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Abstract
The three classic Futamura projections stand as a cornerstone in
the development of partial evaluation. The observation by Futa-
mura [1983], that compiler generators produced by his third pro-
jection are self-generating, and the insight by Klimov and Roma-
nenko [1987], that Futamura’s abstraction scheme can be contin-
ued beyond the three projections, are systematically investigated,
and several new applications for compiler generators are proposed.
Possible applications include the generation of quasi-online com-
piler generators and of compiler generators for domain-specific
languages, and the bootstrapping of compiler generators from pro-
gram specializers. From a theoretical viewpoint, there is equality
between the class of self-generating compiler generators and the
class of compiler generators produced by the third Futamura pro-
jection. This exposition may lead to new practical applications of
compiler generators, as well as deepen our theoretical understand-
ing of program specialization.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.4 [Programming
Languages]: Processors—compilers, interpreters; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming Lan-
guages—partial evaluation

General Terms Languages, Theory

Keywords Bootstrapping, Cogen approach, Compiler generators,
Domain-specific languages, Futamura projections, Generator self-
generation, Program specialization, Self-application.

1. Introduction
The three Futamura projections stand as a cornerstone in the de-
velopment of partial evaluation [13, 14]. Practical specializers that
can perform all three Futamura projections and that can automat-
ically convert programs into non-trivial generating extensions and
compiler generators have been built for realistic programming lan-
guages such as Scheme, Prolog, and C (e.g., [1, 5, 38, 39]). Var-
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ious practical applications of program specialization have been
described and the usefulness of program specialization for soft-
ware development, including domain-specific languages, has been
demonstrated (e.g., [31, 43]).

Based on this experience, the modern approach to the special-
ization of programs is to write compiler generators directly instead
of writing self-applicable specializers (e.g., [2, 3, 6, 9, 21, 27, 36,
41, 44, 45]). While this cogen approach, of hand-writing com-
piler generators based on partial evaluation principles, has shown
its practical value, it prevents the use of the power and flexibility of
different self-application schemes, such as combining online and
offline specializers. Despite of more than two decades of practical
experience with compiler generators in the area of partial evalu-
ation, some fundamental properties and potential applications of
these powerful and universal tools for program generation have not
been fully utilized or well understood.

Among the basic questions are: what comes beyond the three
Futamura projections, whether there exists a fourth projection, and
whether there is any practical interest in this at all. This theoreti-
cal paper aims at addressing some of these open issues. Futamura’s
observation [15], that compiler generators produced by his third
projection are self-generating, and Klimov and Romanenko’s im-
portant insight [33], that Futamura’s abstraction scheme can be
continued beyond the three classical projections, are systematically
investigated and extended. In addition, several new applications for
compiler generators are proposed. The main goal is to show that
these two observations may be of practical interest if a compiler
generator is applied to different specializers.

Potential applications include (1) the generation of compiler
generators for domain-specific languages from non-self-applicable
specializers, (2) the generation of quasi-online compiler genera-
tors from offline compiler generators, and (3) alternatives to com-
puting the Futamura projections by a bootstrapping process. On
the theoretical side, (4) there is an equality between the class of
self-generating compiler generators and the class of compiler gen-
erators produced by the third Futamura projection. This exposi-
tion may lead to new applications of compiler generators and may
deepen the theoretical understanding of program specialization.

The paper is organized as follows. After introducing notation
and definitions (Sect. 2), the three classic Futamura projections
are reviewed (Sect. 3), and Futamura’s self-generating compiler
generators are examined (Sect. 4). Projections are developed by
three more abstraction steps, showing the possibility of compiler-
generator bootstrapping (Sect. 5). Then, the general scheme for
generating compiler generators is presented (Sect. 6) and an ap-
plication to domain-specific languages is proposed (Sect. 7). Fi-
nally, we discuss related work (Sect. 8) and present our conclusions
(Sect. 9).

We assume that readers are familiar with the basics of partial
evaluation, e.g., as presented in the book by Jones et al. [28, Part II].
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2. Definitions and Notation
This section introduces the notation and terminology used in this
paper, which are fairly standard for readers familiar with partial
evaluation. The notation is adapted from Jones et al. [28]. Readers
familiar with partial evaluation may skip this section and proceed
to Sect. 3.

2.1 Notation

A programming language L consists of a set of programs PL, a set
of data D , and a semantics function [[ ]]L : PL → (D ⇀ D), which
assigns to each program p ∈ PL a partial input-output function
[[p]]L : D ⇀ D . We assume that D includes all L-programs, PL ⊆
D , and all lists, (d1, . . . , dn) ∈ D where di ∈ D . Taking all L-
programs from D is convenient when dealing with meta-programs
that input and output programs. Without loss of generality, we
assume that all languages utilize the same D . Equality (=) denotes
strong equality: either both sides of an equation are defined and
equal, or both sides are undefined. An L-program p and an N-
program q are functionally equivalent if ∀d ∈ D : [[p]]L d =
[[q]]N d . Wherever there is no danger of confusion, we omit the
language index and assume that a language L is intended.

We briefly define the notions of interpreter and compiler.

Definition 1 (interpreter). An L-program int is an N/L-inter-
preter iff ∀p ∈ PN and ∀d ∈ D:

[[int]]L(p, d) = [[p]]N d. (1)

Definition 2 (compiler). An L-program comp is an N-to-L-compiler
iff ∀p ∈ PN and ∀d ∈ D:

[[[[comp]]L p]]
L
d = [[p]]N d. (2)

2.2 Specialization of Programs

We shall assume that all programs that we specialize have two pa-
rameters, that the first is always static (known) and that the second
is always dynamic (unknown). In addition, we omit the binding-
time division ("SD"). The definitions can be easily generalized to
programs with more than two parameters and different orders of
static and dynamic parameters at the cost of a more complex nota-
tion. Programs with multiple parameters can always be transformed
such that they have two parameters.

