
A C/C++ Code Vulnerability Dataset with Code Changes and
CVE Summaries

Jiahao Fan, Yi Li, Shaohua Wang∗

SPACE Lab, Informatics

New Jersey Institute of Technology

{jf449,yl622,davidsw}@njit.edu

Tien N. Nguyen
CS Department

The University of Texas at Dallas

tien.n.nguyen@utdallas.edu

ABSTRACT

We collected a large C/C++ code vulnerability dataset from open-

source Github projects, namely Big-Vul. We crawled the public

Common Vulnerabilities and Exposures (CVE) database and CVE-

related source code repositories. Specifically, we collected the de-

scriptive information of the vulnerabilities from the CVE database,

e.g., CVE IDs, CVE severity scores, and CVE summaries. With the

CVE information and its related published Github code repository

links, we downloaded all of the code repositories and extracted

vulnerability related code changes. In total, Big-Vul contains 3,754

code vulnerabilities spanning 91 different vulnerability types. All

these code vulnerabilities are extracted from 348 Github projects.

All information is stored in the CSV format. We linked the code

changes with the CVE descriptive information. Thus, our Big-Vul

can be used for various research topics, e.g., detecting and fixing

vulnerabilities, analyzing the vulnerability related code changes.

Big-Vul is publicly available on Github.

CCS CONCEPTS

• Security and privacy;

KEYWORDS

Common Vulnerabilities and Exposures, Code Changes, C/C++

Code,

ACM Reference Format:

Jiahao Fan, Yi Li, Shaohua Wang and Tien N. Nguyen. 2020. A C/C++ Code

Vulnerability Dataset with Code Changes and CVE Summaries. In 17th

International Conference on Mining Software Repositories (MSR ’20), October

5–6, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 5 pages.

https://doi.org/10.1145/3379597.3387501

1 INTRODUCTION

Vulnerability detection and fixing has been the core and critical

activity in software industry. Undetected vulnerabilities can be

exploited by hackers and may cause a great loss to users. For exam-

ple, a new Windows spoofing vulnerability (CVE-2020-06011) that

can affect millions of Windows computers has been discovered [9].

∗Corresponding Author
1https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0601

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7517-7/20/05. . . $15.00
https://doi.org/10.1145/3379597.3387501

Hackers could exploit the vulnerability to decrypt confidential in-

formation when users make connections to the affected software.

Recently, the detection of security vulnerabilities has been a crucial

topic of interest to the research community [3, 4, 7, 10, 11]. How-

ever, most studies have only conducted vulnerability detection for

certain types of vulnerabilities mainly due to the lack of readily

available datasets.

Inspired by the need, we curated a large C/C++ vulnerability

dataset, namely Big-Vul, from the Common Vulnerabilities and

Exposures (CVE) database [1] and open-source projects. First, we

crawled the public CVE database to collect all of the available

descriptive information of a CVE, e.g., the CVE ID, the CVE severity

score, the CVE summary, and references linking to the affected

products. Second, through the CVE references, we dug into the

relevant products with git open source repositories. Using CVE

IDs, we identified vulnerability-related code commits and extracted

relevant code changes. In total, our Big-Vul contains 3,754 code

vulnerabilities collected from 348 open source projects spanning 91

different vulnerability types. We linked the code changes with the

CVEs (including descriptive information). Our dataset Big-Vul can

enable the following key analysis of vulnerabilities, but not limited

to, (1) deep analysis on the characteristics of different vulnerabilities

and vulnerability code changes; and (2) improving the detection

and fixing of code vulnerabilities.

Unlike existing work, Big-Vul has the following key features:

(1). Zhou et al. [11] constructed a vulnerability dataset by filtering

out commits on GitHub using security-related keywords. Unlike

their dataset, Big-Vul was constructed by utilizing and linking

the CVE database, the project bug reports, and the code commits,

which helps to improve the accuracy of identifying the vulnerability-

related commits with code changes. In addition, they did not label

the vulnerability types and only released part of their dataset.

(2). Ponta et al. [5] manually curated a Java vulnerability dataset

containing CVE-IDs and code commit IDs. Our Big-Vul contains

more information of CVEs, including 21 features, e.g., code changes,

CVE summaries, and security scores. Also there are 3754 vulnera-

bilities in our dataset whereas only 624 vulnerabilities in theirs.

(3). VulinOSS [2] mainly contains the vulnerability information

relevant to the project meta-data, e.g., releases versions and code

metrics. Our Big-Vul is more code-centric. We processed the source

code of projects and their relevant code commits to extract vulner-

able functions and their corresponding fixes.

