
Really Automatic Scalable

Object-Oriented Reengineering

Marco Trudel1, Carlo A. Furia1, Martin Nordio1, and Bertrand Meyer1,2

1 Chair of Software Engineering, ETH Zurich, Switzerland
2 Software Engineering Laboratory, ITMO, St. Petersburg, Russia

firstname.lastname@inf.ethz.ch

Abstract. Even when implemented in a purely procedural programming lan-

guage, properly designed programs possess elements of good design that are ex-

pressible through object-oriented constructs and concepts. For example, placing

structured types and the procedures operating on them together in the same mod-

ule achieves a weak form of encapsulation that reduces inter-module coupling.

This paper presents a novel technique, and a supporting tool AutoOO, that ex-

tracts such implicit design elements from C applications and uses them to build

reengineered object-oriented programs. The technique is completely automatic:

users only provide a source C program, and the tool produces an object-oriented

application written in Eiffel with the same input/output behavior as the source. An

extensive evaluation on 10 open-source programs (including the editor vim and

the math library libgsl) demonstrates that our technique works on applications

of significant size and builds reengineered programs exhibiting elements of good

object-oriented design, such as low coupling and high cohesion of classes, and

proper encapsulation. The reengineered programs also leverage advanced fea-

tures such as inheritance, contracts, and exceptions to achieve a better usability

and a clearer design. The tool AutoOO is freely available for download.

1 Introduction

The reasons behind the widespread adoption of object-oriented programming languages

have to be found in the powerful mechanisms they provide, which help design and im-

plement clear, robust, flexible, and maintainable programs. Classes, for example, are

modular constructs that support strong encapsulation, which makes for components

with high cohesion and low coupling; inheritance and polymorphism make classes

extensible, thus promoting flexible reuse of implementations; exceptions can handle

inter-procedural behavior without polluting functional and modular decomposition; and

contracts seamlessly integrate specification and code, and support abstract yet expres-

sive designs.

Competent programmers, however, try to achieve the same design goals—encapsu-

lation, extensibility, and so on—even when they are implementing in a programming

language that does not offer object-oriented features. A developer adopting the C pro-

gramming language, for example, will use files as primitive modules collecting structs

and functions operating on them; will implement exception handling through a disci-

plined use of setjmp and longjmp; will use conditional checks and defensive program-

ming to define valid calling contexts in a way somewhat similar to preconditions.

G. Castagna (Ed.): ECOOP 2013, LNCS 7920, pp. 477–501, 2013.

c© Springer-Verlag Berlin Heidelberg 2013

firstname.lastname@inf.ethz.ch

478 M. Trudel et al.

Following these observations, this paper describes work to automatically reengineer

procedural C programs to introduce object-oriented features, based on design elements

such as files, function signatures, and user-defined types. The result of our work is a

fully automated technique and supporting tool that extract such implicit design informa-

tion from C programs1 and use it to reengineer functionally equivalent object-oriented

applications in the Eiffel object-oriented programming language.

Given the huge availability of high-quality C applications, an automatic technique to

reengineer C into object-oriented code has a major potential practical impact: reusing

legacy code in modern environments. In fact, this is not the first attempt at supporting

object-oriented reengineering, and porting procedural applications to a modern pro-

gramming paradigm is a recurrent industrial practice. A careful analysis of related

work, which we present in Section 8, shows however that previous approaches have

limitations in terms of comprehensiveness, automation, applicability to real code, and

achieved quality of the reengineering. In contrast, our approach constitutes a significant

contribution with the following distinguishing characteristics.

– The reengineering technique is fully automatic and implemented in the freely avail-

able tool AutoOO. Users only need to provide an input C project; AutoOO outputs

an object-oriented Eiffel application that can be compiled.

– The technique and tool work on real software of considerable size, as demonstrated

by an extensive evaluation on 10 open-source programs including the editor vim

and the math library libgsl.

– As demonstrated by quantitative analysis of the products of the automatic reengi-

neering, the object-oriented code achieves good encapsulation and introduces in-

heritance, contracts, and exceptions when feasible.

– The reengineering is correct by construction: the generated object-oriented pro-

grams achieve the same functional behavior as the source programs and do not

introduce potentially incorrect refactorings that might break the code.

These characteristics make AutoOO a valuable asset to reuse good-quality software in

object-oriented environments. We have experienced the usefulness of this service first-

hand with the Eiffel user community, which is not as large as those of other mainstream

languages, and hence it lacks a wide choice of libraries in some application domains.

Prompted by numerous requests, in addition to the 10 programs discussed in Section 5,

we used AutoOO to port some C libraries that were sorely needed by the Eiffel devel-

oper’s community: the driver for the MongoDB database; the PCRE regular expression

library; and the SDL mixer audio library. After being produced with minimal effort, the

Eiffel versions of these libraries are now being used by Eiffel developers. Requests for

converting more libraries keep coming, and AutoOO is starting to be directly used by

programmers other than its authors. This gives us confidence that our work is practical

and helps solve a real and recurrent problem: automatic and scalable reuse.

While AutoOO translates C to Eiffel, the principles and reengineering techniques it

implements are based on standard object-oriented features, and hence are readily appli-

cable to other programming languages—such as C++, Java, and C#—offering classes,

1 We target ANSI C and GCC extensions.

Really Automatic Scalable Object-Oriented Reengineering 479

static members, visibility modifiers, and exceptions.2 In fact, to highlight the generality

of the reengineering, the presentation will use a Java-like syntax; this will be palatable

to readers familiar only with C-based programming languages without misrepresenting

any conceptually relevant aspect. We assume knowledge of the standard terminology

and notions of object-oriented programming [15].

Fig. 1. Object-oriented reengineering with C2Eif and AutoOO

C2Eif and AutoOO. The reengineering techniques described in this paper are com-

bined with our previous work on C2Eif [27] and implemented as part of the toolchain

shown in Figure 1. The toolchain implements an overall transformation that inputs a C

program and outputs an object-oriented Eiffel project with the same functionality. The

C source program is first processed by CIL [19], which simplifies some C constructs

(for example, there is only one type of loop in CIL). In the second stage, C2Eif translit-

erates the CIL output into procedural Eiffel, whose structure replicates that of the C

input program without introducing elements of object-oriented design. We described

this stage in previous work [27]; its details are largely independent of the reengineering

techniques implemented by AutoOO, which only uses C2Eif as a back-end. Finally,

AutoOO processes the C2Eif output, introduces the transformations described in Sec-

tions 3 and 4, and outputs the reengineered object-oriented Eiffel programs that can be

compiled.