Definition 3 (specializer). An L-program s is an L-specializer iff
∀p ∈ PL and ∀x, y ∈ D:

[[[[s]]L(p, x)]]
L
y = [[p]]L(x, y). (3)

Specializing a subject program p with respect to static data x
yields a residual program, r = [[s]]L(p, x). Practical specializers
are discussed by Jones et al. [28].

Examples of specializers that have been designed and imple-
mented include Mix [29], Schism [8], Similix [5] and Unmix [39]
for functional languages; Ecce [35] and Logimix [38] for logic lan-
guages; C-mix [1], FCL-mix [24] and FSpec [32] for imperative
languages; and the program transformers GPC [17] and SCP [47].

3. The Three Futamura Projections Revisited
We begin by a brief review of the construction of the three Fu-
tamura projections [13, 14] and draw the reader’s attention to the
abstraction scheme behind the projections. This scheme later plays
an important role in this paper. Readers familiar with partial evalu-
ation may still wish to review this section.

3.1 Abstraction

We begin with the initial expression,

[[p]](x, y) = out, (4)

# 1st abstract 2nd instantiate
[[p]](x, y) = out

1. [[s]](p, x) = res [[res]] y = out
2. [[s]](s, p) = gen [[gen]] x = res
3. [[s]](s, s) = cog [[cog]] p = gen

Figure 1. The three Futamura projections: equation system

which describes the application of a program p to two arguments
x and y. By applying a specializer s to program p and data x, we
abstract from the second argument y in this expression and obtain
a residual program res that depends only on the second argument:

let [[s]](p, x) = res in [[res]] y = out. (5)

The correctness of computing p in two stages follows immediately
from the correctness of s. We obtain the characteristic equation of
this first abstraction step by combining expressions (4) and (5):

[[res]] y = [[p]](x, y). (6)

The process of abstraction can be continued by taking [[s]](p, x)
in (5) as the initial expression and applying s to s and p. The result
is a generating extension gen of p that computes the same residual
program res when applied to x as the specializer [11]:

let [[s]](s, p) = gen in [[gen]] x = res. (7)

We obtain the characteristic equation of the second abstraction step:

[[[[gen]] x]] y = [[p]](x, y). (8)

After a third and last abstraction step that takes [[s]](s, p) in (7)
as the initial expression, we arrive at the third projection, which
yields a compiler generator cog that, when applied to p, produces
p’s generating extension gen:

let [[s]](s, s) = cog in [[cog]] p = gen. (9)

By composing the equations, we obtain the equation characteristic
of a compiler generator.1 Because of the importance of compiler
generators later in this paper, we provide a separate definition.

Definition 4 (compiler generator). An L-program cog is an L-
compiler generator iff ∀p ∈ PL and ∀x, y ∈ D:

[[[[[[cog]]L p]]
L
x]]

L
y = [[p]]L(x, y). (10)

The complete equation system that we obtain by repeating the
abstraction scheme three times is summarized in Fig. 1, where the
three Futamura projections in the left column are numbered (1.,
2., and 3.) and the instantiations with the second argument can
be seen in the right column. This equation system is the result of
stepwise abstracting all three components (p, x, y) from the initial
expression (4). The second and third Futamura projections involve
self-application of a specializer, using s to specialize a copy of
itself, and involve single and double self-applications, respectively.

Practical specializers that can perform all three Futamura pro-
jections and produce non-trivial generating extensions and com-
piler generators have been built for programming languages such
as Scheme, Prolog, and C. Based on this practical experience, the
modern approach of directly writing compiler generators was de-
veloped: i.e. hand-writing cog, instead of writing self-applicable
specializers and generating the compiler generators according to

1 For historical reasons and because the term ‘compiler generator’ is widely
known in connection with the Futamura projections, we prefer to use it
rather than ‘program-generator generator’ [44]. The former term originates
from the original formulation of the projections, where p is an interpreter.
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the third Futamura projection. The theoretical possibility of pro-
ducing generating extensions and compiler generators by self-
application of specializers was discovered independently by Fu-
tamura [13, 14] and by Turchin [49, 46], and brought to wider
attention by Ershov [11, 12].

3.2 Instantiation

The residual program res in (5) is fixed with respect to x, but is
independent of y. Instead of applying the residual program only to
y, we can apply it to many different arguments (y0, y1, y2, ...):

[[res]] y0 = out0 (11)

[[res]] y1 = out1 (12)

[[res]] y2 = out2 (13)

· · · · · ·
An obvious advantage is computation speed. Whenever a program
p is applied to many different argument pairs (x, y), where x
changes less frequently than y and a significant part of the com-
putation of p depends on x, then it usually pays to abstract from y
in the computation and to precompute p with x using a specializer.
Many practical examples are discussed in Jones et al. [28], includ-
ing computer graphics, language parsing and compilation.

3.3 Transition Scheme

Abstracting from the second argument, while fixing the first argu-
ment by a specializer, is the scheme underlying the construction of
the three Futamura projections. This scheme can be applied me-
chanically and to any initial expression of the form given in (4).
We summarize it as follows.

1. Let [[p]](x, y) be an initial expression, where p is a program
and (x, y) is a pair of arguments.

2. Abstract from the second argument by applying a specializer
s, such that [[s]](p, x) = res. The residual program res is
then parameterized with respect to the second argument.