The contributions of this paper are:

[A. Dataset.] We collected and published a large dataset that

contains code changes and CVE summaries derived from the CVE

database and open source project repositories.

508

2020 IEEE/ACM 17th International Conference on Mining Software Repositories (MSR)

[B. The collection process with scripts.] We published our

data collection approach with supporting scripts. Our Big-Vulwith

scripts are available here [6].

2 DATA COLLECTION

We built our Big-Vul dataset in the following five steps:

S1. We crawled all of the vulnerability entries in the CVE data-

base, such as the descriptive information for each vulnerabil-

ity. Specifically, we created a script using BeautifulSoup2 to

parse the web pages of CVE Details and traverse the pages

by years. For each CVE entry, we collected the following in-

formation: access complexity, authentication required, avail-

ability impact, confidentiality impact, CWE ID, CVE ID, CVE

summary, integrity impact, publish date, security score, up-

date date and vulnerability classification.

S2. We automatically selected the CVE entries that have refer-

ence links of publicly available Git repositories. We only kept

the Git repositories that have a clear and fixed traversal path

that can lead to the actual code commits. In our dataset, we fo-

cused on the Github repositories and some popular products

with their own Git server, such as Google Android. For ex-

ample, when processing the Google Chrome related entries,

the CVE reference links lead us to specific Stable Channel

Update for Desktop pages, such as the page3 of March 31,

2020. The page contains the CVEs and their associated bug

IDs. We retrieved the bug IDs and their corresponding CVEs.

Then, we used the bug IDs to identify relevant code commits

from the Chrome’s mirror repository on Github. Some big

popular products, like Chrome and Android, may have their

own release pages with security information, while some

others may directly link the code repositories to the CVE

database as reference links. We developed distinct crawl-

ing strategies according to the different structures of pages

eventually leading to code repositories.

S3. Each commit is considered as a mini-version of a project.

We used the commit IDs to request commit histories of the

projects, andmapped eachmini-version to the corresponding

CVE entries. For each relevant commit, we extracted the

code changes between before and after fixing a vulnerability.

Finally, we used the code changes information to recover

the vulnerable version of a method. Thus we collected the

following information for a project: vulnerable methods with

their fixes and non-vulnerable other methods.

All of the aforementioned details, such as the name of each

project and the details of CVSs, have been stored in a CSV for-

mat with a clear structure, and source code functions are zipped

into a package. The dataset together with the scripts used for its

construction are made publicly available on GitHub [6].

3 DATA DESCRIPTION

Our Big-Vul dataset contains the details of CVE entries from 2002

to 2019. We collected 21 features for each CVE entry. Table 1 de-

scribes each CVE feature and its corresponding column name in

2https://www.crummy.com/software/BeautifulSoup/
3https://chromereleases.googleblog.com/2020/03/stable-channel-update-for-
desktop_31.html

our CSV file. Our Big-Vul dataset is released in a comma-separated

values(CSV) format. We also provide example codes that shows

how to manipulate and analyze our data.

Our Big-Vul dataset covers 348 different projects that are linked

to 4,432 unique code commits. The 4,432 code commits contain the

code fixes for 3,754 vulnerabilities in 91 CWE types. We use the

following Figures and Tables to represent Big-Vul.

Figure 1: Number of commits for top 10 projects.

Figure 1 shows the number of commits containing fixes for vul-

nerabilities for 10 different projects with the most C/C++ code

commits in Big-Vul. Specifically, the Google Chrome has the most

commits, i.e., 1,518, for fixing vulnerabilities. The Linux has the

second most commits, i.e., 927 and the Google Android has the third

most commits, i.e., 376. The number of the above-mentioned three

products, Google Chrome, Linux, and Google Android accounts for

63.65% of the total collected commits from the 348 products. The

top 10 projects have a total of 3,399 code commits, which accounts

for 76.69% of the total collected commits in Big-Vul.

Figure 2: The number of commits for top 10 CWEs.

Figure 2 shows the number of code commits for the 10 top CWE

types with the most code commits. The top three CWE types –

CWE-119 (Improper Restriction of Operations within the Bounds

of a Memory Buffer), CWE-20 (Improper Input Validation) and

CWE-125 (Out-of-bounds Read) – are all about data management

in C/C++ code and account for 33.94% of the total commits.

509

Table 1: The Description of CVE Features.