Tool Availability. AutoOO is available online at http://se.inf.ethz.ch/

research/c2eif. The webpage includes AutoOO’s sources, pre-compiled binaries,

source and binaries of all translated programs of Table 2, and a user guide. AutoOO’s

distribution has been successfully evaluated by the ECOOP artifact evaluation com-

mittee and found to meet expectations. For ease of presentation, we will use the name

AutoOO to denote not only the tool but also the reengineering technique it implements.3

2 The only two features used by AutoOO that may not be universally available are contracts

and member renaming during inheritance. Contracts, however, are increasingly provided in

other languages as libraries or assertions (e.g., CodeContracts for C#, assert in Java). Member

renaming plays a limited role in the refactorings produced by AutoOO (Section 3.4), and a

translator targeting another language could make up for it by using the same name in the

super- and subclasses, or even (as we suggest in Section 3.4) by dropping inheritance in the

few cases where renaming is required.
3 In the latest distributions, C2Eif and AutoOO are integrated into a single translator (called

C2Eif for simplicity), which offers the option to apply the object-oriented reengineering trans-

formations presented in this paper.

http://se.inf.ethz.ch/research/c2eif
http://se.inf.ethz.ch/research/c2eif

480 M. Trudel et al.

Outline. In the rest of the paper, Section 2 defines the goals of AutoOO reengi-

neering, how they are assessed, and the design principles followed. Section 3 discusses

how AutoOO introduces elements of object-oriented design—in particular, how it pop-

ulates classes. Section 4 discusses how it introduces contracts and exceptions. Section 5

presents the evaluation of the correctness, scalability, and performance of AutoOO

based on 10 reengineered applications and libraries. Section 6 reviews the fundamental

aspects of the object-oriented design style introduced by AutoOO and how they make

for usable reengineered programs. Section 7 discusses the current limitations of Au-

toOO. Section 8 reviews related work and compares AutoOO against existing tools and

approaches to object-oriented reengineering. Section 9 concludes and outlines future

work.

2 O-O Reengineering: Goals, Principles, and Evaluation

The overall goal of AutoOO reengineering is expressing the design implicit in proce-

dural programs using constructs and properties of the object-oriented paradigm. For

example, we restructure and encapsulate the code into classes that achieve a high cohe-

sion and low coupling, we make use of inheritance to reuse code, and so on. The main

motivation for introducing object-oriented constructs is that they can explicitly express

design and structure of programs concisely and in a way amenable to further flexible

extension and reuse.

While reengineering in its most general meaning—the reconstruction of “a system

in a new form” [2]—may also introduce new functionality or mutate the existing one

(for example, with corrective maintenance), the present work tries not to deviate from

the original intentions of developers as reflected in the procedural implementations.4

For example, we do not introduce exceptions unless the original program defines some

form of inter-procedural execution path. We adopt a conservative approach because we

want a reengineering technique that:

– is completely automatic, not just a collection of good practices and engineering

guidelines;

– always produces correct reengineerings, that is programs that are functionally

equivalent to the original procedural programs.

Improving and extending software are important tasks, but largely orthogonal to our

specific goals and requiring disparate techniques. For example, there are serviceable

tools to infer specifications from code (to mention just a few: [5,12,28]) which can be

applied atop our reengineering technique to get better code specification automatically;

but including them in our work would weaken the main focus of the contribution.

From the user perspective, AutoOO is a translator that takes an input C program and

converts it to an object-oriented Eiffel program that replicates its functionality. The rest

of this section presents other specific goals of AutoOO and how we assess them.

4 This entails that, when applied to C programs that do not contain elements conducive to object-

oriented design, AutoOO should simply introduce few changes. The experiments with the

programs of Table 1 suggest, however, that AutoOO’s heuristics are often applicable with

success.

Really Automatic Scalable Object-Oriented Reengineering 481

Case Studies. The evaluation of AutoOO, described in the following sections, targets

10 open-source programs totalling 750 KLOC. The 10 programs include 7 applications

and 3 libraries; all of them are widely-used in Linux and other “*nix” distributions.

hello world is the only toy application, which is however useful as a baseline. The

other applications are: micro httpd 12dec2005, a minimal HTTP server; xeyes

1.0.1, a widget for the X Windows System that shows two googly eyes following the

cursor movements; less 382-1, a text terminal pager; wget 1.12, a command-line

utility to retrieve content from the web; links 1.00, a simple web browser; vim 7.3, a

powerful text editor. The libraries are: libcurl 7.21.2, a URL-based transfer library

supporting protocols such as FTP and HTTP; libgmp 5.0.1, for arbitrary-precision

arithmetic; libgsl 1.14, a powerful numerical library. Section 5 discusses more de-

tails about the programs used in the experiments.

Correctness, Scalability, and Performance. In addition to systematic interactive

usage, we assess correctness of the reengineering produced by AutoOO by running

the standard regression test-suites available with the programs, hereby verifying that

the output is the same in C and Eiffel. We also consider the translation time taken by

AutoOO to guarantee that it scales up; and the performance of the Eiffel reengineered

program to ensure that it does not incur a slowdown that severely compromises usabil-

ity. Section 5 discusses these correctness and performance results.

Object-Oriented Design. AutoOO creates an object-oriented program consisting of

a collection of classes; each class aggregates data definitions (fields) and functions oper-

ating on them (methods). Section 3 presents the technique that extracts object-oriented

design; we evaluate the quality of the object-oriented design produced by AutoOO with

the following measures:

Soundness: We manually inspected 43% of all classes produced by AutoOO (all

projects but vim and libgsl) and we determined how many methods belong

to the correct class, that is are indeed methods operating on the fields of the class.5

Coupling and Cohesion: The coupling of a class is measured as the ratio: number of

accesses to members of other classes / number of accesses to members of the same

class. When this ratio is low (less than 1 in the best cases), it shows that classes are

loosely coupled and with high cohesion.6

Information Hiding Is measured as the ratio of private to public members. A high ratio

indicates that classes make good usage of information hiding for encapsulation.

Instance vs. Class Members: The ratio of instance to class members (called static

members in Java) gives an idea of the “object-orientedness” of a design. A high

ratio indicates a really object oriented design, as it makes limited usage of “global”

class fields and methods.

Inheritance: We manually inspected all uses of inheritance introduced by AutoOO

and we determined how many correctly define substitutable heir classes.

5 As we illustrate in Section 3, soundness refers to whether reengineering moves members to

the “right” classes from a design point of view. Soundness is thus a notion orthogonal to

correctness: AutoOO reengineerings do not alter behavior and hence are always correct (as

per standard regression testsuites and general usage).
6 Cohesion is normally defined as the dual of coupling.

482 M. Trudel et al.

Contracts and Exceptions. In addition to the core elements of object-oriented de-

sign, AutoOO also introduces high-level features often present in object-oriented lan-

guages: contracts and exceptions. AutoOO clearly distinguishes the purpose of con-

tracts vs. exceptions.

Contracts. Replace annotations (not part of ANSI C but available as GCC extensions)

and encode simple requirements on a function’s input and guarantees on its output;

they are discussed in Section 4.1.
Exceptions. Replicate the behavior of setjmp and longjmp which divert the structured

control flow in exceptional cases across functions and modules; they are discussed

in Section 4.2.

3 Object-Oriented Design

Table 1. Object-oriented design metrics after each reengineering step applied to the ten case study

programs

REENGINEERING STEP #
b
u
n
d
le

m
et

h
o
d
s

#
d
at

at
y

p
e

m
et

h
o
d
s

#
b
u
n
d
le

fi
el

d
s

#
d
at

at
y

p
e

fi
el

d
s

%
so

u
n
d

d
at

at
y
p
e

m
et

h
o
d
s

av
er

ag
e

co
u
p
li

n
g

o
v
er

al
l

h
id

in
g

in
st

an
ce

/c
la

ss

m
em

b
er

s

#
in

h
er

it
in

g

cl
as

se
s

1. source files 12,445 0 3,628 5,337 – 8.87 – 0.33 0

(0%) (60%) 1.54

2. function signature 7,724 4,721 3,628 5,337 94% 2.33 – 0.88 0

(38%) (60%) 1.20

3. call graph 6,471 5,974 2,881 6,084 96% 2.00 0.12 1.12 0

(47%) (68%) 1.06

4. inheritance 6,471 5,974 2,881 6,084 96% 2.00 0.12 1.12 4

(47%) (68%) 1.06

AutoOO produces object-oriented designs that consist of collections of classes. The

generated classes are of two kinds with different purposes:

– a datatype class combines the data definitions translating some C type definition

(struct or union) with a collection of instance methods translating C functions

operating on the type.
– a bundle class collects global variables and global functions present in some C

source file and makes them available to clients as class members.

