jerq SS /usr/ Q

B
R
S
T

P
T
A

E
E
T

T
S
E

E
R
T

S
E
P
T

S
C
T
E

P
E
T
E
S

T
E
T

e
e

a
c
e
r
r
e

B
R
A
T

T
R
T

R
R
R

e
e
a
e
u
n
g

S
P
R
E
E

A
E
E

R
E
S
P
E
C

R
S
T

E
A
S
A

P
E
O

E
E
R
E

PRR
T
T
E
R
P
S

E
P
R
O
P

E
P

a
+

the screen crabs dominate
The lens window is almost unharmed because it regenerates.
Eventually,

11

Tracks
A few other crabs-related programs deserve mention. Tracks gives the illusion of invisible

creatures walking on your windows and leaving footprints. There are cats, birds, unicorns and little
people.

Tracks are not left on the background, only on windows. However tracks can cross grey
regions and continue on another window. The random motion is obtained as in crabs, with slightly
different parameters.

Tracks was written by myself as a crabs spin-off.

12

3 & -¢ a

& ¢ +s
short Horseliesw {4
@x3E7C ,.@x8600, «4%
@x7FFE,@x781E, «*
@x63C5,8xE6G/7, 4 & ¢

@x4182,0xCG03, 4 «&¢
@x418Z ,8xCBG3 »+

@x890@ » Ox 781
Ox8089 .Ox7B1E,

© @ &

>

Bitmap feet = {(Word *)Feet, 32/WORDSIZE,{{0,0+,{32,16)}}7, *
Bitmap bird = {(Word *)Bird, 32/WORDSIZE,{{0,.0},{32-16}}};° «

tmap bear = {(Word *)Bear, 32/WORDSIZE,{{0-0}-{32.16}}}»
itmap horse = {(Word *)Horse,32/WORDSIZE -{{0,0},{32,16}}}3 ,

Rectangle Itrackup = {{@,6}.{8,8}}; o
Rectangle rtrackup = {{8,0},{16-8}}; yi

e ltrackdown = ({8,8},.(16,16}};

A few tracks appear.
Bottom left: magnified track icons.

13

eke 110-95 8-897 aC rO} Fg +
ba agit ‘ab 40-95 5B} am OY Yat

s Te f= {{8 . a 165. 3¥

1

n
a
t
a
s
d
a
c
d
i
a
c
a
u
i
a
n
d

sa
ge
 e
ad
 s
ad
 w

ad

«*

A

%
SE

<
ou

me

ae

-
>

2

«
Y

dy

wv
rs

Many, many more tracks.

14

Pogo Sticks
Pogo-sticks is another crabs-related program, written by Mark Manasse. A pogo stick is a pair

of bouncers (dots) connected by a stick (line). Pogo sticks (or "pogos’, for short) hate grey, and
love any other color. In non-grey areas, the bouncers float freely, until they bump into grey areas.
When that happens, the bouncers change direction and bounce off. The opposite bouncers of a
pogo loosely attract each other.

A bouncer may overshoot a boundary between non-grey and grey, because of inertia, and get
temporarily trapped in a grey area. In this situation the bouncer is continuously bouncing against
grey, and assumes a kind of brownian motion. Fortunately, the opposite bouncer will very likely
pull it out of trouble. If both bouncers are trapped in grey, the pogo may randomly wander in grey
areas for a long time, looking like it is in an epileptic fit. A pogo in a large white space (like a
window) tends to stay there; it is unlikely that it will have both bouncers outside at the same time
and on the same side, so that they can wander off. It is likely that pogos will eventually migrate to
the largest window available, and stay there most of the time. |

When a bouncer is trapped in grey, it tries actively to make itself a home by turning all the grey
it touches into black. Eventually this can create large black areas where the pogo can again float
free.

15

eit?

.

-
Fr

ont)

1S3 main(argc#l,ar gvaOx/744E

HALTED:
pogo-c

>back, Rpt(ro-Pt(rc-.x,1
t NI 77

'
ei
Seal

a
et

5 a
 oc

r=

tTo-97

SFr
1 2 l=>front

’

>la
ile (¢1

layerblt(1,

wh

-or igi
ine le (l—>rect.
ine lo (l—>rect.

ine rc (r.corn

layerblt(1.r)

ine ro (r
H#def
Hdef
tdef
#def

Rectangle r;

ote pogo.c

ted to the lower window. migra Three pogos started at the top. Two of them have

16

Screen Wars
Different screen organisms, like crabs, tracks and pogo sticks, can interact in interesting ways

when run concurrently. Each screen organism lives on some kind of screen territory and attacks
some other kind of screen territory. When many organisms are present at the same time, they may
fight for territory. An organism wins if it ends up controlling the whole screen and the other
organisms loose all their natural territory. More often, some kind of equilibrium is reached and the
screen is divided into domains of influence.

Crabs vs Pogos
The following pictures show a 12-hour fight of crabs against pogo sticks for control of the

screen. Eventually equilibrium ts reached.

Other fights |

Tracks do not stand a chance against crabs, because tracks do not attack crab territory (unless
they happen to step on a crab, in which case they leave a footprint there, but this is infrequent),
while crabs attack tracks territory. Eventually, tracks loose their “footing”.

Tracks and pogos cooperate, and the result is a totally black screen.

17

P=->layer ;
le (loofrent)

z |= >front;

r-cornen
(r.origin

ne“lc (l—>rect.
ine lo (1—>rect.

layerblt(l.r)
Layer #1;
Rectangle rc;

if (1)

Process: P=@x/730138
HALTED:
pogo.c:153 mainlarag

o-y)));

rote pogo-c

The crabs have eaten half of the upper window and have attacked the large window.

aos

“layerblt (1->back, Rpt (ro -Pt

pogos have sprinkled black at the perimeter of the large window.