Features Column Name in the CSV Description

Access Complexity access_complexity
Reflects the complexity of the attack required to exploit the

software feature misuse vulnerability

Authentication Required authentication_required If authentication is required to exploit the vulnerability

Availability Impact availability_impact
Measures the potential impact to availability of a successfully

exploited misuse vulnerability

Commit ID commit_id Commit ID in code repository, indicating a mini-version

Commit Message commit_message Commit message from developer

Confidentiality Impact confidentiality_impact
Measures the potential impact on confidentiality of

a successfully exploited misuse vulnerability

CWE ID cwe_id Common Weakness Enumeration ID

CVE ID cve_id Common Vulnerabilities and Exposures ID

CVE Page cve_page CVE Details web page link for that CVE

CVE Summary summary CVE summary information

CVSS Score score The relative severity of software flaw vulnerabilities

Files Changed files_changed All the changed files and corresponding patches

Integrity Impact integrity_impact
Measures the potential impact to integrity of a successfully

exploited misuse vulnerability

Mini-version After Fix version_after_fix Mini-version ID after the fix

Mini-version Before Fix version_before_fix Mini-version ID before the fix

Programming Language lang Project programming language

Project project Project name

Publish Date publish_date Publish date of the CVE

Reference Link ref_ink Reference link in the CVE page

Update Date update_date Update date of the CVE

Vulnerability Classification vulnerability_classification Vulnerability type

Figure 3: The number of vulnerabilities for top 10 projects

in top 5 CWE types.

Figure 3 shows the number of vulnerabilities of the top 10 projects

for the top 5 CWE types. Distinct types of CWEs dominate vari-

ous projects differently. We found that the three CWE types with

the most commits, CWE-119 (Improper Restriction of Operations

within the Bounds of a Memory Buffer), CWE-20 (Improper In-

put Validation) and CWE-125 (Out-of-bounds Read), also appear

in every top-10 project. For the Google Chrome, the CWE types –

CWE-119 and CWE-20 – are the main types, while CWE-125 is the

main CWE type for the products Tcpdump and Radare2.

Table 2: Descriptive statistics of Big-Vul.

Measurement Value

Number of Projects 348

Number of CWE IDs 91

Number of CVE IDs 3754

Number of Commits 4432

Number of Modified Files 8143

Number of Vulnerable Functions 11823

Number of Non-vulnerable Functions 253096

Table 2 showsmore statistics of our Big-Vul at code function level.

We identified 4,432 code commits relevant to the vulnerabilities

spanning 91 CWE types. For a given vulnerable function with the

related commits, we kept the vulnerable version of the function and

its code changes for fixing the vulnerability In total, we obtained

8,143 modified files, 11,823 vulnerable functions, and 253,096 non-

vulnerable functions in our Big-Vul.

Furthermore, we also wanted to study the distribution of vulner-

able functions across different projects. Figure 4 shows the number

of vulnerable functions for each top top-10 project that has the

510

Figure 4: The number of vulnerable functions in top 10

projects.

most commits. Specifically, the Google Chrome, Linux and Google

Android are the top three projects that have the most vulnerable

functions. They have 4,932, 2,140 and 1,224 vulnerable functions,

respectively, which accounts for 70.17% of the total number of

vulnerable functions in Big-Vul.

4 DATA APPLICATION

Our Big-Vul dataset can be used for many vulnerability related

research areas, e.g., deep understanding CVEs and code changes,

code-centric vulnerability detection and the identification of vul-

nerability fixing patches.

The deep analysis on CVEs and code changes. The collected

CVE IDs, CVE summaries and some other detailed CVE information

can help conduct a deep analysis on the key features of vulnerabili-

ties using text mining and NLP. Also, our collected code changes

can be used to extract code features and give more insights how

a vulnerability was fixed. Furthermore, the detailed CVE informa-

tion is linked with its corresponding code changes, which makes

it possible to conduct any analysis with the combination of CVE

information and code. The analysis of CVE textual description, re-

lated code changes, and their relations can help contribute to the

research on explaining a possible code fix for a vulnerability to

improve the detection of vulnerabilities.

Code-centric vulnerability detection. In the evolution of soft-

ware engineering, there is a continuing tension between the need

to develop new features and detect vulnerabilities. To relieve devel-

opers from the tedious and time-consuming task of manual vulner-

ability detection, researches on automatic vulnerability detection

have been conducted [3, 7, 11]. Our Big-Vul dataset contains code

changes for vulnerability fixes so it can be utilized to model code

fixes at different levels, such as file, function, and line levels. Using

that code-centric information, researchers can abstract the features

of code vulnerabilities to define rules, or even train neural network

models to learn the code features for detecting vulnerabilities.

Identification of vulnerability fixing patches. For open source

projects, due to the publicly availability of their code repositories

and commit logs, the vulnerabilities in projects may be exposed to

security attacks during the time gap between the fix of a vulner-

ability and the release of the security version after the fix. In this

case, it is important to have a code-changes tracking system geared

towards automatic vulnerability fixing patches identification to aid

the developer in the management of version release [8, 12]. With

the code changes, our Big-Vul can be utilized to do research on

vulnerability fixing patches identification.