Only datatype classes are germane to object-oriented design, which emphasizes proper

encapsulation of data definitions with the operations defined on them; bundle classes,

however, are still necessary to collect elements that do not clearly belong exclusively

to any datatype, such as globals shared by multiple clients. Thus, bundle classes are a

safe fall-back that keeps the original modular units (the source files) instead of forcing

potentially unsound refactorings.

Corresponding to their roles, datatype classes contain mainly “proper” instance mem-

bers (Section 3.3 discusses the exceptions), whereas bundle classes contain only class

members (also called static).

AutoOO generates datatype and bundle classes in four steps:

Really Automatic Scalable Object-Oriented Reengineering 483

1. Source file analysis creates the bundle classes and populates them based on the

content of source files; it creates a datatype class for each structured type definition

(struct or union).

2. Function signature analysis refactors methods from bundle to datatype classes,

moving operations closer to the data definition they work on.

3. Call graph analysis refactors members from bundle to datatype classes, and shuf-

fles methods among datatype classes, moving members to classes where they are

exclusively used.

4. Inheritance analysis creates inheritance relationships between datatype classes

based on their fields.

The following subsections 3.1–3.4 describe the steps in detail with examples.

Table 1 reports how the various metrics mentioned in Section 2 change as we ap-

ply the four steps to the 10 case study programs. For each reengineering step, Table 1

reports:

– The number of bundle and datatype members7 created, partitioned in methods and

fields.

– The percentage of sound datatype methods.8 A method m of a datatype class T—

that contains the data definition of a struct T or union T—is sound if manual anal-

ysis confirms that m implements an operation whose primary purpose is modifying

or querying instances of T.

– The average (median) coupling of classes, where the coupling of a class T (with

respect to the rest of the system) is defined as follows. An access is the read or

write of a field, or a method call; an access in the body of a method m of T is in

if it refers to a member of T other than m; it is out if it refers to a member of a

class other than T. When counting accesses in a method m we ignore duplicates:

if m’s body calls r more than once, we only count it as one access. T’s coupling is

the ratio of out to in accesses of all its members. For each step, Table 1 reports two

values of coupling; the value on top puts all classes of all programs together (hence

larger projects dominate), while the bottom value computes medians per programs

and then the median across programs.

– The hiding of classes, measured as the ratio of private and protected to public

members.

– The ratio of instance to class members.

– The number of classes defined using inheritance.

The rest of this section discusses the figures shown in Table 1 to demonstrate how each

reengineering step improves these object-oriented design metrics. A word of caution is

necessary about the reliability of metrics such as those we use to assess the improve-

ment of design quality, something which eludes general quantitative definitions [3].

Nonetheless, metrics give an idea of how the design changes through the various trans-

formations; while the exact values they report should be taken with a grain of salt, they

are still useful to complete the picture of how AutoOO performs in practice.

7 A bundle (or datatype) member is a member of a bundle (or datatype) class.
8 Evaluated on all projects but vim and libgsl, as discussed in Section 2.

484 M. Trudel et al.

3.1 Source File Analysis

For each source file F.c in the program, the first reengineering step creates a bundle

class F and populates it with translations of all the global variables and function defini-

tions found in F.c. For each definition of a structured type T in F.c, the first step also

creates a datatype class T that contains T ’s components as fields. AutoOO only has to

consider structured type definitions using struct or union; atomic type definitions and

enums are handled in the initial processing by C2Eif. Since AutoOO’s reengineering

treats the two kinds of structured type declarations uniformly, we only deal with structs

in the following to streamline the presentation; the handling of unions follows easily.

int majority age = 18;

struct person

{
int age;

bool sex;

};

void set age(struct person ∗p, int new age) {
if(new age≤ 0) return;

p→age = new age;

}

bool overage(int age) {
return (age >majority age);

}

bool is adult(struct person ∗p) {
return overage(p→age);

}

Fig. 2. C source file PersonHandler.c.

For example, when processing the C source file in Figure 2, the first step generates

the datatype class Person and the bundle class PersonHandler in Figure 3.

Source file analysis sets up the dual bundle/datatype design and defines the classes

of the system. The result is still far from good object-oriented design as the datatype

classes are just empty containers mapping structs one-to-one, and in fact we have

no hiding and a low instance/class member ratio (the only instance members are the

datatype fields).

The overall coupling (first row in Table 1) is also quite high after step 1. This does not

come as a surprise: because all methods are located in bundle classes, every read or write

of a struct field from the original C code becomes an out access. The proliferation of

out accesses is especially evident in libgmp, where the majority of modules have only

Really Automatic Scalable Object-Oriented Reengineering 485

class Person

{
int age;

boolean sex;

}

class PersonHandler

{
static int majority age = 18;

static void set age(Person p, int new age) {
if(new age≤0) return;

p.age = new age;

}

static boolean overage(int age) {
return (age >majority age);

}

static boolean is adult(Person p) {
return overage(p.age);

}
}

Fig. 3. Datatype class Person (left) and bundle class PersonHandler (right) initially created for

the C file in Figure 2

out accesses. In general, coupling is higher for libraries in our experiments; this may

indicate that coupling for library code should be measured differently, for example by

considering the library in connection with a client. In any case, this is not a problem for

our evaluation: the value of coupling after step 1 is merely a baseline that corresponds

to purely procedural design; our goal is to measure how this value changes as we apply

the next reengineering steps.

3.2 Function Signature Analysis

The second reengineering step moves methods from bundle to datatype classes accord-

ing to their signature, with the intent of having data and methods operating on them in

the same class.

Consider a method m of bundle class M with signature

t0 m (t1 p1,t2 p2,. . .,tn pn) ,

for n ≥ 0. An argument pk of m is data-bound if its type tk = T∗ (pointer to T),

where T is a datatype class. When a routine has more than one such argument, we

consider only the first one in signature order. A data-bound argument pk is globally

used by m if it is accessed (read or written) at least once along every path of m’s control

flow graph, except possibly for argument handling paths. An argument handling path

is a path guarded by a condition that involves some argument ph, with h �= k, and

terminated by a return.

For each method m of a bundle class M that has a data-bound argument pk of

type tk = T∗ which is globally used, the second reengineering step moves m into the

486 M. Trudel et al.

datatype class T and changes its signature—which becomes non-static and drops argu-

ment pk—and its body—which refers to pk implicitly as this. Accordingly, m’s body

may have to adjust other references to members of M that are now in a different class;

also any call to m has to be adjusted following its new signature.

Continuing the example of Figure 2, the second reengineering step determines that

set age and is adult can be refactored: argument p is data-bound and globally used in

both methods (with the first instruction in set age being an argument handling path).

Hence, the two methods are moved from class PersonHandler to class Person which

becomes:

class Person

{
int age;

boolean sex;

void set age(int new age) {
if(new age≤0) return;

age = new age;

}

boolean is adult() {
return PersonHandler.overage(age);

}
}

Function signature analysis introduces fundamental elements of object-oriented design.