13

(rc.x,l

 Meanwhile the

™ oa

* ;

#ic de
_ / Ld

a

sae are LINENUM 3
tdefine SLEEPTIME 14
H#undef bitblt on
/*® #tundef texture */Eigge

he

_

 » i
be

a a ole oe oh oe bo Oe fe ~~“ Pre Pr Wah hth Weert Pb ie ox11i1i, Oxf

‘ ‘i nn / . oa
@x11i1, Ox44444 Ox1111, Oxt4+44+, Ox1111, Ox4444+, @x1111, OFia ore ae

Pogos have control of the center and top left of the screen, except for a crab trapped in the top left

which maintains its own grey territory, and another crab which goés deeper in the large window.

19

sere LINENUM 3 "
tdefine SLEEPTIME 1@ —

/*® tundef- texture /* / Rie

LY | ,

Wwrak E EF wee tT rrr? a de ie le ‘ew F TPG

@x1111, Ox4444, 9x1111,. 606x444,

ry

The crabs have control of the bottom and right side of the screen, which is now full of crab-dirt.

The prisoner crabs keep working on their escape corridors. The pogos slowly gain territory.

20

 We LINENUM 3

#undef bitblt
/* tundef texture */

Lae bi thlif— —«-. « 5

:

 WRLLLiy UATTiTT? ee ee ee Vern tT PG ot WARD wey irre?

Oxiit1l,. Ox4444, @xi111, Ox4444, @x111l1, Ox4444, |
<

posa :C
nie p< a = SE 5 en a» 7

2

One of the prisoners has escaped. It is not clear why the prisoners move almost coherently in one

direction; maybe there is a slight bias in the random walk algorithm. (At this point I went to sleep)

21

Bee LINENUM 3
#define SLEEPTIME 190

#tundef bitbit
/* undef
Htdet: a

cll |? |
/* fy

4

=
0 a
r

a

2

 Wak oh OF Serre fF GF FF week 2K Sree oF GFF ae le es i

@x1111, Oxt444, Oxi111. @ 4444, @x1111,

Seven hours later the situation hasn't changed much. The other prisoner crab has escaped. The
boundary between crabs and pogos is sharp and stable. The whole process took 12 hours.

22

MH=11271=LC-unix

Atts.

References (1-2)

Appendix (TI)

23

L. Cardelli

References

[AT&T 85]
Unix Time-Sharing System, Programmer's Manual, Eighth Edition, Volume I.
AT&T Bell Laboratories, Murray Hill, New Jersey.

[Crane 75]
J.Crane, Fiddler Crabs of the World. Ocypodidae: Genus Uca.
Princeton University Press, Princeton, New Jersey, 1975.

24

CRABS (9.6) Eighth Edition CRABS (9.6)

NAME
crabs — graphical marine adventure game

SYNOPSIS
crabs [-i] [—s duration] [~v velocity] [naumber]

DESCRIPTION |

In crabs, difficult situations are encountered in trying to kill or capture crustaceans swarming in a
murky sea. You will have to work very rapidly to keep your territory free of seabed intruders. At
first, you may even find it hard to keep a clear view of your surroundings, but later discoveries about
the spirit of the game will suggest a solution.

There are several options.

i causes the intruders to play intelligently, allowing them to avoid detection.

—s simplifies the game for the first duration time intervals. Default is 0. 5-10 is recommended
for beginners, although you may want to forgo this option the first time, just to see how
interesting it can get.

—y adjusts the velocity of the crabs, 1 being fastest. Default is 5.

Number specifies the number of intruders. Default is 30.

FILES |
/usr/jerq/mbin/crabs.m — terminal program

CRUSTACEANS
Can be frustrating.

Page | February 14, 1985

25

Oct 22 16:40 1984 genesis.txt Page 1

Crab Genesis
oes ums ms ome ss os me ts oe

Introduction: laws and violations.

A bitmap screen is a graphic universe where windows, cursors and icons
live in harmony, cooperating with each other to achieve functionality
and esthetics. A lot of effort goes into making this universe consistent,
the basic law being that every window is a self contained, protected world.
In particular: (1) A window shall not be affected by the internal
activities of another window. (2) A window shall not be affected by
activities of the window system not concerning it directly, i.e
(2.1) it shall not notice being obscured (partially or totally) by other
windows or obscuring (partially or totally) other windows, (2.2) it shall
not see the *image* of the cursor sliding on its surface (it can only ask
for its position). +

Of course it is difficult to resist the temptation of breaking these
rules. Violations can be destructive or non-destructive, useful or

pointless. Useful non-destructive violations include programs printing
cut an image of the screen, or magnifying part of the screen in a "lens"

window. Useful destructive violations are represented by the "pen"

program, which allows one to scribble on the screen. Pointless

non-destructive violations include a "magnet" program, where a moving

picture of a magnet attracts the cursor, so that one has to

continuously pull away from it to keep working. The first pointless,

destructive program we wrote was crabs.

The history of crabs is presented here with dates, times and people.

Not that we kept notes, of course. The dates and times were reconstructed

months later by looking at the creation date of files, and by what we
could remember.

Prologue: Peek

Crabs was written by Mark Manasse and me in November 1982, and evolved

in about two days to its present form. The basic principles of

law-violation where investigated a few months earlier (August 5, 1982)

when Bart Locanthi brought in a Smalltalk videotape. It featured, among
other things, a "peek" demo. This is a program which looks at a rectangular
portion of the screen (controlled by moving the cursor around) and

replicates it in its own screen space in real time. Beautiful

self-referential effects are obtained when this window peeks itself, or

part of itself. This is a digital version of a video-camera looking at
its own tv screen.

Copying data from another window, as peek does, can already be considered

a violation of the rules. But what peek does is even worse because, for

a given window, peek will only copy that part of the window which is

visible on the screen (i.e. not obscured by other windows). This cannot

be done by asking a window to access its data: a window is not aware

of what parts are visible. This is stealing data directly from the screen.