5 LIMITATION

In our Big-Vul dataset, the CSV file has 306 rows, and the rows

related to the Chrome project miss out some descriptive information

of some CVEs, e.g., the CVE IDs, CWE IDs, etc. because we used

the bug IDs in the official released bug reports by Google as the

keywords to retrieve the Chrome mirror repository on GitHub and

extract the relevant fix commit information. A tiny number of them

were not assigned with CVE IDs. Therefore, we failed to map these

entries to CVE database. We will update our dataset with related

information once these entries are assigned with CVE IDs, CWE

IDs or other important features.

6 RELATEDWORK

There are several existing vulnerability datasets created by previous

studies [2, 5, 11]. Zhou et al. [11] collected a C vulnerability dataset

by filtering out commits on GitHub using security-related keywords.

Then they manually checked each commit if it is vulnerable one.

Ponta et al. [5] monitored the NVD database and more than 50

different project-specific websites for new vulnerability disclosures

by manually checking the available information and extracting the

corresponding fix commits. Gkortzis et al. [2] collected a dataset

by crawling data from the NVD database and recording the project

version information from the database. Then they mapped project

versions to the version references (commit tags and branches) found

in the corresponding project repositories.

7 CONCLUSION

We present a C/C++ code vulnerability dataset, namely Big-Vul,

that contains important information such as CVE IDs, CVE sever-

ity scores, CVE summaries, mini-versions, code changes, etc. Our

Big-Vul dataset were collected from Common Vulnerabilities and

Exposures database and the official project bug reports, which

means that our dataset is accurate in terms of whether the code

changes that mapped to the CVE descriptive information are re-

ally vulnerability-related. Containing the mini-versions before and

after the vulnerability-related fixes, our dataset can be used to con-

duct vulnerability-related research by extracting the code changes

between the two mini-versions.

In our future work, we will attempt to mine more repositories

that use other issue-tracking and source control management sys-

tems, such asMercurial, Subversion, JIRA, and Bugzilla, etc. , instead

of only Git, to make our data cover more projects, more vulnerabil-

ity types, and more programming languages.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science Foun-

dation (NSF) grants CCF-1723215, CCF-1723432, TWC-1723198,

CCF-1518897, and CNS-1513263.

511

REFERENCES
[1] CVE Details. 2020. CVE Details Website. http://https://www.cvedetails.com/.
[2] Antonios Gkortzis, Dimitris Mitropoulos, and Diomidis Spinellis. 2018. VulinOSS:

a dataset of security vulnerabilities in open-source systems. In Proceedings of the
15th International Conference on Mining Software Repositories. 18–21.

[3] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun
Deng, and Yuyi Zhong. 2018. Vuldeepecker: A deep learning-based system for
vulnerability detection. arXiv preprint arXiv:1801.01681 (2018).

[4] Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta. 2018. Beyond metadata:
Code-centric and usage-based analysis of known vulnerabilities in open-source
software. In 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 449–460.

[5] Serena Elisa Ponta, Henrik Plate, Antonino Sabetta, Michele Bezzi, and Cédric
Dangremont. 2019. A manually-curated dataset of fixes to vulnerabilities of
open-source software. In 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE, 383–387.

[6] This Project. [n.d.]. Our C/C++ dataset. https://github.com/ZeoVan/MSR_20_
Code_Vulnerability_CSV_Dataset.

[7] Rebecca Russell, Louis Kim, Lei Hamilton, Tomo Lazovich, Jacob Harer, Onur
Ozdemir, Paul Ellingwood, and Marc McConley. 2018. Automated vulnerability

detection in source code using deep representation learning. In 2018 17th IEEE
International Conference on Machine Learning and Applications (ICMLA). IEEE,
757–762.

[8] Antonino Sabetta and Michele Bezzi. 2018. A practical approach to the automatic
classification of security-relevant commits. In 2018 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 579–582.

[9] Zack Whittaker. 2020. Microsoft and NSA say a security bug affects millions of
Windows 10 computers. https://techcrunch.com/2020/01/14/microsoft-critical-
certificates-bug/.

[10] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling and
discovering vulnerabilities with code property graphs. In 2014 IEEE Symposium
on Security and Privacy. IEEE, 590–604.

[11] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019.
Devign: Effective vulnerability identification by learning comprehensive program
semantics via graph neural networks. InAdvances in Neural Information Processing
Systems. 10197–10207.

[12] Yaqin Zhou and Asankhaya Sharma. 2017. Automated identification of security
issues from commit messages and bug reports. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering. 914–919.

512