As reported in Table 1, manual inspection reveals that 94% of the methods moved to

datatype classes are indeed operations on that type; this means that 97% of the members

of datatype classes (fields plus sound methods) are refactored correctly. Remember that

our definition of soundness refers to design, not to correct behavior: even the 6% =

100%− 94% “unsound” methods behave correctly as in the original C programs, even

if they are arguably not allocated to the best class. Inspection also reveals some common

causes of unsound refactorings. Some functions use a generic pointer (type void∗) as

first argument, and then cast it to a specific struct∗ in the code; and in a few cases the

pointer arguments are simply not reliable indicators of data dependence or are in the

wrong order (more details below).

Coupling drastically reduces after step 2, because many methods that access fields of

datatype classes are now located inside those classes. This dominates over the increase

in out accesses to bundle members from within the methods moved to datatype classes,

also introduced by step 2. In particular, function signature analysis mitigates the high

coupling we measured in the libraries. Finally, many methods have become instance

methods, with an overall instance/class ratio of 0.88.

How restrictive is the choice to consider only the first data-bound argument to a

datatype class for deciding where to move methods? For example, if the code in Fig-

ure 2 had another function void do birthday(struct person ∗p, struct log ∗l) that in-

creases p’s age and writes to the log pointed to by l, should we move do birthday to

datatype class log instead of person? The empirical evidence we collected suggests that

Really Automatic Scalable Object-Oriented Reengineering 487

our heuristics is generally not restrictive: we manually analyzed all 77 functions with

multiple arguments of type “pointer to struct” in the case study programs and found

only 3 cases where the “sound” refactoring would target an argument other than the

first.

Another feature of function signature analysis as it is implemented in AutoOO is the

choice to ignore methods with an argument p whose type t corresponds to a struct,

but that is passed by copy (in other words, whose original type in C is t rather than

t∗); we found 131 such cases among the programs of Table 2 and only 56 (43%) of

them would have generated a sound refactoring. In all, we preferred not to consider

arguments passed by copy because it would lead to unsound refactoring in the majority

of cases; a more sophisticated analysis of this aspect belongs to future work.

Finally, the refactoring requirement that a data-bound argument must be globally

used is not necessary, in most cases, to achieve soundness, but dropping it would intro-

duce incorrect translations that change the behavior of the program in some cases. In

fact, a function with an argument not used globally includes valid executions where the

argument is allowed to be null; therefore, it cannot become an instance method which

always has an implicit non-null target this.

As an interesting observation about the application of reengineering to the programs

of Table 2, we found that 40% of the methods moved to datatype classes in step 2 have

a name that includes the datatype class name as prefix. For example, the methods oper-

ating on a datatype class hash table in wget are named hash table get, hash table put,

and so on. This suggests that, in the best cases, even purely syntactic information carries

significant design choices. AutoOO takes advantage of this finding and removes such

prefixes to increase the readability of the created code (see also the client example in

Section 6).

3.3 Call Graph Analysis

The third reengineering step moves more members to datatype classes according to

where the members are used, with the intent of encapsulating “utility” members to-

gether with the datatype definitions that use them exclusively.

Consider a member n of any class N that is accessed (read, written, or called) only in

a datatype class T. For each such member n, the third reengineering step moves n into

the datatype class T. If n is an instance method or a class method, it becomes an instance

method; if it is a class field, it remains a class field to preserve the original semantics

of static fields corresponding to global C variables (this is the only case where we add

class members to datatype classes). Members moved to datatype classes in this step

also become private, since they are not used outside the class they are moved to. Since

moving a member out of a class changes the global call graph, AutoOO performs the

third reengineering step iteratively: it starts with the member n with the largest number

of accesses, and updates the call graph after every refactoring move, recalculating the

set of candidate members for the next move.

Continuing the example of Figure 2, assume that method overage of bundle class

PersonHandler is only called by is adult in datatype class Person, and that field

majority age is instead read also by other modules. Then, AutoOO moves overage to

Person where it becomes non-static and private:

488 M. Trudel et al.

private boolean overage(int age) {
return (age >PersonHandler.majority age);

}

The field majority age, instead, stays unchanged in class PersonHandler.

As reported in Table 1, call graph analysis refines the object-oriented design and

introduces hiding when possible, that is for 12% of the members. Even if there are 2,290

private members, these are localized in only 139 classes, hence the average hiding per

class is low (3% mean). Coupling decreases once more, as a result of moving utility

methods to the class where they are used. The percentage of sound refactored methods

increases to 96%; overall, 98% of the datatype members are refactored correctly. Step

3 also makes instance members the majority (53% of all members, or 1.12 instance

member per class member).

Under the conservative approach taken by AutoOO, which creates functionally equiv-

alent code, the values of hiding, coupling, and instance/class members reached after

steps 1–3 strike a fairly good balance between introducing object-oriented features and

preserving the original design as not to harm understandability due to unsound mem-

bers in classes of the reengineered application. The example in Section 6 reinforces

these conclusions from a user’s perspective.

3.4 Inheritance Analysis

The fourth reengineering step introduces inheritance in order to make existing subtyp-

ing relationships between datatype classes explicit. In the original C code subtyping

surfaces in the form of casts between different struct pointer types. Because the lan-

guage does not provide any way to make one struct type conform to another, modelling

subtyping in C requires frequent upcasting (conversion from a subtype to a supertype)

as well as downcasting (from a supertype to a subtype). Inheritance analysis finds such

casting patterns and establishes inheritance relationships between the involved types.

Consider two type declarations in the source C program:

struct r { t1 a1; t2 a2; . . . ; tm am; };

struct s { u1 b1; u2 b2; . . . ; un bn; };

We say that type s is cast to type r if there exists, anywhere in the program’s code, a

cast of the form (struct r∗) e with e an expression of type struct s∗. We say that type

s extends type r if n > m9 and, for all 1 ≤ i ≤ m, the types ti and ui are equivalent.

For every such types r and s such that s extends r and s is cast to r, r is cast to s, or

both, the fourth reengineering step makes the datatype class for s inherit from r. Using

a renames clause10 to rename fields with different names, s becomes:

class s extends r renames a1:b1, a2:b2, . . ., am:bn
{

um+1 bm+1;

. . .

9 The case n = m could be also supported but would rarely be useful with the programs tried

so far.
10 Available natively in Eiffel and not in Java, but whose semantics is straightforward.

Really Automatic Scalable Object-Oriented Reengineering 489

un bn;

// Rest of the class unchanged.

}

Notice that AutoOO bases inheritance analysis on type information only, not on field

names. Therefore, it requires renaming of fields in general; implementing this fea-

ture in Java or similar languages, where renaming is not possible, would require some

workaround (or simply dropping inheritance when renaming is required).

Continuing the example of Figure 2, assume another struct declaration is

struct student { int age; bool sex; int gpa; } and that, somewhere in the program, a

variable of type person ∗ is cast to (student ∗). Then, datatype class Student becomes:

class Student extends Person

{
int gpa;

/∗...∗/

}

While AutoOO identified 1,875 pairs t1, t2 of types where t1 extends t2, and 96 pairs

where t1 is cast to t2, only 4 pairs satisfy both requirements. Hence, the introduction of

inheritance in our experiments is limited to 4 classes (2 in each of xeyes and less).

This is largely a consequence of the original C design where extensions of structs

along these lines are infrequent, combined with the constraint that our reengineering

create functionally equivalent code and be automatic. All few uses of inheritance Au-

toOO identified are, however, sound, in that the resulting types are real subtypes that

satisfy the substitution principle. In contrast, manual inspection reveals that none of the

other 92 = 96− 4 pairs of cast types determine classes that are related by inheritance.