A well-structured graphics interface will not allow this, and one has to

use low-level routines which are not-meant-to-be-used-by-normal-people.

Needless to say, Bart and Mark rushed to implement it.

Oct 22 16:40 1984 genesis.txt Page 2

Step 1:

Step 2:

Step 3:

Step 4:

QIX

(November 16, 1982, dinner time) Mark wanted to implement the QIx

video game for our Lit terminals (knowledge of QIX is assumed here).
A QIX screen can get very complicated, and there are complex rules

about how things are allowed to move. Mark started figuring out

clever data structures and algorithms to compute fast line operations.

After a while I said, "Wait a second. Atari is selling arcade QIXx
machines and there is no way they can have enough memory to run those

algorithms. How are they doing it?" After some thinking: "I bet they
don’t keep line segments in data structures, but they draw lines on a
bitmap and (gosh!) they just look at what is in the bitmap to determine

line intersections. Gee, this is awful." Although this was repulsive

to our trained algorithmic minds, that was the germ of the crabs
collision-detection trick. We never implemented QIX.

Measles

(November 16, later) After a while Mark was convinced and we

started implementing. We decided to start with a single QIX
(i.e. a single line with two bouncing dots at the ends) for simplicity,
and to use window boundaries to test the line intersection trick.

Mark started dictating code and I typed it down. This was still a

bit too hard, so we simplified it further: forget the QIX, let’s just

have little balls floating in the grey area between windows and bouncing

against window borders. We would look at the raw screen bits to determine
where a window border was (is there grey there?). Mark kept dictating,

and after a while it was working. It was just about one page of code.

Mark called this "measles"; we had a lot of measles bouncing around
the screen. They were also bouncing off each other for free because they

would see non-grey and change direction. This was very cheap and

convenient: normally you would have to test the position of every measle

against the position of every cther measle to determine whether there

is a collision.

Angry Measles

(November 17, very early) Now a problem came up. We have all these measles

bouncing around, and you create a new window and slap it on top of them.

Suddenly those poor trapped measles have nowhere to go, no grey area to

run to. They are frozen, paralyzed with terror, and buried underneath

a window. Mark didn’t like that at all, and came up with the concept

of "angry measles". Wien a measle gets buried underneath a window, it
starts flashing so that it is visible through the window, like saying
"Hey, get that window off me". It turns out that little flashing things

are very annoying to the human eye, and you would take the window away

just to shut them up. At this point, tired and satisfied, we went to
sleep.

Hungry Measles ad

(November 17, late morning) I slept a lot less then Mark did. When I

came in, I started showing measles to people. They though it was cute stuff.

Some objected to the flashing measles solution. We had considered many

alternatives the night before, and I wasn’t totally satisfied with that

Oot 22 16:40 1984 genesis.txt Page 3

Step 5:

solution either. Dave MacQueen said something like "they should eat
their way out". I thought that was a possibility, only sillier than most.
After he left, however, that idea kept coming back. I went to look at

the code (as I said, Mark did the dictating because he was more familiar
with blits then I was), and discovered that I could implement Dave’s

suggestion by changing a single line of code. That seemed to be easy
enough, so I did it. When a measle was confronted with a non-gray
area, it would change a little bit of that area to grey. Trapped measles
could then build up grey regions and eventually escape.

The new version "hungry measles" had quite a different character.

It wasn’t cute, it was awesome. Those little balls would eat away your

windows. If trapped, they would escape, leaving you wounded. There was

no protection against them. You could set up barricades of windows to
protect a part of the screen you wanted to work in, and they would erode

them. They would infiltrate along the borders of the screen, where

you are not allowed to put windows. You couldn’t keep them all under

control: they were too many, too quick. You couldn’t get distracted.

Crabs

(November 17, afternoon) I went up to the machine room and started the

program on a terminal. People gathered, and several expressions of

disgust were heard. Jim Weythman said "they look like crabs!".

Everybody knew instantly that that was the right name for it. I went
back to my room and designed the basic crab icon. Mark came back.

With his help, we prepared the crab icon so that it would look nice on

a grey background. We made it so that crabs would move sidewise, and
would turn around according to their prevalent diraction. We made the
crabs window self-destruct so that there was no way of stopping crabs,

short of rebooting the terminal. Finally, we allowed the crabs to see
the image of the cursor on the screen, so that you could use the cursor

to poke them (they would bite it, but the cursor regenerates).

We showed it to Rob Pike again. He said "That’s it, don’t touch
it any more",

Conclusions

In the next few days, unaware people were expcoSed to crabs in the
comfort. of their own terminal ("Let me show you something...").
The question would always come up: "How do you stop them?" "you can’t"
"yes, but how do you stop them?". Crabs could be downloaded remotely,
on somebody else’s terminal, while he was working. They could be left
dormant (Rob’s idea) during the lunch hour, to suddenly come up
in the middle of the afternoon. They could be timed to start in the

middle of an important demonstration. Once, Rob got them to eat
(irrecoverably) part of a picture an artist was drawing on a blit.

The artist was offended, not by the damage picture, but by such

inexplicable violation of what she considered to be laws of nature.
Very soon, nobody could pass by Bell Labs without being exposed to crabs.

Programs were written to fight crabs on their own grounds. The idea was
to run a program which would neutralize the crabs and allow you to
keep working, without rebooting the terminal. These program were either

unsuccessful, or partially neutralized the crabs but made the blit

Oct 22 16:40 1984 genesis.txt Page 4

practically unusable. One day we got a program in the mail, called
"squishcrabs". It would poke the process table looking for a process
which looked like it may be crabs, and killed it. On top of that
it would "squish" every crab on the screen to a black blob. That was
cheating, but it worked. However, squishcrabs was too dependent on the

process and program structure, and stopped working in later versions

of the system.

In the following months Mark and I wrote many crab-like programs. Although
interesting in their own way, none came close to the appeal crabs have.