This scheme of abstraction and transition to a new computation can
be applied repeatedly. There is no given boundary to the number of
repetitions. In the Futamura projections it was applied three times.
The scheme uses a fixed abstraction pattern (second argument) and
a particular meta-program (specializer), and is an instance of the
general class of Turchin’s metasystem transition schemes [48].

3.4 Staging Computations as a General Principle

The abstraction scheme used in the Futamura projections is impor-
tant because it covers the staging of a surprisingly large class of
practical applications, including the transformation of interpreters
into compilers and universal parsers into language parsers. Ershov
coined the term generating extension to describe the entire class of
program generators capable of generating residual programs [11].

“All processes which are more or less directly connected
with an adaptation of universal components to predeter-
mined parameters (concrete grammar, hardware parame-
ters, environment inquiries, problem dimension, volume of
data, etc) can be implemented with a uniform technique
based on the mixed computation procedure. ” [11, p. 41]

The universality of this principle can be illustrated by a few two-
argument programs and their generating extensions: interpreters
and compilers, string matchers and matcher generators, and univer-
sal parsers and parser generators.

program generating extension

[[int]](p, d) [[[[comp]] p]] d

[[match]](pat, txt) [[[[matchgen]] pat]] txt

[[parse]](grm, txt) [[[[parsegen]] grm]] txt

This short list indicates the fundamental importance of the Futa-
mura projections for the theory of program generation. It also indi-
cates that compiler generators, which can turn programs into their
generating extensions, are powerful, universal tools for software
development.

Example. We conclude our brief appraisal with the classic inter-
preter-compiler example of program specialization. Let p be an N-
program, let int be an N/L-interpreter, and let s be an L-specializer.
Take the initial expression [[int]]L(p, d). Then the first Futamura
projection,

let [[s]]L(int, p) = q in [[q]]L d = [[p]]N d, (14)

achieves N-to-L-compilation by specializing the N/L-interpreter.
We see that p is an N-program, while q is an L-program (recall the
definition of an interpreter (Def. 1) with [[int]]L(p, d) = [[p]]N d).

The compiler generator cog produced by the third Futamura
projection converts int into an N-to-L-compiler comp:

let [[cog]]L int = comp in [[comp]]L p = q. (15)

This theoretical insight has important practical applications. Inter-
preters can be converted into compilers that compete with commer-
cial and optimizing compilers for various programming languages
and domain-specific languages (e.g., [31, 43]).

4. Self-Generation of Compiler Generators
Futamura found that a compiler generator produced by the third
Futamura projection can generate a copy of itself given a special-
izer [15]. In this section we study this curious feature in more detail.

4.1 Abstraction

Let us use the third Futamura projection (Fig. 1) as the initial
expression and apply the abstraction scheme once more. For clarity,
we underline the second argument (s) in the initial expression:

# 1st abstract 2nd instantiate
3. [[s]](s, s) = cog
4. [[s]](s, s) = cog [[cog]] s = cog

It follows from the staging of the initial expression (3.) that its
result (cog) can also be obtained by applying cog, the program
generated by the last projection (4.), to s. The correctness of s
applied in the last projection to s and s demands that both applica-
tions produce the same compiler generator:

Self-generation of a compiler generator:

[[cog]] s = cog = [[s]](s, s) (16)

We see that the compiler generator cog generates a copy of itself.
Such a compiler generator is called self-generating.

Definition 5 (self-generation). A compiler generator cog is self-
generating iff there is a specializer s such that [[cog]] s = cog.

While the two projections (3., 4.) are identical and, thus, gen-
erate the same program (cog), they are different in that the fourth
projection is an abstraction of the third projection. They are identi-
cal only because the abstracted specializer (s) and the abstracting
specializer (s) happen to be identical. We quote Futamura regard-
ing the existence of the fourth projection:
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“If you substitute α for int in the third projection, you obtain
α(α, α)(α) = α(α, α) [15]. You may call this the fourth
projection. At DIKU, where α is called “mix” after Ershov, I
hear that the fourth projection is nicknamed “the mixpoint”
(the nickname is actually due to Peter Sestoft). The existence
of a fifth projection is hardly imaginable since there is noth-
ing left to specialize with respect to.” [16, p. 378]

Thus, we have good reasons to call projection 4 the fourth Futa-
mura projection. The first self-generation of a compiler genera-
tor was reported for the offline partial evaluator Mix [29]. Self-
generation is sometimes used as a test for self-applicable specializ-
ers. Although any compiler generator produced by the third Fu-
tamura projection is self-generating by construction (cf. Thm. 1
below), it is nevertheless reassuring that a speedup is achieved in
practice by using cog to produce cog instead of using the third
Futamura projection (e.g., [4, 24, 25, 30, 37, 38]).

One difference between self-generating and self-printing pro-
grams is that a compiler generator does not self-generate for all ar-
guments, only for a certain argument, which must be a specializer.2

In addition, a trivial self-generating compiler generator can always
be obtained from a trivial specializer by double self-application,
which also proves the existence of self-generating compiler gener-
ators. It is still astonishing in practice, although theoretically easy
to prove, that rather large and sophisticated compiler generators
produced by the third Futamura projection do self-generate (e.g.,
the compiler generators of Similix [5] and C-mix [1]).

The following property relates self-generating compiler genera-
tors and those produced by the third Futamura projection.

Theorem 1. The class of self-generating compiler generators is
equal to the class of compiler generators produced by the third
Futamura projection.