Introducing inheritance for the other 1,871 pairs solely based on one type extending the

other is most likely unsound without additional evidence. Many structs, for example,

are collections of integer fields, but they model semantically disparate notions that are

not advisable to combine. The other metrics in Table 1 do not change after inheritance

analysis, assuming we count fields in the flattened classes.

Interestingly, the two instances of inheritance we found in less use renaming to

define lists as simplified header elements. For example:

struct element list {
struct element ∗first;

};

struct element {
struct element ∗next;

char ∗content;

};

The two types are indeed compatible, and the renaming makes the code easier to under-

stand even without comments.

4 Contracts and Exceptions

AutoOO introduces contracts and exceptions to improve the readability of the classes

generated in the reengineering. Section 4.1 explains how AutoOO builds contracts from

490 M. Trudel et al.

compiler-specific function annotations and from simple implicit properties of pointers

found by static analysis. Section 4.2 discusses how exceptions can capture the semantics

of longjmp.

4.1 Contracts

Contracts are simple formal specification elements embedded in the program code that

use the same syntax as Boolean expressions and are checked at runtime. AutoOO con-

structs two common kinds of contracts that annotate methods, namely preconditions

and postconditions. A method’s precondition (introduced by requires) is a predicate

that must hold whenever the method is called; it is the caller’s responsibility to estab-

lish the method’s precondition before calling it. A method’s postcondition (introduced

by ensures) is a predicate that must hold whenever the method terminates; it is the

method’s body responsibility to guarantee the postcondition upon termination.

AutoOO creates contracts from two information sources commonly available in C

programs:

– GCC function attributes;
– globally used pointer arguments.

Based on these, AutoOO added 3,773 precondition clauses and 13 postcondition clauses

to the programs in Table 2.

GCC Function Attributes. The GCC compiler supports special function annota-

tions with the keyword attribute . GCC can use these annotations during static anal-

ysis for code optimization and to produce warnings if the attributes are found to be

violated. Among the many annotations supported—most of which are relevant only

for code optimization, such as whether a function should be inlined—AutoOO con-

structs preconditions from the attribute nonnull and postconditions from the attribute

noreturn. The former specifies which of a function’s arguments are required to be

non-null; the latter marks functions that never return (for example, the system func-

tion exit). For each method m (t1 p1, . . . , tm pm) corresponding to a C function with

attribute nonnull (i1, . . . , in), with n ≥ 0 and 1 ≤ i1, . . . , in ≤ m denoting arguments

of m by position, AutoOO adds to m the precondition

requires pi1 �= null, pi2 �=null, . . ., pin �=null

that the arguments pi1 , . . . , pin be non-null. For each method m corresponding to a C

function with attribute noreturn, AutoOO adds to m the postcondition ensures false

that would be violated if m ever terminates.

Extending the example of Figure 2, the function:

attribute ((nonnull (2), noreturn))

void kill(struct person ∗p, struct person ∗q) {
/∗...∗/

printf(”A person is killed at age %d”, q→age);

exit(1);

}

gets the following signature after reengineering (assuming the first argument becomes

this):

Really Automatic Scalable Object-Oriented Reengineering 491

void kill(Person q) requires q �= null ensures false

GCC function attributes determined 266 precondition and 13 postcondition clauses in

the programs of Table 2.

Globally Used Pointers. Section 3.2 defined the notion of globally used argument:

an argument that is accessed (read or written) at least once along every path in a

method’s body. Based on the same notions, for each pointer argument p of a method

m that is globally used in m on all paths (including argument-handling paths), AutoOO

adds to m the precondition requires p �=null that p be non-null. The precondition does

not change the behavior of the method: if m were called with p = null, m would even-

tually crash in every execution when accessing a null reference, and hence p �= null is

a necessary condition for m to correctly execute.

Through globally used pointer analysis, AutoOO introduced 3,507 precondition

clauses in the programs of Table 2.

Defensive programming is a programming style that tries to detect violations of im-

plicit preconditions and takes countermeasures to continue execution without crashes.

For example, when function set age in Figure 2 is called with a non-positive new age,

it returns without changing p’s age field, thus avoiding corrupting it with an invalid

value. While defensive programming and programming with contracts have similar

objectives—defining necessary conditions for correct execution—they achieve them

in very different ways: while contracts clearly specify the semantics of interfaces and

assign responsibilities for correct execution, defensive programming just tries to com-

municate failures while working around them. This fundamental difference is the rea-

son why we do not use contracts to replace instances of defensive programming when

reengineering: doing so would change the behavior of programs. In the case of set age,

for example, a precondition requires new age > 0 would cause the program to termi-

nate with an error whenever the precondition is violated, whereas the C implementation

continues execution without effects. In addition, C functions often use integer return ar-

guments as error codes to report the outcome of a procedure call; introducing contracts

would make clients incapable of accessing those codes in case of error.

Relaxed Contracts for Memory Allocation. The GCC distribution we used in the

experiments provides attribute annotations (see Section 4.1) also for system li-

braries. In particular, the memory allocation functions memcpy and memmove:

attribute ((nonnull (1, 2)))

extern void ∗memcpy(void ∗dest, const void ∗src, size t n);

attribute ((nonnull (1, 2)))

extern void ∗memmove(void ∗dest, const void ∗src, size t n);

require that their pointer arguments dest and src be non-null. By running the reengineer-

ing produced by AutoOO, we found that this requirement is often spuriously violated at

runtime: when the functions are called with the third argument n equal to 0, they return

without accessing either dest or src, which can therefore safely be null. Correspond-

ingly, AutoOO builds the contracts for these functions a bit differently:

requires n == 0 || (dest �=null && src �=null)

492 M. Trudel et al.

that is dest and src must be non-null only if n is non-zero. This inconsistency in GCC’s

annotations does not have direct effects at runtime in C because annotations are not

checked. We ignore whether it might have other subtle undesirable consequences as the

compiler may use the incorrect information to optimize binaries.

4.2 Exceptions

Object-oriented programming languages normally include dedicated mechanisms for

handling exceptional situations that may occur during execution. While error handling

is possible also in procedural languages such as C, where it is typically implemented

with functions returning special error codes, exceptions in object-oriented languages are

more powerful because they can traverse the call stack searching for a suitable handler;

this makes it possible to easily cross the method and class boundaries in exceptional

situations, without need to introduce a complex design that harms the natural modular

decomposition effective in all non-exceptional situations.

C programmers can explicitly implement a similar mechanism that jumps across

function boundaries with the library functions setjmp (save an arbitrary return point)

and longjmp (jump back to it). AutoOO detects usages of these library functions and

renders them using exceptions in the object-oriented reengineering. AutoOO defines a

helper class CE EXCEPTION which can use Eiffel’s exception propagation mechanism

to go back in the call stack to the allocation frame of the method that called setjmp.

There, local jump instructions reach the specific point saved with setjmp within the

method’s body. We do not discuss the details of the translation because they refer to

several low-level mechanisms discussed in [27] that are out of scope in the present

paper. From the point of view of the reengineering, however, the translation expresses

the complex semantics of longjmp naturally through the familiar exception handling

mechanism.

AutoOO found 6 usages of longjmp in the programs of Table 2, which it replaced

with exceptions.

We did not make a more extensive usage of exceptions, for example for replacing

return error codes. In many cases, it would have complicated the object-oriented design

and slowed down the program, without significant benefits. A fine-grained analysis of

the instances of defensive programming, with the goal of selecting viable candidates

that can be usefully translated through exceptions, belongs to future work.