The best use we have for them is to make them fight overnight against
crabs for screen territory, and watch the result in the morning.
Crabs are still undefeated; they either wipe out the opposition, or

come to a stable situation with crabs in one region of the screen and
opponents in the other.

Luca Cardelli

Oct 21 19:13 1984 crabs.txt Page 14

Rules:

(1) Crabs live on grey screen areas.

(2) On grey areas they move around randomly, but smocthly.

The orientation of the crab icon is determined by its direction of movement,

so that they always appears to move sidewise.

(3) When they bump into non-grey areas (including other crabs) they "bite" them
by changing a little non-grey region into a grey region. After that they

bounce off in a new random direction.

The crab-like (or insect-like) random motion on grey areas is obtained as follows.

Every crab step is, in first approximation, determined by the current velocity.

Every step has a probability (e.g. one in seven) of being subject to a
deviation. If the deviation takes place, it is a small random deviation

(e.g. -1, 0 or +1) of the current velocity, independently chosen for the x and y

components. There is a maximum crabs speed (e.g. 7 pixels per step).

Every crab does the following:

0. Draws itself in the initial position.

Starts with a random direction and velocity.

1. Removes itself from the old position (by drawing itself in XOR mode).

2. Determines its new position, based on its current direction and velocity.

3. Looks to determine whether it is about to move on a grey area:

Yes: 3.1. Moves there. Goes to 4.

No: 3.2. Makes the new position grey by drawing a 4x4 grey pattern.

3.3. Does not move. Picks a new random velocity, independent

of the current velocity. Continues at 4.

4, Draws itself (in KOR mode) in the new position, as determined in 3.1 or 3.3.

5. Adds a random deviation to its velocity, as described above.

6. Back to 1.

Note: Crab icons must be drawn in XOR inode, to be able to restore the background

when the crab moves away. Unfortunately, if one draws a crab icon in XOR

mode on a gray background, the crab itself gets "greyed".
To avoid that, crab icons are prepared so that they will look right

when greyed. This is done by greying them beforehand (two XOR greying

operations cancel) in all possible relative positions of the crab and

the grey background. For the grey pattern we use, which repeats every

two pixels vertically and every four pixels horizontally, there are 8

possible relative positions.

Oct 21 19:13 1984 crabs.txt Page 2

Note: Some of the black pixels of the background immediately adjacent to
a crab icon "stick" to it, visually. Depending on the speed of
movement, this produces an optical illusion so that the crab legs
appear to move.

Luca Cardelli

Crabs was written by myself and Mark Manasse on November 16 and 17, 1982.

Figures:

(Figure Crabs.0)
Top Right: crab icons in two orientations.
Top Left: greyed-out crabs.

Bottom: upward-looking crabs on grey, in all possible relative

displacements w.r.t the background.

(Figure Crabs.1) Thirty crabs start at the top of the screen, threatening
the top window with pictures of me and Mark.

(Figure Crabs.2) Crabs start eating the top window. On the bottom left there is
a "lens" window magnifying an area at the top of the screen.

(Figure Crabs.3) Killer crabs start eating their authors. The top part of the
sereen is full of crab-shit, a by-product of crab collisions.

(Figure Crabs.4) A new widow is placed on top of three crabs. The crabs start

eating the window from underneath.

(Figure Crabs.5) The three trapped crabs are now almost fully visible. This
effect of "eating from underneath" is a totally unexpected non-obvious consequence

of the crabs drawing algorithm.

(Figure Crabs.6) One of the trapped crabs breaks loose.

(Figures Crabs.7 .. Crabs.9) More scenes of cannibalism and destruction.

(Figure Crabs.10) The lens has been moved to show text being eaten away.

(Figures Crabs.11 .. Crabs.14) More of the same. The lens window is almost
unharmed because it regenerates.

TTY
ptit
ptit
pti4¢

pti4
pti2
pti
pt1i0
pt9s
ptot
pto4
pte@eg
pte@o
ptso
14

STAT TIME
I 0:63

F
O
U

S
A
O

LG

S
S

R
S

15:22 8.25 +0.61

COMMAND
h s

fusr /jerq/bin/3pi
sh -c /usr/jerg/bin/321d /usr/jerq/mbin/pads.

eri ler binwaeha fusr / jerq/mbin/pads.m
si

31 i
ah
sh
ps

sh
sn
fusr /jerq/bin/vismon —1
mux

congratulations for the beautiful 3pi feature of shifting the scree
n around.

iHow did you think of that?

peek tty?
newns_t ime dead. letter macguts

pen tuid
-profile emacs machines

peter ufos
Alloc_mod2 faces macur ite

player®@. icon unixlicence
idJordan fie mail

i upenn

guest-profile malloc
4 valis
4 ToGregHager icon mbox

regexp vaxnr ite

15:27 0.34 -0.46

TTY STAT TIME COMMAND
pti4 6:06 ch
ptit¢ 6:60 /usr/jerq/bin/3pi
pti4 8:09 sh -c /usr/jerq/bin/321ld /usr /jera/mbin/pads.

pti¢ 6:00 /usr/jerq/bin/32ld /usr/jerq/mbin/pads.m
pti2 8:60 sh

9:60
6:01
B:@8
@:61
6:61
8:09
8:60
6:55 /usr/jerq/bin/vismon ~]
S:17 mux

ptid@
pti@
pts
ptet
ptet
ptea
ptege
pte
14 F

E
L
I
S

Z
O
U

S
S

S
U

S
e
t

congratulations for the beautiful 3pi feature of shifting the scree
mn around.
maHow did you think of that?