Proof. Every self-generating compiler generator is also produced
by the third Futamura projection. Let s be a specializer for which
cog is self-generating: [[cog]] s = cog. The following equalities
hold (by instantiating the characteristic equation (Def. 4) with s in
(17) and using the self-generation assumption to obtain (18-20)):

[[s]](s, s) = [[[[[[cog]] s]] s]] s (17)

= [[[[cog]] s]] s (18)

= [[cog]] s (19)

= cog. (20)

The other direction: every compiler generator produced by the third
Futamura projection is self-generating. For every specializer s (by
using Def. 3 in (22) and equality (21) in (23)):

cog = [[s]](s, s) (21)

= [[[[s]](s, s)]] s (22)

= [[cog]] s. (23)

We see that self-generation is a property independent of the
power of the specializer s used to generate the compiler generator
cog; it is a structural property of the third Futamura projection.
Also, the theorem indicates that the Futamura projections cannot be
outsmarted by hand-writing a self-generating compiler generator
that cannot be generated by the third Futamura projection. Thus,
whenever a compiler generator is self-generating for some s, it can
also be generated by double self-application of s.

2 A program p is self-printing iff ∀d: [[p]] d = p [7]. No self-printing
program can be a correct compiler generator. Self-printing programs and
self-generating compilers generators are two disjoint program classes that
represent two different forms of self-referential programs.

4.2 Instantiation

There is one more thing.
The fourth projection, [[s]](s, s) = cog, results from abstract-

ing the second argument (s) from the third Futamura projection,
[[s]](s, s). Residual programs can be applied to many different ar-
guments; in particular the residual program cog produced by the
fourth projection can be applied to many different specializers (s0,
s1, s2, ...), not only to s, and each specializer will be turned into a
compiler generator (cog0, cog1, cog2, ...):

[[cog]] s0 = cog0 (24)

[[cog]] s1 = cog1 (25)

[[cog]] s2 = cog2 (26)

· · · · · ·
Thus, there are very good reasons to identify the projection as the
fourth Futamura projection. This projection predicts that special-
izers can be turned into compiler generators without self-applying
the specializers. In addition, self-generation (16) is a special case
of applying the compiler generator to a specializer. In general, the
applications ((24), (25),...) do not self-generate. At first glance, the
fourth Futamura projection in Sect. 4.1 appears disappointing, since
it seems to produce nothing new. However, it is useful when apply-
ing the compiler generator to different specializers.

The properties of these compiler generators are analyzed in
more detail in the following section. For now we note that a com-
piler generator turns programs into generating extensions; in par-
ticular, a specializer is turned into a compiler generator. Hence,
Ershov’s collection of generating extensions (Sect. 3.4) can be ex-
tended with one more interesting application: a compiler generator
is a generating extension of a specializer.

program generating extension

[[s]](p, x) [[[[cog]] p]] x

4.3 Application: Quasi-Online Compiler Generator

Suppose that we have an online specializer, son, and an offline
compiler generator, cogoff, and that we wish to produce generating
extensions that have the residual-program generation power of the
online specializer (e.g., [17, 40, 47]). Unfortunately, the online
specializers constructed so far are not fully self-applicable and,
hence, no online compiler generator is available to produce the
desired generating extensions.

A solution to our generation problem is quasi self-application
[18], which applies an offline specializer to our online specializer:

genoff,on = [[soff ]](son, p). (27)

The generating extension genoff,on produced here is implemented
by the offline specializer soff, thus running with ‘offline’ efficiency,
but has the residual-program generation power of the online spe-
cializer son. Thus, the residual programs generated by genoff,on run
with ‘online’ efficiency. However, in our scenario we have only a
(say, commercial) cogoff and not the source code soff from which
cogoff was generated.

The generation problem can now be solved in a new way: first,
cogoff can be applied to son to produce a new compiler generator:

cogoff,on = [[cogoff ]] son. (28)

Then, program p can be turned into the desired generating exten-
sion using the new compiler generator:

genoff,on = [[cogoff,on ]] p. (29)
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Thus, using an offline compiler generator, we can perform the ana-
logue of quasi self-application (27) and produce a quasi-online
compiler generator (28). One step is sufficient to turn son, without
self-applying son, into a compiler generator. For example, son may
be an online specializer that we prototyped for a domain-specific
language and cogoff may be an advanced offline compiler genera-
tor. The languages involved in a compiler generator will be exam-
ined in Sect 7.1. Clearly, the implementation language of son and
the subject language of cogoff must be identical.

That the two steps (28, 29) are a correct solution to our genera-
tion problem (27) can be seen from the following equalities.

[[[[cogoff ]] son ]] p = [[[[[[soff ]](soff, soff)]] son ]] p (30)

= [[[[soff ]](soff, son)]] p (31)

= [[soff ]](son, p). (32)

We assumed that cogoff was produced by self-application of some,
not necessarily known, soff. In general, any (hand-written) com-
piler generator can turn a specializer into a new compiler generator.

5. Fourth Futamura Projection: Keep Going!
We have seen that the process of abstraction can be continued
beyond the three Futamura projections. But it does not stop at
the fourth Futamura projection. In this section we continue the
abstraction process until the sixth projection, where we obtain an
equation system that is closed in some sense. This important insight
is due to Klimov and Romanenko [33, p. 6-7], but has not been
studied in more depth. We shall do so in the following sections.