5 Correctness, Scalability, and Performance

In addition to the metrics of object-oriented design displayed in Table 1 and discussed

in the previous sections, we evaluated the behavior of the reengineering produced by

AutoOO on the 10 programs in Table 2. All the experiments ran on a GNU/Linux box

(kernel 2.6.37) with a 2.66 GHz Intel dual-core CPU and 8 GB of RAM, GCC 4.5.1,

CIL 1.3.7, EiffelStudio 7.0.8.

The reengineering of each program proceeds as previously shown in Figure 1, with

the end-to-end process (from C source to object-oriented Eiffel output) being push-

button.

Really Automatic Scalable Object-Oriented Reengineering 493

Table 2. Reengineering of 10 open-source programs

SIZE (LOCS) TRANS- BINARY

PROCEDURAL O-O # LATION SIZE

(C) (EIFFEL) CLASSES (S) (MB)

hello world 8 15 1 1 1.1

micro httpd 565 1,983 16 1 1.3

xeyes 1,463 10,665 77 1 1.6

less 16,955 22,709 75 5 2.3

wget 46,528 61,040 178 24 4.1

links 70,980 108,726 227 31 12.5

vim 276,635 414,988 669 138 22.6

libcurl 37,836 70,413 272 17 –

libgmp 61,442 82,379 223 20 –

libgsl 238,080 378,025 729 81 –

TOTAL 750,492 1,150,943 2,467 319 45.5

For each program used in our evaluation, Table 2 reports: the size of the source

procedural program in C (after processing by CIL); the size of the reengineered object-

oriented program in Eiffel output by AutoOO; the number of classes generated by the

reengineering; the source-to-source time taken by the reengineering (including both

C2Eif’s translation and AutoOO’s reengineering, but excluding compilation of Eif-

fel output to binary); the size of the binary after compiling the Eiffel output with

EiffelStudio11.

Correctness. In all cases, the output of AutoOO successfully compiles with Eif-

felStudio without need for any adjustment or modification. After compilation, we ran

extensive trials on the compiled reengineered programs to verify that they behave as in

their original C version. We performed some standard usage sessions with the interac-

tive applications (xeyes, less, links, and vim) and verified that they behave as

expected and they are usable interactively. We also performed systematic usability tests

for the other applications (hello world, micro httpd, and wget) which can be

used for batch processing; and ran standard regression testsuites (also automatically

translated from C to Eiffel) on the libraries. All usability and regression tests execute

and pass on both the C and the translated Eiffel versions of the programs, with the same

logged output.

Scalability of the reengineering process is demonstrated by the moderate translation

times (second to last column in Table 2) taken by AutoOO: overall, reengineering 750

KLOC of C code into 1.1 MLOC of Eiffel code took less than six minutes.

Performance. We compared the performance of AutoOO’s reengineered out-

put against C2Eif’s non-reengineered output for the non-interactive applications and

libraries of Table 2. The performance is nearly identical in C2Eif and AutoOO for

all programs but the libgsl testsuite, which even executed 1.33 times faster in

the reengineered AutoOO version. This shows that the object-oriented reengineering

11 In EiffelStudio, libraries cannot be compiled without a client.

494 M. Trudel et al.

produced by AutoOO improves the design without overhead with respect to a bare

non-reengineered translation. The basic performance overhead of switching from C to

Eiffel—analyzed in detail in [27]—significantly varies with the program type but, even

when it is pronounced, it does not preclude the usability of the translated application or

library in standard conditions. These conclusions carry over to programs reengineered

with AutoOO, and every optimization introduced in the basic translation provided by

C2Eif will automatically result, at the end of the tool chain, in faster reengineered

applications.

6 Discussion: AutoOO’s Object-Oriented Style

All object-oriented designs produced by AutoOO deploy a collection of classes parti-

tioned into bundle and datatype classes, as explained in Section 3. While this prevents

a more varied gamut of designs from emerging as a result of the automatic reengineer-

ing, in our experience it does not seem to hamper the readability and usability of the

reengineered programs, as we now briefly demonstrate with a real-world example. We

attribute this largely to the fact that AutoOO produces sound reengineering in most

cases, and programs with correct behavior in all cases. Therefore, the straightforward

output design is understandable by programmers familiar with the application domain,

who can naturally extend or modify it to introduce new functionality or a more refined

design.

As mentioned in Section 1, we have distributed to the Eiffel developers community a

number of widely used C libraries translated with AutoOO. One of them is MongoDB,

a document-oriented (non-relational) database12. Consider a client application that uses

MongoDB’s API to open a connection with a database and retrieve and print all docu-

ments in a collection tutorial.people. Following the API tutorial, this could be written

in C as shown in Figure 4 on the left. A client using the MongoDB library translated

and reengineered by AutoOO would instead use the syntax shown in Figure 4 on the

right.

On the one hand, the two programs in Figure 4 are structurally similar, which entails

that users familiar with the C version of MongoDB will have no problem switching to its

object-oriented counterpart, and would still be able to understand the C documentation

in the new context. On the other hand, the program on the right nicely conforms to

the object-oriented idiom: variable definitions are replaced by object creations (lines

2 and 7); and function calls become instance method calls (lines 3, 8, 12, and 17).

Method names are even more succinct, because they lose the prefixes “mongo ” and

“mongo cursor ” unnecessary in the object-oriented version where the type of the target

object conveys the same information more clearly.

The only departure from traditional object-oriented style is the call to the cursor

destruction function on line 14, which remains a static method call with identical sig-

nature. AutoOO did not turn it into an instance method because its implementation can

be called on null pointers, in which case it returns without any effect:

int mongo cursor destroy(mongo cursor ∗cursor) { if(!cursor) return 0; /∗ ... ∗/ }

12
http://www.mongodb.org/display/DOCS/C+Language+Center

http://www.mongodb.org/display/DOCS/C+Language+Center

Really Automatic Scalable Object-Oriented Reengineering 495

1 // connect to database

2 mongo conn[1];

3 int status = mongo connect(conn,

4 ”127.0.0.1”, 27017);

5

6 // iterate over database content

7 mongo cursor cursor[1];

8 mongo cursor init(cursor, conn,

9 ”tutorial.people”);

10 while(mongo cursor next(cursor)

11 == MONGO OK) {
12 bson print(&cursor→current);

13 }
14 mongo cursor destroy(&cursor);

15

16 // disconnect from database

17 mongo destroy(conn);

// connect to database

Mongo conn = new Mongo();

int status = conn.connect(

”127.0.0.1”, 27017);

// iterate over database content

MongoCursor cursor = new MongoCursor();

cursor.init(conn.address,

”tutorial.people”);

while(cursor.next() == MONGO OK)

{
cursor.current.print();

}
Mongo.mongo cursor destroy(cursor.address);

// disconnect from database

conn.destroy();

Fig. 4. A MongoDB client application written in C (left) and the same application written for the

AutoOO translation of MongoDB (right)

As discussed in Section 3.2, AutoOO does not reengineer such functions because the

target of an object-oriented call is not allowed to be null. In such cases, users may

still decide that it is safe to refactor by hand such examples; in any case, the AutoOO

translation provides a proper reengineering of most of the library functionalities.

7 Limitations

By and large, the evaluation with the programs of Table 2 demonstrates that AutoOO is

a scalable technique applicable to programs of considerable size and producing good-

quality object-oriented designs automatically. This section discusses the few limitations

that remain, distinguishing between those of the underlying C to Eiffel translation and

those of the object-oriented reengineering.