pee ¥

news_t ime dead. letter macguts
pen tuid

-profile emacs machines
peter ufes

Alloc_mod2 faces macwr ite
Player9. icon unixlicence

DavidJerdan fie mail
qix upenn

| Mamber guest.profile malloc
referee valis

ToGr egHager icon mbox
: regexp vaxur ite

pt
pti4
pti4

pti4¢
ptiz
pti0
ptid
pt@s
ptot
ptet
ptea
ptea
pteo
14 F

L
D

td

md
 D
E
D

a

at
 e
m

ed

Ln STAT TIME
6:08 s
6:69
6:89

8:88
0:68
6:08
@:01
6:66
Q: 01

15:30 0.49 -0.12

CONMAND

fusr /jera/bin/3pi
sh -c Just /jerq/bin/a2ld /usr /jerq/mbin/pads.

iysrs jeratiiaeserd fusr /jerq/mbin/pads.m

sh
3pi
sh
sh
ps
sh
S
fusr /jerq/bin/vismon —}
mux

congratulations for the beautiful 3pi feature of shifting the scree
n around.

aHow did you think of that?

pe y
newns_t ime dead. letter macguts

pen tuid
-profile emacs machines

ufos
peter

Alloc,_mod2 faces macur ite
player®. icon unixl icence

f Dav icdJordan fie mail
; qix upenn
4 Mamber guest.profile malloc
3 referee valis

q ToGregHager icon mbox
Y regexp vaxur ite

15:33 6.34 -8.63
~~

TTY STAT TIME COMMAND
6:@8 sh ptit = s

pt1i4 @:80 f/usr/jerq/bin/3pi
8:00 sh -c /usr/jerq/bin/32]1d /usr/jerq/mbin/pads. pti4¢

ptit 8:60 fusr/jerq/bin/32ld /usr/jerq/mbin/pads.m
pti2 @:@0 sh
pti60 6:60
pti9 @:61
pt@s 6:80
ptet @:01
ptot 6:61
ptegs 8:08

6:68 pt6o
@:55 /usr/jerq/bin/vismon —]
S:1? mux

I
I
I

S
I
I
I
I
S
R
I
I
S
R

: mail tac
enbyy se pe {kts for the beautiful 3pi feature of shifting the scree

mn around.
How did you think of that?

Pp 7
nens_t ime dead. letter macguts

pen tnid
-profile emacs machines

peter ufos
Alloc_mod2 faces macur ite

player9.icon unixlicence
i Dav idJordan fie mail

i i upenn
guest.profile malloc

valis
§ }oGregHager icon mbox

regexp vaxur ite

TTY STAT TIME lala
s|
fusr /jerq/bin/3pi

88 sh -c f/usr/jerq/bin/321d /usr/jerq/mbin/pads.

fosrd lerafbinvseld f/usr fjerq/nmsin/pads.m
SI

api
=
sh

ptit
ptit
pti4

pti¢
pti2
ptio
ptia
pts
ptgt
ptt
pt6a
ptoe
Petes

9250 14
: mail tac
congratulations for the beautiful 2pi feature of shifting the scree

in around.
JHow did you think of that?

Ss

S
e

e
e

S
Q
T
S
e
o
e
o
c
e
s

S
O
r
K
R
O
R
O
S
S

fusr /jerq/bin/vismon -1
mux F

O
U
T
S

ZO
 U
T
S

S
D

S
Y

N
S
S
e
e
e
s
o
s
c
e
s

&

2
3

RP
nens_t ime dead. leviex macguts

pen tuid
-profile emacs machines

peter ufos
Alloc_mod2 faces macwr ite

Player®. icon unixlicence
Dav idJordan fie mail

; qix upenn
guest-profile malloc

valis
icen mbox

vaxur ite

|

TTY STAT TIME COMMAND
pti¢ @:@8 sh
ptit
ptit

ptit
pti2z
ptig
pti
pt68
pt6t+
ptot
ptoo
pte
ptoe
14

fusr /jerq/bin/3pi
sh -c /usr/jerq/bin/32]ld /usr/jerq/mbin/pads.

(usr /jerq/bin/32Z1d fusr /jerq/mbin/pads.m
Ss
sh
3pi
sh
sh
ps
sh
sh
fusr fjerq/bin/visnon 1

5:1? mux F
O
L
D

t
t

F
T

e
t

et

e
d

congratulations for the beautiful 3pi feature of shifting the scree
n around.

EgHow did you think of that?

peek ttyO?
news_t ime dead. letter macguts

tuid
emacs machines

ufos
faces macur ite

player®. icon unixlicence
2 Dav idJordan fie mail

i upenn
guest.profile malloc

i valis
j ! oGr egHager icon mbox

i regexp _ vaxwr ite

TTY
ptit
pti4¢
pti14

ptit
pti2
ptida
pti
ptOs
ptot
ptot
pted
pteaa
ptead

9250 14
: mail tac

n around.

Fd
 E

LT

bt

md
 A

t
d

et

e
t

O
d

ed

COMMAND
sh
fuse] jera bine

-c Fe jerabin/321d /usr / jerq/mbin/pads.

(ert JeravbiniaZhd fusr /jerg/mbin/pads.m
s

fusr /jerq/bin/vismon ~-1
mux

congratulations for the beautiful 3pi feature of shifting the scree

iHow did you think of that? |

y' 7

news _t ime dead. letter macguts
pen tuid

-profile emacs machines
ter ufos

Alloc_med2 faces macwr ite
player®. icon unixlicence

A DavidJordan fie mail
i upenn

guest.profile malloc
valis

oGregHager icon mbox
regexp vaxur ite

ME COMMAND
gh
f/usr /jerq/bin/3pi
sh -c Jusr/jera/bin/321d /usr /jerg/mbin/pads.

pani erhkinraets fusr / jerq/mbin/pads.m
s
sh
3pi
sh
sh
ps
sh
sh
fusr /jerq/bin/vismon ~-1
mux K

H
U
I
S
D
Q
O
o
O
o
o
o
s

N
U
I
G
O
r
P
R
O
F
r
O
®

I
I
I

S
I
I
I
I
S
R
I
I
S
R U

M
S
S
e
o
e
o
d
o
e
o
d
s
®

n around.
sonaratnl ations for the beautiful 3pi feature of shifting the scree

How did you think of that?