5.1 Abstraction

In the previous section we started with the third Futamura projec-
tion as the initial expression, and performed one step of abstraction.
We now repeat the abstraction process three times until we arrive
at the following equation system. To visualize how the abstraction
proceeds stepwise, we underline the three specializers in the initial
expression:

# 1st abstract 2nd instantiate
[[s]](s, s) = cog

4. [[s]](s, s) = cog [[cog]] s = cog
5. [[s]](s, s) = cog [[cog]] s = cog
6. [[s]](s, s) = cog [[cog]] s = cog

The three projections (4., 5., 6.) in the left column are identical and
yield the same program cog. Again, it appears as if no progress has
been made. However, careful investigation shows that only at the
last projection (6.) are all three components of the initial expression
abstracted (s, s, s). Although the three projections are identical,
the abstraction scheme has been performed three times. Going into
reverse and instantiating the program cog produced by the sixth
projection (in the last row) with s rebuilds the compiler generator
cog produced by the fifth projection, and so forth. Composing the
equations in the right column, we obtain the characteristic equation:

Triple self-generation:

[[[[[[cog]] s]] s]] s = cog = [[s]](s, s) (33)

We are not better off than before. Every cog in the generation se-
ries on the left-hand side is used at its self-generation point s. The
three successive self-generations are of little practical interest. The
projections (4., 5., 6.) are identical because the abstracted and the
abstracting specializer are identical at each step of their construc-
tion. This, however, is due to the way we chose to construct the
three projections. (In this case, equation (33) can also be obtained
from the characteristic equation (Def. 4) by replacing each p, x, y
by s.)

# 1st abstract 2nd instantiate
[[s0 ]](s0, s0) = cog000

4. [[s0 ]](s0, s0) = cog000 [[cog011 ]] s1 = cog111

5. [[s0 ]](s0, s0) = cog000 [[cog001 ]] s1 = cog011
6. [[s0 ]](s0, s0) = cog000 [[cog000 ]] s1 = cog001

Figure 2. Futamura projections: keep going

5.2 Instantiation

To analyze the equation system (4., 5., 6.), we shall define a conve-
nient notation using two specializers, s0 and s1, and use a naming
convention for the compiler generators produced from these two
specializers. The index of the compiler generator indicates in what
way the two specializers were involved in its generation:

cog000 = [[s0 ]](s0, s0) (34)

cog001 = [[s0 ]](s0, s1) (35)

cog011 = [[s0 ]](s1, s1) (36)

cog111 = [[s1 ]](s1, s1) (37)

We examine the application of the four compiler generators to s1:

[[cog000 ]] s1 = [[[[s0 ]](s0, s0)]] s1 = [[s0 ]](s0, s1) = cog001 (38)

[[cog001 ]] s1 = [[[[s0 ]](s0, s1)]] s1 = [[s0 ]](s1, s1) = cog011 (39)

[[cog011 ]] s1 = [[[[s0 ]](s1, s1)]] s1 = [[s1 ]](s1, s1) = cog111 (40)

[[cog111 ]] s1 = [[[[s1 ]](s1, s1)]] s1 = [[s1 ]](s1, s1) = cog111 (41)

The first column shows the applications to s1. The second column
replaces each compiler generator by its definition. The third column
simplifies the expressions using Def. 3 for s0 and s1, respectively,
and the fourth column states the results using the above definitions.

The results show that self-generation occurs only in the last
case (41), while other compiler generators are produced in the first
three cases (38-40). It is also apparent that cog011 and cog111 are
two functionally equivalent compiler generators, although they may
be quite different textually, because they are implemented by two
different specializers, s0 and s1 (third and fourth columns of (39)
and (40)). These two specializers may produce textually different
residual programs when applied to the same arguments.

Looking at the equations syntactically, we observe that, in each
step, the subscripts of the compiler generators are shifted to the
left by one position. The following graph illustrates the series of
compiler generators generated by (38-41):

cog000

s1� cog001

s1� cog011

s1� cog111

self-generation

s1
�

��
�

We use these properties in Fig. 2, where s0 is used for the three
abstraction steps that lead from the initial expression to the last
projection (6.) and s1 is the argument in the instantiation steps that
return us from (6.) to (4.). We arrive at an important relationship be-
tween the third Futamura projection and three successive compiler
generator applications:

Bootstrapping a compiler generator:

[[[[[[cog000 ]] s1 ]] s1 ]] s1 = cog111 = [[s1 ]](s1, s1) (42)

Instead of using a double self-application of s1 in the third Futa-
mura projection, the same compiler generator cog111 is produced

55



Futamura projection Equivalent application
1. [[s]](p, x) = res = [[[[[[cog′ ]] s]] p]] x
2. [[s]](s, p) = gen = [[[[[[cog′ ]] s]] s]] p
3. [[s]](s, s) = cog = [[[[[[cog′ ]] s]] s]] s

Figure 3. Alternatives for the three Futamura projections

in three steps starting from cog000. This step-by-step process pro-
gresses towards the ultimate goal, the generation of cog111. At
each step the version generated during the previous step is used
as a tool to produce the next version of the compiler generator. We
have good reasons to call this the bootstrapping of a compiler gen-
erator [33]. We note that the initial compiler generator need not
necessarily be produced by self-application. Rather, it can be any
(hand-written) compiler generator. We can also say that the left-
hand side of (42) is a staging of the third Futamura projection on
the right-hand side.

It is important to bear in mind that the three-step bootstrapping
does not circumvent the challenge of writing self-applicable spe-
cializers, but it only delays the challenge. The equality between
the results of the three-step bootstrapping and the third Futamura
projection in (42) requires that, if the latter leads to an inefficient
compiler generator, so does the former, and vice versa.