C to Eiffel Translation. As discussed in detail in [27], the raw translation from

C to Eiffel provided by C2Eif does not currently support: a few rare programming

patterns that rely on specific memory layouts, such as how the arguments passed to

a function are stored next to one another; and a few GCC exotic extensions. Using

CIL as preprocessor, while it contributes to simplifying and maintaining the translation,

also carries its own limitations: K&R legacy C is not supported; and comments are

stripped and formatting is lost, and hence this information cannot be used to improve

the readability and formatting of the translated Eiffel code. None of these limitations is

intrinsic to the AutoOO approach, and lifting them is largely an engineering effort: we

plan to remove the dependency on CIL as well as to support additional non-standard

features of the C language if they will be often needed by users of AutoOO.

Object-Oriented Reengineering. All the limitations of our reengineering technique

follow the decision to be conservative, that is not to change the behavior in any case, to

only extract design information already present in the C programs, and to only introduce

496 M. Trudel et al.

refactorings with empirically demonstrated high success rates, in terms of accurately

capturing design elements. For example, Section 3.2 discussed how a refactoring based

on struct arguments passed by copy would lead to less than 50% of sound refactorings,

while we normally aim at success rates over 90%.

While these requirements make it possible to have a robust and fully automatic tech-

nique, they may also be limiting in some specific cases where users are willing to push

the reengineering, accepting the risk of having to revise the output of AutoOO before

using it.

Formal Correctness Proofs. A final limitations of our work is the lack of formal

correctness proofs of the basic C translation and of the reengineering steps. While the

evaluation (discussed in Section 5) extensively tested the translated applications without

finding any unexpected behavior—which gives us good confidence in the robustness of

the results—this still falls short of a fully formal approach such as [4]. This is planned

as future work.

8 Related Work

Reengineering [2] is a common practice—and an expensive activity [22]—in profes-

sional software development. Given the wide adoption of languages with object-oriented

features, object-oriented reengineering is frequently necessary. In this section, we briefly

review some general literature on reengineering of legacy systems (8.1), followed by a

detailed analysis of significant approaches to object-oriented reengineering (8.2). For

lack of space, we do not include a general review of refactoring techniques and meth-

ods [7], as the focus of this paper is extracting object-oriented designs automatically

from the analysis of procedural code rather than refactoring per se.

8.1 Reengineering of Legacy Systems

The main goal in reengineering a legacy system is raising the level of abstraction. Typ-

ically, this is achieved by translating an implementation written in an old programming

Table 3. Tools translating C to object-oriented languages

ta
rg

et

la
n
g
u
ag

e

co
m

p
le

te
ly

au
to

m
at

ic

av
ai

la
b
le

re
ad

ab
il

it
y

ex
te

rn
al

li
b
ra

ri
es

p
o
in

te
r

ar
it

h
m

et
ic

g
o
to

s

in
li

n
ed

as
se

m
b
ly

Ephedra [14] Java no no + no no no no

C2J++ [26] Java no no + no no no no

C2J [21] Java no yes − no yes no no

C++2Java [25] Java no yes + no no no no

C++2C# [25] C# no yes + no no no no

AutoOO Eiffel yes yes + yes yes yes yes

Really Automatic Scalable Object-Oriented Reengineering 497

language—such as K&R C, Fortran-77, or old COBOL—into a modern programming

language such as Java [16,1,29]. This process does not normally include improving

the object-oriented design but only making the same system available in a supported

environment.

To summarize the state-of-the art in this area, Table 3 lists five tools that translate

C to an object-oriented language without object-oriented reengineering and compares

them against AutoOO. The table is taken from our previous work on C2Eif [27], the C

to Eiffel translator on top of which we built AutoOO—which therefore appears as last

entry of the table. For each tool, Table 3 reports (see [27] for more details):

– The target language.

– Whether the tool is completely automatic, that is whether it generates translations

that are ready for compilation without need for any manual rewrite or adaptation.

– Whether the tool is available for download and usable.

– An assessment of the readability of the code produced.

– Whether the tool supports unrestricted calls to external libraries, unrestricted

pointer arithmetic, unrestricted gotos, and inlined assembly code.

Even at the level of bare translation of C programs without object-oriented reengineer-

ing, the currently available tools do not support the full C language used in real pro-

grams because they cannot translate features such as external libraries and unrestricted

pointer arithmetic, whose exact behavior is very complicated to get right but is neces-

sary to have fully automatic translation tools. A recent comparative evaluation covering

a wide range of tools for legacy system reengineering [18] points to similar limitations

that prevent achieving complete automation. AutoOO, in contrast, can count on C2Eif’s

full support of the complete C language used in real programs, which underpins the

development of a robust and scalable object-oriented reengineering tool.

8.2 Object-Oriented Reengineering

Among the broad literature on reengineering for modern systems, we identified nine

approaches that target specifically object orientation. Table 4 summarizes their main

features and compares them with ours. Following the primary goals of our work, de-

scribed in Section 2, Table 4 lists:

– The source and the target languages (or if it is a generic methodology).

– Whether tool support was developed, that is whether there exists a tool or the paper

explicitly mentions the implementation of a tool. A YES in small caps denotes the

only currently publicly available tool, namely AutoOO.

– Whether the approach is completely automatic, that is if it performs O-O reengi-

neering without any user input other than providing a source procedural program.

– Whether the approach supports the full source language or only a subset thereof.

– Whether the approach has been evaluated, that is whether the paper mentions evi-

dence, such as a case study, that the approach was tried on real programs. If avail-

able, the table indicates the size of the programs used in the evaluation.

– Whether the approach performs class identification, that is if it groups fields and

methods in classes.

498 M. Trudel et al.

– Whether the reengineering technique introduces object-oriented features, namely

it identifies instance methods (as opposed to class methods which should have a

restricted role in object orientation) and uses of inheritance.

Table 5 gives some notes about limitations of the approaches.

Table 4. Comparison of approaches to O-O reengineering

so
u
rc

e–
ta

rg
et

to
o
l

su
p
p
o
rt

co
m

p
le

te
ly

au
to

m
at

ic

fu
ll

la
n
g
u
ag

e

ev
al

u
at

ed

cl
as

s

id
en

ti
fi

ca
ti

o
n

in
st

an
ce

m
et

h
o
d
s

in
h
er

it
an

ce

Gall [9] methodology no no – yes yes ? no

Jacobson [10] methodology no no – yes yes no –

Livadas [13] C–C++ yes no no no yes yes no

Kontogiannis [11] C–C++ yes no ? 10KL yes ? yes

Frakes [8] C–C++ yes no no 2KL yes ? no

Fanta [6] C++–C++ yes no no 120KL yes ? no

Newcomb [20] Cobol–OOSM yes yes no 168KL yes ? no

Mossienko [17] Cobol–Java yes no no 25KL yes no no

Sneed [23] Cobol–Java yes yes no 200KL yes ? no

Sneed [24] PL/I–Java yes yes no 10KL yes ? no

AutoOO C–Eiffel YES yes yes 750KL yes yes yes

Table 5. Overview of limitations

LIMITATIONS

Gall [9] requires assistance of human expert

Jacobson [10] only defines a process; 3 case studies from industry

Livadas [13] prototype implementation; no support for pointers

Kontogiannis [11] sound reengineering for only about 36% of the source code

Frakes [8] translation may change the behavior; requires expert judgement

Fanta [6] requires expert judgement

Newcomb [20] only a model is generated, no program code

Mossienko [17] only partial automation; the translation may change the behavior

Sneed [23] domain-specific translation

Sneed [24] domain-specific translation

[20] and [23] are the only authors that report evaluations on code bases of significant

size. [20]’s reengineering, however, produces OOSM (hierarchical object-oriented state

machine models) models; mapping OOSM to a standard compilable object-oriented

language is not covered. [23] reports that some manual corrections of the automatically

generated Java code were necessary during the translation of the code base, although

these manual interventions were later implemented as an extension of the translator;

Really Automatic Scalable Object-Oriented Reengineering 499

anyway, [23] targets the translation of domain-specific applications and in fact does not

support the full input language; the authors of [23] expect that tackling new applications

will require extending the tool.