peek ttyO? #
-nens_t ime dead. letter macguts

pen tuid
i emacs machines

ufos
faces macwr ite

player®@. icon unixlicence
Dav idJordan fie mail

i upenn
guest.profile malloc

valis
3 ToGregHager icon mbox

regexp vaxur ite

sh
fusr /jerq/bin/3pi :
sh -c /usr/jerq/bin/32]d /usr/jerq/mbin/pads.

fear’ Serdshinsaehe fusr /jerq/mbin/pads.m
s
sh
3pi
sh
sh
ps
sh
sh
fusr /jerq/bin/vismon -]
mux

2
29

S
S
E

2
a
s
o
s

P
S
O
S
V
e
o
e
s
e
o

S
e
o

V
W
i
O
S
e
o

V
I
O

S
E
K

O
F
@
®

a fo
s

“A
J

2
I
I
I

S
I

I
I
I
S
R
I
I
S
R

in around.
congratulations for the beautiful 3pi feature of shifting the scree

How did you think of that? |

y *
#4 onens_t ime dead. letter macguts

é pen tuid
-profile emacs machines

peter ufos
Allec_mod2 faces macur ite

player®. icon unixlicence
DavidJordan fie mail

i upenn
guest-.profile malloc

valis
ToGr egHager icon mbox

regexp vaxnr ite

fusr /jerq/bin/3pi
sh -c /usr/jerq/bin/321d /usr/jerq/mbin/pads

and Jergreiniseld fusr /jerq/mbin/pads.m
s|

V
e
e
e
c
e
c
t
e
c
r
e
n

f
e
t
a

I
I
I

S
I
1
I
I
5
R
I
I
S
R

fusr/jerq/bin/vismon -]
mux

cengratulations for the beautiful 3pi feature of shifting the scre
mn around.

ow did you think of that?

peek tty0r ;
-nens_t ime dead. letter

pen tnid
-profile emacs

peter ufos
Allocumod2 faces

Player®. icon unixlicence
Dav idJordan fie

i upenn
guest .profile

valis
icon

macyuts

machines

macwr ite

mail

malloc

mbox

q/bin/3pi ‘
sh -c f/usr/jerq/bin/321d /usr/jerq/mbin/pads.

fier {ierarbinyacla /usr /jerq/mbin/pads.m
s
sh_
=

sh

sh
fusr /jerq/bin/vismon —]
AUX M

O
S
S
s
o
o
o
s
e
s

S
e
n

I
I

5
I
I
I
I
S
R
I
I
S
R

congr atulat ions for the beautiful 3pi feature of shifting the scr
around.

low did you think of that?

peek ® ;
news t ime dead. letter

pen tuid
-profile emacs machines

peter ufos
Alloc_mod2 faces macur ite

player®.icon unixlicence
Dav idJordan fie mail

Gqix upenn
1 Mamber guest.profile malloc

referee valis
| ToGr egHager icon mbox

regexp vaxur ite

 ed
 e

e
ee

et

ed

e
d
!

fbin/3si
usr /jerq/bin/32ld /usr/jerq/mbin/pads

(perijerqisin/aeta fusr /jerq/mbin/pads.m
s
=n

i
4
sh
ps
sh
sh
fusr /jerq/bin/vismon —]
mux U

S
S
S
S
e
s
s
e
S
9

S

T
A
S
S
a
s
s
e
s
s
s

§

yf

F
O
U

R
A
F
U

I
O

e
e

H
M
N
O
O
S
O
O
o
e
a
g

9258 1
mail tac
ngratulations for the beautiful 3pi feature of shifting the scre

d
did you think of that?

snens_t
pen

-profile machines
peter

Alloc_mod2 macwr ite
Player®. icon unixlicence

tDavidJordan fie mail
j upenn

guest.profile malloc
valis

ToGr egHager icon mbox
regexp axwr ite

esd
 f
el
 f
om

et

fe
d

be

28068 ptlt fd /usr /jerq/mbin/pads-
16861 pti2
16¢55 pti9

B
O
O

-
H
S
S
L
E
S
S
R
S
S

uw
Q
Q
r
a
e

5S /usr/jerq/bin/vismon -1
21? mux N

O
S
C
C
O
S
S
O
S
S
®
 .

S
I
I
I
I
S
R
I
I
S
R

ations for the beautiful 3pi feature

bu think of that?

 ip
guest-.profile malloc

valis
icon ; mbox

Q
@
8
8
@
G
5

eoyneen

\ —

e
e
 eacve

Gosaseos

Oct 20 10:50 1984 tracks.txt Page 1

"Tracks" gives the illusion of animals walking on your windows and
leaving footprints. There are cats, birds, unicorns and little people.

Tracks are not left on the background, only on windows. However tracks can

cross grey regions and continue on another window,

The random motion is obtained as in crabs, with slightly different parameters.

Luca Cardelli

Tracks was written by myself as a crabs spin-off.

’ ? aA
3 « «¢ A

& ¢ 4
short Horseld@ {4
Ox3E7E -Ox8OG0, & 4%
6x ?7FFE,@x?B1E, ee
Q@x63C6,8xE66?, 4 &@
@x4182,8xC6@3, 4
@x4182 .6xCBO3
Ox2244 -BxE@@3 ,4
6x2244 -OxEGE A>
OxB660 » oat ,

6x0800,8x781E,
OxZ22744 , Ox ? P

@x2244 .BxCO03,
6x4182 »Oxl063,
9x4182,.8xC893,
8x53C6.8xE667,
Ox FFE Bx ?B1E»
Ox3E7C 46x68,
ee OA Geo

he .
Bitmap feet = {(Word *)Feet, 32 /WORDSIZE .{{0,6},{32,16}335 *
Bitmap bird = {(Word *)Bird, 32/WORDSIZE,{{0,@},{32,16}33;"° «¢
Bitmap bear = {(kKord *)Bear, 32/WORDSIZE,{{9,0},{32,16}}}¥%
itmap horse = {(dord *)Horse,»32/WORDSIZE,.{{6,0},{32,16}}}; o