5.3 Application: Alternatives to the Futamura Projections

This remarkable process is an alternative to the third Futamura
projection. It follows that the classical three Futamura projections
have equivalences in terms of compiler-generator applications, as
shown in Fig. 3, where s can be any specializer and cog′ can be
any compiler generator. In the special case that s0 and cog000 are
used, where the former is the self-generation point of the latter,
the expressions in the right column can be simplified to the usual
application of a compiler generator. The new equations also follow
from an appropriate instantiation of the characteristic equation of a
compiler generator (Def. 4).

(a) Using the second Futamura projection as an example, the
programs from Ershov’s collection in Sect. 3.4 can be turned into
their generating extensions in another way:

[[[[[[cog′ ]] s]] s]] int = comp

[[[[[[cog′ ]] s]] s]] match = matchgen

[[[[[[cog′ ]] s]] s]] parse = parsegen

(b) Using the bootstrapping alternative to the third Futamura
projection to produce in three steps an online compiler generator
from an online specializer son:

[[[[[[cog′ ]] son ]] son ]] son = cogon,on,on. (43)

5.4 Bootstrapping versus Double Self-Application

The three-step bootstrapping of cog111 on the left-hand side of (42)
is quite different from the familiar recipe for self-application [28],
which suggests an approach to the third Futamura projection in
a bottom-up fashion (1., 2., 3.) starting with the specialization of
a self-interpreter. Bootstrapping progresses in a top-down fashion
(6., 5., 4.). Already the first step produces a working compiler gen-
erator cog001, without self-application of s1. The compiler gen-
erator cog011 produced by the second step is already function-
ally equivalent to the desired cog111. If functionality is what mat-
ters, we are done. We observe that the generation of cog011 in-
volves the analogue of a single self-application, while the gen-
eration of cog111 by the third Futamura projection involves dou-
ble self-application and that no compiler generator results until the

task is fully successful. Bootstrapping a new compiler generator by
starting from a mature compiler generator cog000 may thus have
considerable practical advantages. To conclude, bootstrapping does
not circumvent the problem of writing specializers that specialize
well, but may give another perspective to this tricky task.

The time required to bootstrap a compiler generator is the sum
of the times required for each individual step. The time required
to generate a compiler generator by double self-application is
the product of the computational overhead of each layer of self-
application, which is similar to the use of several layers of inter-
preters, where each new level of interpretation may multiply the
running time by a significant factor.

If we take the time required for the self-generation of a com-
piler generator as an indication of its efficiency when performing a
bootstrapping step, then even three-step bootstrapping can be faster
than double self-application. The self-generation speedup ratio re-
ported for FCL-mix is about 8.3 [28, p. 97], indicating that three-
step bootstrapping can be faster than double self-application (three-
step bootstrapping pays off when the ratio is greater than 3). In
contrast, the self-generation speedup ratio reported for Mix is only
about 1.6 [30, p. 42], indicating that, for this specializer, double
self-application is faster. Naturally, the choice also depends on the
number of bootstrapping steps required. As discussed above, two
steps are sufficient for applications where only the functionality of
the compiler generator matters, whereas, for others, such as com-
piler generators for domain-specific languages, even a single step
suffices (the latter will be discussed in Sect. 7.2).

Self-generation can be useful as a partial test of correctness dur-
ing program development. Using the programs from Sect. 5.2: if the
application of cog111 yields a program cog′111 = [[cog111 ]] s1 that
is textually different from program cog111 = [[cog011 ]] s1, then s1

must contain an error, if we assume that the original program s0

(and cog000) is well-tested and most likely correct. The converse is
not true: even if cog111 = cog′111, there may still be errors in s1.
The test is simple and can be performed mechanically. For exam-
ple, it can be useful in an incremental development process where
specializer s1 is an extension of a well-tested specializer s0. This is
similar to partially validating a compiler by self-compilation [34].

6. Recursive Compiler Generation
We wish next to briefly consider the case of compiler generators
that involves quasi self-application of more than two specializers:

cogabc = [[sa ]](sb, sc). (44)

Compiler generator cogijk is produced by a three-step bootstrap-
ping that consumes si, sj , and sk,

cogijk = [[[[[[cogabc ]]si ]] sj ]] sk, (45)

and cogabc self-generates after three steps with sa, sb, and sc:

cogabc = [[[[[[cogabc ]]sa ]] sb ]] sc. (46)

We observed the latter when the generation series came to a self-
generation point after the same specializer was used three times
(Sect. 5.2). In general, however, the generation series progresses
by generating a new compiler generator as long as new specializers
are supplied,

cogijk = [[[[[[. . . [[[[cogabc ]] sd ]] . . .]]si ]]sj ]] sk, (47)

and stagnates by reproducing an old ‘seen-before’ compiler gener-
ator when the supply of specializers is finite:

cogabc = [[[[[[. . . [[[[cogabc ]] sd ]] . . .]]sa ]]sb ]] sc. (48)

The quality of a compiler generator in terms of its operational and
functional properties depends only on the last three specializers
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involved in its generation. There is no “memory of the past” in
this generation series beyond the last three generation steps. In
this sense, and in the context of Futamura’s abstraction scheme,
we consider the projections as closed after the sixth Futamura
projection. The generation is complete since any cogijk can be
obtained from cogabc by supplying si, sj and sk in the appropriate
order.

The graph below illustrates the recursive generation of compiler
generators from an initial compiler generator cogi by supplying a
series of specializers si+1 (i = 0 . . .). The series stagnates and re-
produces previously generated compiler generators when the sup-
ply of specializers is finite. It terminates when an ‘ordinary’ pro-
gram p is supplied instead of a specializer. Self-generation is a stag-
nation of the recursive generation process that restarts to generate
new compiler generators when new specializers are supplied. The
process can be repeated any number of times.

repeat (i ← i + 1)

si+1�

�
��

cogi

si+1� cogi+1

p� gen
x� res

y� out

7. An Application to Domain-Specific Languages
and Language Extensions

For the sake of simplicity we restricted our analysis to the case
of program generators that involve one language. There remains
to discuss the case when more languages are involved. This can
be applied to the generation of compiler generators for domain-
specific languages and to the extension of the subject language of
an existing compiler generator.