[11]’s approach to introduce inheritance is based on the analysis of struct fields and

of function signatures. AutoOO also uses struct field analysis to introduce inheritance,

but limits the analysis to field types and ignores field names (see Section 3.4).

A direct detailed comparison of other tools with AutoOO on specific object-oriented

features is difficult to obtain as several of these works focus on some aspects of the

reengineering but provide few concrete details about other aspects or about how the

reengineering is performed on real code. This is also the reason for the presence of “?”

in the column “instance methods”, corresponding to cases where we could not figure

out the details of how methods are refactored. In light of the evidence collected (or lack

thereof), it is fair to say that identifying instance methods automatically without expert

judgement is an open challenge; and so are full source language support and complete

automation. These features are a novel contribution of AutoOO.

9 Conclusions and Future Work

We presented a new completely automatic approach to object-oriented reengineering

of C programs and a freely available supporting tool AutoOO. AutoOO scales to ap-

plications and libraries of significant size, and produces reengineered object-oriented

programs that are directly compilable and usable with the same behavior as the source

C programs. The reengineered object-oriented designs produced by AutoOO encap-

sulate fields and methods operating on them with a high degree of soundness—thus

lowering coupling and increasing cohesion—and make judicious usage of inheritance,

contracts, and exceptions to improve the quality of the object-oriented design.

Future Work. The remaining limitations of AutoOO, discussed in Section 7, suggest

items for future work:

– When we recognize the usage of standard library services (e.g., generic data struc-

tures), we will replace them with their Eiffel counterparts when possible, extending

existing approaches for mapping APIs [30].

– Section 3 discussed possible additional sources of information to improve the

amount of sound reengineered methods in datatype classes (e.g., struct arguments

passed by copy). The empirical data we collected in our experiments suggest, how-

ever, that these sources would frequently lead to unsound refactorings if directly

applied. For these cases, we will investigate more sophisticated analyses that try to

understand in which cases a sound refactoring is possible.

– Finally, we will explore the possibility of combining AutoOO’s completely auto-

matic approach with additional user input (e.g., domain knowledge useful to un-

derstand the software design), with the goal of tailoring the reenginering to each

application.

Acknowledgments. This work was partially supported by the ETH grant “Object-

oriented reengineering environment”.

500 M. Trudel et al.

References

1. Achee, B.L., Carver, D.L.: Creating object-oriented designs from legacy FORTRAN code.

JSS 39(2), 179–194 (1997)

2. Chikofsky, E.J., Cross II, J.H.: Reverse engineering and design recovery: A taxonomy. IEEE

Software 7(1), 13–17 (1990)

3. Ó Cinnéide, M., Tratt, L., Harman, M., Counsell, S., Moghadam, I.H.: Experimental assess-

ment of software metrics using automated refactoring. In: ESEM, pp. 49–58. ACM (2012)

4. Ellison, C., Rosu, G.: An executable formal semantics of C with applications. In: POPL, pp.

533–544 (2012)

5. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering likely pro-

gram invariants to support program evolution. IEEE TSE 27(2), 99–123 (2001)

6. Fanta, R., Rajlich, V.: Reengineering object-oriented code. In: Proceedings of the Interna-

tional Conference on Software Maintenance, pp. 238–246 (1998)

7. Fowler, M.: Refactoring: Improving the design of existing code. Addison-Wesley (1999)

8. Frakes, W.B., Kulczycki, G., Moodliar, N.: An empirical comparison of methods for reengi-

neering procedural software systems to object-oriented systems. In: Mei, H. (ed.) ICSR 2008.

LNCS, vol. 5030, pp. 376–389. Springer, Heidelberg (2008)

9. Gall, H., Klosch, R.: Finding objects in procedural programs: an alternative approach. In:

WCRE, pp. 208–216. IEEE (1995)

10. Jacobson, I., Lindström, F.: Reengineering of old systems to an object-oriented architecture.

In: OOPSLA, pp. 340–350. ACM (1991)

11. Kontogiannis, K., Patil, P.: Evidence driven object identification in procedural code. In:

STEP, pp. 12–21. IEEE (1999)

12. Kovács, L., Voronkov, A.: Finding loop invariants for programs over arrays using a theorem

prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 470–485.

Springer, Heidelberg (2009)

13. Livadas, P.E., Johnson, T.: A new approach to finding objects in programs. Journal of Soft-

ware Maintenance 6(5), 249–260 (1994)

14. Martin, J., Müller, H.A.: Strategies for migration from C to Java. In: CSMR, pp. 200–210.

IEEE Computer Society (2001)

15. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice Hall (1997)

16. Millham, R.: An investigation: reengineering sequential procedure-driven software into

object-oriented event-driven software through UML diagrams. In: COMPSAC, 2002, pp.

731–733 (2002)

17. Mossienko, M.: Automated Cobol to Java recycling. In: CSMR, pp. 40–50. IEEE (2003)

18. Nadera, B.S., Chitraprasad, D., Chandra, V.S.S.: The varying faces of a program transforma-

tion systems. ACM Inroads 3(1), 49–55 (2012)

19. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate Language and Tools

for Analysis and Transformation of C Programs. In: Horspool, R.N. (ed.) CC 2002. LNCS,

vol. 2304, pp. 213–228. Springer, Heidelberg (2002)

20. Newcomb, P., Kotik, G.: Reengineering procedural into object-oriented systems. In: WCRE,

pp. 237–249. IEEE (1995)

21. Novosoft. C2J: a C to Java translator (2001),

http://www.novosoft-us.com/solutions/product_c2j.shtml

22. Sneed, H.: Planning the reengineering of legacy systems. IEEE Software 12(1), 24–34 (1995)

23. Sneed, H.: Migrating from COBOL to Java. In: ICSM, pp. 1–7. IEEE (2010)

24. Sneed, H.: Migrating PL/I code to Java. In: CSMR, pp. 287–296. IEEE (2011)

25. Tangible Software Solutions. C++ to C# and C++ to Java,

http://www.tangiblesoftwaresolutions.com/

http://www.novosoft-us.com/solutions/product_c2j.shtml
http://www.tangiblesoftwaresolutions.com/

Really Automatic Scalable Object-Oriented Reengineering 501

26. Tilevich, E.: Translating C++ to Java. In: German Java Developers’ Conference Journal. Sun

Microsystems Press (1997)

27. Trudel, M., Furia, C.A., Nordio, M., Meyer, B., Oriol, M.: C to O-O translation: Beyond the

easy stuff. In: Proceedings of WCRE, pp. 19–28. IEEE (2012)

28. Wei, Y., Furia, C.A., Kazmin, N., Meyer, B.: Inferring better contracts. In: ICSE, pp.

191–200. ACM (2011)

29. Yeh, A., Harris, D., Reubenstein, H.: Recovering abstract data types and object instances

from a conventional procedural language. In: WCRE, pp. 227–236 (1995)

30. Zhong, H., Thummalapenta, S., Xie, T., Zhang, L., Wang, Q.: Mining API mapping for lan-

guage migration. In: ICSE, pp. 195–204 (2010)