Rectangle ltrackup = {{@,0},{8,9}}; &
Rectangle rtrackup = {{8,0},{16,8}}; zg

angle Iltrackdoun © {{8,8},{16,16}};

Gx »8x8@08, ¢%
Ox?F it 8x?BlE, «*
OxG3C6 50xEG6?, 4
@x4182 F8xC003, 4
Ox418Z -8xCOO3 A
 Ox2244 ,OxC@B3 4
Ox2244» cbt >

i

Q
| Ox3E7C 380x888,

‘es UA ° -
Oo » » g

A
Bijmap feet = {(Ho dX) Feet, 32/WORDSIZE.{{0,0}.{32 16})37 *
Bitmap bird = (ord *§Dird, 32/WORDSIZE,{{0,0},{32,16}33;°
‘Bitmap beam w» {(Hord *JBear, 32/WORDSIZE.{{9,0}.{32,163 9»
|Bitmapshgrse = {(kord * Mor se »-32/WORDSIZE .{{0,6},{32- 163335 ,

Reetangle ltrackup = {0,03 (8,833;
Rectangle rtrackup = {{8,0} 416,833;
Reétangle ltrackdoun = {{8,8} (16,1633;

& ew

Use U8
Ree BES

t Horo ie ra
~,OxO8GO, &&
r»Ox?BiE, awe &

B9UxEGG?, 4

2244, 9xC903
Boos: ,O8CO03
1.7244. OxEG6
cee SEE

wo «* Le & @ a

9 0 pe ip o> A v

: x o ove » 5 * e fe 0
Bitmap, feet a (Hemi) Feet . 32 /WORDSIZE, 9,0}, (32 “16333
Bitrap bird eybitlord «Bird, 32/WORDSIZE 40,0), €32, 333°
Bitmap beam s ei(Word *)Gear, 32/MORDSIZE,{{85 @} 5132, 1G} 33 »
pL SNOPES ee {{Word * Kor se »32/WORDSI 11080), £32, 1633); uo

ReetSngledtrackib = {{0, 8.8. 8}; 4 v yo?
Rectangle rtrackup% {48,0} -f15,83};, ¥ a
Rectangle ltrackdown = {{8,6) PC(i6, ei

a
fateh Cc OA

ge @ Pi atta & @ o|%

ee =

eg a» ye. v

eee oF,
4 46 ae

 aA, >P By

a jst oe» ate

Heats
{{8 585 AUG, 1632;¥

Aw

OYT Cog fe" Gay it og dS

Waw cg “Ge “yt
v O, I 4

Oct 20 11:51 1984 pogo.txt Page 1

A pogo stick is a pair of bouncers (dots) connected by a stick (line).
Pogo sticks (or "pogos", for short) hate grey, and love any other
color. In non-grey areas, the bouncers float freely, until they bump into
grey areas. When that happens, the bouncers change direction and
bounce off. The opposite bouncers of a pogo loosely attract each other.

A bouncer may overshoot a boundary between non-grey and grey, because of inertia,
and get temporarily trapped in a grey area. In this situation the bouncer is
continuously bouncing agains grey, and assumes a kind of brownian motion.
Fortunately, the opposite bouncer will very likely pull it out of trouble.
If both bouncers are trapped into grey, the pogo may randomly wander in grey
areas for a long time, looking like it is in a epileptic fit.

However, when a bouncer is trapped in grey, it tries actively to make itself a
home but turning all the grey it touches into black. Eventually this can create
large black areas where the pogo can again float free.

Luca Cardelli

Pogo was written by Mark Manasse, as a crabs spin-off.

regrey()3|
3

regrey()
{

Layer «1;
] = P->layer;
while (l->front}

1 = 1l=>front;
layerblt(1,

+

d#define rc (r.corner
define ro (r-origin
Hdefine Ic (1l=>rect pogo.c:153 mainlargc=1,argv=6x744E
H#define lo (1->rect

layerblt(1,r)
Layer *13
ase rs

if (1)

 TXT O-y

layerblt(1-back» Ret(ro-Pilre:x.1

 regrey() 5] Wy

S eoreyt)
{

Layer #7
it Player 5

while (l=>front)
] = 1->front;

layerblt(1,

(r.corner
(r origin
(1l—>rect,
(1—>rect|

 wT CVT Ue

"Wayerbit (1->back» Ret (ro-Pt(re-.xsl]

 iwurote pogo-c

Oct 20 12:25 1984 screenwars.txt Page 1

Screen Wars
aaa mm

Here we see crabs fighting against pogo sticks for the control of the screen.

(Figure Pogo.1) Three pogo sticks start at the top of the screen,

(Figure Pogo.2) Two pogos have migrated to the lower window.

A pogo in a large white space tends to stay there for long periods, because it is
very unlikely that it will have both bouncers outside at the same time and on the

same side, so that they can wander off. It is likely that pogos will

eventually migrate to the largest window available.

(Figure ScreenWars.1) The third pogo also migrated to the large window, and at the
top of the screen there are new intruders: crabs.

(Figure ScreenWars.2) Here the crabs have eaten half of the upper window and have

attacked the large window. Meanwhile the pogos have sprinkled black at the

perimeter of the window.

(Figure ScreenWars.3) A pogo wandered in the top left corner, aquiring a lot

of black territory. At the same time a single crab was trapped inside the large

window by the black stuff pogos drop, and deeply eroded it. The crabs have totally

eaten the top window and have invaded the lower regions of the screen.

The pogos are gaining territory around the window, where the black stuff
keeps the crabs away.