7.1 The Languages of Specializers and Compiler Generators

A specializer is characterized by three languages: the subject lan-
guage A, the implementation language B, and the target language Z:

[[[[s]]B(p, x)]]
Z
y = [[p]]A(x, y). (49)

A compiler generator is characterized by four languages: the sub-
ject language A, the implementation language X, the target language
Y, and the target language Z of the generating extensions that it pro-
duces:

[[[[[[cog]]X p]]
Y
x]]

Z
y = [[p]]A(x, y). (50)

To express these properties, it is most convenient to use a variant
of the T-diagrams familiar from compiler construction [10]. The
T-diagram of a specializer is shown in Fig. 4. The bullet (•) in
the center distinguishes it from a compiler. The T-diagram of a
compiler generator is shown in Fig. 4, in which the target language
of the generated generating extensions (Z) is written in the center.

Figure 5 defines the rule of language inheritance in terms of
T-diagrams. When a compiler generator cog′, characterized by

[[[[[[cog′ ]]W p]]
X
x]]

Y
y = [[p]]B(x, y), (51)

is applied to the specializer s (49), then the compiler generator that
this application generates has the same languages as cog (50).

By inspecting the diagrams, we find that language B, the imple-
mentation language of s and the subject language of cog′, does not
appear as one of the four languages characterizing cog. Similarly,
the implementation language W of cog′ does not appear in cog. Six
languages characterize the original programs s and cog′, four of
which are inherited by cog. Note that Z, the target language of s,
becomes the target language of the generating extensions that cog

s ∈
B

A Z•
cog ∈

X

A YZ

Figure 4. T-diagram: specializer s and compiler generator cog

s

B

A Z•

cog

X

A YZ

cog′

W

B XY

Figure 5. Language inheritance rule: [[cog′ ]] s = cog

sDSL

S

DSL DSL•

cogDSL

S

DSL SDSL

cog

S

S SS

Figure 6. DSL compiler generator: [[cog]] sDSL = cogDSL

s2

S1

S2 R•

cog2

R

S2 RR

s1

S0

S1 R•

cog1

R

S1 RR

cog0

R

S0 RR

Figure 7. Subject language extension: [[[[cog0 ]] s1 ]] s2 = cog2

produces, that Y becomes the target language of cog and that X be-
comes its implementation language. This transformation changes
the subject and target languages of the original compiler generator.

7.2 Application: Domain-Specific Languages

Domain-specific languages are important in the development of
modern software. They allow programs to be more concise at a
higher level of abstraction than conventional programming lan-

57



guages, but they continue to evolve with their application domain.
It is thus important that tools supporting domain-specific program
development be maintainable and implementable at low cost.

Domain-specific languages are usually not well suited for writ-
ing program generators. They may be too inefficient for complex
program transformation algorithms due to their interpretive nature
or other resources constraints (e.g., embedded systems) or they may
not be Turing-complete. Specializers have been used successfully
to implement compilers for domain-specific languages (e.g., [43]),
but generating extensions or compiler generators have not been
produced for these languages. Nevertheless, it is desirable to have
available a variety of tools supporting domain-specific program de-
velopment.

Suppose we want to convert DSL-programs into generating ex-
tensions that are implemented in a powerful symbol manipulation
language, such as Scheme (S), but produce DSL-residual programs.
Thus, these generating extensions can be run efficiently on a host
machine S. Assume further that a compiler generator cog is avail-
able for S (e.g., PGG [45]).

Now write a DSL-to-DSL-specializer sDSL in S that takes advan-
tage of domain-specific knowledge for good DSL-specialization. It
need not be self-applicable and can use online partial evaluation.
Nevertheless, we can produce an efficient compiler generator that
converts DSL-programs into the desired generating extensions by
the following method. Given specializer sDSL, characterized by

[[[[sDSL ]]S(p, x)]]
DSL

y = [[p]]DSL(x, y), (52)

and compiler generator cog,

[[[[[[cog]]S p]]
S
x]]

S
y = [[p]]S(x, y), (53)

convert sDSL into a new compiler generator:

cogDSL = [[cog]]S sDSL. (54)

The new compiler generator cogDSL turns DSL-programs into gen-
erating extensions that produce DSL-residual programs on machine
S. Let p be a DSL-program, [[p]]DSL(x, y). Then we obtain p’s gen-
erating extension that cross-generates DSL-residual programs:

genDSL = [[cogDSL ]]S p, (55)

resDSL = [[genDSL ]]S x. (56)

After moving the residual program resDSL to the DSL-machine:

out = [[resDSL ]]DSL y. (57)

The languages involved in the conversion of sDSL into cogDSL by
cog are shown in Fig. 6, which is an example of the language
inheritance rule illustrated in Fig. 5.

One advantage of this method is that a domain expert, who may
know how to specialize DSL-programs and how to define this in S,
does not have to understand how to produce efficient generating
extensions or how to achieve successful self-application. The main
focus is on formulating good DSL specialization. This approach
emphasizes the reuse of program-generation technology available
in the form of a compiler generator. The domain expert can take
advantage of the advanced features of a mature compiler generator.
Moreover, staying within DSL when specializing programs may
give better results than translating DSL-programs to S, generating
S-residual programs with cog, and translating them back to DSL.