(Figure ScreenWars.4) Pogos have control of the center and top left of the screen,
except for a crab trapped in the top left which maintains its own grey territory,

and another crab which goes deeper and deeper in the large window. The crabs have

control of the bottom and right side of the screen, which is now full of

crab-shit (crab-shit is the product of a crab biting another crab; it is a

non-obvious side-effect of the crabs drawing algorithm).

(Figure ScreenWars.5) More of the same.

(Figure ScreenWars.6) The pogos keep slowly gaining territory. One of the

prisoner crabs has escaped, the other one is moving to the right. It is not
clear why these crabs are moving coherently, over large periods, in one

direction; maybe there is a slight bias in the random walk algorithm.
(At this point I went to sleep)

(Figure ScreenWars.7) Seven hours later the situation hasn’t changed much,
except that the other prisoner crab has escaped. The boundary between crabs

and pogos is sharp and stable. The whole process took 12 hours.

Other fights:

Tracks do not stand a chance against crabs, because tracks do not attack crab

territory (unless they happen to step on a crab, in which case they leave a

footprint there, but this is unfrequent), while crabs attack tracks territory.

Eventally, tracks loose their "footing".

Oct 20 12:25 1984 screenwars.txt Page 2

Tracks and pogos cooperate, and the result is a totally black screen,

Luca Cardelli

P.S. some inconsistencies in the figures, e.g. windows appearing and disappearing,

are due to the fact that I have to use a couple of windows to print out the

screen dumps, and I have to fight pogos and crabs while doing that.

regrey (3 3]

Layer «1;
] = P->layer;
while (1l->front)

1 = 1l->front;
layerblt(1,

re (r.corner P=@x73013
ro (r.oriai

 jLayer *1;
[Rectangle
 vt WO-:e7 N IU-77F Vy

layecbittl=>back, Rpt(ro.Pt(re.x.1

Laver *1;
1 P->layer ;
while (1l=>front)

1 = l=>frohts
erblt(1,

(r.corner
(r-orisif
(1l=>rect

define lo (1->rect es « P=@x730138

orem yar) epogo.c:153 mainlarg
ayer 3 ec meno mE

pentongle rs Process:

if (1)
 TUS y NEO

layerbli(l=~Sbeck, Retire.Pkircss.2

Hundef bitblt
texture

Rie ew ol

ORIXIIV GCATUIVSY {/OAZIIIXIV oo FREELIY Oy rryy

Oxll11, €x14444 Oxllil, Ox4444, Cxllll. Ox4444, Oxl1il,

ba
s

OAT ITTyY ollll, 6

ARIEL ILS GATTI JOAIITIIY nei VttyGALTIIIS

@x1111, Ox4444, @xilil, Oxt444, @xl11t, Ox4444, @xl111,

 PRT TTY ORE LIT ORT TV POR IIITET

@xtill, Ox4444, Oxilil, @x4444, @xilil

Hg TRENUM
(8deFine SLEEPTIME 16

HundeF bitbit
| /* tundef
tdet ji

f
Y

Pal
Be

a
s

u
m

oo
=

 ‘Te

44445

 8.98 -8.66 cbhosod!enl

cy a [r

rabblit Pov
Point pov;
{

int x»y» index;
Bitmap *whichcrab;
if (visible) {

if Cabs(v.x)>=abslv.y)) £
if (v.x>@) whicherab = &upcrabmap;
else whichcrab = &downcrabmap;
else
if (v.y>@) whichcrab = @rightcrabmap;
else whichcrab = &leftcrabmap;

bitbit Gah chorah Rect (index<<3,8, (index+1)
<<3,8) ,&screen,-p,F_XOR) ;

Point pov;
t

int x»y, index;
Bitmap *whichcrab;
if (visible) ¢

if Cabs(v.x)>=abs(v.y)) £€
if (v.x>@) whichcrab = &upcrabmap;
else whichcrab = &downcrabmap;

+ else {
if (v.y>@) whichcrab = &rightcrabmap;

; else whichcrab = &leftcrabmap;

x =p-x % 4;
yep-y % 23
index = (y<<2) +x;

La bitblt (whicherab,Rect (index<<3,@, Cindex+1)
a <<3,8) ,&screen,p,-F_XOR);

int x»y, index;
Bitmap *whichcrab;
if (visible) {

if C(abs(v.x)>=abs(v.y)) £
if (v.x>@) whichcrab = &upcrabmap;
else whichcrab = &downcrabmap;

+ else
if (v.y>@) whichcrab = &r ightcrabmap;
else whichcrab = &leftcrabmap;

}
x = p-x % 43
y p-y % 23
index = (y<<2) 4x3
bitblt (whicherab,Rect (index<<3,0, (index+1)

<<3,8),&screen,-p.F_XOR) ;

8.69 -8.44 cbhosgd!ewl

bd Ce nd [EEES
CrabBlit(p,v)
Point pov;
{

int x»y, index;
Bitmap *whichcr ab;
if (visible) €

if (abslv.x)>=abs(v.y)) €
if (v.x>@) whichcrab = &upcrabmap;
else whichcrab = &downcrabmap;

+ else
if (v.y>0) whichcrab = &rightcrabmap;
else whichcrab = &leftcrabmap;

}
x p-x % 4;
¥ p-y % 23

i
b
)

ndex = (y<<Z2) +x;
itblt (whichcrab,Rect (index<<3,6,(index+1)
»&screen,p,F_XOR); <<3,8

lewnl

Point pov;
{

int x-y,» index;
Bitmap *whichcrab;
if (visible) {

if Cabs(v.x)>=abs(v.y))
if (v.x>@) whichcrab = &upcrabmap;
else whichcrab = &downcrabmap;

+ else ¢
if (v.y>@) whichcrab = &rightcrabmap;
else whichcrab = &leftcrabmap;

p-x % 43
y=p-y % 2;
index = (y<<2) +x;
bitblt (whicherab,Rect (index<<3,0, Cindex+1)

<<3,8) -&screen,-p-F_XOR);

}
x