7.3 Application: Subject Language Extensions

Another form of bootstrapping builds up a compiler generator for
a larger and larger subject language. Suppose we wish to extend
the subject language S0 of a compiler generator cog0 to a larger
one called S1, such that PS0 ⊆ PS1 . This extension can be made
by defining the specialization of S1 in S0 and turning the new spe-
cializer s1 into a new compiler generator cog1 for S1 using cog0

itself as a tool (Fig. 7). Here, for simplicity, all target languages are
R and not modified. For example, Amix is a specializer where the
subject language is a high-level functional language and the target
language is a low-level assembly language [26].

If the language extension is conservative, every S0-program will
have the same semantics in S1. Self-generation can then serve as a
partial correctness test; i.e., there is an error in the new specializer
s1 (or in the original cog0) if cog′1 �= [[cog′1 ]] s1, where cog′1 =
[[[[[[cog0 ]] s1 ]] s1 ]] s1 (cf. Sect. 5.4).

Subsequently, successive language extensions (S2, S3, ...) can
be implemented by successive expansion of s1 and by turning the
new specializers (s2, s3, ...) into new compiler generators using the
previously produced compiler generator as a transformation tool
(cog1, cog2, ...). A new specializer for S2 need not be written in
S0, but can be written in terms of S1, and so forth, thereby making
use of new, more advanced language features. This is shown for two
successive steps by combining the diagrams to a single diagram in
Fig. 7. This process can be repeated as many times as necessary.
Several useful applications may result from this incremental devel-
opmental process, where a first step may consist of writing a small
compiler generator cog0 for a simple language S0.

cog1 = [[cog0 ]]
R
s1 (58)

cog2 = [[cog1 ]]
R
s2 (59)

cog3 = [[cog2 ]]
R
s3 (60)

· · · · · ·
This process is similar to classical compiler bootstrapping [10, 34],
but differs in that a specializer is turned into a ‘more complex’ com-
piler generator instead of translating a compiler into a compiler.

8. Related Work
Futamura was the first to observe theoretically the self-generation
property of the compiler generators produced by his third projec-
tion [15]. The first actual self-generation was reported a few years
later for a self-applicable offline partial evaluator [29] and has been
used to assess the speed-up of self-applicable partial evaluators
(e.g., [5, 24, 25, 30, 37, 38]). Self-generation is usually regarded
as a curiosity and not viewed as a special case of a more general
use of compiler generators.

Klimov and Romanenko’s important insight [33] was first de-
scribed in English in publication [22], but has drawn little attention
since. The abstraction scheme used in the Futamura projections,
and the constructions in this paper are a special case of the more
general metasystem transition schemes [46, 48, 19, 22]. Related
applications are the generation of specializer from interpreters [18]
and the unstaging of generating extensions by composition with
self-interpreters [23].

Multi-level generating extensions [20] are a generalization of
Ershov’s two-level generating extensions that we studied in this pa-
per. Multi-stage programming, which originates from the insights
into hand-writing generating extensions and compiler generators,
supports the development of type-safe program generators [42].

9. Conclusion
The modern approach of hand-writing compiler generators, while
useful, deprives us of using the power and flexibility of various
self-application schemes. In this paper we have proposed several
non-standard applications of compiler generators, such as the gen-
eration of compiler generators for domain-specific languages, the
generation of quasi-online compiler generators, and the bootstrap-
ping of compiler generators as an alternative to the third Futamura
projection. This may help in approaching some old program gener-
ation problems from a new angle, in particular problems involving
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specializers that are not self-applicable and the production of gen-
erating extensions for domain-specific languages.

The approach proposed here may permit the generation of com-
piler generators for domain-specific languages, while avoiding the
need of developing self-applicable specializers for these languages;
the latter may be difficult when such languages are not geared
towards symbol manipulation and program transformation tasks
(Sect. 7.2).

Quasi-online compiler generators may provide a pragmatic ap-
proach toward combining the ability of generating compiler genera-
tors via (self-applicable) offline specializers with the ability to pro-
duce highly optimized residual programs via (non-self-applicable)
online specializers (Sect. 4.3).

The bootstrapping of compiler generators may be an alternative
to direct generation by the third Futamura projection (Sect. 5.3)
and the extension of their subject languages may be useful for
the development and evolution of compiler generators (Sect. 7.3).
However, experiments in a realistic setting are needed to determine
if and under what conditions this is practical.

At first, the steps beyond the third Futamura projection do not
appear to make sense, as no further changes occur. But the situa-
tion is different when using different specializers in a mixed fash-
ion. Since these specializers can have different characteristics, con-
cerning, for example, specialization power, self-applicability and
languages, several new application scenarios may emerge. In hind-
sight, it may not be surprising that Futamura’s abstraction scheme
can be repeated up to the sixth projection before the equation sys-
tem is closed in some sense and that, as suggested by Futamura,
the self-generation of compiler generators can indeed be connected
to the fourth projection. Nevertheless, to our knowledge, except for
the references cited, these foundational issues have not been stud-
ied in the literature.

While our aim was a more systematic and theoretical investi-
gation of the potential and limitations of compiler generators, an
experimental investigation of the applications proposed in this pa-
per will be the next step, as it was for other applications proposed
for the Futamura projections. Nevertheless, we believe that the the-
oretical ideas and insights into compiler generators and the classi-
cal Futamura projections are sufficiently interesting to warrant their
discussion. Moreover, it may bring to a wider audience an answer
to the question: What is beyond the third Futamura projection?
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